Roman Lebedev | 1d1330c | 2019-03-29 14:24:27 +0000 | [diff] [blame] | 1 | //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "SchedClassResolution.h" |
| 10 | #include "BenchmarkResult.h" |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/MC/MCAsmInfo.h" |
| 13 | #include "llvm/Support/FormatVariadic.h" |
| 14 | #include <limits> |
| 15 | #include <unordered_set> |
| 16 | #include <vector> |
| 17 | |
| 18 | namespace llvm { |
| 19 | namespace exegesis { |
| 20 | |
| 21 | // Return the non-redundant list of WriteProcRes used by the given sched class. |
| 22 | // The scheduling model for LLVM is such that each instruction has a certain |
| 23 | // number of uops which consume resources which are described by WriteProcRes |
| 24 | // entries. Each entry describe how many cycles are spent on a specific ProcRes |
| 25 | // kind. |
| 26 | // For example, an instruction might have 3 uOps, one dispatching on P0 |
| 27 | // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). |
| 28 | // Note that LLVM additionally denormalizes resource consumption to include |
| 29 | // usage of super resources by subresources. So in practice if there exists a |
| 30 | // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by |
| 31 | // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed |
| 32 | // by P06 are also consumed by P016. In the figure below, parenthesized cycles |
| 33 | // denote implied usage of superresources by subresources: |
| 34 | // P0 P06 P016 |
| 35 | // uOp1 1 (1) (1) |
| 36 | // uOp2 1 (1) |
| 37 | // uOp3 1 (1) |
| 38 | // ============================= |
| 39 | // 1 3 3 |
| 40 | // Eventually we end up with three entries for the WriteProcRes of the |
| 41 | // instruction: |
| 42 | // {ProcResIdx=1, Cycles=1} // P0 |
| 43 | // {ProcResIdx=7, Cycles=3} // P06 |
| 44 | // {ProcResIdx=10, Cycles=3} // P016 |
| 45 | // |
| 46 | // Note that in this case, P016 does not contribute any cycles, so it would |
| 47 | // be removed by this function. |
| 48 | // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. |
| 49 | static llvm::SmallVector<llvm::MCWriteProcResEntry, 8> |
| 50 | getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc, |
| 51 | const llvm::MCSubtargetInfo &STI) { |
| 52 | llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result; |
| 53 | const auto &SM = STI.getSchedModel(); |
| 54 | const unsigned NumProcRes = SM.getNumProcResourceKinds(); |
| 55 | |
| 56 | // This assumes that the ProcResDescs are sorted in topological order, which |
| 57 | // is guaranteed by the tablegen backend. |
| 58 | llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes); |
| 59 | for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), |
| 60 | *const WPREnd = STI.getWriteProcResEnd(&SCDesc); |
| 61 | WPR != WPREnd; ++WPR) { |
| 62 | const llvm::MCProcResourceDesc *const ProcResDesc = |
| 63 | SM.getProcResource(WPR->ProcResourceIdx); |
| 64 | if (ProcResDesc->SubUnitsIdxBegin == nullptr) { |
| 65 | // This is a ProcResUnit. |
| 66 | Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); |
| 67 | ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; |
| 68 | } else { |
| 69 | // This is a ProcResGroup. First see if it contributes any cycles or if |
| 70 | // it has cycles just from subunits. |
| 71 | float RemainingCycles = WPR->Cycles; |
| 72 | for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; |
| 73 | SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; |
| 74 | ++SubResIdx) { |
| 75 | RemainingCycles -= ProcResUnitUsage[*SubResIdx]; |
| 76 | } |
| 77 | if (RemainingCycles < 0.01f) { |
| 78 | // The ProcResGroup contributes no cycles of its own. |
| 79 | continue; |
| 80 | } |
| 81 | // The ProcResGroup contributes `RemainingCycles` cycles of its own. |
| 82 | Result.push_back({WPR->ProcResourceIdx, |
| 83 | static_cast<uint16_t>(std::round(RemainingCycles))}); |
| 84 | // Spread the remaining cycles over all subunits. |
| 85 | for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; |
| 86 | SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; |
| 87 | ++SubResIdx) { |
| 88 | ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; |
| 89 | } |
| 90 | } |
| 91 | } |
| 92 | return Result; |
| 93 | } |
| 94 | |
| 95 | // Distributes a pressure budget as evenly as possible on the provided subunits |
| 96 | // given the already existing port pressure distribution. |
| 97 | // |
| 98 | // The algorithm is as follows: while there is remaining pressure to |
| 99 | // distribute, find the subunits with minimal pressure, and distribute |
| 100 | // remaining pressure equally up to the pressure of the unit with |
| 101 | // second-to-minimal pressure. |
| 102 | // For example, let's assume we want to distribute 2*P1256 |
| 103 | // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: |
| 104 | // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 |
| 105 | // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 |
| 106 | // RemainingPressure = 2.0 |
| 107 | // We sort the subunits by pressure: |
| 108 | // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] |
| 109 | // We'll first start by the subunits with minimal pressure, which are at |
| 110 | // the beginning of the sorted array. In this example there is one (P2). |
| 111 | // The subunit with second-to-minimal pressure is the next one in the |
| 112 | // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles |
| 113 | // from the budget. |
| 114 | // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] |
| 115 | // RemainingPressure = 1.9 |
| 116 | // We repeat this process: distribute 0.2 pressure on each of the minimal |
| 117 | // P2 and P1, decrease budget by 2*0.2: |
| 118 | // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] |
| 119 | // RemainingPressure = 1.5 |
| 120 | // There are no second-to-minimal subunits so we just share the remaining |
| 121 | // budget (1.5 cycles) equally: |
| 122 | // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] |
| 123 | // RemainingPressure = 0.0 |
| 124 | // We stop as there is no remaining budget to distribute. |
| 125 | static void distributePressure(float RemainingPressure, |
| 126 | llvm::SmallVector<uint16_t, 32> Subunits, |
| 127 | llvm::SmallVector<float, 32> &DensePressure) { |
| 128 | // Find the number of subunits with minimal pressure (they are at the |
| 129 | // front). |
| 130 | llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) { |
| 131 | return DensePressure[A] < DensePressure[B]; |
| 132 | }); |
| 133 | const auto getPressureForSubunit = [&DensePressure, |
| 134 | &Subunits](size_t I) -> float & { |
| 135 | return DensePressure[Subunits[I]]; |
| 136 | }; |
| 137 | size_t NumMinimalSU = 1; |
| 138 | while (NumMinimalSU < Subunits.size() && |
| 139 | getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { |
| 140 | ++NumMinimalSU; |
| 141 | } |
| 142 | while (RemainingPressure > 0.0f) { |
| 143 | if (NumMinimalSU == Subunits.size()) { |
| 144 | // All units are minimal, just distribute evenly and be done. |
| 145 | for (size_t I = 0; I < NumMinimalSU; ++I) { |
| 146 | getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; |
| 147 | } |
| 148 | return; |
| 149 | } |
| 150 | // Distribute the remaining pressure equally. |
| 151 | const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); |
| 152 | const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); |
| 153 | assert(MinimalPressure < SecondToMinimalPressure); |
| 154 | const float Increment = SecondToMinimalPressure - MinimalPressure; |
| 155 | if (RemainingPressure <= NumMinimalSU * Increment) { |
| 156 | // There is not enough remaining pressure. |
| 157 | for (size_t I = 0; I < NumMinimalSU; ++I) { |
| 158 | getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; |
| 159 | } |
| 160 | return; |
| 161 | } |
| 162 | // Bump all minimal pressure subunits to `SecondToMinimalPressure`. |
| 163 | for (size_t I = 0; I < NumMinimalSU; ++I) { |
| 164 | getPressureForSubunit(I) = SecondToMinimalPressure; |
| 165 | RemainingPressure -= SecondToMinimalPressure; |
| 166 | } |
| 167 | while (NumMinimalSU < Subunits.size() && |
| 168 | getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { |
| 169 | ++NumMinimalSU; |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure( |
| 175 | const llvm::MCSchedModel &SM, |
| 176 | llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) { |
| 177 | // DensePressure[I] is the port pressure for Proc Resource I. |
| 178 | llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); |
| 179 | llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A, |
| 180 | const llvm::MCWriteProcResEntry &B) { |
| 181 | return A.ProcResourceIdx < B.ProcResourceIdx; |
| 182 | }); |
| 183 | for (const llvm::MCWriteProcResEntry &WPR : WPRS) { |
| 184 | // Get units for the entry. |
| 185 | const llvm::MCProcResourceDesc *const ProcResDesc = |
| 186 | SM.getProcResource(WPR.ProcResourceIdx); |
| 187 | if (ProcResDesc->SubUnitsIdxBegin == nullptr) { |
| 188 | // This is a ProcResUnit. |
| 189 | DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; |
| 190 | } else { |
| 191 | // This is a ProcResGroup. |
| 192 | llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, |
| 193 | ProcResDesc->SubUnitsIdxBegin + |
| 194 | ProcResDesc->NumUnits); |
| 195 | distributePressure(WPR.Cycles, Subunits, DensePressure); |
| 196 | } |
| 197 | } |
| 198 | // Turn dense pressure into sparse pressure by removing zero entries. |
| 199 | std::vector<std::pair<uint16_t, float>> Pressure; |
| 200 | for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
| 201 | if (DensePressure[I] > 0.0f) |
| 202 | Pressure.emplace_back(I, DensePressure[I]); |
| 203 | } |
| 204 | return Pressure; |
| 205 | } |
| 206 | |
| 207 | ResolvedSchedClass::ResolvedSchedClass(const llvm::MCSubtargetInfo &STI, |
| 208 | unsigned ResolvedSchedClassId, |
| 209 | bool WasVariant) |
| 210 | : SchedClassId(ResolvedSchedClassId), |
| 211 | SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)), |
| 212 | WasVariant(WasVariant), |
| 213 | NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)), |
| 214 | IdealizedProcResPressure(computeIdealizedProcResPressure( |
| 215 | STI.getSchedModel(), NonRedundantWriteProcRes)) { |
| 216 | assert((SCDesc == nullptr || !SCDesc->isVariant()) && |
| 217 | "ResolvedSchedClass should never be variant"); |
| 218 | } |
| 219 | |
| 220 | static unsigned ResolveVariantSchedClassId(const llvm::MCSubtargetInfo &STI, |
| 221 | unsigned SchedClassId, |
| 222 | const llvm::MCInst &MCI) { |
| 223 | const auto &SM = STI.getSchedModel(); |
| 224 | while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) |
| 225 | SchedClassId = |
| 226 | STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID()); |
| 227 | return SchedClassId; |
| 228 | } |
| 229 | |
| 230 | std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/> |
| 231 | ResolvedSchedClass::resolveSchedClassId( |
| 232 | const llvm::MCSubtargetInfo &SubtargetInfo, |
| 233 | const llvm::MCInstrInfo &InstrInfo, const llvm::MCInst &MCI) { |
| 234 | unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass(); |
| 235 | const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel() |
| 236 | .getSchedClassDesc(SchedClassId) |
| 237 | ->isVariant(); |
| 238 | SchedClassId = ResolveVariantSchedClassId(SubtargetInfo, SchedClassId, MCI); |
| 239 | return std::make_pair(SchedClassId, WasVariant); |
| 240 | } |
| 241 | |
Roman Lebedev | 4d81e87 | 2019-03-29 14:58:01 +0000 | [diff] [blame^] | 242 | // Returns a ProxResIdx by id or name. |
| 243 | static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI, |
| 244 | const llvm::StringRef NameOrId) { |
| 245 | // Interpret the key as an ProcResIdx. |
| 246 | unsigned ProcResIdx = 0; |
| 247 | if (llvm::to_integer(NameOrId, ProcResIdx, 10)) |
| 248 | return ProcResIdx; |
| 249 | // Interpret the key as a ProcRes name. |
| 250 | const auto &SchedModel = STI.getSchedModel(); |
| 251 | for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { |
| 252 | if (NameOrId == SchedModel.getProcResource(I)->Name) |
| 253 | return I; |
| 254 | } |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint( |
| 259 | InstructionBenchmark::ModeE Mode, const llvm::MCSubtargetInfo &STI, |
| 260 | ArrayRef<PerInstructionStats> Representative) const { |
| 261 | const size_t NumMeasurements = Representative.size(); |
| 262 | |
| 263 | std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); |
| 264 | |
| 265 | if (Mode == InstructionBenchmark::Latency) { |
| 266 | assert(NumMeasurements == 1 && "Latency is a single measure."); |
| 267 | BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0]; |
| 268 | |
| 269 | // Find the latency. |
| 270 | LatencyMeasure.PerInstructionValue = 0.0; |
| 271 | |
| 272 | for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) { |
| 273 | const llvm::MCWriteLatencyEntry *const WLE = |
| 274 | STI.getWriteLatencyEntry(SCDesc, I); |
| 275 | LatencyMeasure.PerInstructionValue = |
| 276 | std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles); |
| 277 | } |
| 278 | } else if (Mode == InstructionBenchmark::Uops) { |
| 279 | for (const auto &I : llvm::zip(SchedClassPoint, Representative)) { |
| 280 | BenchmarkMeasure &Measure = std::get<0>(I); |
| 281 | const PerInstructionStats &Stats = std::get<1>(I); |
| 282 | |
| 283 | StringRef Key = Stats.key(); |
| 284 | uint16_t ProcResIdx = findProcResIdx(STI, Key); |
| 285 | if (ProcResIdx > 0) { |
| 286 | // Find the pressure on ProcResIdx `Key`. |
| 287 | const auto ProcResPressureIt = std::find_if( |
| 288 | IdealizedProcResPressure.begin(), IdealizedProcResPressure.end(), |
| 289 | [ProcResIdx](const std::pair<uint16_t, float> &WPR) { |
| 290 | return WPR.first == ProcResIdx; |
| 291 | }); |
| 292 | Measure.PerInstructionValue = |
| 293 | ProcResPressureIt == IdealizedProcResPressure.end() |
| 294 | ? 0.0 |
| 295 | : ProcResPressureIt->second; |
| 296 | } else if (Key == "NumMicroOps") { |
| 297 | Measure.PerInstructionValue = SCDesc->NumMicroOps; |
| 298 | } else { |
| 299 | llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes " |
| 300 | "name, got " |
| 301 | << Key << "\n"; |
| 302 | return {}; |
| 303 | } |
| 304 | } |
| 305 | } else if (Mode == InstructionBenchmark::InverseThroughput) { |
| 306 | assert(NumMeasurements == 1 && "Inverse Throughput is a single measure."); |
| 307 | BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0]; |
| 308 | |
| 309 | RThroughputMeasure.PerInstructionValue = |
| 310 | MCSchedModel::getReciprocalThroughput(STI, *SCDesc); |
| 311 | } else { |
| 312 | llvm_unreachable("unimplemented measurement matching mode"); |
| 313 | } |
| 314 | |
| 315 | return SchedClassPoint; |
| 316 | } |
| 317 | |
Roman Lebedev | 1d1330c | 2019-03-29 14:24:27 +0000 | [diff] [blame] | 318 | } // namespace exegesis |
| 319 | } // namespace llvm |