George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 1 | //- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a CFL-based, summary-based alias analysis algorithm. It |
| 11 | // differs from CFLSteensAliasAnalysis in its inclusion-based nature while |
| 12 | // CFLSteensAliasAnalysis is unification-based. This pass has worse performance |
| 13 | // than CFLSteensAliasAnalysis (the worst case complexity of |
| 14 | // CFLAndersAliasAnalysis is cubic, while the worst case complexity of |
| 15 | // CFLSteensAliasAnalysis is almost linear), but it is able to yield more |
| 16 | // precise analysis result. The precision of this analysis is roughly the same |
| 17 | // as that of an one level context-sensitive Andersen's algorithm. |
| 18 | // |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 19 | // The algorithm used here is based on recursive state machine matching scheme |
| 20 | // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu |
| 21 | // Rugina. The general idea is to extend the tranditional transitive closure |
| 22 | // algorithm to perform CFL matching along the way: instead of recording |
| 23 | // "whether X is reachable from Y", we keep track of "whether X is reachable |
| 24 | // from Y at state Z", where the "state" field indicates where we are in the CFL |
| 25 | // matching process. To understand the matching better, it is advisable to have |
| 26 | // the state machine shown in Figure 3 of the paper available when reading the |
| 27 | // codes: all we do here is to selectively expand the transitive closure by |
| 28 | // discarding edges that are not recognized by the state machine. |
| 29 | // |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 30 | // There are two differences between our current implementation and the one |
| 31 | // described in the paper: |
| 32 | // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built, |
| 33 | // while in the paper the authors did the computation in a demand-driven |
| 34 | // fashion. We did not implement the demand-driven algorithm due to the |
| 35 | // additional coding complexity and higher memory profile, but if we found it |
| 36 | // necessary we may switch to it eventually. |
| 37 | // - In the paper the authors use a state machine that does not distinguish |
| 38 | // value reads from value writes. For example, if Y is reachable from X at state |
| 39 | // S3, it may be the case that X is written into Y, or it may be the case that |
| 40 | // there's a third value Z that writes into both X and Y. To make that |
| 41 | // distinction (which is crucial in building function summary as well as |
| 42 | // retrieving mod-ref info), we choose to duplicate some of the states in the |
| 43 | // paper's proposed state machine. The duplication does not change the set the |
| 44 | // machine accepts. Given a pair of reachable values, it only provides more |
| 45 | // detailed information on which value is being written into and which is being |
| 46 | // read from. |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 47 | // |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 48 | //===----------------------------------------------------------------------===// |
| 49 | |
| 50 | // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and |
| 51 | // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because |
| 52 | // FunctionPasses are only allowed to inspect the Function that they're being |
| 53 | // run on. Realistically, this likely isn't a problem until we allow |
| 54 | // FunctionPasses to run concurrently. |
| 55 | |
| 56 | #include "llvm/Analysis/CFLAndersAliasAnalysis.h" |
George Burgess IV | 1ca8aff | 2016-07-06 00:36:12 +0000 | [diff] [blame] | 57 | #include "CFLGraph.h" |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 58 | #include "llvm/ADT/DenseSet.h" |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 59 | #include "llvm/Pass.h" |
| 60 | |
| 61 | using namespace llvm; |
George Burgess IV | 1ca8aff | 2016-07-06 00:36:12 +0000 | [diff] [blame] | 62 | using namespace llvm::cflaa; |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 63 | |
| 64 | #define DEBUG_TYPE "cfl-anders-aa" |
| 65 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 66 | CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {} |
| 67 | CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS) |
| 68 | : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {} |
| 69 | CFLAndersAAResult::~CFLAndersAAResult() {} |
| 70 | |
| 71 | static const Function *parentFunctionOfValue(const Value *Val) { |
| 72 | if (auto *Inst = dyn_cast<Instruction>(Val)) { |
| 73 | auto *Bb = Inst->getParent(); |
| 74 | return Bb->getParent(); |
| 75 | } |
| 76 | |
| 77 | if (auto *Arg = dyn_cast<Argument>(Val)) |
| 78 | return Arg->getParent(); |
| 79 | return nullptr; |
| 80 | } |
| 81 | |
| 82 | namespace { |
| 83 | |
| 84 | enum class MatchState : uint8_t { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 85 | // The following state represents S1 in the paper. |
| 86 | FlowFromReadOnly = 0, |
| 87 | // The following two states together represent S2 in the paper. |
| 88 | // The 'NoReadWrite' suffix indicates that there exists an alias path that |
| 89 | // does not contain assignment and reverse assignment edges. |
| 90 | // The 'ReadOnly' suffix indicates that there exists an alias path that |
| 91 | // contains reverse assignment edges only. |
| 92 | FlowFromMemAliasNoReadWrite, |
| 93 | FlowFromMemAliasReadOnly, |
| 94 | // The following two states together represent S3 in the paper. |
| 95 | // The 'WriteOnly' suffix indicates that there exists an alias path that |
| 96 | // contains assignment edges only. |
| 97 | // The 'ReadWrite' suffix indicates that there exists an alias path that |
| 98 | // contains both assignment and reverse assignment edges. Note that if X and Y |
| 99 | // are reachable at 'ReadWrite' state, it does NOT mean X is both read from |
| 100 | // and written to Y. Instead, it means that a third value Z is written to both |
| 101 | // X and Y. |
| 102 | FlowToWriteOnly, |
| 103 | FlowToReadWrite, |
| 104 | // The following two states together represent S4 in the paper. |
| 105 | FlowToMemAliasWriteOnly, |
| 106 | FlowToMemAliasReadWrite, |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 107 | }; |
| 108 | |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 109 | typedef std::bitset<7> StateSet; |
George Burgess IV | 22a0f1a | 2016-07-19 21:35:47 +0000 | [diff] [blame] | 110 | // N.B. These are unsigned instead of StateSets because some MSVC versions |
| 111 | // apparently lack constexpr bitset ctors. |
| 112 | LLVM_CONSTEXPR unsigned ReadOnlyStateMask = |
| 113 | (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) | |
| 114 | (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly)); |
| 115 | LLVM_CONSTEXPR unsigned WriteOnlyStateMask = |
| 116 | (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) | |
| 117 | (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly)); |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 118 | |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 119 | // A pair that consists of a value and an offset |
| 120 | struct OffsetValue { |
| 121 | const Value *Val; |
| 122 | int64_t Offset; |
| 123 | }; |
| 124 | |
| 125 | bool operator==(OffsetValue LHS, OffsetValue RHS) { |
| 126 | return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset; |
| 127 | } |
| 128 | bool operator<(OffsetValue LHS, OffsetValue RHS) { |
| 129 | return std::less<const Value *>()(LHS.Val, RHS.Val) || |
| 130 | (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset); |
| 131 | } |
| 132 | |
| 133 | // A pair that consists of an InstantiatedValue and an offset |
| 134 | struct OffsetInstantiatedValue { |
| 135 | InstantiatedValue IVal; |
| 136 | int64_t Offset; |
| 137 | }; |
| 138 | |
| 139 | bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) { |
| 140 | return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset; |
| 141 | } |
| 142 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 143 | // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in |
| 144 | // the paper) during the analysis. |
| 145 | class ReachabilitySet { |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 146 | typedef DenseMap<InstantiatedValue, StateSet> ValueStateMap; |
| 147 | typedef DenseMap<InstantiatedValue, ValueStateMap> ValueReachMap; |
| 148 | ValueReachMap ReachMap; |
| 149 | |
| 150 | public: |
| 151 | typedef ValueStateMap::const_iterator const_valuestate_iterator; |
| 152 | typedef ValueReachMap::const_iterator const_value_iterator; |
| 153 | |
| 154 | // Insert edge 'From->To' at state 'State' |
| 155 | bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) { |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 156 | assert(From != To); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 157 | auto &States = ReachMap[To][From]; |
| 158 | auto Idx = static_cast<size_t>(State); |
| 159 | if (!States.test(Idx)) { |
| 160 | States.set(Idx); |
| 161 | return true; |
| 162 | } |
| 163 | return false; |
| 164 | } |
| 165 | |
| 166 | // Return the set of all ('From', 'State') pair for a given node 'To' |
| 167 | iterator_range<const_valuestate_iterator> |
| 168 | reachableValueAliases(InstantiatedValue V) const { |
| 169 | auto Itr = ReachMap.find(V); |
| 170 | if (Itr == ReachMap.end()) |
| 171 | return make_range<const_valuestate_iterator>(const_valuestate_iterator(), |
| 172 | const_valuestate_iterator()); |
| 173 | return make_range<const_valuestate_iterator>(Itr->second.begin(), |
| 174 | Itr->second.end()); |
| 175 | } |
| 176 | |
| 177 | iterator_range<const_value_iterator> value_mappings() const { |
| 178 | return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end()); |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M" |
| 183 | // in the paper) during the analysis. |
| 184 | class AliasMemSet { |
| 185 | typedef DenseSet<InstantiatedValue> MemSet; |
| 186 | typedef DenseMap<InstantiatedValue, MemSet> MemMapType; |
| 187 | MemMapType MemMap; |
| 188 | |
| 189 | public: |
| 190 | typedef MemSet::const_iterator const_mem_iterator; |
| 191 | |
| 192 | bool insert(InstantiatedValue LHS, InstantiatedValue RHS) { |
| 193 | // Top-level values can never be memory aliases because one cannot take the |
| 194 | // addresses of them |
| 195 | assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0); |
| 196 | return MemMap[LHS].insert(RHS).second; |
| 197 | } |
| 198 | |
| 199 | const MemSet *getMemoryAliases(InstantiatedValue V) const { |
| 200 | auto Itr = MemMap.find(V); |
| 201 | if (Itr == MemMap.end()) |
| 202 | return nullptr; |
| 203 | return &Itr->second; |
| 204 | } |
| 205 | }; |
| 206 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 207 | // We use AliasAttrMap to keep track of the AliasAttr of each node. |
| 208 | class AliasAttrMap { |
| 209 | typedef DenseMap<InstantiatedValue, AliasAttrs> MapType; |
| 210 | MapType AttrMap; |
| 211 | |
| 212 | public: |
| 213 | typedef MapType::const_iterator const_iterator; |
| 214 | |
| 215 | bool add(InstantiatedValue V, AliasAttrs Attr) { |
| 216 | if (Attr.none()) |
| 217 | return false; |
| 218 | auto &OldAttr = AttrMap[V]; |
| 219 | auto NewAttr = OldAttr | Attr; |
| 220 | if (OldAttr == NewAttr) |
| 221 | return false; |
| 222 | OldAttr = NewAttr; |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | AliasAttrs getAttrs(InstantiatedValue V) const { |
| 227 | AliasAttrs Attr; |
| 228 | auto Itr = AttrMap.find(V); |
| 229 | if (Itr != AttrMap.end()) |
| 230 | Attr = Itr->second; |
| 231 | return Attr; |
| 232 | } |
| 233 | |
| 234 | iterator_range<const_iterator> mappings() const { |
| 235 | return make_range<const_iterator>(AttrMap.begin(), AttrMap.end()); |
| 236 | } |
| 237 | }; |
| 238 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 239 | struct WorkListItem { |
| 240 | InstantiatedValue From; |
| 241 | InstantiatedValue To; |
| 242 | MatchState State; |
| 243 | }; |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 244 | |
| 245 | struct ValueSummary { |
| 246 | struct Record { |
| 247 | InterfaceValue IValue; |
| 248 | unsigned DerefLevel; |
| 249 | }; |
| 250 | SmallVector<Record, 4> FromRecords, ToRecords; |
| 251 | }; |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 252 | } |
| 253 | |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 254 | namespace llvm { |
| 255 | // Specialize DenseMapInfo for OffsetValue. |
| 256 | template <> struct DenseMapInfo<OffsetValue> { |
| 257 | static OffsetValue getEmptyKey() { |
| 258 | return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(), |
| 259 | DenseMapInfo<int64_t>::getEmptyKey()}; |
| 260 | } |
| 261 | static OffsetValue getTombstoneKey() { |
| 262 | return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(), |
| 263 | DenseMapInfo<int64_t>::getEmptyKey()}; |
| 264 | } |
| 265 | static unsigned getHashValue(const OffsetValue &OVal) { |
| 266 | return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue( |
| 267 | std::make_pair(OVal.Val, OVal.Offset)); |
| 268 | } |
| 269 | static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) { |
| 270 | return LHS == RHS; |
| 271 | } |
| 272 | }; |
| 273 | |
| 274 | // Specialize DenseMapInfo for OffsetInstantiatedValue. |
| 275 | template <> struct DenseMapInfo<OffsetInstantiatedValue> { |
| 276 | static OffsetInstantiatedValue getEmptyKey() { |
| 277 | return OffsetInstantiatedValue{ |
| 278 | DenseMapInfo<InstantiatedValue>::getEmptyKey(), |
| 279 | DenseMapInfo<int64_t>::getEmptyKey()}; |
| 280 | } |
| 281 | static OffsetInstantiatedValue getTombstoneKey() { |
| 282 | return OffsetInstantiatedValue{ |
| 283 | DenseMapInfo<InstantiatedValue>::getTombstoneKey(), |
| 284 | DenseMapInfo<int64_t>::getEmptyKey()}; |
| 285 | } |
| 286 | static unsigned getHashValue(const OffsetInstantiatedValue &OVal) { |
| 287 | return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue( |
| 288 | std::make_pair(OVal.IVal, OVal.Offset)); |
| 289 | } |
| 290 | static bool isEqual(const OffsetInstantiatedValue &LHS, |
| 291 | const OffsetInstantiatedValue &RHS) { |
| 292 | return LHS == RHS; |
| 293 | } |
| 294 | }; |
| 295 | } |
| 296 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 297 | class CFLAndersAAResult::FunctionInfo { |
| 298 | /// Map a value to other values that may alias it |
| 299 | /// Since the alias relation is symmetric, to save some space we assume values |
| 300 | /// are properly ordered: if a and b alias each other, and a < b, then b is in |
| 301 | /// AliasMap[a] but not vice versa. |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 302 | DenseMap<const Value *, std::vector<OffsetValue>> AliasMap; |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 303 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 304 | /// Map a value to its corresponding AliasAttrs |
| 305 | DenseMap<const Value *, AliasAttrs> AttrMap; |
| 306 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 307 | /// Summary of externally visible effects. |
| 308 | AliasSummary Summary; |
| 309 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 310 | AliasAttrs getAttrs(const Value *) const; |
| 311 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 312 | public: |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 313 | FunctionInfo(const Function &, const SmallVectorImpl<Value *> &, |
| 314 | const ReachabilitySet &, AliasAttrMap); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 315 | |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 316 | bool mayAlias(const Value *, uint64_t, const Value *, uint64_t) const; |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 317 | const AliasSummary &getAliasSummary() const { return Summary; } |
| 318 | }; |
| 319 | |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 320 | static bool hasReadOnlyState(StateSet Set) { |
George Burgess IV | 22a0f1a | 2016-07-19 21:35:47 +0000 | [diff] [blame] | 321 | return (Set & StateSet(ReadOnlyStateMask)).any(); |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 322 | } |
| 323 | |
| 324 | static bool hasWriteOnlyState(StateSet Set) { |
George Burgess IV | 22a0f1a | 2016-07-19 21:35:47 +0000 | [diff] [blame] | 325 | return (Set & StateSet(WriteOnlyStateMask)).any(); |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 326 | } |
| 327 | |
| 328 | static Optional<InterfaceValue> |
| 329 | getInterfaceValue(InstantiatedValue IValue, |
| 330 | const SmallVectorImpl<Value *> &RetVals) { |
| 331 | auto Val = IValue.Val; |
| 332 | |
| 333 | Optional<unsigned> Index; |
| 334 | if (auto Arg = dyn_cast<Argument>(Val)) |
| 335 | Index = Arg->getArgNo() + 1; |
| 336 | else if (is_contained(RetVals, Val)) |
| 337 | Index = 0; |
| 338 | |
| 339 | if (Index) |
| 340 | return InterfaceValue{*Index, IValue.DerefLevel}; |
| 341 | return None; |
| 342 | } |
| 343 | |
| 344 | static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap, |
| 345 | const AliasAttrMap &AMap) { |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 346 | for (const auto &Mapping : AMap.mappings()) { |
| 347 | auto IVal = Mapping.first; |
| 348 | |
| 349 | // AttrMap only cares about top-level values |
| 350 | if (IVal.DerefLevel == 0) |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 351 | AttrMap[IVal.Val] |= Mapping.second; |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 352 | } |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 353 | } |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 354 | |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 355 | static void |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 356 | populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap, |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 357 | const ReachabilitySet &ReachSet) { |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 358 | for (const auto &OuterMapping : ReachSet.value_mappings()) { |
| 359 | // AliasMap only cares about top-level values |
| 360 | if (OuterMapping.first.DerefLevel > 0) |
| 361 | continue; |
| 362 | |
| 363 | auto Val = OuterMapping.first.Val; |
| 364 | auto &AliasList = AliasMap[Val]; |
| 365 | for (const auto &InnerMapping : OuterMapping.second) { |
| 366 | // Again, AliasMap only cares about top-level values |
| 367 | if (InnerMapping.first.DerefLevel == 0) |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 368 | AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset}); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 369 | } |
| 370 | |
| 371 | // Sort AliasList for faster lookup |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 372 | std::sort(AliasList.begin(), AliasList.end()); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 373 | } |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 374 | } |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 375 | |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 376 | static void populateExternalRelations( |
| 377 | SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn, |
| 378 | const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) { |
| 379 | // If a function only returns one of its argument X, then X will be both an |
| 380 | // argument and a return value at the same time. This is an edge case that |
| 381 | // needs special handling here. |
| 382 | for (const auto &Arg : Fn.args()) { |
| 383 | if (is_contained(RetVals, &Arg)) { |
| 384 | auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0}; |
| 385 | auto RetVal = InterfaceValue{0, 0}; |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 386 | ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0}); |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 387 | } |
| 388 | } |
| 389 | |
| 390 | // Below is the core summary construction logic. |
| 391 | // A naive solution of adding only the value aliases that are parameters or |
| 392 | // return values in ReachSet to the summary won't work: It is possible that a |
| 393 | // parameter P is written into an intermediate value I, and the function |
| 394 | // subsequently returns *I. In that case, *I is does not value alias anything |
| 395 | // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to |
| 396 | // (I, 1). |
| 397 | // To account for the aforementioned case, we need to check each non-parameter |
| 398 | // and non-return value for the possibility of acting as an intermediate. |
| 399 | // 'ValueMap' here records, for each value, which InterfaceValues read from or |
| 400 | // write into it. If both the read list and the write list of a given value |
| 401 | // are non-empty, we know that a particular value is an intermidate and we |
| 402 | // need to add summary edges from the writes to the reads. |
| 403 | DenseMap<Value *, ValueSummary> ValueMap; |
| 404 | for (const auto &OuterMapping : ReachSet.value_mappings()) { |
| 405 | if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) { |
| 406 | for (const auto &InnerMapping : OuterMapping.second) { |
| 407 | // If Src is a param/return value, we get a same-level assignment. |
| 408 | if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) { |
| 409 | // This may happen if both Dst and Src are return values |
| 410 | if (*Dst == *Src) |
| 411 | continue; |
| 412 | |
| 413 | if (hasReadOnlyState(InnerMapping.second)) |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 414 | ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset}); |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 415 | // No need to check for WriteOnly state, since ReachSet is symmetric |
| 416 | } else { |
| 417 | // If Src is not a param/return, add it to ValueMap |
| 418 | auto SrcIVal = InnerMapping.first; |
| 419 | if (hasReadOnlyState(InnerMapping.second)) |
| 420 | ValueMap[SrcIVal.Val].FromRecords.push_back( |
| 421 | ValueSummary::Record{*Dst, SrcIVal.DerefLevel}); |
| 422 | if (hasWriteOnlyState(InnerMapping.second)) |
| 423 | ValueMap[SrcIVal.Val].ToRecords.push_back( |
| 424 | ValueSummary::Record{*Dst, SrcIVal.DerefLevel}); |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | for (const auto &Mapping : ValueMap) { |
| 431 | for (const auto &FromRecord : Mapping.second.FromRecords) { |
| 432 | for (const auto &ToRecord : Mapping.second.ToRecords) { |
| 433 | auto ToLevel = ToRecord.DerefLevel; |
| 434 | auto FromLevel = FromRecord.DerefLevel; |
| 435 | // Same-level assignments should have already been processed by now |
| 436 | if (ToLevel == FromLevel) |
| 437 | continue; |
| 438 | |
| 439 | auto SrcIndex = FromRecord.IValue.Index; |
| 440 | auto SrcLevel = FromRecord.IValue.DerefLevel; |
| 441 | auto DstIndex = ToRecord.IValue.Index; |
| 442 | auto DstLevel = ToRecord.IValue.DerefLevel; |
| 443 | if (ToLevel > FromLevel) |
| 444 | SrcLevel += ToLevel - FromLevel; |
| 445 | else |
| 446 | DstLevel += FromLevel - ToLevel; |
| 447 | |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 448 | ExtRelations.push_back(ExternalRelation{ |
| 449 | InterfaceValue{SrcIndex, SrcLevel}, |
| 450 | InterfaceValue{DstIndex, DstLevel}, UnknownOffset}); |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | // Remove duplicates in ExtRelations |
| 456 | std::sort(ExtRelations.begin(), ExtRelations.end()); |
| 457 | ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()), |
| 458 | ExtRelations.end()); |
| 459 | } |
| 460 | |
| 461 | static void populateExternalAttributes( |
| 462 | SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn, |
| 463 | const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) { |
| 464 | for (const auto &Mapping : AMap.mappings()) { |
| 465 | if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) { |
| 466 | auto Attr = getExternallyVisibleAttrs(Mapping.second); |
| 467 | if (Attr.any()) |
| 468 | ExtAttributes.push_back(ExternalAttribute{*IVal, Attr}); |
| 469 | } |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | CFLAndersAAResult::FunctionInfo::FunctionInfo( |
| 474 | const Function &Fn, const SmallVectorImpl<Value *> &RetVals, |
| 475 | const ReachabilitySet &ReachSet, AliasAttrMap AMap) { |
| 476 | populateAttrMap(AttrMap, AMap); |
| 477 | populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap); |
| 478 | populateAliasMap(AliasMap, ReachSet); |
| 479 | populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 480 | } |
| 481 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 482 | AliasAttrs CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const { |
| 483 | assert(V != nullptr); |
| 484 | |
| 485 | AliasAttrs Attr; |
| 486 | auto Itr = AttrMap.find(V); |
| 487 | if (Itr != AttrMap.end()) |
| 488 | Attr = Itr->second; |
| 489 | return Attr; |
| 490 | } |
| 491 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 492 | bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS, |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 493 | uint64_t LHSSize, |
| 494 | const Value *RHS, |
| 495 | uint64_t RHSSize) const { |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 496 | assert(LHS && RHS); |
| 497 | |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 498 | // Check AliasAttrs first since it's cheaper |
| 499 | auto AttrsA = getAttrs(LHS); |
| 500 | auto AttrsB = getAttrs(RHS); |
| 501 | if (hasUnknownOrCallerAttr(AttrsA)) |
| 502 | return AttrsB.any(); |
| 503 | if (hasUnknownOrCallerAttr(AttrsB)) |
| 504 | return AttrsA.any(); |
| 505 | if (isGlobalOrArgAttr(AttrsA)) |
| 506 | return isGlobalOrArgAttr(AttrsB); |
| 507 | if (isGlobalOrArgAttr(AttrsB)) |
| 508 | return isGlobalOrArgAttr(AttrsA); |
| 509 | |
| 510 | // At this point both LHS and RHS should point to locally allocated objects |
| 511 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 512 | auto Itr = AliasMap.find(LHS); |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 513 | if (Itr != AliasMap.end()) { |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 514 | |
| 515 | // Find out all (X, Offset) where X == RHS |
| 516 | auto Comparator = [](OffsetValue LHS, OffsetValue RHS) { |
| 517 | return std::less<const Value *>()(LHS.Val, RHS.Val); |
| 518 | }; |
| 519 | #ifdef EXPENSIVE_CHECKS |
| 520 | assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator)); |
| 521 | #endif |
| 522 | auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(), |
| 523 | OffsetValue{RHS, 0}, Comparator); |
| 524 | |
| 525 | if (RangePair.first != RangePair.second) { |
| 526 | // Be conservative about UnknownSize |
| 527 | if (LHSSize == MemoryLocation::UnknownSize || |
| 528 | RHSSize == MemoryLocation::UnknownSize) |
| 529 | return true; |
| 530 | |
| 531 | for (const auto &OVal : make_range(RangePair)) { |
| 532 | // Be conservative about UnknownOffset |
| 533 | if (OVal.Offset == UnknownOffset) |
| 534 | return true; |
| 535 | |
| 536 | // We know that LHS aliases (RHS + OVal.Offset) if the control flow |
| 537 | // reaches here. The may-alias query essentially becomes integer |
| 538 | // range-overlap queries over two ranges [OVal.Offset, OVal.Offset + |
| 539 | // LHSSize) and [0, RHSSize). |
| 540 | |
| 541 | // Try to be conservative on super large offsets |
| 542 | if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX)) |
| 543 | return true; |
| 544 | |
| 545 | auto LHSStart = OVal.Offset; |
| 546 | // FIXME: Do we need to guard against integer overflow? |
| 547 | auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize); |
| 548 | auto RHSStart = 0; |
| 549 | auto RHSEnd = static_cast<int64_t>(RHSSize); |
| 550 | if (LHSEnd > RHSStart && LHSStart < RHSEnd) |
| 551 | return true; |
| 552 | } |
| 553 | } |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 554 | } |
| 555 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 556 | return false; |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 557 | } |
| 558 | |
| 559 | static void propagate(InstantiatedValue From, InstantiatedValue To, |
| 560 | MatchState State, ReachabilitySet &ReachSet, |
| 561 | std::vector<WorkListItem> &WorkList) { |
| 562 | if (From == To) |
| 563 | return; |
| 564 | if (ReachSet.insert(From, To, State)) |
| 565 | WorkList.push_back(WorkListItem{From, To, State}); |
| 566 | } |
| 567 | |
| 568 | static void initializeWorkList(std::vector<WorkListItem> &WorkList, |
| 569 | ReachabilitySet &ReachSet, |
| 570 | const CFLGraph &Graph) { |
| 571 | for (const auto &Mapping : Graph.value_mappings()) { |
| 572 | auto Val = Mapping.first; |
| 573 | auto &ValueInfo = Mapping.second; |
| 574 | assert(ValueInfo.getNumLevels() > 0); |
| 575 | |
| 576 | // Insert all immediate assignment neighbors to the worklist |
| 577 | for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| 578 | auto Src = InstantiatedValue{Val, I}; |
| 579 | // If there's an assignment edge from X to Y, it means Y is reachable from |
| 580 | // X at S2 and X is reachable from Y at S1 |
| 581 | for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 582 | propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet, |
| 583 | WorkList); |
| 584 | propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet, |
| 585 | WorkList); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 586 | } |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph, |
| 592 | InstantiatedValue V) { |
| 593 | auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1}; |
| 594 | if (Graph.getNode(NodeBelow)) |
| 595 | return NodeBelow; |
| 596 | return None; |
| 597 | } |
| 598 | |
| 599 | static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph, |
| 600 | ReachabilitySet &ReachSet, AliasMemSet &MemSet, |
| 601 | std::vector<WorkListItem> &WorkList) { |
| 602 | auto FromNode = Item.From; |
| 603 | auto ToNode = Item.To; |
| 604 | |
| 605 | auto NodeInfo = Graph.getNode(ToNode); |
| 606 | assert(NodeInfo != nullptr); |
| 607 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 608 | // TODO: propagate field offsets |
| 609 | |
| 610 | // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds |
| 611 | // relations that are symmetric, we could actually cut the storage by half by |
| 612 | // sorting FromNode and ToNode before insertion happens. |
| 613 | |
| 614 | // The newly added value alias pair may pontentially generate more memory |
| 615 | // alias pairs. Check for them here. |
| 616 | auto FromNodeBelow = getNodeBelow(Graph, FromNode); |
| 617 | auto ToNodeBelow = getNodeBelow(Graph, ToNode); |
| 618 | if (FromNodeBelow && ToNodeBelow && |
| 619 | MemSet.insert(*FromNodeBelow, *ToNodeBelow)) { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 620 | propagate(*FromNodeBelow, *ToNodeBelow, |
| 621 | MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 622 | for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) { |
| 623 | auto Src = Mapping.first; |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 624 | auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) { |
| 625 | if (Mapping.second.test(static_cast<size_t>(FromState))) |
| 626 | propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList); |
| 627 | }; |
| 628 | |
| 629 | MemAliasPropagate(MatchState::FlowFromReadOnly, |
| 630 | MatchState::FlowFromMemAliasReadOnly); |
| 631 | MemAliasPropagate(MatchState::FlowToWriteOnly, |
| 632 | MatchState::FlowToMemAliasWriteOnly); |
| 633 | MemAliasPropagate(MatchState::FlowToReadWrite, |
| 634 | MatchState::FlowToMemAliasReadWrite); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 635 | } |
| 636 | } |
| 637 | |
| 638 | // This is the core of the state machine walking algorithm. We expand ReachSet |
| 639 | // based on which state we are at (which in turn dictates what edges we |
| 640 | // should examine) |
| 641 | // From a high-level point of view, the state machine here guarantees two |
| 642 | // properties: |
| 643 | // - If *X and *Y are memory aliases, then X and Y are value aliases |
| 644 | // - If Y is an alias of X, then reverse assignment edges (if there is any) |
| 645 | // should precede any assignment edges on the path from X to Y. |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 646 | auto NextAssignState = [&](MatchState State) { |
| 647 | for (const auto &AssignEdge : NodeInfo->Edges) |
| 648 | propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList); |
| 649 | }; |
| 650 | auto NextRevAssignState = [&](MatchState State) { |
| 651 | for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) |
| 652 | propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList); |
| 653 | }; |
| 654 | auto NextMemState = [&](MatchState State) { |
| 655 | if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { |
| 656 | for (const auto &MemAlias : *AliasSet) |
| 657 | propagate(FromNode, MemAlias, State, ReachSet, WorkList); |
| 658 | } |
| 659 | }; |
| 660 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 661 | switch (Item.State) { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 662 | case MatchState::FlowFromReadOnly: { |
| 663 | NextRevAssignState(MatchState::FlowFromReadOnly); |
| 664 | NextAssignState(MatchState::FlowToReadWrite); |
| 665 | NextMemState(MatchState::FlowFromMemAliasReadOnly); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 666 | break; |
| 667 | } |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 668 | case MatchState::FlowFromMemAliasNoReadWrite: { |
| 669 | NextRevAssignState(MatchState::FlowFromReadOnly); |
| 670 | NextAssignState(MatchState::FlowToWriteOnly); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 671 | break; |
| 672 | } |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 673 | case MatchState::FlowFromMemAliasReadOnly: { |
| 674 | NextRevAssignState(MatchState::FlowFromReadOnly); |
| 675 | NextAssignState(MatchState::FlowToReadWrite); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 676 | break; |
| 677 | } |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 678 | case MatchState::FlowToWriteOnly: { |
| 679 | NextAssignState(MatchState::FlowToWriteOnly); |
| 680 | NextMemState(MatchState::FlowToMemAliasWriteOnly); |
| 681 | break; |
| 682 | } |
| 683 | case MatchState::FlowToReadWrite: { |
| 684 | NextAssignState(MatchState::FlowToReadWrite); |
| 685 | NextMemState(MatchState::FlowToMemAliasReadWrite); |
| 686 | break; |
| 687 | } |
| 688 | case MatchState::FlowToMemAliasWriteOnly: { |
| 689 | NextAssignState(MatchState::FlowToWriteOnly); |
| 690 | break; |
| 691 | } |
| 692 | case MatchState::FlowToMemAliasReadWrite: { |
| 693 | NextAssignState(MatchState::FlowToReadWrite); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 694 | break; |
| 695 | } |
| 696 | } |
| 697 | } |
| 698 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 699 | static AliasAttrMap buildAttrMap(const CFLGraph &Graph, |
| 700 | const ReachabilitySet &ReachSet) { |
| 701 | AliasAttrMap AttrMap; |
| 702 | std::vector<InstantiatedValue> WorkList, NextList; |
| 703 | |
| 704 | // Initialize each node with its original AliasAttrs in CFLGraph |
| 705 | for (const auto &Mapping : Graph.value_mappings()) { |
| 706 | auto Val = Mapping.first; |
| 707 | auto &ValueInfo = Mapping.second; |
| 708 | for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| 709 | auto Node = InstantiatedValue{Val, I}; |
| 710 | AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr); |
| 711 | WorkList.push_back(Node); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | while (!WorkList.empty()) { |
| 716 | for (const auto &Dst : WorkList) { |
| 717 | auto DstAttr = AttrMap.getAttrs(Dst); |
| 718 | if (DstAttr.none()) |
| 719 | continue; |
| 720 | |
| 721 | // Propagate attr on the same level |
| 722 | for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) { |
| 723 | auto Src = Mapping.first; |
| 724 | if (AttrMap.add(Src, DstAttr)) |
| 725 | NextList.push_back(Src); |
| 726 | } |
| 727 | |
| 728 | // Propagate attr to the levels below |
| 729 | auto DstBelow = getNodeBelow(Graph, Dst); |
| 730 | while (DstBelow) { |
| 731 | if (AttrMap.add(*DstBelow, DstAttr)) { |
| 732 | NextList.push_back(*DstBelow); |
| 733 | break; |
| 734 | } |
| 735 | DstBelow = getNodeBelow(Graph, *DstBelow); |
| 736 | } |
| 737 | } |
| 738 | WorkList.swap(NextList); |
| 739 | NextList.clear(); |
| 740 | } |
| 741 | |
| 742 | return AttrMap; |
| 743 | } |
| 744 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 745 | CFLAndersAAResult::FunctionInfo |
| 746 | CFLAndersAAResult::buildInfoFrom(const Function &Fn) { |
| 747 | CFLGraphBuilder<CFLAndersAAResult> GraphBuilder( |
| 748 | *this, TLI, |
| 749 | // Cast away the constness here due to GraphBuilder's API requirement |
| 750 | const_cast<Function &>(Fn)); |
| 751 | auto &Graph = GraphBuilder.getCFLGraph(); |
| 752 | |
| 753 | ReachabilitySet ReachSet; |
| 754 | AliasMemSet MemSet; |
| 755 | |
| 756 | std::vector<WorkListItem> WorkList, NextList; |
| 757 | initializeWorkList(WorkList, ReachSet, Graph); |
| 758 | // TODO: make sure we don't stop before the fix point is reached |
| 759 | while (!WorkList.empty()) { |
| 760 | for (const auto &Item : WorkList) |
| 761 | processWorkListItem(Item, Graph, ReachSet, MemSet, NextList); |
| 762 | |
| 763 | NextList.swap(WorkList); |
| 764 | NextList.clear(); |
| 765 | } |
| 766 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 767 | // Now that we have all the reachability info, propagate AliasAttrs according |
| 768 | // to it |
| 769 | auto IValueAttrMap = buildAttrMap(Graph, ReachSet); |
| 770 | |
George Burgess IV | 3b05984 | 2016-07-19 20:47:15 +0000 | [diff] [blame] | 771 | return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet, |
| 772 | std::move(IValueAttrMap)); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 773 | } |
| 774 | |
| 775 | void CFLAndersAAResult::scan(const Function &Fn) { |
| 776 | auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>())); |
| 777 | (void)InsertPair; |
| 778 | assert(InsertPair.second && |
| 779 | "Trying to scan a function that has already been cached"); |
| 780 | |
| 781 | // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call |
| 782 | // may get evaluated after operator[], potentially triggering a DenseMap |
| 783 | // resize and invalidating the reference returned by operator[] |
| 784 | auto FunInfo = buildInfoFrom(Fn); |
| 785 | Cache[&Fn] = std::move(FunInfo); |
| 786 | Handles.push_front(FunctionHandle(const_cast<Function *>(&Fn), this)); |
| 787 | } |
| 788 | |
| 789 | void CFLAndersAAResult::evict(const Function &Fn) { Cache.erase(&Fn); } |
| 790 | |
| 791 | const Optional<CFLAndersAAResult::FunctionInfo> & |
| 792 | CFLAndersAAResult::ensureCached(const Function &Fn) { |
| 793 | auto Iter = Cache.find(&Fn); |
| 794 | if (Iter == Cache.end()) { |
| 795 | scan(Fn); |
| 796 | Iter = Cache.find(&Fn); |
| 797 | assert(Iter != Cache.end()); |
| 798 | assert(Iter->second.hasValue()); |
| 799 | } |
| 800 | return Iter->second; |
| 801 | } |
| 802 | |
| 803 | const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) { |
| 804 | auto &FunInfo = ensureCached(Fn); |
| 805 | if (FunInfo.hasValue()) |
| 806 | return &FunInfo->getAliasSummary(); |
| 807 | else |
| 808 | return nullptr; |
| 809 | } |
| 810 | |
| 811 | AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA, |
| 812 | const MemoryLocation &LocB) { |
| 813 | auto *ValA = LocA.Ptr; |
| 814 | auto *ValB = LocB.Ptr; |
| 815 | |
| 816 | if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy()) |
| 817 | return NoAlias; |
| 818 | |
| 819 | auto *Fn = parentFunctionOfValue(ValA); |
| 820 | if (!Fn) { |
| 821 | Fn = parentFunctionOfValue(ValB); |
| 822 | if (!Fn) { |
| 823 | // The only times this is known to happen are when globals + InlineAsm are |
| 824 | // involved |
| 825 | DEBUG(dbgs() |
| 826 | << "CFLAndersAA: could not extract parent function information.\n"); |
| 827 | return MayAlias; |
| 828 | } |
| 829 | } else { |
| 830 | assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn); |
| 831 | } |
| 832 | |
| 833 | assert(Fn != nullptr); |
| 834 | auto &FunInfo = ensureCached(*Fn); |
| 835 | |
| 836 | // AliasMap lookup |
George Burgess IV | 4ec1753 | 2016-07-22 22:30:48 +0000 | [diff] [blame^] | 837 | if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size)) |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 838 | return MayAlias; |
| 839 | return NoAlias; |
| 840 | } |
| 841 | |
| 842 | AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA, |
| 843 | const MemoryLocation &LocB) { |
| 844 | if (LocA.Ptr == LocB.Ptr) |
| 845 | return LocA.Size == LocB.Size ? MustAlias : PartialAlias; |
| 846 | |
| 847 | // Comparisons between global variables and other constants should be |
| 848 | // handled by BasicAA. |
| 849 | // CFLAndersAA may report NoAlias when comparing a GlobalValue and |
| 850 | // ConstantExpr, but every query needs to have at least one Value tied to a |
| 851 | // Function, and neither GlobalValues nor ConstantExprs are. |
| 852 | if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) |
| 853 | return AAResultBase::alias(LocA, LocB); |
| 854 | |
| 855 | AliasResult QueryResult = query(LocA, LocB); |
| 856 | if (QueryResult == MayAlias) |
| 857 | return AAResultBase::alias(LocA, LocB); |
| 858 | |
| 859 | return QueryResult; |
| 860 | } |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 861 | |
| 862 | char CFLAndersAA::PassID; |
| 863 | |
| 864 | CFLAndersAAResult CFLAndersAA::run(Function &F, AnalysisManager<Function> &AM) { |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 865 | return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F)); |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 866 | } |
| 867 | |
| 868 | char CFLAndersAAWrapperPass::ID = 0; |
| 869 | INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa", |
| 870 | "Inclusion-Based CFL Alias Analysis", false, true) |
| 871 | |
| 872 | ImmutablePass *llvm::createCFLAndersAAWrapperPass() { |
| 873 | return new CFLAndersAAWrapperPass(); |
| 874 | } |
| 875 | |
| 876 | CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) { |
| 877 | initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 878 | } |
| 879 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 880 | void CFLAndersAAWrapperPass::initializePass() { |
| 881 | auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); |
| 882 | Result.reset(new CFLAndersAAResult(TLIWP.getTLI())); |
| 883 | } |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 884 | |
| 885 | void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 886 | AU.setPreservesAll(); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 887 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 888 | } |