blob: 854fda4aa830d175daea86fd299e3363f425f0ea [file] [log] [blame]
Michael Zolotukhin52b064f2018-04-09 23:37:20 +00001//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdaterBulk class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
15#include "llvm/Analysis/IteratedDominanceFrontier.h"
16#include "llvm/IR/BasicBlock.h"
17#include "llvm/IR/Dominators.h"
18#include "llvm/IR/IRBuilder.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/IR/Use.h"
21#include "llvm/IR/Value.h"
22
23using namespace llvm;
24
25#define DEBUG_TYPE "ssaupdaterbulk"
26
27/// Add a new variable to the SSA rewriter. This needs to be called before
28/// AddAvailableValue or AddUse calls.
29void SSAUpdaterBulk::AddVariable(unsigned Var, StringRef Name, Type *Ty) {
30 assert(Rewrites.find(Var) == Rewrites.end() && "Variable added twice!");
31 RewriteInfo RI(Name, Ty);
32 Rewrites[Var] = RI;
33}
34
35/// Indicate that a rewritten value is available in the specified block with the
36/// specified value.
37void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
38 assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
39 Rewrites[Var].Defines[BB] = V;
40}
41
42/// Record a use of the symbolic value. This use will be updated with a
43/// rewritten value when RewriteAllUses is called.
44void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
45 assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
46 Rewrites[Var].Uses.insert(U);
47}
48
49/// Return true if the SSAUpdater already has a value for the specified variable
50/// in the specified block.
51bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) {
52 return Rewrites.count(Var) ? Rewrites[Var].Defines.count(BB) : false;
53}
54
55// Compute value at the given block BB. We either should already know it, or we
56// should be able to recursively reach it going up dominator tree.
57Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
58 DominatorTree *DT) {
59 if (!R.Defines.count(BB)) {
Michael Zolotukhinaa786852018-04-10 02:16:29 +000060 if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
Michael Zolotukhin52b064f2018-04-09 23:37:20 +000061 BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
Michael Zolotukhin4fbb9302018-04-11 23:37:37 +000062 Value *V = computeValueAt(IDom, R, DT);
63 R.Defines[BB] = V;
Michael Zolotukhin52b064f2018-04-09 23:37:20 +000064 } else
65 R.Defines[BB] = UndefValue::get(R.Ty);
66 }
67 return R.Defines[BB];
68}
69
70/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
71/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
72static void
73ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
74 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
75 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
76 // To determine liveness, we must iterate through the predecessors of blocks
77 // where the def is live. Blocks are added to the worklist if we need to
78 // check their predecessors. Start with all the using blocks.
79 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
80 UsingBlocks.end());
81
82 // Now that we have a set of blocks where the phi is live-in, recursively add
83 // their predecessors until we find the full region the value is live.
84 while (!LiveInBlockWorklist.empty()) {
85 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
86
87 // The block really is live in here, insert it into the set. If already in
88 // the set, then it has already been processed.
89 if (!LiveInBlocks.insert(BB).second)
90 continue;
91
92 // Since the value is live into BB, it is either defined in a predecessor or
93 // live into it to. Add the preds to the worklist unless they are a
94 // defining block.
95 for (BasicBlock *P : predecessors(BB)) {
96 // The value is not live into a predecessor if it defines the value.
97 if (DefBlocks.count(P))
98 continue;
99
100 // Otherwise it is, add to the worklist.
101 LiveInBlockWorklist.push_back(P);
102 }
103 }
104}
105
106/// Helper function for finding a block which should have a value for the given
107/// user. For PHI-nodes this block is the corresponding predecessor, for other
108/// instructions it's their parent block.
109static BasicBlock *getUserBB(Use *U) {
110 auto *User = cast<Instruction>(U->getUser());
111
112 if (auto *UserPN = dyn_cast<PHINode>(User))
113 return UserPN->getIncomingBlock(*U);
114 else
115 return User->getParent();
116}
117
118/// Perform all the necessary updates, including new PHI-nodes insertion and the
119/// requested uses update.
120void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
121 SmallVectorImpl<PHINode *> *InsertedPHIs) {
122 for (auto P : Rewrites) {
123 // Compute locations for new phi-nodes.
124 // For that we need to initialize DefBlocks from definitions in R.Defines,
125 // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
126 // this set for computing iterated dominance frontier (IDF).
127 // The IDF blocks are the blocks where we need to insert new phi-nodes.
128 ForwardIDFCalculator IDF(*DT);
129 RewriteInfo &R = P.second;
130 SmallPtrSet<BasicBlock *, 2> DefBlocks;
131 for (auto Def : R.Defines)
132 DefBlocks.insert(Def.first);
133 IDF.setDefiningBlocks(DefBlocks);
134
135 SmallPtrSet<BasicBlock *, 2> UsingBlocks;
136 for (auto U : R.Uses)
137 UsingBlocks.insert(getUserBB(U));
138
139 SmallVector<BasicBlock *, 32> IDFBlocks;
140 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
141 ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks);
142 IDF.resetLiveInBlocks();
143 IDF.setLiveInBlocks(LiveInBlocks);
144 IDF.calculate(IDFBlocks);
145
146 // We've computed IDF, now insert new phi-nodes there.
147 SmallVector<PHINode *, 4> InsertedPHIsForVar;
148 for (auto FrontierBB : IDFBlocks) {
149 IRBuilder<> B(FrontierBB, FrontierBB->begin());
150 PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
151 R.Defines[FrontierBB] = PN;
152 InsertedPHIsForVar.push_back(PN);
153 if (InsertedPHIs)
154 InsertedPHIs->push_back(PN);
155 }
156
157 // Fill in arguments of the inserted PHIs.
158 for (auto PN : InsertedPHIsForVar) {
159 BasicBlock *PBB = PN->getParent();
160 for (BasicBlock *Pred : PredCache.get(PBB))
161 PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
162 }
163
164 // Rewrite actual uses with the inserted definitions.
165 for (auto U : R.Uses) {
166 Value *V = computeValueAt(getUserBB(U), R, DT);
167 Value *OldVal = U->get();
168 // Notify that users of the existing value that it is being replaced.
169 if (OldVal != V && OldVal->hasValueHandle())
170 ValueHandleBase::ValueIsRAUWd(OldVal, V);
171 U->set(V);
172 }
173 }
174}