blob: 8aec54730ca6643d33798bd1e5e935523d038788 [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000016#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000020#include "llvm/ADT/StringRef.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000021#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000022#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000023#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000024#include "llvm/Support/raw_ostream.h"
Chris Lattner17f71652008-08-17 07:19:36 +000025#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000026#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000027#include <cstring>
28#include <limits>
Zhou Shengdac63782007-02-06 03:00:16 +000029using namespace llvm;
30
Chandler Carruth64648262014-04-22 03:07:47 +000031#define DEBUG_TYPE "apint"
32
Reid Spencera41e93b2007-02-25 19:32:03 +000033/// A utility function for allocating memory, checking for allocation failures,
34/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000035inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000036 uint64_t * result = new uint64_t[numWords];
37 assert(result && "APInt memory allocation fails!");
38 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000040}
41
Eric Christopher820256b2009-08-21 04:06:45 +000042/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000043/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000044inline static uint64_t* getMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000045 uint64_t * result = new uint64_t[numWords];
46 assert(result && "APInt memory allocation fails!");
47 return result;
48}
49
Erick Tryzelaardadb15712009-08-21 03:15:28 +000050/// A utility function that converts a character to a digit.
51inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000052 unsigned r;
53
Douglas Gregor663c0682011-09-14 15:54:46 +000054 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000055 r = cdigit - '0';
56 if (r <= 9)
57 return r;
58
59 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000060 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000061 return r + 10;
62
63 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000064 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000065 return r + 10;
Douglas Gregore4e20f42011-09-20 18:11:52 +000066
67 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000068 }
69
Erick Tryzelaar60964092009-08-21 06:48:37 +000070 r = cdigit - '0';
71 if (r < radix)
72 return r;
73
74 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000075}
76
77
Chris Lattner77527f52009-01-21 18:09:24 +000078void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner1ac3e252008-08-20 17:02:31 +000079 pVal = getClearedMemory(getNumWords());
80 pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000081 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000082 for (unsigned i = 1; i < getNumWords(); ++i)
83 pVal[i] = -1ULL;
Zhou Shengdac63782007-02-06 03:00:16 +000084}
85
Chris Lattnerd57b7602008-10-11 22:07:19 +000086void APInt::initSlowCase(const APInt& that) {
87 pVal = getMemory(getNumWords());
88 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
89}
90
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000091void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000092 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000093 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000094 if (isSingleWord())
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000095 VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000096 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000097 // Get memory, cleared to 0
98 pVal = getClearedMemory(getNumWords());
99 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000101 // Copy the words from bigVal to pVal
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000102 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000103 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000104 // Make sure unused high bits are cleared
105 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000106}
107
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000108APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109 : BitWidth(numBits), VAL(0) {
110 initFromArray(bigVal);
111}
112
113APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114 : BitWidth(numBits), VAL(0) {
115 initFromArray(makeArrayRef(bigVal, numWords));
116}
117
Benjamin Kramer92d89982010-07-14 22:38:02 +0000118APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Reid Spencer1ba83352007-02-21 03:55:44 +0000119 : BitWidth(numbits), VAL(0) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000120 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000121 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000122}
123
Chris Lattner1ac3e252008-08-20 17:02:31 +0000124APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000125 // Don't do anything for X = X
126 if (this == &RHS)
127 return *this;
128
Reid Spencer7c16cd22007-02-26 23:38:21 +0000129 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner1ac3e252008-08-20 17:02:31 +0000130 // assume same bit-width single-word case is already handled
131 assert(!isSingleWord());
132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer7c16cd22007-02-26 23:38:21 +0000133 return *this;
134 }
135
Chris Lattner1ac3e252008-08-20 17:02:31 +0000136 if (isSingleWord()) {
137 // assume case where both are single words is already handled
138 assert(!RHS.isSingleWord());
139 VAL = 0;
140 pVal = getMemory(RHS.getNumWords());
141 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher820256b2009-08-21 04:06:45 +0000142 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer7c16cd22007-02-26 23:38:21 +0000143 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
144 else if (RHS.isSingleWord()) {
145 delete [] pVal;
Reid Spencera856b6e2007-02-18 18:38:44 +0000146 VAL = RHS.VAL;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000147 } else {
148 delete [] pVal;
149 pVal = getMemory(RHS.getNumWords());
150 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
151 }
152 BitWidth = RHS.BitWidth;
153 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000154}
155
Zhou Shengdac63782007-02-06 03:00:16 +0000156APInt& APInt::operator=(uint64_t RHS) {
Eric Christopher820256b2009-08-21 04:06:45 +0000157 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000158 VAL = RHS;
Zhou Shengdac63782007-02-06 03:00:16 +0000159 else {
160 pVal[0] = RHS;
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000161 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000162 }
Reid Spencer7c16cd22007-02-26 23:38:21 +0000163 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000164}
165
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000166/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000167void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000168 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000169
Ted Kremenek5c75d542008-01-19 04:23:33 +0000170 if (isSingleWord()) {
171 ID.AddInteger(VAL);
172 return;
173 }
174
Chris Lattner77527f52009-01-21 18:09:24 +0000175 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000176 for (unsigned i = 0; i < NumWords; ++i)
177 ID.AddInteger(pVal[i]);
178}
179
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000180/// This function adds a single "digit" integer, y, to the multiple
Reid Spencera856b6e2007-02-18 18:38:44 +0000181/// "digit" integer array, x[]. x[] is modified to reflect the addition and
182/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer100502d2007-02-17 03:16:00 +0000183/// @returns the carry of the addition.
Chris Lattner77527f52009-01-21 18:09:24 +0000184static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
185 for (unsigned i = 0; i < len; ++i) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000186 dest[i] = y + x[i];
187 if (dest[i] < y)
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000188 y = 1; // Carry one to next digit.
Reid Spenceree0a6852007-02-18 06:39:42 +0000189 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000190 y = 0; // No need to carry so exit early
Reid Spenceree0a6852007-02-18 06:39:42 +0000191 break;
192 }
Reid Spencer100502d2007-02-17 03:16:00 +0000193 }
Reid Spenceree0a6852007-02-18 06:39:42 +0000194 return y;
Reid Spencer100502d2007-02-17 03:16:00 +0000195}
196
Zhou Shengdac63782007-02-06 03:00:16 +0000197/// @brief Prefix increment operator. Increments the APInt by one.
198APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000199 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000200 ++VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000201 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000202 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000203 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000204}
205
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000206/// This function subtracts a single "digit" (64-bit word), y, from
Eric Christopher820256b2009-08-21 04:06:45 +0000207/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Reid Spencera856b6e2007-02-18 18:38:44 +0000208/// no further borrowing is neeeded or it runs out of "digits" in x. The result
209/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
210/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencera41e93b2007-02-25 19:32:03 +0000211/// @returns the borrow out of the subtraction
Chris Lattner77527f52009-01-21 18:09:24 +0000212static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
213 for (unsigned i = 0; i < len; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000214 uint64_t X = x[i];
Reid Spenceree0a6852007-02-18 06:39:42 +0000215 x[i] -= y;
Eric Christopher820256b2009-08-21 04:06:45 +0000216 if (y > X)
Reid Spencera856b6e2007-02-18 18:38:44 +0000217 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer100502d2007-02-17 03:16:00 +0000218 else {
Reid Spencera856b6e2007-02-18 18:38:44 +0000219 y = 0; // No need to borrow
220 break; // Remaining digits are unchanged so exit early
Reid Spencer100502d2007-02-17 03:16:00 +0000221 }
222 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000223 return bool(y);
Reid Spencer100502d2007-02-17 03:16:00 +0000224}
225
Zhou Shengdac63782007-02-06 03:00:16 +0000226/// @brief Prefix decrement operator. Decrements the APInt by one.
227APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000228 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000229 --VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000230 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000231 sub_1(pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000232 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000233}
234
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000235/// This function adds the integer array x to the integer array Y and
Eric Christopher820256b2009-08-21 04:06:45 +0000236/// places the result in dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000237/// @returns the carry out from the addition
238/// @brief General addition of 64-bit integer arrays
Eric Christopher820256b2009-08-21 04:06:45 +0000239static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000240 unsigned len) {
Reid Spencera5e0d202007-02-24 03:58:46 +0000241 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000242 for (unsigned i = 0; i< len; ++i) {
Reid Spencercb292e42007-02-23 01:57:13 +0000243 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000244 dest[i] = x[i] + y[i] + carry;
Reid Spencerdb2abec2007-02-21 05:44:56 +0000245 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer100502d2007-02-17 03:16:00 +0000246 }
247 return carry;
248}
249
Reid Spencera41e93b2007-02-25 19:32:03 +0000250/// Adds the RHS APint to this APInt.
251/// @returns this, after addition of RHS.
Eric Christopher820256b2009-08-21 04:06:45 +0000252/// @brief Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000253APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000254 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000255 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000256 VAL += RHS.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000257 else {
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000258 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000259 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000260 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000261}
262
Eric Christopher820256b2009-08-21 04:06:45 +0000263/// Subtracts the integer array y from the integer array x
Reid Spencera41e93b2007-02-25 19:32:03 +0000264/// @returns returns the borrow out.
265/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher820256b2009-08-21 04:06:45 +0000266static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000267 unsigned len) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000268 bool borrow = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000269 for (unsigned i = 0; i < len; ++i) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000270 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
271 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
272 dest[i] = x_tmp - y[i];
Reid Spencer100502d2007-02-17 03:16:00 +0000273 }
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000274 return borrow;
Reid Spencer100502d2007-02-17 03:16:00 +0000275}
276
Reid Spencera41e93b2007-02-25 19:32:03 +0000277/// Subtracts the RHS APInt from this APInt
278/// @returns this, after subtraction
Eric Christopher820256b2009-08-21 04:06:45 +0000279/// @brief Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000280APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000281 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000282 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000283 VAL -= RHS.VAL;
284 else
285 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000286 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000287}
288
Dan Gohman4a618822010-02-10 16:03:48 +0000289/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopher820256b2009-08-21 04:06:45 +0000290/// into dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000291/// @returns the carry out of the multiplication.
292/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner77527f52009-01-21 18:09:24 +0000293static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000294 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer100502d2007-02-17 03:16:00 +0000295 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencera41e93b2007-02-25 19:32:03 +0000296 uint64_t carry = 0;
297
298 // For each digit of x.
Chris Lattner77527f52009-01-21 18:09:24 +0000299 for (unsigned i = 0; i < len; ++i) {
Reid Spencera41e93b2007-02-25 19:32:03 +0000300 // Split x into high and low words
301 uint64_t lx = x[i] & 0xffffffffULL;
302 uint64_t hx = x[i] >> 32;
303 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer100502d2007-02-17 03:16:00 +0000304 // hasCarry == 0, no carry
305 // hasCarry == 1, has carry
306 // hasCarry == 2, no carry and the calculation result == 0.
307 uint8_t hasCarry = 0;
308 dest[i] = carry + lx * ly;
309 // Determine if the add above introduces carry.
310 hasCarry = (dest[i] < carry) ? 1 : 0;
311 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher820256b2009-08-21 04:06:45 +0000312 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer100502d2007-02-17 03:16:00 +0000313 // (2^32 - 1) + 2^32 = 2^64.
314 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
315
316 carry += (lx * hy) & 0xffffffffULL;
317 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher820256b2009-08-21 04:06:45 +0000318 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000319 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
320 }
Reid Spencer100502d2007-02-17 03:16:00 +0000321 return carry;
322}
323
Eric Christopher820256b2009-08-21 04:06:45 +0000324/// Multiplies integer array x by integer array y and stores the result into
Reid Spencera41e93b2007-02-25 19:32:03 +0000325/// the integer array dest. Note that dest's size must be >= xlen + ylen.
326/// @brief Generalized multiplicate of integer arrays.
Chris Lattner77527f52009-01-21 18:09:24 +0000327static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
328 unsigned ylen) {
Reid Spencer100502d2007-02-17 03:16:00 +0000329 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner77527f52009-01-21 18:09:24 +0000330 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000331 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencer58a6a432007-02-21 08:21:52 +0000332 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner77527f52009-01-21 18:09:24 +0000333 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer100502d2007-02-17 03:16:00 +0000334 lx = x[j] & 0xffffffffULL;
335 hx = x[j] >> 32;
336 // hasCarry - A flag to indicate if has carry.
337 // hasCarry == 0, no carry
338 // hasCarry == 1, has carry
339 // hasCarry == 2, no carry and the calculation result == 0.
340 uint8_t hasCarry = 0;
341 uint64_t resul = carry + lx * ly;
342 hasCarry = (resul < carry) ? 1 : 0;
343 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
344 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
345
346 carry += (lx * hy) & 0xffffffffULL;
347 resul = (carry << 32) | (resul & 0xffffffffULL);
348 dest[i+j] += resul;
349 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher820256b2009-08-21 04:06:45 +0000350 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000351 ((lx * hy) >> 32) + hx * hy;
352 }
353 dest[i+xlen] = carry;
354 }
355}
356
Zhou Shengdac63782007-02-06 03:00:16 +0000357APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000358 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer58a6a432007-02-21 08:21:52 +0000359 if (isSingleWord()) {
Reid Spencer4bb430c2007-02-20 20:42:10 +0000360 VAL *= RHS.VAL;
Reid Spencer58a6a432007-02-21 08:21:52 +0000361 clearUnusedBits();
362 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000363 }
Reid Spencer58a6a432007-02-21 08:21:52 +0000364
365 // Get some bit facts about LHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000366 unsigned lhsBits = getActiveBits();
367 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher820256b2009-08-21 04:06:45 +0000368 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +0000369 // 0 * X ===> 0
370 return *this;
371
372 // Get some bit facts about RHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000373 unsigned rhsBits = RHS.getActiveBits();
374 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencer58a6a432007-02-21 08:21:52 +0000375 if (!rhsWords) {
376 // X * 0 ===> 0
Jay Foad25a5e4c2010-12-01 08:53:58 +0000377 clearAllBits();
Reid Spencer58a6a432007-02-21 08:21:52 +0000378 return *this;
379 }
380
381 // Allocate space for the result
Chris Lattner77527f52009-01-21 18:09:24 +0000382 unsigned destWords = rhsWords + lhsWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000383 uint64_t *dest = getMemory(destWords);
384
385 // Perform the long multiply
386 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
387
388 // Copy result back into *this
Jay Foad25a5e4c2010-12-01 08:53:58 +0000389 clearAllBits();
Chris Lattner77527f52009-01-21 18:09:24 +0000390 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000391 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
Eli Friedman19546412011-10-07 23:40:49 +0000392 clearUnusedBits();
Reid Spencer58a6a432007-02-21 08:21:52 +0000393
394 // delete dest array and return
395 delete[] dest;
Zhou Shengdac63782007-02-06 03:00:16 +0000396 return *this;
397}
398
Zhou Shengdac63782007-02-06 03:00:16 +0000399APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000400 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000401 if (isSingleWord()) {
Reid Spencera856b6e2007-02-18 18:38:44 +0000402 VAL &= RHS.VAL;
403 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000404 }
Chris Lattner77527f52009-01-21 18:09:24 +0000405 unsigned numWords = getNumWords();
406 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000407 pVal[i] &= RHS.pVal[i];
Zhou Shengdac63782007-02-06 03:00:16 +0000408 return *this;
409}
410
Zhou Shengdac63782007-02-06 03:00:16 +0000411APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000412 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000413 if (isSingleWord()) {
Reid Spencera856b6e2007-02-18 18:38:44 +0000414 VAL |= RHS.VAL;
415 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000416 }
Chris Lattner77527f52009-01-21 18:09:24 +0000417 unsigned numWords = getNumWords();
418 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000419 pVal[i] |= RHS.pVal[i];
Zhou Shengdac63782007-02-06 03:00:16 +0000420 return *this;
421}
422
Zhou Shengdac63782007-02-06 03:00:16 +0000423APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000424 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000425 if (isSingleWord()) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000426 VAL ^= RHS.VAL;
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000427 this->clearUnusedBits();
Reid Spenceree0a6852007-02-18 06:39:42 +0000428 return *this;
Eric Christopher820256b2009-08-21 04:06:45 +0000429 }
Chris Lattner77527f52009-01-21 18:09:24 +0000430 unsigned numWords = getNumWords();
431 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000432 pVal[i] ^= RHS.pVal[i];
Reid Spencera41e93b2007-02-25 19:32:03 +0000433 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000434}
435
Chris Lattner1ac3e252008-08-20 17:02:31 +0000436APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000437 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000438 uint64_t* val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000439 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000440 val[i] = pVal[i] & RHS.pVal[i];
441 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000442}
443
Chris Lattner1ac3e252008-08-20 17:02:31 +0000444APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000445 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000446 uint64_t *val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000447 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000448 val[i] = pVal[i] | RHS.pVal[i];
449 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000450}
451
Chris Lattner1ac3e252008-08-20 17:02:31 +0000452APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000453 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000454 uint64_t *val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000455 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000456 val[i] = pVal[i] ^ RHS.pVal[i];
457
Benjamin Kramerf9a29752014-10-10 10:18:12 +0000458 APInt Result(val, getBitWidth());
Reid Spencera41e93b2007-02-25 19:32:03 +0000459 // 0^0==1 so clear the high bits in case they got set.
Benjamin Kramerf9a29752014-10-10 10:18:12 +0000460 Result.clearUnusedBits();
461 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000462}
463
Zhou Shengdac63782007-02-06 03:00:16 +0000464APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000465 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000466 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000467 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer4bb430c2007-02-20 20:42:10 +0000468 APInt Result(*this);
469 Result *= RHS;
Eli Friedman19546412011-10-07 23:40:49 +0000470 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000471}
472
Zhou Shengdac63782007-02-06 03:00:16 +0000473APInt APInt::operator+(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000474 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000475 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000476 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000477 APInt Result(BitWidth, 0);
478 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Benjamin Kramerf9a29752014-10-10 10:18:12 +0000479 Result.clearUnusedBits();
480 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000481}
482
Pete Cooper18e91022016-05-27 03:42:17 +0000483APInt APInt::operator+(uint64_t RHS) const {
484 if (isSingleWord())
485 return APInt(BitWidth, VAL + RHS);
486 APInt Result(*this);
487 add_1(Result.pVal, Result.pVal, getNumWords(), RHS);
488 Result.clearUnusedBits();
489 return Result;
490}
491
Zhou Shengdac63782007-02-06 03:00:16 +0000492APInt APInt::operator-(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000493 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000494 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000495 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000496 APInt Result(BitWidth, 0);
497 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Benjamin Kramerf9a29752014-10-10 10:18:12 +0000498 Result.clearUnusedBits();
499 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000500}
501
Pete Cooper18e91022016-05-27 03:42:17 +0000502APInt APInt::operator-(uint64_t RHS) const {
503 if (isSingleWord())
504 return APInt(BitWidth, VAL - RHS);
505 APInt Result(*this);
506 sub_1(Result.pVal, getNumWords(), RHS);
507 Result.clearUnusedBits();
508 return Result;
509}
510
Chris Lattner1ac3e252008-08-20 17:02:31 +0000511bool APInt::EqualSlowCase(const APInt& RHS) const {
Matthias Braun5117fcd2016-02-15 20:06:19 +0000512 return std::equal(pVal, pVal + getNumWords(), RHS.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000513}
514
Chris Lattner1ac3e252008-08-20 17:02:31 +0000515bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000516 unsigned n = getActiveBits();
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000517 if (n <= APINT_BITS_PER_WORD)
518 return pVal[0] == Val;
519 else
520 return false;
Zhou Shengdac63782007-02-06 03:00:16 +0000521}
522
Reid Spencer1d072122007-02-16 22:36:51 +0000523bool APInt::ult(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
525 if (isSingleWord())
526 return VAL < RHS.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000527
528 // Get active bit length of both operands
Chris Lattner77527f52009-01-21 18:09:24 +0000529 unsigned n1 = getActiveBits();
530 unsigned n2 = RHS.getActiveBits();
Reid Spencera41e93b2007-02-25 19:32:03 +0000531
532 // If magnitude of LHS is less than RHS, return true.
533 if (n1 < n2)
534 return true;
535
536 // If magnitude of RHS is greather than LHS, return false.
537 if (n2 < n1)
538 return false;
539
540 // If they bot fit in a word, just compare the low order word
541 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
542 return pVal[0] < RHS.pVal[0];
543
544 // Otherwise, compare all words
Chris Lattner77527f52009-01-21 18:09:24 +0000545 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer54abdcf2007-02-27 18:23:40 +0000546 for (int i = topWord; i >= 0; --i) {
Eric Christopher820256b2009-08-21 04:06:45 +0000547 if (pVal[i] > RHS.pVal[i])
Reid Spencer1d072122007-02-16 22:36:51 +0000548 return false;
Eric Christopher820256b2009-08-21 04:06:45 +0000549 if (pVal[i] < RHS.pVal[i])
Reid Spencera41e93b2007-02-25 19:32:03 +0000550 return true;
Zhou Shengdac63782007-02-06 03:00:16 +0000551 }
552 return false;
553}
554
Reid Spencer1d072122007-02-16 22:36:51 +0000555bool APInt::slt(const APInt& RHS) const {
556 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000557 if (isSingleWord()) {
558 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
559 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
560 return lhsSext < rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000561 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000562
Reid Spencer54abdcf2007-02-27 18:23:40 +0000563 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000564 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000565
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000566 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
567 if (lhsNeg != rhsNeg)
568 return lhsNeg;
569
570 // Otherwise we can just use an unsigned comparision, because even negative
571 // numbers compare correctly this way if both have the same signed-ness.
572 return ult(RHS);
Zhou Shengdac63782007-02-06 03:00:16 +0000573}
574
Jay Foad25a5e4c2010-12-01 08:53:58 +0000575void APInt::setBit(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000576 if (isSingleWord())
Reid Spencera41e93b2007-02-25 19:32:03 +0000577 VAL |= maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000578 else
Reid Spencera41e93b2007-02-25 19:32:03 +0000579 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000580}
581
Zhou Shengdac63782007-02-06 03:00:16 +0000582/// Set the given bit to 0 whose position is given as "bitPosition".
583/// @brief Set a given bit to 0.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000584void APInt::clearBit(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000585 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000586 VAL &= ~maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000587 else
Reid Spencera856b6e2007-02-18 18:38:44 +0000588 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000589}
590
Zhou Shengdac63782007-02-06 03:00:16 +0000591/// @brief Toggle every bit to its opposite value.
Zhou Shengdac63782007-02-06 03:00:16 +0000592
Eric Christopher820256b2009-08-21 04:06:45 +0000593/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000594/// as "bitPosition".
595/// @brief Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000596void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000597 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000598 if ((*this)[bitPosition]) clearBit(bitPosition);
599 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000600}
601
Benjamin Kramer92d89982010-07-14 22:38:02 +0000602unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000603 assert(!str.empty() && "Invalid string length");
Douglas Gregor663c0682011-09-14 15:54:46 +0000604 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
605 radix == 36) &&
606 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000607
608 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000609
Eric Christopher43a1dec2009-08-21 04:10:31 +0000610 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000611 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000612 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000613 if (*p == '-' || *p == '+') {
614 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000615 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000616 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000617 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000618
Reid Spencer9329e7b2007-04-13 19:19:07 +0000619 // For radixes of power-of-two values, the bits required is accurately and
620 // easily computed
621 if (radix == 2)
622 return slen + isNegative;
623 if (radix == 8)
624 return slen * 3 + isNegative;
625 if (radix == 16)
626 return slen * 4 + isNegative;
627
Douglas Gregor663c0682011-09-14 15:54:46 +0000628 // FIXME: base 36
629
Reid Spencer9329e7b2007-04-13 19:19:07 +0000630 // This is grossly inefficient but accurate. We could probably do something
631 // with a computation of roughly slen*64/20 and then adjust by the value of
632 // the first few digits. But, I'm not sure how accurate that could be.
633
634 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000635 // be too large. This avoids the assertion in the constructor. This
636 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
637 // bits in that case.
Douglas Gregor663c0682011-09-14 15:54:46 +0000638 unsigned sufficient
639 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
640 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000641
642 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000643 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000644
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000645 // Compute how many bits are required. If the log is infinite, assume we need
646 // just bit.
647 unsigned log = tmp.logBase2();
648 if (log == (unsigned)-1) {
649 return isNegative + 1;
650 } else {
651 return isNegative + log + 1;
652 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000653}
654
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000655hash_code llvm::hash_value(const APInt &Arg) {
656 if (Arg.isSingleWord())
657 return hash_combine(Arg.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000658
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000659 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000660}
661
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000662bool APInt::isSplat(unsigned SplatSizeInBits) const {
663 assert(getBitWidth() % SplatSizeInBits == 0 &&
664 "SplatSizeInBits must divide width!");
665 // We can check that all parts of an integer are equal by making use of a
666 // little trick: rotate and check if it's still the same value.
667 return *this == rotl(SplatSizeInBits);
668}
669
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000670/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000671APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000672 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000673}
674
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000675/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000676APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopher820256b2009-08-21 04:06:45 +0000677 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencer1d072122007-02-16 22:36:51 +0000678 BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000679}
680
Chris Lattner77527f52009-01-21 18:09:24 +0000681unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000682 unsigned Count = 0;
683 for (int i = getNumWords()-1; i >= 0; --i) {
684 integerPart V = pVal[i];
685 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000686 Count += APINT_BITS_PER_WORD;
687 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000688 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000689 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000690 }
Zhou Shengdac63782007-02-06 03:00:16 +0000691 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000692 // Adjust for unused bits in the most significant word (they are zero).
693 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
694 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000695 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000696}
697
Chris Lattner77527f52009-01-21 18:09:24 +0000698unsigned APInt::countLeadingOnes() const {
Reid Spencer31acef52007-02-27 21:59:26 +0000699 if (isSingleWord())
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000700 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth));
Reid Spencer31acef52007-02-27 21:59:26 +0000701
Chris Lattner77527f52009-01-21 18:09:24 +0000702 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000703 unsigned shift;
704 if (!highWordBits) {
705 highWordBits = APINT_BITS_PER_WORD;
706 shift = 0;
707 } else {
708 shift = APINT_BITS_PER_WORD - highWordBits;
709 }
Reid Spencer31acef52007-02-27 21:59:26 +0000710 int i = getNumWords() - 1;
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000711 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000712 if (Count == highWordBits) {
713 for (i--; i >= 0; --i) {
714 if (pVal[i] == -1ULL)
715 Count += APINT_BITS_PER_WORD;
716 else {
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000717 Count += llvm::countLeadingOnes(pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000718 break;
719 }
720 }
721 }
722 return Count;
723}
724
Chris Lattner77527f52009-01-21 18:09:24 +0000725unsigned APInt::countTrailingZeros() const {
Zhou Shengdac63782007-02-06 03:00:16 +0000726 if (isSingleWord())
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000727 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
Chris Lattner77527f52009-01-21 18:09:24 +0000728 unsigned Count = 0;
729 unsigned i = 0;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000730 for (; i < getNumWords() && pVal[i] == 0; ++i)
731 Count += APINT_BITS_PER_WORD;
732 if (i < getNumWords())
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000733 Count += llvm::countTrailingZeros(pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000734 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000735}
736
Chris Lattner77527f52009-01-21 18:09:24 +0000737unsigned APInt::countTrailingOnesSlowCase() const {
738 unsigned Count = 0;
739 unsigned i = 0;
Dan Gohmanc354ebd2008-02-14 22:38:45 +0000740 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000741 Count += APINT_BITS_PER_WORD;
742 if (i < getNumWords())
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000743 Count += llvm::countTrailingOnes(pVal[i]);
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000744 return std::min(Count, BitWidth);
745}
746
Chris Lattner77527f52009-01-21 18:09:24 +0000747unsigned APInt::countPopulationSlowCase() const {
748 unsigned Count = 0;
749 for (unsigned i = 0; i < getNumWords(); ++i)
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000750 Count += llvm::countPopulation(pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000751 return Count;
752}
753
Richard Smith4f9a8082011-11-23 21:33:37 +0000754/// Perform a logical right-shift from Src to Dst, which must be equal or
755/// non-overlapping, of Words words, by Shift, which must be less than 64.
756static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
757 unsigned Shift) {
758 uint64_t Carry = 0;
759 for (int I = Words - 1; I >= 0; --I) {
760 uint64_t Tmp = Src[I];
761 Dst[I] = (Tmp >> Shift) | Carry;
762 Carry = Tmp << (64 - Shift);
763 }
764}
765
Reid Spencer1d072122007-02-16 22:36:51 +0000766APInt APInt::byteSwap() const {
767 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
768 if (BitWidth == 16)
Jeff Cohene06855e2007-03-20 20:42:36 +0000769 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000770 if (BitWidth == 32)
Chris Lattner77527f52009-01-21 18:09:24 +0000771 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000772 if (BitWidth == 48) {
Chris Lattner77527f52009-01-21 18:09:24 +0000773 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000774 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohene06855e2007-03-20 20:42:36 +0000775 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000776 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000777 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000778 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000779 if (BitWidth == 64)
780 return APInt(BitWidth, ByteSwap_64(VAL));
781
782 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
783 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
784 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
785 if (Result.BitWidth != BitWidth) {
786 lshrNear(Result.pVal, Result.pVal, getNumWords(),
787 Result.BitWidth - BitWidth);
788 Result.BitWidth = BitWidth;
789 }
790 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000791}
792
Matt Arsenault155dda92016-03-21 15:00:35 +0000793APInt APInt::reverseBits() const {
794 switch (BitWidth) {
795 case 64:
796 return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL));
797 case 32:
798 return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL));
799 case 16:
800 return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL));
801 case 8:
802 return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL));
803 default:
804 break;
805 }
806
807 APInt Val(*this);
808 APInt Reversed(*this);
809 int S = BitWidth - 1;
810
811 const APInt One(BitWidth, 1);
812
813 for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) {
814 Reversed <<= 1;
815 Reversed |= (Val & One);
816 --S;
817 }
818
819 Reversed <<= S;
820 return Reversed;
821}
822
Eric Christopher820256b2009-08-21 04:06:45 +0000823APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000824 const APInt& API2) {
Zhou Shengdac63782007-02-06 03:00:16 +0000825 APInt A = API1, B = API2;
826 while (!!B) {
827 APInt T = B;
Reid Spencer1d072122007-02-16 22:36:51 +0000828 B = APIntOps::urem(A, B);
Zhou Shengdac63782007-02-06 03:00:16 +0000829 A = T;
830 }
831 return A;
832}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000833
Chris Lattner77527f52009-01-21 18:09:24 +0000834APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000835 union {
836 double D;
837 uint64_t I;
838 } T;
839 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000840
841 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000842 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000843
844 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000845 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000846
847 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000848 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000849 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000850
851 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
852 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
853
854 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000855 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000856 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000857 APInt(width, mantissa >> (52 - exp));
858
859 // If the client didn't provide enough bits for us to shift the mantissa into
860 // then the result is undefined, just return 0
861 if (width <= exp - 52)
862 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000863
864 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000865 APInt Tmp(width, mantissa);
Chris Lattner77527f52009-01-21 18:09:24 +0000866 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd707d632007-02-12 20:02:55 +0000867 return isNeg ? -Tmp : Tmp;
868}
869
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000870/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000871/// The layout for double is as following (IEEE Standard 754):
872/// --------------------------------------
873/// | Sign Exponent Fraction Bias |
874/// |-------------------------------------- |
875/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000876/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000877double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000878
879 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000880 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000881 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
882 if (isSigned) {
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000883 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000884 return double(sext);
885 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000886 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000887 }
888
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000889 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000890 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000891
892 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000893 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000894
895 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000896 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000897
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000898 // The exponent (without bias normalization) is just the number of bits
899 // we are using. Note that the sign bit is gone since we constructed the
900 // absolute value.
901 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000902
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000903 // Return infinity for exponent overflow
904 if (exp > 1023) {
905 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000906 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000907 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000908 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000909 }
910 exp += 1023; // Increment for 1023 bias
911
912 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
913 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000914 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000915 unsigned hiWord = whichWord(n-1);
916 if (hiWord == 0) {
917 mantissa = Tmp.pVal[0];
918 if (n > 52)
919 mantissa >>= n - 52; // shift down, we want the top 52 bits.
920 } else {
921 assert(hiWord > 0 && "huh?");
922 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
923 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
924 mantissa = hibits | lobits;
925 }
926
Zhou Shengd707d632007-02-12 20:02:55 +0000927 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000928 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000929 union {
930 double D;
931 uint64_t I;
932 } T;
933 T.I = sign | (exp << 52) | mantissa;
934 return T.D;
935}
936
Reid Spencer1d072122007-02-16 22:36:51 +0000937// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000938APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000939 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000940 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000941
942 if (width <= APINT_BITS_PER_WORD)
943 return APInt(width, getRawData()[0]);
944
945 APInt Result(getMemory(getNumWords(width)), width);
946
947 // Copy full words.
948 unsigned i;
949 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
950 Result.pVal[i] = pVal[i];
951
952 // Truncate and copy any partial word.
953 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
954 if (bits != 0)
955 Result.pVal[i] = pVal[i] << bits >> bits;
956
957 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000958}
959
960// Sign extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000961APInt APInt::sext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000962 assert(width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000963
964 if (width <= APINT_BITS_PER_WORD) {
965 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
966 val = (int64_t)val >> (width - BitWidth);
967 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000968 }
969
Jay Foad583abbc2010-12-07 08:25:19 +0000970 APInt Result(getMemory(getNumWords(width)), width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000971
Jay Foad583abbc2010-12-07 08:25:19 +0000972 // Copy full words.
973 unsigned i;
974 uint64_t word = 0;
975 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
976 word = getRawData()[i];
977 Result.pVal[i] = word;
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000978 }
979
Jay Foad583abbc2010-12-07 08:25:19 +0000980 // Read and sign-extend any partial word.
981 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
982 if (bits != 0)
983 word = (int64_t)getRawData()[i] << bits >> bits;
984 else
985 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
986
987 // Write remaining full words.
988 for (; i != width / APINT_BITS_PER_WORD; i++) {
989 Result.pVal[i] = word;
990 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000991 }
Jay Foad583abbc2010-12-07 08:25:19 +0000992
993 // Write any partial word.
994 bits = (0 - width) % APINT_BITS_PER_WORD;
995 if (bits != 0)
996 Result.pVal[i] = word << bits >> bits;
997
998 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000999}
1000
1001// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +00001002APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +00001003 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +00001004
1005 if (width <= APINT_BITS_PER_WORD)
1006 return APInt(width, VAL);
1007
1008 APInt Result(getMemory(getNumWords(width)), width);
1009
1010 // Copy words.
1011 unsigned i;
1012 for (i = 0; i != getNumWords(); i++)
1013 Result.pVal[i] = getRawData()[i];
1014
1015 // Zero remaining words.
1016 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
1017
1018 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +00001019}
1020
Jay Foad583abbc2010-12-07 08:25:19 +00001021APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +00001022 if (BitWidth < width)
1023 return zext(width);
1024 if (BitWidth > width)
1025 return trunc(width);
1026 return *this;
1027}
1028
Jay Foad583abbc2010-12-07 08:25:19 +00001029APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +00001030 if (BitWidth < width)
1031 return sext(width);
1032 if (BitWidth > width)
1033 return trunc(width);
1034 return *this;
1035}
1036
Rafael Espindolabb893fe2012-01-27 23:33:07 +00001037APInt APInt::zextOrSelf(unsigned width) const {
1038 if (BitWidth < width)
1039 return zext(width);
1040 return *this;
1041}
1042
1043APInt APInt::sextOrSelf(unsigned width) const {
1044 if (BitWidth < width)
1045 return sext(width);
1046 return *this;
1047}
1048
Zhou Shenge93db8f2007-02-09 07:48:24 +00001049/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001050/// @brief Arithmetic right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001051APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001052 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001053}
1054
1055/// Arithmetic right-shift this APInt by shiftAmt.
1056/// @brief Arithmetic right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001057APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001058 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer1825dd02007-03-02 22:39:11 +00001059 // Handle a degenerate case
1060 if (shiftAmt == 0)
1061 return *this;
1062
1063 // Handle single word shifts with built-in ashr
Reid Spencer522ca7c2007-02-25 01:56:07 +00001064 if (isSingleWord()) {
1065 if (shiftAmt == BitWidth)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001066 return APInt(BitWidth, 0); // undefined
1067 else {
Chris Lattner77527f52009-01-21 18:09:24 +00001068 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopher820256b2009-08-21 04:06:45 +00001069 return APInt(BitWidth,
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001070 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1071 }
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001072 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001073
Reid Spencer1825dd02007-03-02 22:39:11 +00001074 // If all the bits were shifted out, the result is, technically, undefined.
1075 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1076 // issues in the algorithm below.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001077 if (shiftAmt == BitWidth) {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001078 if (isNegative())
Zhou Sheng1247c072008-06-05 13:27:38 +00001079 return APInt(BitWidth, -1ULL, true);
Reid Spencera41e93b2007-02-25 19:32:03 +00001080 else
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001081 return APInt(BitWidth, 0);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001082 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001083
1084 // Create some space for the result.
1085 uint64_t * val = new uint64_t[getNumWords()];
1086
Reid Spencer1825dd02007-03-02 22:39:11 +00001087 // Compute some values needed by the following shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001088 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1089 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1090 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1091 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer1825dd02007-03-02 22:39:11 +00001092 if (bitsInWord == 0)
1093 bitsInWord = APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001094
1095 // If we are shifting whole words, just move whole words
1096 if (wordShift == 0) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001097 // Move the words containing significant bits
Chris Lattner77527f52009-01-21 18:09:24 +00001098 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001099 val[i] = pVal[i+offset]; // move whole word
1100
1101 // Adjust the top significant word for sign bit fill, if negative
1102 if (isNegative())
1103 if (bitsInWord < APINT_BITS_PER_WORD)
1104 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1105 } else {
Eric Christopher820256b2009-08-21 04:06:45 +00001106 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001107 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001108 // This combines the shifted corresponding word with the low bits from
1109 // the next word (shifted into this word's high bits).
Eric Christopher820256b2009-08-21 04:06:45 +00001110 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer1825dd02007-03-02 22:39:11 +00001111 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1112 }
1113
1114 // Shift the break word. In this case there are no bits from the next word
1115 // to include in this word.
1116 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1117
Alp Tokercb402912014-01-24 17:20:08 +00001118 // Deal with sign extension in the break word, and possibly the word before
Reid Spencer1825dd02007-03-02 22:39:11 +00001119 // it.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001120 if (isNegative()) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001121 if (wordShift > bitsInWord) {
1122 if (breakWord > 0)
Eric Christopher820256b2009-08-21 04:06:45 +00001123 val[breakWord-1] |=
Reid Spencer1825dd02007-03-02 22:39:11 +00001124 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1125 val[breakWord] |= ~0ULL;
Eric Christopher820256b2009-08-21 04:06:45 +00001126 } else
Reid Spencer1825dd02007-03-02 22:39:11 +00001127 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnerdad2d092007-05-03 18:15:36 +00001128 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001129 }
1130
Reid Spencer1825dd02007-03-02 22:39:11 +00001131 // Remaining words are 0 or -1, just assign them.
1132 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner77527f52009-01-21 18:09:24 +00001133 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001134 val[i] = fillValue;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001135 APInt Result(val, BitWidth);
1136 Result.clearUnusedBits();
1137 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001138}
1139
Zhou Shenge93db8f2007-02-09 07:48:24 +00001140/// Logical right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001141/// @brief Logical right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001142APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001143 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001144}
1145
1146/// Logical right-shift this APInt by shiftAmt.
1147/// @brief Logical right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001148APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnerdad2d092007-05-03 18:15:36 +00001149 if (isSingleWord()) {
Ahmed Charles0dca5d82012-02-24 19:06:15 +00001150 if (shiftAmt >= BitWidth)
Reid Spencer522ca7c2007-02-25 01:56:07 +00001151 return APInt(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001152 else
Reid Spencer522ca7c2007-02-25 01:56:07 +00001153 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001154 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001155
Reid Spencer44eef162007-02-26 01:19:48 +00001156 // If all the bits were shifted out, the result is 0. This avoids issues
1157 // with shifting by the size of the integer type, which produces undefined
1158 // results. We define these "undefined results" to always be 0.
Chad Rosier3d464d82012-06-08 18:04:52 +00001159 if (shiftAmt >= BitWidth)
Reid Spencer44eef162007-02-26 01:19:48 +00001160 return APInt(BitWidth, 0);
1161
Reid Spencerfffdf102007-05-17 06:26:29 +00001162 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher820256b2009-08-21 04:06:45 +00001163 // issues with shifting by the size of the integer type, which produces
Reid Spencerfffdf102007-05-17 06:26:29 +00001164 // undefined results in the code below. This is also an optimization.
1165 if (shiftAmt == 0)
1166 return *this;
1167
Reid Spencer44eef162007-02-26 01:19:48 +00001168 // Create some space for the result.
1169 uint64_t * val = new uint64_t[getNumWords()];
1170
1171 // If we are shifting less than a word, compute the shift with a simple carry
1172 if (shiftAmt < APINT_BITS_PER_WORD) {
Richard Smith4f9a8082011-11-23 21:33:37 +00001173 lshrNear(val, pVal, getNumWords(), shiftAmt);
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001174 APInt Result(val, BitWidth);
1175 Result.clearUnusedBits();
1176 return Result;
Reid Spencera41e93b2007-02-25 19:32:03 +00001177 }
1178
Reid Spencer44eef162007-02-26 01:19:48 +00001179 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001180 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1181 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer44eef162007-02-26 01:19:48 +00001182
1183 // If we are shifting whole words, just move whole words
1184 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001185 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001186 val[i] = pVal[i+offset];
Chris Lattner77527f52009-01-21 18:09:24 +00001187 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencer44eef162007-02-26 01:19:48 +00001188 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001189 APInt Result(val, BitWidth);
1190 Result.clearUnusedBits();
1191 return Result;
Reid Spencer44eef162007-02-26 01:19:48 +00001192 }
1193
Eric Christopher820256b2009-08-21 04:06:45 +00001194 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001195 unsigned breakWord = getNumWords() - offset -1;
1196 for (unsigned i = 0; i < breakWord; ++i)
Reid Spencerd99feaf2007-03-01 05:39:56 +00001197 val[i] = (pVal[i+offset] >> wordShift) |
1198 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencer44eef162007-02-26 01:19:48 +00001199 // Shift the break word.
1200 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1201
1202 // Remaining words are 0
Chris Lattner77527f52009-01-21 18:09:24 +00001203 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001204 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001205 APInt Result(val, BitWidth);
1206 Result.clearUnusedBits();
1207 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001208}
1209
Zhou Shenge93db8f2007-02-09 07:48:24 +00001210/// Left-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001211/// @brief Left-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001212APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky030c4502009-01-19 17:42:33 +00001213 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner77527f52009-01-21 18:09:24 +00001214 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001215}
1216
Chris Lattner77527f52009-01-21 18:09:24 +00001217APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencera5c84d92007-02-25 00:56:44 +00001218 // If all the bits were shifted out, the result is 0. This avoids issues
1219 // with shifting by the size of the integer type, which produces undefined
1220 // results. We define these "undefined results" to always be 0.
1221 if (shiftAmt == BitWidth)
1222 return APInt(BitWidth, 0);
1223
Reid Spencer81ee0202007-05-12 18:01:57 +00001224 // If none of the bits are shifted out, the result is *this. This avoids a
1225 // lshr by the words size in the loop below which can produce incorrect
1226 // results. It also avoids the expensive computation below for a common case.
1227 if (shiftAmt == 0)
1228 return *this;
1229
Reid Spencera5c84d92007-02-25 00:56:44 +00001230 // Create some space for the result.
1231 uint64_t * val = new uint64_t[getNumWords()];
1232
1233 // If we are shifting less than a word, do it the easy way
1234 if (shiftAmt < APINT_BITS_PER_WORD) {
1235 uint64_t carry = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001236 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencera5c84d92007-02-25 00:56:44 +00001237 val[i] = pVal[i] << shiftAmt | carry;
1238 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1239 }
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001240 APInt Result(val, BitWidth);
1241 Result.clearUnusedBits();
1242 return Result;
Reid Spencer632ebdf2007-02-24 20:19:37 +00001243 }
1244
Reid Spencera5c84d92007-02-25 00:56:44 +00001245 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001246 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1247 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencera5c84d92007-02-25 00:56:44 +00001248
1249 // If we are shifting whole words, just move whole words
1250 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001251 for (unsigned i = 0; i < offset; i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001252 val[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001253 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001254 val[i] = pVal[i-offset];
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001255 APInt Result(val, BitWidth);
1256 Result.clearUnusedBits();
1257 return Result;
Reid Spencer632ebdf2007-02-24 20:19:37 +00001258 }
Reid Spencera5c84d92007-02-25 00:56:44 +00001259
1260 // Copy whole words from this to Result.
Chris Lattner77527f52009-01-21 18:09:24 +00001261 unsigned i = getNumWords() - 1;
Reid Spencera5c84d92007-02-25 00:56:44 +00001262 for (; i > offset; --i)
1263 val[i] = pVal[i-offset] << wordShift |
1264 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencerab0e08a2007-02-25 01:08:58 +00001265 val[offset] = pVal[0] << wordShift;
Reid Spencera5c84d92007-02-25 00:56:44 +00001266 for (i = 0; i < offset; ++i)
1267 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001268 APInt Result(val, BitWidth);
1269 Result.clearUnusedBits();
1270 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001271}
1272
Dan Gohman105c1d42008-02-29 01:40:47 +00001273APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001274 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001275}
1276
Chris Lattner77527f52009-01-21 18:09:24 +00001277APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001278 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001279 if (rotateAmt == 0)
1280 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001281 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001282}
1283
Dan Gohman105c1d42008-02-29 01:40:47 +00001284APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001285 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001286}
1287
Chris Lattner77527f52009-01-21 18:09:24 +00001288APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001289 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001290 if (rotateAmt == 0)
1291 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001292 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001293}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001294
1295// Square Root - this method computes and returns the square root of "this".
1296// Three mechanisms are used for computation. For small values (<= 5 bits),
1297// a table lookup is done. This gets some performance for common cases. For
1298// values using less than 52 bits, the value is converted to double and then
1299// the libc sqrt function is called. The result is rounded and then converted
1300// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001301// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001302APInt APInt::sqrt() const {
1303
1304 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001305 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001306
1307 // Use a fast table for some small values. This also gets rid of some
1308 // rounding errors in libc sqrt for small values.
1309 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001310 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001311 /* 0 */ 0,
1312 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001313 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001314 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1315 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1316 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1317 /* 31 */ 6
1318 };
1319 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001320 }
1321
1322 // If the magnitude of the value fits in less than 52 bits (the precision of
1323 // an IEEE double precision floating point value), then we can use the
1324 // libc sqrt function which will probably use a hardware sqrt computation.
1325 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001326 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001327 return APInt(BitWidth,
Reid Spencerd99feaf2007-03-01 05:39:56 +00001328 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001329 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001330
1331 // Okay, all the short cuts are exhausted. We must compute it. The following
1332 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001333 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001334 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001335 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001336 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001337 APInt testy(BitWidth, 16);
1338 APInt x_old(BitWidth, 1);
1339 APInt x_new(BitWidth, 0);
1340 APInt two(BitWidth, 2);
1341
1342 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001343 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001344 if (i >= nbits || this->ule(testy)) {
1345 x_old = x_old.shl(i / 2);
1346 break;
1347 }
1348
Eric Christopher820256b2009-08-21 04:06:45 +00001349 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001350 for (;;) {
1351 x_new = (this->udiv(x_old) + x_old).udiv(two);
1352 if (x_old.ule(x_new))
1353 break;
1354 x_old = x_new;
1355 }
1356
1357 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001358 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001359 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001360 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001361 // floating point representation after 192 bits. There are no discrepancies
1362 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001363 APInt square(x_old * x_old);
1364 APInt nextSquare((x_old + 1) * (x_old +1));
1365 if (this->ult(square))
1366 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001367 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1368 APInt midpoint((nextSquare - square).udiv(two));
1369 APInt offset(*this - square);
1370 if (offset.ult(midpoint))
1371 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001372 return x_old + 1;
1373}
1374
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001375/// Computes the multiplicative inverse of this APInt for a given modulo. The
1376/// iterative extended Euclidean algorithm is used to solve for this value,
1377/// however we simplify it to speed up calculating only the inverse, and take
1378/// advantage of div+rem calculations. We also use some tricks to avoid copying
1379/// (potentially large) APInts around.
1380APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1381 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1382
1383 // Using the properties listed at the following web page (accessed 06/21/08):
1384 // http://www.numbertheory.org/php/euclid.html
1385 // (especially the properties numbered 3, 4 and 9) it can be proved that
1386 // BitWidth bits suffice for all the computations in the algorithm implemented
1387 // below. More precisely, this number of bits suffice if the multiplicative
1388 // inverse exists, but may not suffice for the general extended Euclidean
1389 // algorithm.
1390
1391 APInt r[2] = { modulo, *this };
1392 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1393 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001394
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001395 unsigned i;
1396 for (i = 0; r[i^1] != 0; i ^= 1) {
1397 // An overview of the math without the confusing bit-flipping:
1398 // q = r[i-2] / r[i-1]
1399 // r[i] = r[i-2] % r[i-1]
1400 // t[i] = t[i-2] - t[i-1] * q
1401 udivrem(r[i], r[i^1], q, r[i]);
1402 t[i] -= t[i^1] * q;
1403 }
1404
1405 // If this APInt and the modulo are not coprime, there is no multiplicative
1406 // inverse, so return 0. We check this by looking at the next-to-last
1407 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1408 // algorithm.
1409 if (r[i] != 1)
1410 return APInt(BitWidth, 0);
1411
1412 // The next-to-last t is the multiplicative inverse. However, we are
1413 // interested in a positive inverse. Calcuate a positive one from a negative
1414 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001415 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001416 return t[i].isNegative() ? t[i] + modulo : t[i];
1417}
1418
Jay Foadfe0c6482009-04-30 10:15:35 +00001419/// Calculate the magic numbers required to implement a signed integer division
1420/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1421/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1422/// Warren, Jr., chapter 10.
1423APInt::ms APInt::magic() const {
1424 const APInt& d = *this;
1425 unsigned p;
1426 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001427 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001428 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001429
Jay Foadfe0c6482009-04-30 10:15:35 +00001430 ad = d.abs();
1431 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1432 anc = t - 1 - t.urem(ad); // absolute value of nc
1433 p = d.getBitWidth() - 1; // initialize p
1434 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1435 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1436 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1437 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1438 do {
1439 p = p + 1;
1440 q1 = q1<<1; // update q1 = 2p/abs(nc)
1441 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1442 if (r1.uge(anc)) { // must be unsigned comparison
1443 q1 = q1 + 1;
1444 r1 = r1 - anc;
1445 }
1446 q2 = q2<<1; // update q2 = 2p/abs(d)
1447 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1448 if (r2.uge(ad)) { // must be unsigned comparison
1449 q2 = q2 + 1;
1450 r2 = r2 - ad;
1451 }
1452 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001453 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001454
Jay Foadfe0c6482009-04-30 10:15:35 +00001455 mag.m = q2 + 1;
1456 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1457 mag.s = p - d.getBitWidth(); // resulting shift
1458 return mag;
1459}
1460
1461/// Calculate the magic numbers required to implement an unsigned integer
1462/// division by a constant as a sequence of multiplies, adds and shifts.
1463/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1464/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001465/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001466/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001467APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001468 const APInt& d = *this;
1469 unsigned p;
1470 APInt nc, delta, q1, r1, q2, r2;
1471 struct mu magu;
1472 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001473 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001474 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1475 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1476
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001477 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001478 p = d.getBitWidth() - 1; // initialize p
1479 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1480 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1481 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1482 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1483 do {
1484 p = p + 1;
1485 if (r1.uge(nc - r1)) {
1486 q1 = q1 + q1 + 1; // update q1
1487 r1 = r1 + r1 - nc; // update r1
1488 }
1489 else {
1490 q1 = q1+q1; // update q1
1491 r1 = r1+r1; // update r1
1492 }
1493 if ((r2 + 1).uge(d - r2)) {
1494 if (q2.uge(signedMax)) magu.a = 1;
1495 q2 = q2+q2 + 1; // update q2
1496 r2 = r2+r2 + 1 - d; // update r2
1497 }
1498 else {
1499 if (q2.uge(signedMin)) magu.a = 1;
1500 q2 = q2+q2; // update q2
1501 r2 = r2+r2 + 1; // update r2
1502 }
1503 delta = d - 1 - r2;
1504 } while (p < d.getBitWidth()*2 &&
1505 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1506 magu.m = q2 + 1; // resulting magic number
1507 magu.s = p - d.getBitWidth(); // resulting shift
1508 return magu;
1509}
1510
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001511/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1512/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1513/// variables here have the same names as in the algorithm. Comments explain
1514/// the algorithm and any deviation from it.
Chris Lattner77527f52009-01-21 18:09:24 +00001515static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1516 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001517 assert(u && "Must provide dividend");
1518 assert(v && "Must provide divisor");
1519 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001520 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001521 assert(n>1 && "n must be > 1");
1522
Yaron Keren39fc5a62015-03-26 19:45:19 +00001523 // b denotes the base of the number system. In our case b is 2^32.
1524 LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001525
David Greenef32fcb42010-01-05 01:28:52 +00001526 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1527 DEBUG(dbgs() << "KnuthDiv: original:");
1528 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1529 DEBUG(dbgs() << " by");
1530 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1531 DEBUG(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001532 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1533 // u and v by d. Note that we have taken Knuth's advice here to use a power
1534 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1535 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001536 // shift amount from the leading zeros. We are basically normalizing the u
1537 // and v so that its high bits are shifted to the top of v's range without
1538 // overflow. Note that this can require an extra word in u so that u must
1539 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001540 unsigned shift = countLeadingZeros(v[n-1]);
Chris Lattner77527f52009-01-21 18:09:24 +00001541 unsigned v_carry = 0;
1542 unsigned u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001543 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001544 for (unsigned i = 0; i < m+n; ++i) {
1545 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001546 u[i] = (u[i] << shift) | u_carry;
1547 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001548 }
Chris Lattner77527f52009-01-21 18:09:24 +00001549 for (unsigned i = 0; i < n; ++i) {
1550 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001551 v[i] = (v[i] << shift) | v_carry;
1552 v_carry = v_tmp;
1553 }
1554 }
1555 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001556
David Greenef32fcb42010-01-05 01:28:52 +00001557 DEBUG(dbgs() << "KnuthDiv: normal:");
1558 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1559 DEBUG(dbgs() << " by");
1560 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1561 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001562
1563 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1564 int j = m;
1565 do {
David Greenef32fcb42010-01-05 01:28:52 +00001566 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001567 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001568 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1569 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1570 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1571 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1572 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001573 // value qp is one too large, and it eliminates all cases where qp is two
1574 // too large.
Reid Spencercb292e42007-02-23 01:57:13 +00001575 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greenef32fcb42010-01-05 01:28:52 +00001576 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001577 uint64_t qp = dividend / v[n-1];
1578 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001579 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1580 qp--;
1581 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001582 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001583 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001584 }
David Greenef32fcb42010-01-05 01:28:52 +00001585 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001586
Reid Spencercb292e42007-02-23 01:57:13 +00001587 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1588 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1589 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001590 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001591 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1592 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1593 // true value plus b**(n+1), namely as the b's complement of
1594 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001595 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001596 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001597 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1598 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
1599 u[j+i] = (unsigned)subres;
1600 borrow = (p >> 32) - (subres >> 32);
1601 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
Daniel Dunbar763ace92009-07-13 05:27:30 +00001602 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001603 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001604 bool isNeg = u[j+n] < borrow;
1605 u[j+n] -= (unsigned)borrow;
1606
David Greenef32fcb42010-01-05 01:28:52 +00001607 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1608 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1609 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001610
Eric Christopher820256b2009-08-21 04:06:45 +00001611 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001612 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner77527f52009-01-21 18:09:24 +00001613 q[j] = (unsigned)qp;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001614 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001615 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001616 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001617 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001618 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001619 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1620 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001621 // since it cancels with the borrow that occurred in D4.
1622 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001623 for (unsigned i = 0; i < n; i++) {
1624 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001625 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001626 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001627 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001628 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001629 }
David Greenef32fcb42010-01-05 01:28:52 +00001630 DEBUG(dbgs() << "KnuthDiv: after correction:");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001631 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
David Greenef32fcb42010-01-05 01:28:52 +00001632 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001633
Reid Spencercb292e42007-02-23 01:57:13 +00001634 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1635 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001636
David Greenef32fcb42010-01-05 01:28:52 +00001637 DEBUG(dbgs() << "KnuthDiv: quotient:");
1638 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1639 DEBUG(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001640
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001641 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1642 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1643 // compute the remainder (urem uses this).
1644 if (r) {
1645 // The value d is expressed by the "shift" value above since we avoided
1646 // multiplication by d by using a shift left. So, all we have to do is
1647 // shift right here. In order to mak
Reid Spencer468ad9112007-02-24 20:38:01 +00001648 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001649 unsigned carry = 0;
David Greenef32fcb42010-01-05 01:28:52 +00001650 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001651 for (int i = n-1; i >= 0; i--) {
1652 r[i] = (u[i] >> shift) | carry;
1653 carry = u[i] << (32 - shift);
David Greenef32fcb42010-01-05 01:28:52 +00001654 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001655 }
1656 } else {
1657 for (int i = n-1; i >= 0; i--) {
1658 r[i] = u[i];
David Greenef32fcb42010-01-05 01:28:52 +00001659 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001660 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001661 }
David Greenef32fcb42010-01-05 01:28:52 +00001662 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001663 }
David Greenef32fcb42010-01-05 01:28:52 +00001664 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001665}
1666
Chris Lattner77527f52009-01-21 18:09:24 +00001667void APInt::divide(const APInt LHS, unsigned lhsWords,
1668 const APInt &RHS, unsigned rhsWords,
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001669 APInt *Quotient, APInt *Remainder)
1670{
1671 assert(lhsWords >= rhsWords && "Fractional result");
1672
Eric Christopher820256b2009-08-21 04:06:45 +00001673 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001674 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001675 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001676 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1677 // can't use 64-bit operands here because we don't have native results of
1678 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001679 // work on large-endian machines.
Dan Gohmancff69532009-04-01 18:45:54 +00001680 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner77527f52009-01-21 18:09:24 +00001681 unsigned n = rhsWords * 2;
1682 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001683
1684 // Allocate space for the temporary values we need either on the stack, if
1685 // it will fit, or on the heap if it won't.
Chris Lattner77527f52009-01-21 18:09:24 +00001686 unsigned SPACE[128];
Craig Topperc10719f2014-04-07 04:17:22 +00001687 unsigned *U = nullptr;
1688 unsigned *V = nullptr;
1689 unsigned *Q = nullptr;
1690 unsigned *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001691 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1692 U = &SPACE[0];
1693 V = &SPACE[m+n+1];
1694 Q = &SPACE[(m+n+1) + n];
1695 if (Remainder)
1696 R = &SPACE[(m+n+1) + n + (m+n)];
1697 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001698 U = new unsigned[m + n + 1];
1699 V = new unsigned[n];
1700 Q = new unsigned[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001701 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001702 R = new unsigned[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001703 }
1704
1705 // Initialize the dividend
Chris Lattner77527f52009-01-21 18:09:24 +00001706 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001707 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001708 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001709 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001710 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001711 }
1712 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1713
Reid Spencer522ca7c2007-02-25 01:56:07 +00001714 // Initialize the divisor
Chris Lattner77527f52009-01-21 18:09:24 +00001715 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001716 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001717 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001718 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001719 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001720 }
1721
Reid Spencer522ca7c2007-02-25 01:56:07 +00001722 // initialize the quotient and remainder
Chris Lattner77527f52009-01-21 18:09:24 +00001723 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001724 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001725 memset(R, 0, n * sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001726
Eric Christopher820256b2009-08-21 04:06:45 +00001727 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001728 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001729 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001730 // contain any zero words or the Knuth algorithm fails.
1731 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1732 n--;
1733 m++;
1734 }
1735 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1736 m--;
1737
1738 // If we're left with only a single word for the divisor, Knuth doesn't work
1739 // so we implement the short division algorithm here. This is much simpler
1740 // and faster because we are certain that we can divide a 64-bit quantity
1741 // by a 32-bit quantity at hardware speed and short division is simply a
1742 // series of such operations. This is just like doing short division but we
1743 // are using base 2^32 instead of base 10.
1744 assert(n != 0 && "Divide by zero?");
1745 if (n == 1) {
Chris Lattner77527f52009-01-21 18:09:24 +00001746 unsigned divisor = V[0];
1747 unsigned remainder = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001748 for (int i = m+n-1; i >= 0; i--) {
1749 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1750 if (partial_dividend == 0) {
1751 Q[i] = 0;
1752 remainder = 0;
1753 } else if (partial_dividend < divisor) {
1754 Q[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001755 remainder = (unsigned)partial_dividend;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001756 } else if (partial_dividend == divisor) {
1757 Q[i] = 1;
1758 remainder = 0;
1759 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001760 Q[i] = (unsigned)(partial_dividend / divisor);
1761 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001762 }
1763 }
1764 if (R)
1765 R[0] = remainder;
1766 } else {
1767 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1768 // case n > 1.
1769 KnuthDiv(U, V, Q, R, m, n);
1770 }
1771
1772 // If the caller wants the quotient
1773 if (Quotient) {
1774 // Set up the Quotient value's memory.
1775 if (Quotient->BitWidth != LHS.BitWidth) {
1776 if (Quotient->isSingleWord())
1777 Quotient->VAL = 0;
1778 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001779 delete [] Quotient->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001780 Quotient->BitWidth = LHS.BitWidth;
1781 if (!Quotient->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001782 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001783 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001784 Quotient->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001785
Eric Christopher820256b2009-08-21 04:06:45 +00001786 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001787 // order words.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001788 // This case is currently dead as all users of divide() handle trivial cases
1789 // earlier.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001790 if (lhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001791 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001792 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1793 if (Quotient->isSingleWord())
1794 Quotient->VAL = tmp;
1795 else
1796 Quotient->pVal[0] = tmp;
1797 } else {
1798 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1799 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001800 Quotient->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001801 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1802 }
1803 }
1804
1805 // If the caller wants the remainder
1806 if (Remainder) {
1807 // Set up the Remainder value's memory.
1808 if (Remainder->BitWidth != RHS.BitWidth) {
1809 if (Remainder->isSingleWord())
1810 Remainder->VAL = 0;
1811 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001812 delete [] Remainder->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001813 Remainder->BitWidth = RHS.BitWidth;
1814 if (!Remainder->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001815 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001816 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001817 Remainder->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001818
1819 // The remainder is in R. Reconstitute the remainder into Remainder's low
1820 // order words.
1821 if (rhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001822 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001823 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1824 if (Remainder->isSingleWord())
1825 Remainder->VAL = tmp;
1826 else
1827 Remainder->pVal[0] = tmp;
1828 } else {
1829 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1830 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001831 Remainder->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001832 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1833 }
1834 }
1835
1836 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001837 if (U != &SPACE[0]) {
1838 delete [] U;
1839 delete [] V;
1840 delete [] Q;
1841 delete [] R;
1842 }
Reid Spencer100502d2007-02-17 03:16:00 +00001843}
1844
Reid Spencer1d072122007-02-16 22:36:51 +00001845APInt APInt::udiv(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001846 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001847
1848 // First, deal with the easy case
1849 if (isSingleWord()) {
1850 assert(RHS.VAL != 0 && "Divide by zero?");
1851 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001852 }
Reid Spencer39867762007-02-17 02:07:07 +00001853
Reid Spencer39867762007-02-17 02:07:07 +00001854 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner77527f52009-01-21 18:09:24 +00001855 unsigned rhsBits = RHS.getActiveBits();
1856 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001857 assert(rhsWords && "Divided by zero???");
Chris Lattner77527f52009-01-21 18:09:24 +00001858 unsigned lhsBits = this->getActiveBits();
1859 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001860
1861 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001862 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001863 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001864 return APInt(BitWidth, 0);
Reid Spencer58a6a432007-02-21 08:21:52 +00001865 else if (lhsWords < rhsWords || this->ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001866 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001867 return APInt(BitWidth, 0);
1868 } else if (*this == RHS) {
1869 // X / X ===> 1
1870 return APInt(BitWidth, 1);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001871 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001872 // All high words are zero, just use native divide
Reid Spencer58a6a432007-02-21 08:21:52 +00001873 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001874 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001875
1876 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1877 APInt Quotient(1,0); // to hold result.
Craig Topperc10719f2014-04-07 04:17:22 +00001878 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001879 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001880}
1881
Jakub Staszak6605c602013-02-20 00:17:42 +00001882APInt APInt::sdiv(const APInt &RHS) const {
1883 if (isNegative()) {
1884 if (RHS.isNegative())
1885 return (-(*this)).udiv(-RHS);
1886 return -((-(*this)).udiv(RHS));
1887 }
1888 if (RHS.isNegative())
1889 return -(this->udiv(-RHS));
1890 return this->udiv(RHS);
1891}
1892
Reid Spencer1d072122007-02-16 22:36:51 +00001893APInt APInt::urem(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001894 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001895 if (isSingleWord()) {
1896 assert(RHS.VAL != 0 && "Remainder by zero?");
1897 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001898 }
Reid Spencer39867762007-02-17 02:07:07 +00001899
Reid Spencer58a6a432007-02-21 08:21:52 +00001900 // Get some facts about the LHS
Chris Lattner77527f52009-01-21 18:09:24 +00001901 unsigned lhsBits = getActiveBits();
1902 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001903
1904 // Get some facts about the RHS
Chris Lattner77527f52009-01-21 18:09:24 +00001905 unsigned rhsBits = RHS.getActiveBits();
1906 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001907 assert(rhsWords && "Performing remainder operation by zero ???");
1908
Reid Spencer39867762007-02-17 02:07:07 +00001909 // Check the degenerate cases
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001910 if (lhsWords == 0) {
Reid Spencer58a6a432007-02-21 08:21:52 +00001911 // 0 % Y ===> 0
1912 return APInt(BitWidth, 0);
1913 } else if (lhsWords < rhsWords || this->ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001914 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001915 return *this;
1916 } else if (*this == RHS) {
Reid Spencer39867762007-02-17 02:07:07 +00001917 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001918 return APInt(BitWidth, 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001919 } else if (lhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001920 // All high words are zero, just use native remainder
Reid Spencer58a6a432007-02-21 08:21:52 +00001921 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001922 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001923
Reid Spencer4c50b522007-05-13 23:44:59 +00001924 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001925 APInt Remainder(1,0);
Craig Topperc10719f2014-04-07 04:17:22 +00001926 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001927 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001928}
Reid Spencer100502d2007-02-17 03:16:00 +00001929
Jakub Staszak6605c602013-02-20 00:17:42 +00001930APInt APInt::srem(const APInt &RHS) const {
1931 if (isNegative()) {
1932 if (RHS.isNegative())
1933 return -((-(*this)).urem(-RHS));
1934 return -((-(*this)).urem(RHS));
1935 }
1936 if (RHS.isNegative())
1937 return this->urem(-RHS);
1938 return this->urem(RHS);
1939}
1940
Eric Christopher820256b2009-08-21 04:06:45 +00001941void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001942 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001943 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1944
1945 // First, deal with the easy case
1946 if (LHS.isSingleWord()) {
1947 assert(RHS.VAL != 0 && "Divide by zero?");
1948 uint64_t QuotVal = LHS.VAL / RHS.VAL;
1949 uint64_t RemVal = LHS.VAL % RHS.VAL;
1950 Quotient = APInt(LHS.BitWidth, QuotVal);
1951 Remainder = APInt(LHS.BitWidth, RemVal);
1952 return;
1953 }
1954
Reid Spencer4c50b522007-05-13 23:44:59 +00001955 // Get some size facts about the dividend and divisor
Chris Lattner77527f52009-01-21 18:09:24 +00001956 unsigned lhsBits = LHS.getActiveBits();
1957 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1958 unsigned rhsBits = RHS.getActiveBits();
1959 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer4c50b522007-05-13 23:44:59 +00001960
1961 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001962 if (lhsWords == 0) {
Reid Spencer4c50b522007-05-13 23:44:59 +00001963 Quotient = 0; // 0 / Y ===> 0
1964 Remainder = 0; // 0 % Y ===> 0
1965 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001966 }
1967
1968 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001969 Remainder = LHS; // X % Y ===> X, iff X < Y
1970 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00001971 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001972 }
1973
Reid Spencer4c50b522007-05-13 23:44:59 +00001974 if (LHS == RHS) {
1975 Quotient = 1; // X / X ===> 1
1976 Remainder = 0; // X % X ===> 0;
1977 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001978 }
1979
Reid Spencer4c50b522007-05-13 23:44:59 +00001980 if (lhsWords == 1 && rhsWords == 1) {
1981 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001982 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1983 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1984 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1985 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer4c50b522007-05-13 23:44:59 +00001986 return;
1987 }
1988
1989 // Okay, lets do it the long way
1990 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1991}
1992
Jakub Staszak6605c602013-02-20 00:17:42 +00001993void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1994 APInt &Quotient, APInt &Remainder) {
1995 if (LHS.isNegative()) {
1996 if (RHS.isNegative())
1997 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1998 else {
1999 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
2000 Quotient = -Quotient;
2001 }
2002 Remainder = -Remainder;
2003 } else if (RHS.isNegative()) {
2004 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
2005 Quotient = -Quotient;
2006 } else {
2007 APInt::udivrem(LHS, RHS, Quotient, Remainder);
2008 }
2009}
2010
Chris Lattner2c819b02010-10-13 23:54:10 +00002011APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002012 APInt Res = *this+RHS;
2013 Overflow = isNonNegative() == RHS.isNonNegative() &&
2014 Res.isNonNegative() != isNonNegative();
2015 return Res;
2016}
2017
Chris Lattner698661c2010-10-14 00:05:07 +00002018APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2019 APInt Res = *this+RHS;
2020 Overflow = Res.ult(RHS);
2021 return Res;
2022}
2023
Chris Lattner2c819b02010-10-13 23:54:10 +00002024APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002025 APInt Res = *this - RHS;
2026 Overflow = isNonNegative() != RHS.isNonNegative() &&
2027 Res.isNonNegative() != isNonNegative();
2028 return Res;
2029}
2030
Chris Lattner698661c2010-10-14 00:05:07 +00002031APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00002032 APInt Res = *this-RHS;
2033 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00002034 return Res;
2035}
2036
Chris Lattner2c819b02010-10-13 23:54:10 +00002037APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002038 // MININT/-1 --> overflow.
2039 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2040 return sdiv(RHS);
2041}
2042
Chris Lattner2c819b02010-10-13 23:54:10 +00002043APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002044 APInt Res = *this * RHS;
2045
2046 if (*this != 0 && RHS != 0)
2047 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2048 else
2049 Overflow = false;
2050 return Res;
2051}
2052
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00002053APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2054 APInt Res = *this * RHS;
2055
2056 if (*this != 0 && RHS != 0)
2057 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2058 else
2059 Overflow = false;
2060 return Res;
2061}
2062
David Majnemera2521382014-10-13 21:48:30 +00002063APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2064 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00002065 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00002066 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00002067
2068 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00002069 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00002070 else
David Majnemera2521382014-10-13 21:48:30 +00002071 Overflow = ShAmt.uge(countLeadingOnes());
Chris Lattner79bdd882010-10-13 23:46:33 +00002072
2073 return *this << ShAmt;
2074}
2075
David Majnemera2521382014-10-13 21:48:30 +00002076APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2077 Overflow = ShAmt.uge(getBitWidth());
2078 if (Overflow)
2079 return APInt(BitWidth, 0);
2080
2081 Overflow = ShAmt.ugt(countLeadingZeros());
2082
2083 return *this << ShAmt;
2084}
2085
Chris Lattner79bdd882010-10-13 23:46:33 +00002086
2087
2088
Benjamin Kramer92d89982010-07-14 22:38:02 +00002089void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00002090 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002091 assert(!str.empty() && "Invalid string length");
Douglas Gregor663c0682011-09-14 15:54:46 +00002092 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2093 radix == 36) &&
2094 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002095
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002096 StringRef::iterator p = str.begin();
2097 size_t slen = str.size();
2098 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002099 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002100 p++;
2101 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00002102 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002103 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00002104 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002105 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2106 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002107 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2108 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00002109
2110 // Allocate memory
2111 if (!isSingleWord())
2112 pVal = getClearedMemory(getNumWords());
2113
2114 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00002115 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00002116
2117 // Set up an APInt for the digit to add outside the loop so we don't
2118 // constantly construct/destruct it.
2119 APInt apdigit(getBitWidth(), 0);
2120 APInt apradix(getBitWidth(), radix);
2121
2122 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002123 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00002124 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00002125 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00002126
Reid Spencera93c9812007-05-16 19:18:22 +00002127 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002128 if (slen > 1) {
2129 if (shift)
2130 *this <<= shift;
2131 else
2132 *this *= apradix;
2133 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002134
2135 // Add in the digit we just interpreted
Reid Spencer632ebdf2007-02-24 20:19:37 +00002136 if (apdigit.isSingleWord())
2137 apdigit.VAL = digit;
2138 else
2139 apdigit.pVal[0] = digit;
Reid Spencer1ba83352007-02-21 03:55:44 +00002140 *this += apdigit;
Reid Spencer100502d2007-02-17 03:16:00 +00002141 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002142 // If its negative, put it in two's complement form
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00002143 if (isNeg) {
Jakub Staszak773be0c2013-03-20 23:56:19 +00002144 --(*this);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002145 this->flipAllBits();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002146 }
Reid Spencer100502d2007-02-17 03:16:00 +00002147}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002148
Chris Lattner17f71652008-08-17 07:19:36 +00002149void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002150 bool Signed, bool formatAsCLiteral) const {
Douglas Gregor663c0682011-09-14 15:54:46 +00002151 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2152 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002153 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00002154
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002155 const char *Prefix = "";
2156 if (formatAsCLiteral) {
2157 switch (Radix) {
2158 case 2:
2159 // Binary literals are a non-standard extension added in gcc 4.3:
2160 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2161 Prefix = "0b";
2162 break;
2163 case 8:
2164 Prefix = "0";
2165 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002166 case 10:
2167 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002168 case 16:
2169 Prefix = "0x";
2170 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002171 default:
2172 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002173 }
2174 }
2175
Chris Lattner17f71652008-08-17 07:19:36 +00002176 // First, check for a zero value and just short circuit the logic below.
2177 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002178 while (*Prefix) {
2179 Str.push_back(*Prefix);
2180 ++Prefix;
2181 };
Chris Lattner17f71652008-08-17 07:19:36 +00002182 Str.push_back('0');
2183 return;
2184 }
Eric Christopher820256b2009-08-21 04:06:45 +00002185
Douglas Gregor663c0682011-09-14 15:54:46 +00002186 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00002187
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002188 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002189 char Buffer[65];
2190 char *BufPtr = Buffer+65;
Eric Christopher820256b2009-08-21 04:06:45 +00002191
Chris Lattner17f71652008-08-17 07:19:36 +00002192 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00002193 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00002194 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00002195 } else {
2196 int64_t I = getSExtValue();
2197 if (I >= 0) {
2198 N = I;
2199 } else {
2200 Str.push_back('-');
2201 N = -(uint64_t)I;
2202 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002203 }
Eric Christopher820256b2009-08-21 04:06:45 +00002204
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002205 while (*Prefix) {
2206 Str.push_back(*Prefix);
2207 ++Prefix;
2208 };
2209
Chris Lattner17f71652008-08-17 07:19:36 +00002210 while (N) {
2211 *--BufPtr = Digits[N % Radix];
2212 N /= Radix;
2213 }
2214 Str.append(BufPtr, Buffer+65);
2215 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002216 }
2217
Chris Lattner17f71652008-08-17 07:19:36 +00002218 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002219
Chris Lattner17f71652008-08-17 07:19:36 +00002220 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002221 // They want to print the signed version and it is a negative value
2222 // Flip the bits and add one to turn it into the equivalent positive
2223 // value and put a '-' in the result.
Jay Foad25a5e4c2010-12-01 08:53:58 +00002224 Tmp.flipAllBits();
Jakub Staszak773be0c2013-03-20 23:56:19 +00002225 ++Tmp;
Chris Lattner17f71652008-08-17 07:19:36 +00002226 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002227 }
Eric Christopher820256b2009-08-21 04:06:45 +00002228
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002229 while (*Prefix) {
2230 Str.push_back(*Prefix);
2231 ++Prefix;
2232 };
2233
Chris Lattner17f71652008-08-17 07:19:36 +00002234 // We insert the digits backward, then reverse them to get the right order.
2235 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002236
2237 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2238 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattner17f71652008-08-17 07:19:36 +00002239 // equaly. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00002240 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00002241 // Just shift tmp right for each digit width until it becomes zero
2242 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2243 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002244
Chris Lattner17f71652008-08-17 07:19:36 +00002245 while (Tmp != 0) {
2246 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2247 Str.push_back(Digits[Digit]);
2248 Tmp = Tmp.lshr(ShiftAmt);
2249 }
2250 } else {
Douglas Gregor663c0682011-09-14 15:54:46 +00002251 APInt divisor(Radix == 10? 4 : 8, Radix);
Chris Lattner17f71652008-08-17 07:19:36 +00002252 while (Tmp != 0) {
2253 APInt APdigit(1, 0);
2254 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher820256b2009-08-21 04:06:45 +00002255 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner17f71652008-08-17 07:19:36 +00002256 &APdigit);
Chris Lattner77527f52009-01-21 18:09:24 +00002257 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner17f71652008-08-17 07:19:36 +00002258 assert(Digit < Radix && "divide failed");
2259 Str.push_back(Digits[Digit]);
2260 Tmp = tmp2;
2261 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002262 }
Eric Christopher820256b2009-08-21 04:06:45 +00002263
Chris Lattner17f71652008-08-17 07:19:36 +00002264 // Reverse the digits before returning.
2265 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002266}
2267
Pawel Bylica6eeeac72015-04-06 13:31:39 +00002268/// Returns the APInt as a std::string. Note that this is an inefficient method.
2269/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00002270std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2271 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002272 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002273 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002274}
Chris Lattner6b695682007-08-16 15:56:55 +00002275
Chris Lattner17f71652008-08-17 07:19:36 +00002276
Yaron Kereneb2a2542016-01-29 20:50:44 +00002277LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00002278 SmallString<40> S, U;
2279 this->toStringUnsigned(U);
2280 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002281 dbgs() << "APInt(" << BitWidth << "b, "
Yaron Keren09fb7c62015-03-10 07:33:23 +00002282 << U << "u " << S << "s)";
Chris Lattner17f71652008-08-17 07:19:36 +00002283}
2284
Chris Lattner0c19df42008-08-23 22:23:09 +00002285void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002286 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002287 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00002288 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00002289}
2290
Chris Lattner6b695682007-08-16 15:56:55 +00002291// This implements a variety of operations on a representation of
2292// arbitrary precision, two's-complement, bignum integer values.
2293
Chris Lattner96cffa62009-08-23 23:11:28 +00002294// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2295// and unrestricting assumption.
Benjamin Kramer7000ca32014-10-12 17:56:40 +00002296static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002297
2298/* Some handy functions local to this file. */
2299namespace {
2300
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002301 /* Returns the integer part with the least significant BITS set.
2302 BITS cannot be zero. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002303 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002304 lowBitMask(unsigned int bits)
2305 {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002306 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002307
2308 return ~(integerPart) 0 >> (integerPartWidth - bits);
2309 }
2310
Neil Boothc8b650a2007-10-06 00:43:45 +00002311 /* Returns the value of the lower half of PART. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002312 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002313 lowHalf(integerPart part)
2314 {
2315 return part & lowBitMask(integerPartWidth / 2);
2316 }
2317
Neil Boothc8b650a2007-10-06 00:43:45 +00002318 /* Returns the value of the upper half of PART. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002319 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002320 highHalf(integerPart part)
2321 {
2322 return part >> (integerPartWidth / 2);
2323 }
2324
Neil Boothc8b650a2007-10-06 00:43:45 +00002325 /* Returns the bit number of the most significant set bit of a part.
2326 If the input number has no bits set -1U is returned. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002327 static unsigned int
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002328 partMSB(integerPart value)
Chris Lattner6b695682007-08-16 15:56:55 +00002329 {
Benjamin Kramerb565f892013-06-01 11:26:39 +00002330 return findLastSet(value, ZB_Max);
Chris Lattner6b695682007-08-16 15:56:55 +00002331 }
2332
Neil Boothc8b650a2007-10-06 00:43:45 +00002333 /* Returns the bit number of the least significant set bit of a
2334 part. If the input number has no bits set -1U is returned. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002335 static unsigned int
Chris Lattner6b695682007-08-16 15:56:55 +00002336 partLSB(integerPart value)
2337 {
Benjamin Kramerb565f892013-06-01 11:26:39 +00002338 return findFirstSet(value, ZB_Max);
Chris Lattner6b695682007-08-16 15:56:55 +00002339 }
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002340}
Chris Lattner6b695682007-08-16 15:56:55 +00002341
2342/* Sets the least significant part of a bignum to the input value, and
2343 zeroes out higher parts. */
2344void
2345APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2346{
2347 unsigned int i;
2348
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002349 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002350
Chris Lattner6b695682007-08-16 15:56:55 +00002351 dst[0] = part;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002352 for (i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002353 dst[i] = 0;
2354}
2355
2356/* Assign one bignum to another. */
2357void
2358APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2359{
2360 unsigned int i;
2361
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002362 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002363 dst[i] = src[i];
2364}
2365
2366/* Returns true if a bignum is zero, false otherwise. */
2367bool
2368APInt::tcIsZero(const integerPart *src, unsigned int parts)
2369{
2370 unsigned int i;
2371
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002372 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002373 if (src[i])
2374 return false;
2375
2376 return true;
2377}
2378
2379/* Extract the given bit of a bignum; returns 0 or 1. */
2380int
2381APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2382{
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002383 return (parts[bit / integerPartWidth] &
2384 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002385}
2386
John McCalldcb9a7a2010-02-28 02:51:25 +00002387/* Set the given bit of a bignum. */
Chris Lattner6b695682007-08-16 15:56:55 +00002388void
2389APInt::tcSetBit(integerPart *parts, unsigned int bit)
2390{
2391 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2392}
2393
John McCalldcb9a7a2010-02-28 02:51:25 +00002394/* Clears the given bit of a bignum. */
2395void
2396APInt::tcClearBit(integerPart *parts, unsigned int bit)
2397{
2398 parts[bit / integerPartWidth] &=
2399 ~((integerPart) 1 << (bit % integerPartWidth));
2400}
2401
Neil Boothc8b650a2007-10-06 00:43:45 +00002402/* Returns the bit number of the least significant set bit of a
2403 number. If the input number has no bits set -1U is returned. */
Chris Lattner6b695682007-08-16 15:56:55 +00002404unsigned int
2405APInt::tcLSB(const integerPart *parts, unsigned int n)
2406{
2407 unsigned int i, lsb;
2408
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002409 for (i = 0; i < n; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002410 if (parts[i] != 0) {
2411 lsb = partLSB(parts[i]);
2412
2413 return lsb + i * integerPartWidth;
2414 }
2415 }
2416
2417 return -1U;
2418}
2419
Neil Boothc8b650a2007-10-06 00:43:45 +00002420/* Returns the bit number of the most significant set bit of a number.
2421 If the input number has no bits set -1U is returned. */
Chris Lattner6b695682007-08-16 15:56:55 +00002422unsigned int
2423APInt::tcMSB(const integerPart *parts, unsigned int n)
2424{
2425 unsigned int msb;
2426
2427 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002428 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002429
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002430 if (parts[n] != 0) {
2431 msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002432
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002433 return msb + n * integerPartWidth;
2434 }
Chris Lattner6b695682007-08-16 15:56:55 +00002435 } while (n);
2436
2437 return -1U;
2438}
2439
Neil Boothb6182162007-10-08 13:47:12 +00002440/* Copy the bit vector of width srcBITS from SRC, starting at bit
2441 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2442 the least significant bit of DST. All high bits above srcBITS in
2443 DST are zero-filled. */
2444void
Evan Chengdb338f32009-05-21 23:47:47 +00002445APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Boothb6182162007-10-08 13:47:12 +00002446 unsigned int srcBits, unsigned int srcLSB)
2447{
2448 unsigned int firstSrcPart, dstParts, shift, n;
2449
2450 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002451 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002452
2453 firstSrcPart = srcLSB / integerPartWidth;
2454 tcAssign (dst, src + firstSrcPart, dstParts);
2455
2456 shift = srcLSB % integerPartWidth;
2457 tcShiftRight (dst, dstParts, shift);
2458
2459 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2460 in DST. If this is less that srcBits, append the rest, else
2461 clear the high bits. */
2462 n = dstParts * integerPartWidth - shift;
2463 if (n < srcBits) {
2464 integerPart mask = lowBitMask (srcBits - n);
2465 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2466 << n % integerPartWidth);
2467 } else if (n > srcBits) {
Neil Booth7e74b172007-10-12 15:31:31 +00002468 if (srcBits % integerPartWidth)
2469 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Boothb6182162007-10-08 13:47:12 +00002470 }
2471
2472 /* Clear high parts. */
2473 while (dstParts < dstCount)
2474 dst[dstParts++] = 0;
2475}
2476
Chris Lattner6b695682007-08-16 15:56:55 +00002477/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2478integerPart
2479APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2480 integerPart c, unsigned int parts)
2481{
2482 unsigned int i;
2483
2484 assert(c <= 1);
2485
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002486 for (i = 0; i < parts; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002487 integerPart l;
2488
2489 l = dst[i];
2490 if (c) {
2491 dst[i] += rhs[i] + 1;
2492 c = (dst[i] <= l);
2493 } else {
2494 dst[i] += rhs[i];
2495 c = (dst[i] < l);
2496 }
2497 }
2498
2499 return c;
2500}
2501
2502/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2503integerPart
2504APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2505 integerPart c, unsigned int parts)
2506{
2507 unsigned int i;
2508
2509 assert(c <= 1);
2510
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002511 for (i = 0; i < parts; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002512 integerPart l;
2513
2514 l = dst[i];
2515 if (c) {
2516 dst[i] -= rhs[i] + 1;
2517 c = (dst[i] >= l);
2518 } else {
2519 dst[i] -= rhs[i];
2520 c = (dst[i] > l);
2521 }
2522 }
2523
2524 return c;
2525}
2526
2527/* Negate a bignum in-place. */
2528void
2529APInt::tcNegate(integerPart *dst, unsigned int parts)
2530{
2531 tcComplement(dst, parts);
2532 tcIncrement(dst, parts);
2533}
2534
Neil Boothc8b650a2007-10-06 00:43:45 +00002535/* DST += SRC * MULTIPLIER + CARRY if add is true
2536 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002537
2538 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2539 they must start at the same point, i.e. DST == SRC.
2540
2541 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2542 returned. Otherwise DST is filled with the least significant
2543 DSTPARTS parts of the result, and if all of the omitted higher
2544 parts were zero return zero, otherwise overflow occurred and
2545 return one. */
2546int
2547APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2548 integerPart multiplier, integerPart carry,
2549 unsigned int srcParts, unsigned int dstParts,
2550 bool add)
2551{
2552 unsigned int i, n;
2553
2554 /* Otherwise our writes of DST kill our later reads of SRC. */
2555 assert(dst <= src || dst >= src + srcParts);
2556 assert(dstParts <= srcParts + 1);
2557
2558 /* N loops; minimum of dstParts and srcParts. */
2559 n = dstParts < srcParts ? dstParts: srcParts;
2560
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002561 for (i = 0; i < n; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002562 integerPart low, mid, high, srcPart;
2563
2564 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2565
2566 This cannot overflow, because
2567
2568 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2569
2570 which is less than n^2. */
2571
2572 srcPart = src[i];
2573
2574 if (multiplier == 0 || srcPart == 0) {
2575 low = carry;
2576 high = 0;
2577 } else {
2578 low = lowHalf(srcPart) * lowHalf(multiplier);
2579 high = highHalf(srcPart) * highHalf(multiplier);
2580
2581 mid = lowHalf(srcPart) * highHalf(multiplier);
2582 high += highHalf(mid);
2583 mid <<= integerPartWidth / 2;
2584 if (low + mid < low)
2585 high++;
2586 low += mid;
2587
2588 mid = highHalf(srcPart) * lowHalf(multiplier);
2589 high += highHalf(mid);
2590 mid <<= integerPartWidth / 2;
2591 if (low + mid < low)
2592 high++;
2593 low += mid;
2594
2595 /* Now add carry. */
2596 if (low + carry < low)
2597 high++;
2598 low += carry;
2599 }
2600
2601 if (add) {
2602 /* And now DST[i], and store the new low part there. */
2603 if (low + dst[i] < low)
2604 high++;
2605 dst[i] += low;
2606 } else
2607 dst[i] = low;
2608
2609 carry = high;
2610 }
2611
2612 if (i < dstParts) {
2613 /* Full multiplication, there is no overflow. */
2614 assert(i + 1 == dstParts);
2615 dst[i] = carry;
2616 return 0;
2617 } else {
2618 /* We overflowed if there is carry. */
2619 if (carry)
2620 return 1;
2621
2622 /* We would overflow if any significant unwritten parts would be
2623 non-zero. This is true if any remaining src parts are non-zero
2624 and the multiplier is non-zero. */
2625 if (multiplier)
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002626 for (; i < srcParts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002627 if (src[i])
2628 return 1;
2629
2630 /* We fitted in the narrow destination. */
2631 return 0;
2632 }
2633}
2634
2635/* DST = LHS * RHS, where DST has the same width as the operands and
2636 is filled with the least significant parts of the result. Returns
2637 one if overflow occurred, otherwise zero. DST must be disjoint
2638 from both operands. */
2639int
2640APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2641 const integerPart *rhs, unsigned int parts)
2642{
2643 unsigned int i;
2644 int overflow;
2645
2646 assert(dst != lhs && dst != rhs);
2647
2648 overflow = 0;
2649 tcSet(dst, 0, parts);
2650
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002651 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002652 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2653 parts - i, true);
2654
2655 return overflow;
2656}
2657
Neil Booth0ea72a92007-10-06 00:24:48 +00002658/* DST = LHS * RHS, where DST has width the sum of the widths of the
2659 operands. No overflow occurs. DST must be disjoint from both
2660 operands. Returns the number of parts required to hold the
2661 result. */
2662unsigned int
Chris Lattner6b695682007-08-16 15:56:55 +00002663APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth0ea72a92007-10-06 00:24:48 +00002664 const integerPart *rhs, unsigned int lhsParts,
2665 unsigned int rhsParts)
Chris Lattner6b695682007-08-16 15:56:55 +00002666{
Neil Booth0ea72a92007-10-06 00:24:48 +00002667 /* Put the narrower number on the LHS for less loops below. */
2668 if (lhsParts > rhsParts) {
2669 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2670 } else {
2671 unsigned int n;
Chris Lattner6b695682007-08-16 15:56:55 +00002672
Neil Booth0ea72a92007-10-06 00:24:48 +00002673 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002674
Neil Booth0ea72a92007-10-06 00:24:48 +00002675 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002676
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002677 for (n = 0; n < lhsParts; n++)
Neil Booth0ea72a92007-10-06 00:24:48 +00002678 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002679
Neil Booth0ea72a92007-10-06 00:24:48 +00002680 n = lhsParts + rhsParts;
2681
2682 return n - (dst[n - 1] == 0);
2683 }
Chris Lattner6b695682007-08-16 15:56:55 +00002684}
2685
2686/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2687 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2688 set REMAINDER to the remainder, return zero. i.e.
2689
2690 OLD_LHS = RHS * LHS + REMAINDER
2691
2692 SCRATCH is a bignum of the same size as the operands and result for
2693 use by the routine; its contents need not be initialized and are
2694 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2695*/
2696int
2697APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2698 integerPart *remainder, integerPart *srhs,
2699 unsigned int parts)
2700{
2701 unsigned int n, shiftCount;
2702 integerPart mask;
2703
2704 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2705
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002706 shiftCount = tcMSB(rhs, parts) + 1;
2707 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002708 return true;
2709
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002710 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner6b695682007-08-16 15:56:55 +00002711 n = shiftCount / integerPartWidth;
2712 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2713
2714 tcAssign(srhs, rhs, parts);
2715 tcShiftLeft(srhs, parts, shiftCount);
2716 tcAssign(remainder, lhs, parts);
2717 tcSet(lhs, 0, parts);
2718
2719 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2720 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002721 for (;;) {
Chris Lattner6b695682007-08-16 15:56:55 +00002722 int compare;
2723
2724 compare = tcCompare(remainder, srhs, parts);
2725 if (compare >= 0) {
2726 tcSubtract(remainder, srhs, 0, parts);
2727 lhs[n] |= mask;
2728 }
2729
2730 if (shiftCount == 0)
2731 break;
2732 shiftCount--;
2733 tcShiftRight(srhs, parts, 1);
Richard Trieu7a083812016-02-18 22:09:30 +00002734 if ((mask >>= 1) == 0) {
2735 mask = (integerPart) 1 << (integerPartWidth - 1);
2736 n--;
2737 }
Chris Lattner6b695682007-08-16 15:56:55 +00002738 }
2739
2740 return false;
2741}
2742
2743/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2744 There are no restrictions on COUNT. */
2745void
2746APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2747{
Neil Boothb6182162007-10-08 13:47:12 +00002748 if (count) {
2749 unsigned int jump, shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002750
Neil Boothb6182162007-10-08 13:47:12 +00002751 /* Jump is the inter-part jump; shift is is intra-part shift. */
2752 jump = count / integerPartWidth;
2753 shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002754
Neil Boothb6182162007-10-08 13:47:12 +00002755 while (parts > jump) {
2756 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002757
Neil Boothb6182162007-10-08 13:47:12 +00002758 parts--;
Chris Lattner6b695682007-08-16 15:56:55 +00002759
Neil Boothb6182162007-10-08 13:47:12 +00002760 /* dst[i] comes from the two parts src[i - jump] and, if we have
2761 an intra-part shift, src[i - jump - 1]. */
2762 part = dst[parts - jump];
2763 if (shift) {
2764 part <<= shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002765 if (parts >= jump + 1)
2766 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2767 }
2768
Neil Boothb6182162007-10-08 13:47:12 +00002769 dst[parts] = part;
2770 }
Chris Lattner6b695682007-08-16 15:56:55 +00002771
Neil Boothb6182162007-10-08 13:47:12 +00002772 while (parts > 0)
2773 dst[--parts] = 0;
2774 }
Chris Lattner6b695682007-08-16 15:56:55 +00002775}
2776
2777/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2778 zero. There are no restrictions on COUNT. */
2779void
2780APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2781{
Neil Boothb6182162007-10-08 13:47:12 +00002782 if (count) {
2783 unsigned int i, jump, shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002784
Neil Boothb6182162007-10-08 13:47:12 +00002785 /* Jump is the inter-part jump; shift is is intra-part shift. */
2786 jump = count / integerPartWidth;
2787 shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002788
Neil Boothb6182162007-10-08 13:47:12 +00002789 /* Perform the shift. This leaves the most significant COUNT bits
2790 of the result at zero. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002791 for (i = 0; i < parts; i++) {
Neil Boothb6182162007-10-08 13:47:12 +00002792 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002793
Neil Boothb6182162007-10-08 13:47:12 +00002794 if (i + jump >= parts) {
2795 part = 0;
2796 } else {
2797 part = dst[i + jump];
2798 if (shift) {
2799 part >>= shift;
2800 if (i + jump + 1 < parts)
2801 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2802 }
Chris Lattner6b695682007-08-16 15:56:55 +00002803 }
Chris Lattner6b695682007-08-16 15:56:55 +00002804
Neil Boothb6182162007-10-08 13:47:12 +00002805 dst[i] = part;
2806 }
Chris Lattner6b695682007-08-16 15:56:55 +00002807 }
2808}
2809
2810/* Bitwise and of two bignums. */
2811void
2812APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2813{
2814 unsigned int i;
2815
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002816 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002817 dst[i] &= rhs[i];
2818}
2819
2820/* Bitwise inclusive or of two bignums. */
2821void
2822APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2823{
2824 unsigned int i;
2825
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002826 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002827 dst[i] |= rhs[i];
2828}
2829
2830/* Bitwise exclusive or of two bignums. */
2831void
2832APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2833{
2834 unsigned int i;
2835
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002836 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002837 dst[i] ^= rhs[i];
2838}
2839
2840/* Complement a bignum in-place. */
2841void
2842APInt::tcComplement(integerPart *dst, unsigned int parts)
2843{
2844 unsigned int i;
2845
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002846 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002847 dst[i] = ~dst[i];
2848}
2849
2850/* Comparison (unsigned) of two bignums. */
2851int
2852APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2853 unsigned int parts)
2854{
2855 while (parts) {
2856 parts--;
2857 if (lhs[parts] == rhs[parts])
2858 continue;
2859
2860 if (lhs[parts] > rhs[parts])
2861 return 1;
2862 else
2863 return -1;
2864 }
2865
2866 return 0;
2867}
2868
2869/* Increment a bignum in-place, return the carry flag. */
2870integerPart
2871APInt::tcIncrement(integerPart *dst, unsigned int parts)
2872{
2873 unsigned int i;
2874
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002875 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002876 if (++dst[i] != 0)
2877 break;
2878
2879 return i == parts;
2880}
2881
Michael Gottesman9d406f42013-05-28 19:50:20 +00002882/* Decrement a bignum in-place, return the borrow flag. */
2883integerPart
2884APInt::tcDecrement(integerPart *dst, unsigned int parts) {
2885 for (unsigned int i = 0; i < parts; i++) {
2886 // If the current word is non-zero, then the decrement has no effect on the
2887 // higher-order words of the integer and no borrow can occur. Exit early.
2888 if (dst[i]--)
2889 return 0;
2890 }
2891 // If every word was zero, then there is a borrow.
2892 return 1;
2893}
2894
2895
Chris Lattner6b695682007-08-16 15:56:55 +00002896/* Set the least significant BITS bits of a bignum, clear the
2897 rest. */
2898void
2899APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2900 unsigned int bits)
2901{
2902 unsigned int i;
2903
2904 i = 0;
2905 while (bits > integerPartWidth) {
2906 dst[i++] = ~(integerPart) 0;
2907 bits -= integerPartWidth;
2908 }
2909
2910 if (bits)
2911 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2912
2913 while (i < parts)
2914 dst[i++] = 0;
2915}