blob: ad2d3c9453ef5a44cfb72ed09b503256d6d55463 [file] [log] [blame]
Eugene Zelenko60433b62017-10-05 00:33:50 +00001//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
Alexey Bataev7cf32472015-12-04 10:53:15 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass that performs some optimizations with LEA
Andrey Turetskiy45b22a42016-05-19 10:18:29 +000011// instructions in order to improve performance and code size.
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +000012// Currently, it does two things:
13// 1) If there are two LEA instructions calculating addresses which only differ
14// by displacement inside a basic block, one of them is removed.
15// 2) Address calculations in load and store instructions are replaced by
Alexey Bataev7cf32472015-12-04 10:53:15 +000016// existing LEA def registers where possible.
17//
18//===----------------------------------------------------------------------===//
19
Eugene Zelenko60433b62017-10-05 00:33:50 +000020#include "MCTargetDesc/X86BaseInfo.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000021#include "X86.h"
22#include "X86InstrInfo.h"
23#include "X86Subtarget.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/DenseMapInfo.h"
26#include "llvm/ADT/Hashing.h"
27#include "llvm/ADT/SmallVector.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000028#include "llvm/ADT/Statistic.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000029#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineFunction.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000031#include "llvm/CodeGen/MachineFunctionPass.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000032#include "llvm/CodeGen/MachineInstr.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000033#include "llvm/CodeGen/MachineInstrBuilder.h"
Andrey Turetskiy0babd262016-02-20 10:58:28 +000034#include "llvm/CodeGen/MachineOperand.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000035#include "llvm/CodeGen/MachineRegisterInfo.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000036#include "llvm/IR/DebugInfoMetadata.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000037#include "llvm/IR/DebugLoc.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000038#include "llvm/IR/Function.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000039#include "llvm/MC/MCInstrDesc.h"
40#include "llvm/Support/CommandLine.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000041#include "llvm/Support/Debug.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/MathExtras.h"
Alexey Bataev7cf32472015-12-04 10:53:15 +000044#include "llvm/Support/raw_ostream.h"
Eugene Zelenko60433b62017-10-05 00:33:50 +000045#include "llvm/Target/TargetOpcodes.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include <cassert>
48#include <cstdint>
49#include <iterator>
Alexey Bataev7cf32472015-12-04 10:53:15 +000050
51using namespace llvm;
52
53#define DEBUG_TYPE "x86-optimize-LEAs"
54
Andrey Turetskiy9994b882016-02-20 11:11:55 +000055static cl::opt<bool>
56 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
57 cl::desc("X86: Disable LEA optimizations."),
58 cl::init(false));
Alexey Bataev7b72b652015-12-17 07:34:39 +000059
Alexey Bataev7cf32472015-12-04 10:53:15 +000060STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +000061STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
Alexey Bataev7cf32472015-12-04 10:53:15 +000062
Andrey Turetskiybca0f992016-02-04 08:57:03 +000063/// \brief Returns true if two machine operands are identical and they are not
64/// physical registers.
65static inline bool isIdenticalOp(const MachineOperand &MO1,
66 const MachineOperand &MO2);
67
Andrey Turetskiy0babd262016-02-20 10:58:28 +000068/// \brief Returns true if two address displacement operands are of the same
69/// type and use the same symbol/index/address regardless of the offset.
70static bool isSimilarDispOp(const MachineOperand &MO1,
71 const MachineOperand &MO2);
72
Andrey Turetskiybca0f992016-02-04 08:57:03 +000073/// \brief Returns true if the instruction is LEA.
74static inline bool isLEA(const MachineInstr &MI);
75
Benjamin Kramerb7d33112016-08-06 11:13:10 +000076namespace {
Eugene Zelenko60433b62017-10-05 00:33:50 +000077
Andrey Turetskiybca0f992016-02-04 08:57:03 +000078/// A key based on instruction's memory operands.
79class MemOpKey {
80public:
81 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
82 const MachineOperand *Index, const MachineOperand *Segment,
Hans Wennborg2a6c9ad2017-10-04 17:54:06 +000083 const MachineOperand *Disp)
84 : Disp(Disp) {
Andrey Turetskiybca0f992016-02-04 08:57:03 +000085 Operands[0] = Base;
86 Operands[1] = Scale;
87 Operands[2] = Index;
88 Operands[3] = Segment;
89 }
90
91 bool operator==(const MemOpKey &Other) const {
92 // Addresses' bases, scales, indices and segments must be identical.
93 for (int i = 0; i < 4; ++i)
94 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
95 return false;
96
Andrey Turetskiy0babd262016-02-20 10:58:28 +000097 // Addresses' displacements don't have to be exactly the same. It only
98 // matters that they use the same symbol/index/address. Immediates' or
99 // offsets' differences will be taken care of during instruction
100 // substitution.
101 return isSimilarDispOp(*Disp, *Other.Disp);
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000102 }
103
104 // Address' base, scale, index and segment operands.
105 const MachineOperand *Operands[4];
106
107 // Address' displacement operand.
108 const MachineOperand *Disp;
109};
Eugene Zelenko60433b62017-10-05 00:33:50 +0000110
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000111} // end anonymous namespace
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000112
113/// Provide DenseMapInfo for MemOpKey.
114namespace llvm {
Eugene Zelenko60433b62017-10-05 00:33:50 +0000115
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000116template <> struct DenseMapInfo<MemOpKey> {
Eugene Zelenko60433b62017-10-05 00:33:50 +0000117 using PtrInfo = DenseMapInfo<const MachineOperand *>;
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000118
119 static inline MemOpKey getEmptyKey() {
120 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
121 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
122 PtrInfo::getEmptyKey());
123 }
124
125 static inline MemOpKey getTombstoneKey() {
126 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
127 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
128 PtrInfo::getTombstoneKey());
129 }
130
131 static unsigned getHashValue(const MemOpKey &Val) {
132 // Checking any field of MemOpKey is enough to determine if the key is
133 // empty or tombstone.
134 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
135 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
136 "Cannot hash the tombstone key");
137
Hans Wennborg2a6c9ad2017-10-04 17:54:06 +0000138 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
139 *Val.Operands[2], *Val.Operands[3]);
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000140
141 // If the address displacement is an immediate, it should not affect the
142 // hash so that memory operands which differ only be immediate displacement
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000143 // would have the same hash. If the address displacement is something else,
144 // we should reflect symbol/index/address in the hash.
145 switch (Val.Disp->getType()) {
146 case MachineOperand::MO_Immediate:
147 break;
148 case MachineOperand::MO_ConstantPoolIndex:
149 case MachineOperand::MO_JumpTableIndex:
150 Hash = hash_combine(Hash, Val.Disp->getIndex());
151 break;
152 case MachineOperand::MO_ExternalSymbol:
153 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
154 break;
155 case MachineOperand::MO_GlobalAddress:
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000156 Hash = hash_combine(Hash, Val.Disp->getGlobal());
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000157 break;
158 case MachineOperand::MO_BlockAddress:
159 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
160 break;
161 case MachineOperand::MO_MCSymbol:
162 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
163 break;
Andrey Turetskiyb4056062016-04-26 12:18:12 +0000164 case MachineOperand::MO_MachineBasicBlock:
165 Hash = hash_combine(Hash, Val.Disp->getMBB());
166 break;
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000167 default:
168 llvm_unreachable("Invalid address displacement operand");
169 }
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000170
171 return (unsigned)Hash;
172 }
173
174 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
175 // Checking any field of MemOpKey is enough to determine if the key is
176 // empty or tombstone.
177 if (RHS.Disp == PtrInfo::getEmptyKey())
178 return LHS.Disp == PtrInfo::getEmptyKey();
179 if (RHS.Disp == PtrInfo::getTombstoneKey())
180 return LHS.Disp == PtrInfo::getTombstoneKey();
181 return LHS == RHS;
182 }
183};
Eugene Zelenko60433b62017-10-05 00:33:50 +0000184
185} // end namespace llvm
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000186
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000187/// \brief Returns a hash table key based on memory operands of \p MI. The
188/// number of the first memory operand of \p MI is specified through \p N.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000189static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
190 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
191 "The instruction must be a LEA, a load or a store");
192 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
193 &MI.getOperand(N + X86::AddrScaleAmt),
194 &MI.getOperand(N + X86::AddrIndexReg),
195 &MI.getOperand(N + X86::AddrSegmentReg),
196 &MI.getOperand(N + X86::AddrDisp));
197}
198
199static inline bool isIdenticalOp(const MachineOperand &MO1,
200 const MachineOperand &MO2) {
201 return MO1.isIdenticalTo(MO2) &&
202 (!MO1.isReg() ||
203 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
204}
205
Justin Bogner38e52172016-02-24 07:58:02 +0000206#ifndef NDEBUG
207static bool isValidDispOp(const MachineOperand &MO) {
208 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
Andrey Turetskiyb4056062016-04-26 12:18:12 +0000209 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
Justin Bogner38e52172016-02-24 07:58:02 +0000210}
211#endif
212
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000213static bool isSimilarDispOp(const MachineOperand &MO1,
214 const MachineOperand &MO2) {
215 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
216 "Address displacement operand is not valid");
217 return (MO1.isImm() && MO2.isImm()) ||
218 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
219 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
220 (MO1.isSymbol() && MO2.isSymbol() &&
221 MO1.getSymbolName() == MO2.getSymbolName()) ||
222 (MO1.isGlobal() && MO2.isGlobal() &&
223 MO1.getGlobal() == MO2.getGlobal()) ||
224 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
225 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
226 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
Andrey Turetskiyb4056062016-04-26 12:18:12 +0000227 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
228 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000229}
230
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000231static inline bool isLEA(const MachineInstr &MI) {
232 unsigned Opcode = MI.getOpcode();
233 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
234 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
235}
236
Alexey Bataev7cf32472015-12-04 10:53:15 +0000237namespace {
Eugene Zelenko60433b62017-10-05 00:33:50 +0000238
Alexey Bataev7cf32472015-12-04 10:53:15 +0000239class OptimizeLEAPass : public MachineFunctionPass {
240public:
241 OptimizeLEAPass() : MachineFunctionPass(ID) {}
242
Mehdi Amini117296c2016-10-01 02:56:57 +0000243 StringRef getPassName() const override { return "X86 LEA Optimize"; }
Alexey Bataev7cf32472015-12-04 10:53:15 +0000244
245 /// \brief Loop over all of the basic blocks, replacing address
246 /// calculations in load and store instructions, if it's already
247 /// been calculated by LEA. Also, remove redundant LEAs.
248 bool runOnMachineFunction(MachineFunction &MF) override;
249
250private:
Eugene Zelenko60433b62017-10-05 00:33:50 +0000251 using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000252
Alexey Bataev7cf32472015-12-04 10:53:15 +0000253 /// \brief Returns a distance between two instructions inside one basic block.
254 /// Negative result means, that instructions occur in reverse order.
255 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
256
257 /// \brief Choose the best \p LEA instruction from the \p List to replace
258 /// address calculation in \p MI instruction. Return the address displacement
Simon Pilgrim9d15fb32016-11-17 19:03:05 +0000259 /// and the distance between \p MI and the chosen \p BestLEA in
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000260 /// \p AddrDispShift and \p Dist.
Alexey Bataev7cf32472015-12-04 10:53:15 +0000261 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000262 const MachineInstr &MI, MachineInstr *&BestLEA,
Alexey Bataev7cf32472015-12-04 10:53:15 +0000263 int64_t &AddrDispShift, int &Dist);
264
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000265 /// \brief Returns the difference between addresses' displacements of \p MI1
266 /// and \p MI2. The numbers of the first memory operands for the instructions
267 /// are specified through \p N1 and \p N2.
268 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
269 const MachineInstr &MI2, unsigned N2) const;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000270
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000271 /// \brief Returns true if the \p Last LEA instruction can be replaced by the
272 /// \p First. The difference between displacements of the addresses calculated
273 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
274 /// replacement of the \p Last LEA's uses with the \p First's def register.
275 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000276 int64_t &AddrDispShift) const;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000277
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000278 /// \brief Find all LEA instructions in the basic block. Also, assign position
279 /// numbers to all instructions in the basic block to speed up calculation of
280 /// distance between them.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000281 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000282
283 /// \brief Removes redundant address calculations.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000284 bool removeRedundantAddrCalc(MemOpMap &LEAs);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000285
Andrew Ng03e35b62017-04-28 08:44:30 +0000286 /// Replace debug value MI with a new debug value instruction using register
287 /// VReg with an appropriate offset and DIExpression to incorporate the
288 /// address displacement AddrDispShift. Return new debug value instruction.
289 MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
290 int64_t AddrDispShift);
291
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000292 /// \brief Removes LEAs which calculate similar addresses.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000293 bool removeRedundantLEAs(MemOpMap &LEAs);
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000294
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000295 DenseMap<const MachineInstr *, unsigned> InstrPos;
296
Alexey Bataev7cf32472015-12-04 10:53:15 +0000297 MachineRegisterInfo *MRI;
298 const X86InstrInfo *TII;
299 const X86RegisterInfo *TRI;
300
301 static char ID;
302};
Eugene Zelenko60433b62017-10-05 00:33:50 +0000303
304} // end anonymous namespace
305
Alexey Bataev7cf32472015-12-04 10:53:15 +0000306char OptimizeLEAPass::ID = 0;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000307
308FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
309
310int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
311 const MachineInstr &Last) {
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000312 // Both instructions must be in the same basic block and they must be
313 // presented in InstrPos.
314 assert(Last.getParent() == First.getParent() &&
Alexey Bataev7cf32472015-12-04 10:53:15 +0000315 "Instructions are in different basic blocks");
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000316 assert(InstrPos.find(&First) != InstrPos.end() &&
317 InstrPos.find(&Last) != InstrPos.end() &&
318 "Instructions' positions are undefined");
Alexey Bataev7cf32472015-12-04 10:53:15 +0000319
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000320 return InstrPos[&Last] - InstrPos[&First];
Alexey Bataev7cf32472015-12-04 10:53:15 +0000321}
322
323// Find the best LEA instruction in the List to replace address recalculation in
324// MI. Such LEA must meet these requirements:
325// 1) The address calculated by the LEA differs only by the displacement from
326// the address used in MI.
327// 2) The register class of the definition of the LEA is compatible with the
328// register class of the address base register of MI.
329// 3) Displacement of the new memory operand should fit in 1 byte if possible.
330// 4) The LEA should be as close to MI as possible, and prior to it if
331// possible.
332bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000333 const MachineInstr &MI,
334 MachineInstr *&BestLEA,
Alexey Bataev7cf32472015-12-04 10:53:15 +0000335 int64_t &AddrDispShift, int &Dist) {
336 const MachineFunction *MF = MI.getParent()->getParent();
337 const MCInstrDesc &Desc = MI.getDesc();
Craig Topper477649a2016-04-28 05:58:46 +0000338 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
Alexey Bataev7cf32472015-12-04 10:53:15 +0000339 X86II::getOperandBias(Desc);
340
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000341 BestLEA = nullptr;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000342
343 // Loop over all LEA instructions.
344 for (auto DefMI : List) {
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000345 // Get new address displacement.
346 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000347
348 // Make sure address displacement fits 4 bytes.
349 if (!isInt<32>(AddrDispShiftTemp))
350 continue;
351
352 // Check that LEA def register can be used as MI address base. Some
353 // instructions can use a limited set of registers as address base, for
354 // example MOV8mr_NOREX. We could constrain the register class of the LEA
355 // def to suit MI, however since this case is very rare and hard to
356 // reproduce in a test it's just more reliable to skip the LEA.
357 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
358 MRI->getRegClass(DefMI->getOperand(0).getReg()))
359 continue;
360
361 // Choose the closest LEA instruction from the list, prior to MI if
362 // possible. Note that we took into account resulting address displacement
363 // as well. Also note that the list is sorted by the order in which the LEAs
364 // occur, so the break condition is pretty simple.
365 int DistTemp = calcInstrDist(*DefMI, MI);
366 assert(DistTemp != 0 &&
367 "The distance between two different instructions cannot be zero");
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000368 if (DistTemp > 0 || BestLEA == nullptr) {
Alexey Bataev7cf32472015-12-04 10:53:15 +0000369 // Do not update return LEA, if the current one provides a displacement
370 // which fits in 1 byte, while the new candidate does not.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000371 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
Alexey Bataev7cf32472015-12-04 10:53:15 +0000372 isInt<8>(AddrDispShift))
373 continue;
374
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000375 BestLEA = DefMI;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000376 AddrDispShift = AddrDispShiftTemp;
377 Dist = DistTemp;
378 }
379
380 // FIXME: Maybe we should not always stop at the first LEA after MI.
381 if (DistTemp < 0)
382 break;
383 }
384
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000385 return BestLEA != nullptr;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000386}
387
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000388// Get the difference between the addresses' displacements of the two
389// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
390// passed through \p N1 and \p N2.
391int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
392 const MachineInstr &MI2,
393 unsigned N2) const {
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000394 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
395 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000396
397 assert(isSimilarDispOp(Op1, Op2) &&
398 "Address displacement operands are not compatible");
399
400 // After the assert above we can be sure that both operands are of the same
401 // valid type and use the same symbol/index/address, thus displacement shift
402 // calculation is rather simple.
403 if (Op1.isJTI())
404 return 0;
405 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
406 : Op1.getOffset() - Op2.getOffset();
Alexey Bataev7cf32472015-12-04 10:53:15 +0000407}
408
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000409// Check that the Last LEA can be replaced by the First LEA. To be so,
410// these requirements must be met:
411// 1) Addresses calculated by LEAs differ only by displacement.
412// 2) Def registers of LEAs belong to the same class.
413// 3) All uses of the Last LEA def register are replaceable, thus the
414// register is used only as address base.
415bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
416 const MachineInstr &Last,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000417 int64_t &AddrDispShift) const {
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000418 assert(isLEA(First) && isLEA(Last) &&
419 "The function works only with LEA instructions");
420
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000421 // Make sure that LEA def registers belong to the same class. There may be
422 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
423 // be used as their operands, so we must be sure that replacing one LEA
424 // with another won't lead to putting a wrong register in the instruction.
425 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
426 MRI->getRegClass(Last.getOperand(0).getReg()))
427 return false;
428
Andrea Di Biagio7937be72017-03-21 11:36:21 +0000429 // Get new address displacement.
430 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
431
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000432 // Loop over all uses of the Last LEA to check that its def register is
433 // used only as address base for memory accesses. If so, it can be
434 // replaced, otherwise - no.
Andrea Di Biagio7937be72017-03-21 11:36:21 +0000435 for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000436 MachineInstr &MI = *MO.getParent();
437
438 // Get the number of the first memory operand.
439 const MCInstrDesc &Desc = MI.getDesc();
Craig Topper477649a2016-04-28 05:58:46 +0000440 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000441
442 // If the use instruction has no memory operand - the LEA is not
443 // replaceable.
444 if (MemOpNo < 0)
445 return false;
446
447 MemOpNo += X86II::getOperandBias(Desc);
448
449 // If the address base of the use instruction is not the LEA def register -
450 // the LEA is not replaceable.
451 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
452 return false;
453
454 // If the LEA def register is used as any other operand of the use
455 // instruction - the LEA is not replaceable.
456 for (unsigned i = 0; i < MI.getNumOperands(); i++)
457 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
458 isIdenticalOp(MI.getOperand(i), MO))
459 return false;
460
461 // Check that the new address displacement will fit 4 bytes.
462 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
463 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
464 AddrDispShift))
465 return false;
466 }
467
468 return true;
469}
470
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000471void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000472 unsigned Pos = 0;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000473 for (auto &MI : MBB) {
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000474 // Assign the position number to the instruction. Note that we are going to
475 // move some instructions during the optimization however there will never
476 // be a need to move two instructions before any selected instruction. So to
477 // avoid multiple positions' updates during moves we just increase position
478 // counter by two leaving a free space for instructions which will be moved.
479 InstrPos[&MI] = Pos += 2;
480
Alexey Bataev7cf32472015-12-04 10:53:15 +0000481 if (isLEA(MI))
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000482 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
Alexey Bataev7cf32472015-12-04 10:53:15 +0000483 }
484}
485
486// Try to find load and store instructions which recalculate addresses already
487// calculated by some LEA and replace their memory operands with its def
488// register.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000489bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
Alexey Bataev7cf32472015-12-04 10:53:15 +0000490 bool Changed = false;
491
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000492 assert(!LEAs.empty());
493 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
Alexey Bataev7cf32472015-12-04 10:53:15 +0000494
495 // Process all instructions in basic block.
496 for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
497 MachineInstr &MI = *I++;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000498
499 // Instruction must be load or store.
500 if (!MI.mayLoadOrStore())
501 continue;
502
503 // Get the number of the first memory operand.
504 const MCInstrDesc &Desc = MI.getDesc();
Craig Topper477649a2016-04-28 05:58:46 +0000505 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000506
507 // If instruction has no memory operand - skip it.
508 if (MemOpNo < 0)
509 continue;
510
511 MemOpNo += X86II::getOperandBias(Desc);
512
513 // Get the best LEA instruction to replace address calculation.
514 MachineInstr *DefMI;
515 int64_t AddrDispShift;
516 int Dist;
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000517 if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
518 Dist))
Alexey Bataev7cf32472015-12-04 10:53:15 +0000519 continue;
520
521 // If LEA occurs before current instruction, we can freely replace
522 // the instruction. If LEA occurs after, we can lift LEA above the
523 // instruction and this way to be able to replace it. Since LEA and the
524 // instruction have similar memory operands (thus, the same def
525 // instructions for these operands), we can always do that, without
526 // worries of using registers before their defs.
527 if (Dist < 0) {
528 DefMI->removeFromParent();
529 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000530 InstrPos[DefMI] = InstrPos[&MI] - 1;
531
532 // Make sure the instructions' position numbers are sane.
Duncan P. N. Exon Smith7b4c18e2016-07-12 03:18:50 +0000533 assert(((InstrPos[DefMI] == 1 &&
534 MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000535 InstrPos[DefMI] >
Duncan P. N. Exon Smith7b4c18e2016-07-12 03:18:50 +0000536 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000537 "Instruction positioning is broken");
Alexey Bataev7cf32472015-12-04 10:53:15 +0000538 }
539
540 // Since we can possibly extend register lifetime, clear kill flags.
541 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
542
543 ++NumSubstLEAs;
544 DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
545
546 // Change instruction operands.
547 MI.getOperand(MemOpNo + X86::AddrBaseReg)
548 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
549 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
550 MI.getOperand(MemOpNo + X86::AddrIndexReg)
551 .ChangeToRegister(X86::NoRegister, false);
552 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
553 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
554 .ChangeToRegister(X86::NoRegister, false);
555
556 DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
557
558 Changed = true;
559 }
560
561 return Changed;
562}
563
Andrew Ng03e35b62017-04-28 08:44:30 +0000564MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
565 unsigned VReg,
566 int64_t AddrDispShift) {
567 DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
568
Adrian Prantl109b2362017-04-28 17:51:05 +0000569 if (AddrDispShift != 0)
570 Expr = DIExpression::prepend(Expr, DIExpression::NoDeref, AddrDispShift,
571 DIExpression::WithStackValue);
Andrew Ng03e35b62017-04-28 08:44:30 +0000572
573 // Replace DBG_VALUE instruction with modified version.
574 MachineBasicBlock *MBB = MI.getParent();
575 DebugLoc DL = MI.getDebugLoc();
576 bool IsIndirect = MI.isIndirectDebugValue();
Andrew Ng03e35b62017-04-28 08:44:30 +0000577 const MDNode *Var = MI.getDebugVariable();
Adrian Prantl8b9bb532017-07-28 23:00:45 +0000578 if (IsIndirect)
579 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
Andrew Ng03e35b62017-04-28 08:44:30 +0000580 return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
Adrian Prantl8b9bb532017-07-28 23:00:45 +0000581 IsIndirect, VReg, Var, Expr);
Andrew Ng03e35b62017-04-28 08:44:30 +0000582}
583
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000584// Try to find similar LEAs in the list and replace one with another.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000585bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000586 bool Changed = false;
587
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000588 // Loop over all entries in the table.
589 for (auto &E : LEAs) {
590 auto &List = E.second;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000591
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000592 // Loop over all LEA pairs.
593 auto I1 = List.begin();
594 while (I1 != List.end()) {
595 MachineInstr &First = **I1;
596 auto I2 = std::next(I1);
597 while (I2 != List.end()) {
598 MachineInstr &Last = **I2;
599 int64_t AddrDispShift;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000600
Simon Pilgrim9d15fb32016-11-17 19:03:05 +0000601 // LEAs should be in occurrence order in the list, so we can freely
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000602 // replace later LEAs with earlier ones.
603 assert(calcInstrDist(First, Last) > 0 &&
Simon Pilgrim9d15fb32016-11-17 19:03:05 +0000604 "LEAs must be in occurrence order in the list");
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000605
606 // Check that the Last LEA instruction can be replaced by the First.
607 if (!isReplaceable(First, Last, AddrDispShift)) {
608 ++I2;
609 continue;
610 }
611
612 // Loop over all uses of the Last LEA and update their operands. Note
613 // that the correctness of this has already been checked in the
614 // isReplaceable function.
Andrew Ng03e35b62017-04-28 08:44:30 +0000615 unsigned FirstVReg = First.getOperand(0).getReg();
Andrea Di Biagio7937be72017-03-21 11:36:21 +0000616 unsigned LastVReg = Last.getOperand(0).getReg();
Andrew Ng03e35b62017-04-28 08:44:30 +0000617 for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000618 UI != UE;) {
619 MachineOperand &MO = *UI++;
620 MachineInstr &MI = *MO.getParent();
621
Andrew Ng03e35b62017-04-28 08:44:30 +0000622 if (MI.isDebugValue()) {
623 // Replace DBG_VALUE instruction with modified version using the
624 // register from the replacing LEA and the address displacement
625 // between the LEA instructions.
626 replaceDebugValue(MI, FirstVReg, AddrDispShift);
627 continue;
628 }
629
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000630 // Get the number of the first memory operand.
631 const MCInstrDesc &Desc = MI.getDesc();
632 int MemOpNo =
Craig Topper477649a2016-04-28 05:58:46 +0000633 X86II::getMemoryOperandNo(Desc.TSFlags) +
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000634 X86II::getOperandBias(Desc);
635
636 // Update address base.
Andrew Ng03e35b62017-04-28 08:44:30 +0000637 MO.setReg(FirstVReg);
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000638
639 // Update address disp.
Andrey Turetskiy0babd262016-02-20 10:58:28 +0000640 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
641 if (Op.isImm())
642 Op.setImm(Op.getImm() + AddrDispShift);
643 else if (!Op.isJTI())
644 Op.setOffset(Op.getOffset() + AddrDispShift);
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000645 }
646
647 // Since we can possibly extend register lifetime, clear kill flags.
Andrew Ng03e35b62017-04-28 08:44:30 +0000648 MRI->clearKillFlags(FirstVReg);
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000649
650 ++NumRedundantLEAs;
651 DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
652
653 // By this moment, all of the Last LEA's uses must be replaced. So we
654 // can freely remove it.
Andrea Di Biagio7937be72017-03-21 11:36:21 +0000655 assert(MRI->use_empty(LastVReg) &&
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000656 "The LEA's def register must have no uses");
657 Last.eraseFromParent();
658
659 // Erase removed LEA from the list.
660 I2 = List.erase(I2);
661
662 Changed = true;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000663 }
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000664 ++I1;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000665 }
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000666 }
667
668 return Changed;
669}
670
Alexey Bataev7cf32472015-12-04 10:53:15 +0000671bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
672 bool Changed = false;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000673
Andrey Turetskiy45b22a42016-05-19 10:18:29 +0000674 if (DisableX86LEAOpt || skipFunction(*MF.getFunction()))
Alexey Bataev7cf32472015-12-04 10:53:15 +0000675 return false;
676
677 MRI = &MF.getRegInfo();
678 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
679 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
680
681 // Process all basic blocks.
682 for (auto &MBB : MF) {
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000683 MemOpMap LEAs;
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000684 InstrPos.clear();
Alexey Bataev7cf32472015-12-04 10:53:15 +0000685
686 // Find all LEA instructions in basic block.
687 findLEAs(MBB, LEAs);
688
689 // If current basic block has no LEAs, move on to the next one.
690 if (LEAs.empty())
691 continue;
692
Andrey Turetskiy45b22a42016-05-19 10:18:29 +0000693 // Remove redundant LEA instructions.
694 Changed |= removeRedundantLEAs(LEAs);
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000695
Andrey Turetskiy45b22a42016-05-19 10:18:29 +0000696 // Remove redundant address calculations. Do it only for -Os/-Oz since only
697 // a code size gain is expected from this part of the pass.
698 if (MF.getFunction()->optForSize())
699 Changed |= removeRedundantAddrCalc(LEAs);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000700 }
701
702 return Changed;
703}