blob: 6bc3a282a3c978ebdbf2aef6307f14b08b526822 [file] [log] [blame]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger. Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis. In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86 the source-level state of the program**, regardless of which LLVM
87 optimizations have been run, and without any modification to the
88 optimizations themselves. However, some optimizations may impact the
89 ability to modify the current state of the program with a debugger, such
90 as setting program variables, or calling functions that have been
91 deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94 debugging information, allowing them to update the debugging information
95 as they perform aggressive optimizations. This means that, with effort,
96 the LLVM optimizers could optimize debug code just as well as non-debug
97 code.
98
99* LLVM debug information does not prevent optimizations from
100 happening (for example inlining, basic block reordering/merging/cleanup,
101 tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104 the program, using existing facilities. For example, duplicate
105 information is automatically merged by the linker, and unused information
106 is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger. Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information. It can be run like this:
119
120.. code-block:: bash
121
122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
123 % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes. If
126debugging information influences optimization passes then it will be reported
127as a failure. See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information. In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum. The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`. These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language. :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
David Blaikiec4fe5db2013-05-29 02:05:13 +0000172information appended at the end that is source-language specific. All debugging
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000173information objects start with a tag to indicate what type of object it is.
174The source-language is allowed to define its own objects, by using unreserved
175tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
176(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
177
178The fields of debug descriptors used internally by LLVM are restricted to only
179the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
180``mdnode``.
181
182.. code-block:: llvm
183
184 !1 = metadata !{
185 i32, ;; A tag
186 ...
187 }
188
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000189Most of the string and integer fields in descriptors are packed into a single,
190null-separated ``mdstring``. The first field of the header is always an
191``i32`` containing the DWARF tag value identifying the content of the
192descriptor.
193
194For clarity of definition in this document, these header fields are described
195below split inside an imaginary ``DIHeader`` construct. This is invalid
196assembly syntax. In valid IR, these fields are stringified and concatenated,
197separated by ``\00``.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000198
199The details of the various descriptors follow.
200
201Compile unit descriptors
202^^^^^^^^^^^^^^^^^^^^^^^^
203
204.. code-block:: llvm
205
206 !0 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000207 DIHeader(
208 i32, ;; Tag = 17 (DW_TAG_compile_unit)
209 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
210 mdstring, ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
211 i1, ;; True if this is optimized.
212 mdstring, ;; Flags
213 i32, ;; Runtime version
214 mdstring, ;; Split debug filename
215 i32 ;; Debug info emission kind (1 = Full Debug Info, 2 = Line Tables Only)
216 ),
David Blaikiec4fe5db2013-05-29 02:05:13 +0000217 metadata, ;; Source directory (including trailing slash) & file pair
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000218 metadata, ;; List of enums types
219 metadata, ;; List of retained types
220 metadata, ;; List of subprograms
221 metadata, ;; List of global variables
David Blaikiec4fe5db2013-05-29 02:05:13 +0000222 metadata ;; List of imported entities
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000223 }
224
225These descriptors contain a source language ID for the file (we use the DWARF
2263.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
David Blaikiec4fe5db2013-05-29 02:05:13 +0000227``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of
228strings for the source file name and the working directory, as well as an
229identifier string for the compiler that produced it.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000230
231Compile unit descriptors provide the root context for objects declared in a
232specific compilation unit. File descriptors are defined using this context.
Eli Bendersky78750882012-11-28 00:27:25 +0000233These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
David Blaikiec4fe5db2013-05-29 02:05:13 +0000234keep track of subprograms, global variables, type information, and imported
235entities (declarations and namespaces).
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000236
237.. _format_files:
238
239File descriptors
240^^^^^^^^^^^^^^^^
241
242.. code-block:: llvm
243
244 !0 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000245 DIHeader(
246 i32 ;; Tag = 41 (DW_TAG_file_type)
247 ),
248 metadata ;; Source directory (including trailing slash) & file pair
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000249 }
250
251These descriptors contain information for a file. Global variables and top
252level functions would be defined using this context. File descriptors also
253provide context for source line correspondence.
254
255Each input file is encoded as a separate file descriptor in LLVM debugging
256information output.
257
258.. _format_global_variables:
259
260Global variable descriptors
261^^^^^^^^^^^^^^^^^^^^^^^^^^^
262
263.. code-block:: llvm
264
265 !1 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000266 DIHeader(
267 i32, ;; Tag = 52 (DW_TAG_variable)
268 mdstring, ;; Name
269 mdstring, ;; Display name (fully qualified C++ name)
270 mdstring, ;; MIPS linkage name (for C++)
271 i32, ;; Line number where defined
272 i1, ;; True if the global is local to compile unit (static)
273 i1 ;; True if the global is defined in the compile unit (not extern)
274 ),
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000275 metadata, ;; Reference to context descriptor
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000276 metadata, ;; Reference to file where defined
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000277 metadata, ;; Reference to type descriptor
David Blaikiec4fe5db2013-05-29 02:05:13 +0000278 {}*, ;; Reference to the global variable
279 metadata, ;; The static member declaration, if any
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000280 }
281
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000282These descriptors provide debug information about global variables. They
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000283provide details such as name, type and where the variable is defined. All
284global variables are collected inside the named metadata ``!llvm.dbg.cu``.
285
286.. _format_subprograms:
287
288Subprogram descriptors
289^^^^^^^^^^^^^^^^^^^^^^
290
291.. code-block:: llvm
292
293 !2 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000294 DIHeader(
295 i32, ;; Tag = 46 (DW_TAG_subprogram)
296 mdstring, ;; Name
297 mdstring, ;; Display name (fully qualified C++ name)
298 mdstring, ;; MIPS linkage name (for C++)
299 i32, ;; Line number where defined
300 i1, ;; True if the global is local to compile unit (static)
301 i1, ;; True if the global is defined in the compile unit (not extern)
302 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
303 i32, ;; Index into a virtual function
304 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped.
305 i1, ;; isOptimized
306 i32 ;; Line number where the scope of the subprogram begins
307 ),
David Blaikiec4fe5db2013-05-29 02:05:13 +0000308 metadata, ;; Source directory (including trailing slash) & file pair
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000309 metadata, ;; Reference to context descriptor
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000310 metadata, ;; Reference to type descriptor
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000311 metadata, ;; indicates which base type contains the vtable pointer for the
312 ;; derived class
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000313 {}*, ;; Reference to the LLVM function
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000314 metadata, ;; Lists function template parameters
315 metadata, ;; Function declaration descriptor
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000316 metadata ;; List of function variables
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000317 }
318
319These descriptors provide debug information about functions, methods and
320subprograms. They provide details such as name, return types and the source
321location where the subprogram is defined.
322
323Block descriptors
324^^^^^^^^^^^^^^^^^
325
326.. code-block:: llvm
327
328 !3 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000329 DIHeader(
330 i32, ;; Tag = 11 (DW_TAG_lexical_block)
331 i32, ;; Line number
332 i32, ;; Column number
333 i32 ;; Unique ID to identify blocks from a template function
334 ),
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000335 metadata, ;; Source directory (including trailing slash) & file pair
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000336 metadata ;; Reference to context descriptor
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000337 }
338
339This descriptor provides debug information about nested blocks within a
340subprogram. The line number and column numbers are used to dinstinguish two
341lexical blocks at same depth.
342
343.. code-block:: llvm
344
345 !3 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000346 DIHeader(
347 i32, ;; Tag = 11 (DW_TAG_lexical_block)
348 i32 ;; DWARF path discriminator value
349 ),
Jeroen Ketemaaf49d0c2014-06-09 10:12:29 +0000350 metadata, ;; Source directory (including trailing slash) & file pair
351 metadata ;; Reference to the scope we're annotating with a file change
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000352 }
353
354This descriptor provides a wrapper around a lexical scope to handle file
355changes in the middle of a lexical block.
356
357.. _format_basic_type:
358
359Basic type descriptors
360^^^^^^^^^^^^^^^^^^^^^^
361
362.. code-block:: llvm
363
364 !4 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000365 DIHeader(
366 i32, ;; Tag = 36 (DW_TAG_base_type)
367 mdstring, ;; Name (may be "" for anonymous types)
368 i32, ;; Line number where defined (may be 0)
369 i64, ;; Size in bits
370 i64, ;; Alignment in bits
371 i64, ;; Offset in bits
372 i32, ;; Flags
373 i32 ;; DWARF type encoding
374 ),
Manman Renf5d45352013-08-29 17:07:49 +0000375 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000376 metadata ;; Reference to context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000377 }
378
379These descriptors define primitive types used in the code. Example ``int``,
380``bool`` and ``float``. The context provides the scope of the type, which is
381usually the top level. Since basic types are not usually user defined the
382context and line number can be left as NULL and 0. The size, alignment and
383offset are expressed in bits and can be 64 bit values. The alignment is used
384to round the offset when embedded in a :ref:`composite type
385<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
386The offset is the bit offset if embedded in a :ref:`composite type
387<format_composite_type>`.
388
389The type encoding provides the details of the type. The values are typically
390one of the following:
391
392.. code-block:: llvm
393
394 DW_ATE_address = 1
395 DW_ATE_boolean = 2
396 DW_ATE_float = 4
397 DW_ATE_signed = 5
398 DW_ATE_signed_char = 6
399 DW_ATE_unsigned = 7
400 DW_ATE_unsigned_char = 8
401
402.. _format_derived_type:
403
404Derived type descriptors
405^^^^^^^^^^^^^^^^^^^^^^^^
406
407.. code-block:: llvm
408
409 !5 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000410 DIHeader(
411 i32, ;; Tag (see below)
412 mdstring, ;; Name (may be "" for anonymous types)
413 i32, ;; Line number where defined (may be 0)
414 i64, ;; Size in bits
415 i64, ;; Alignment in bits
416 i64, ;; Offset in bits
417 i32 ;; Flags to encode attributes, e.g. private
418 ),
Manman Renf5d45352013-08-29 17:07:49 +0000419 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000420 metadata, ;; Reference to context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000421 metadata, ;; Reference to type derived from
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000422 metadata ;; (optional) Objective C property node
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000423 }
424
425These descriptors are used to define types derived from other types. The value
426of the tag varies depending on the meaning. The following are possible tag
427values:
428
429.. code-block:: llvm
430
David Blaikie8e390ea2013-01-07 06:02:07 +0000431 DW_TAG_formal_parameter = 5
432 DW_TAG_member = 13
433 DW_TAG_pointer_type = 15
434 DW_TAG_reference_type = 16
435 DW_TAG_typedef = 22
436 DW_TAG_ptr_to_member_type = 31
437 DW_TAG_const_type = 38
438 DW_TAG_volatile_type = 53
439 DW_TAG_restrict_type = 55
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000440
441``DW_TAG_member`` is used to define a member of a :ref:`composite type
442<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
443of the member is the :ref:`derived type <format_derived_type>`.
444``DW_TAG_formal_parameter`` is used to define a member which is a formal
445argument of a subprogram.
446
447``DW_TAG_typedef`` is used to provide a name for the derived type.
448
449``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
450``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
451:ref:`derived type <format_derived_type>`.
452
453:ref:`Derived type <format_derived_type>` location can be determined from the
454context and line number. The size, alignment and offset are expressed in bits
455and can be 64 bit values. The alignment is used to round the offset when
456embedded in a :ref:`composite type <format_composite_type>` (example to keep
457float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
458in a :ref:`composite type <format_composite_type>`.
459
460Note that the ``void *`` type is expressed as a type derived from NULL.
461
462.. _format_composite_type:
463
464Composite type descriptors
465^^^^^^^^^^^^^^^^^^^^^^^^^^
466
467.. code-block:: llvm
468
469 !6 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000470 DIHeader(
471 i32, ;; Tag (see below)
472 mdstring, ;; Name (may be "" for anonymous types)
473 i32, ;; Line number where defined (may be 0)
474 i64, ;; Size in bits
475 i64, ;; Alignment in bits
476 i64, ;; Offset in bits
477 i32, ;; Flags
478 i32 ;; Runtime languages
479 ),
Manman Renf5d45352013-08-29 17:07:49 +0000480 metadata, ;; Source directory (including trailing slash) & file pair (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000481 metadata, ;; Reference to context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000482 metadata, ;; Reference to type derived from
483 metadata, ;; Reference to array of member descriptors
David Blaikiec4fe5db2013-05-29 02:05:13 +0000484 metadata, ;; Base type containing the vtable pointer for this type
Manman Renf5d45352013-08-29 17:07:49 +0000485 metadata, ;; Template parameters
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000486 mdstring ;; A unique identifier for type uniquing purpose (may be null)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000487 }
488
489These descriptors are used to define types that are composed of 0 or more
490elements. The value of the tag varies depending on the meaning. The following
491are possible tag values:
492
493.. code-block:: llvm
494
495 DW_TAG_array_type = 1
496 DW_TAG_enumeration_type = 4
497 DW_TAG_structure_type = 19
498 DW_TAG_union_type = 23
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000499 DW_TAG_subroutine_type = 21
500 DW_TAG_inheritance = 28
501
502The vector flag indicates that an array type is a native packed vector.
503
Eric Christopher72a52952013-01-08 01:53:52 +0000504The members of array types (tag = ``DW_TAG_array_type``) are
505:ref:`subrange descriptors <format_subrange>`, each
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000506representing the range of subscripts at that level of indexing.
507
508The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
509:ref:`enumerator descriptors <format_enumerator>`, each representing the
510definition of enumeration value for the set. All enumeration type descriptors
511are collected inside the named metadata ``!llvm.dbg.cu``.
512
513The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
514``DW_TAG_union_type``) types are any one of the :ref:`basic
515<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
516<format_composite_type>` type descriptors, each representing a field member of
517the structure or union.
518
519For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
520information about base classes, static members and member functions. If a
521member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
522of ``DW_TAG_inheritance``, then the type represents a base class. If the member
523of is a :ref:`global variable descriptor <format_global_variables>` then it
524represents a static member. And, if the member is a :ref:`subprogram
525descriptor <format_subprograms>` then it represents a member function. For
526static members and member functions, ``getName()`` returns the members link or
527the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
528
529The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
530is the return type for the subroutine. The remaining elements are the formal
531arguments to the subroutine.
532
533:ref:`Composite type <format_composite_type>` location can be determined from
534the context and line number. The size, alignment and offset are expressed in
535bits and can be 64 bit values. The alignment is used to round the offset when
536embedded in a :ref:`composite type <format_composite_type>` (as an example, to
537keep float doubles on 64 bit boundaries). The offset is the bit offset if
538embedded in a :ref:`composite type <format_composite_type>`.
539
540.. _format_subrange:
541
542Subrange descriptors
543^^^^^^^^^^^^^^^^^^^^
544
545.. code-block:: llvm
546
547 !42 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000548 DIHeader(
549 i32, ;; Tag = 33 (DW_TAG_subrange_type)
550 i64, ;; Low value
551 i64 ;; High value
552 )
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000553 }
554
555These descriptors are used to define ranges of array subscripts for an array
556:ref:`composite type <format_composite_type>`. The low value defines the lower
557bounds typically zero for C/C++. The high value is the upper bounds. Values
558are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
559the array bounds are not included in generated debugging information.
560
561.. _format_enumerator:
562
563Enumerator descriptors
564^^^^^^^^^^^^^^^^^^^^^^
565
566.. code-block:: llvm
567
568 !6 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000569 DIHeader(
570 i32, ;; Tag = 40 (DW_TAG_enumerator)
571 mdstring, ;; Name
572 i64 ;; Value
573 )
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000574 }
575
576These descriptors are used to define members of an enumeration :ref:`composite
577type <format_composite_type>`, it associates the name to the value.
578
579Local variables
580^^^^^^^^^^^^^^^
581
582.. code-block:: llvm
583
584 !7 = metadata !{
Duncan P. N. Exon Smith176b6912014-10-03 20:01:09 +0000585 DIHeader(
586 i32, ;; Tag (see below)
587 mdstring, ;; Name
588 i32, ;; 24 bit - Line number where defined
589 ;; 8 bit - Argument number. 1 indicates 1st argument.
590 i32 ;; flags
591 ),
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000592 metadata, ;; Context
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000593 metadata, ;; Reference to file where defined
Adrian Prantl1a1647c2014-03-18 02:34:58 +0000594 metadata, ;; Reference to the type descriptor
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000595 metadata ;; (optional) Reference to inline location
596 }
597
598These descriptors are used to define variables local to a sub program. The
599value of the tag depends on the usage of the variable:
600
601.. code-block:: llvm
602
603 DW_TAG_auto_variable = 256
604 DW_TAG_arg_variable = 257
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000605
606An auto variable is any variable declared in the body of the function. An
607argument variable is any variable that appears as a formal argument to the
Eric Christopher9948d5e2013-01-08 00:16:33 +0000608function.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000609
610The context is either the subprogram or block where the variable is defined.
611Name the source variable name. Context and line indicate where the variable
612was defined. Type descriptor defines the declared type of the variable.
613
Adrian Prantl87b7eb92014-10-01 18:55:02 +0000614Complex Expressions
615^^^^^^^^^^^^^^^^^^^
616.. code-block:: llvm
617
618 !8 = metadata !{
619 i32, ;; DW_TAG_expression
620 ...
621 }
622
623Complex expressions describe variable storage locations in terms of
624prefix-notated DWARF expressions. Currently the only supported
625operators are ``DW_OP_plus``, ``DW_OP_deref``, and ``DW_OP_piece``.
626
627The ``DW_OP_piece`` operator is used for (typically larger aggregate)
Adrian Prantlb1416832014-08-01 22:11:58 +0000628variables that are fragmented across several locations. It takes two
629i32 arguments, an offset and a size in bytes to describe which piece
630of the variable is at this location.
631
632
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000633.. _format_common_intrinsics:
634
635Debugger intrinsic functions
636^^^^^^^^^^^^^^^^^^^^^^^^^^^^
637
638LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
639provide debug information at various points in generated code.
640
641``llvm.dbg.declare``
642^^^^^^^^^^^^^^^^^^^^
643
644.. code-block:: llvm
645
646 void %llvm.dbg.declare(metadata, metadata)
647
648This intrinsic provides information about a local element (e.g., variable).
649The first argument is metadata holding the alloca for the variable. The second
650argument is metadata containing a description of the variable.
651
652``llvm.dbg.value``
653^^^^^^^^^^^^^^^^^^
654
655.. code-block:: llvm
656
657 void %llvm.dbg.value(metadata, i64, metadata)
658
659This intrinsic provides information when a user source variable is set to a new
660value. The first argument is the new value (wrapped as metadata). The second
661argument is the offset in the user source variable where the new value is
662written. The third argument is metadata containing a description of the user
663source variable.
664
665Object lifetimes and scoping
666============================
667
668In many languages, the local variables in functions can have their lifetimes or
669scopes limited to a subset of a function. In the C family of languages, for
670example, variables are only live (readable and writable) within the source
671block that they are defined in. In functional languages, values are only
672readable after they have been defined. Though this is a very obvious concept,
673it is non-trivial to model in LLVM, because it has no notion of scoping in this
674sense, and does not want to be tied to a language's scoping rules.
675
676In order to handle this, the LLVM debug format uses the metadata attached to
677llvm instructions to encode line number and scoping information. Consider the
678following C fragment, for example:
679
680.. code-block:: c
681
682 1. void foo() {
683 2. int X = 21;
684 3. int Y = 22;
685 4. {
686 5. int Z = 23;
687 6. Z = X;
688 7. }
689 8. X = Y;
690 9. }
691
692Compiled to LLVM, this function would be represented like this:
693
694.. code-block:: llvm
695
Bill Wendlinge814a372013-10-27 04:50:34 +0000696 define void @foo() #0 {
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000697 entry:
Bill Wendlinge814a372013-10-27 04:50:34 +0000698 %X = alloca i32, align 4
699 %Y = alloca i32, align 4
700 %Z = alloca i32, align 4
701 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
David Blaikiec4fe5db2013-05-29 02:05:13 +0000702 ; [debug line = 2:7] [debug variable = X]
Bill Wendlinge814a372013-10-27 04:50:34 +0000703 store i32 21, i32* %X, align 4, !dbg !12
704 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14
David Blaikiec4fe5db2013-05-29 02:05:13 +0000705 ; [debug line = 3:7] [debug variable = Y]
Bill Wendlinge814a372013-10-27 04:50:34 +0000706 store i32 22, i32* %Y, align 4, !dbg !14
David Blaikiec4fe5db2013-05-29 02:05:13 +0000707 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
708 ; [debug line = 5:9] [debug variable = Z]
Bill Wendlinge814a372013-10-27 04:50:34 +0000709 store i32 23, i32* %Z, align 4, !dbg !17
710 %0 = load i32* %X, align 4, !dbg !18
David Blaikiec4fe5db2013-05-29 02:05:13 +0000711 [debug line = 6:5]
Bill Wendlinge814a372013-10-27 04:50:34 +0000712 store i32 %0, i32* %Z, align 4, !dbg !18
713 %1 = load i32* %Y, align 4, !dbg !19
David Blaikiec4fe5db2013-05-29 02:05:13 +0000714 [debug line = 8:3]
Bill Wendlinge814a372013-10-27 04:50:34 +0000715 store i32 %1, i32* %X, align 4, !dbg !19
716 ret void, !dbg !20
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000717 }
718
David Blaikiec4fe5db2013-05-29 02:05:13 +0000719 ; Function Attrs: nounwind readnone
720 declare void @llvm.dbg.declare(metadata, metadata) #1
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000721
Bill Wendlinge814a372013-10-27 04:50:34 +0000722 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false"
723 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
724 "no-infs-fp-math"="false" "no-nans-fp-math"="false"
725 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
David Blaikiec4fe5db2013-05-29 02:05:13 +0000726 "use-soft-float"="false" }
727 attributes #1 = { nounwind readnone }
728
729 !llvm.dbg.cu = !{!0}
Bill Wendlinge814a372013-10-27 04:50:34 +0000730 !llvm.module.flags = !{!8}
731 !llvm.ident = !{!9}
732
David Blaikiec4fe5db2013-05-29 02:05:13 +0000733 !0 = metadata !{i32 786449, metadata !1, i32 12,
Bill Wendlinge814a372013-10-27 04:50:34 +0000734 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)",
735 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3,
736 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \
David Blaikiec4fe5db2013-05-29 02:05:13 +0000737 [/private/tmp/foo.c] \
Bill Wendlinge814a372013-10-27 04:50:34 +0000738 [DW_LANG_C99]
739 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000740 !2 = metadata !{i32 0}
741 !3 = metadata !{metadata !4}
742 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
Bill Wendlinge814a372013-10-27 04:50:34 +0000743 metadata !"foo", metadata !"", i32 1, metadata !6,
744 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
745 void ()* @foo, null, null, metadata !2, i32 1}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000746 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Bill Wendlinge814a372013-10-27 04:50:34 +0000747 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \
748 [/private/tmp/t.c]
749 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0,
750 i64 0, i32 0, null, metadata !7, i32 0, null, null, null}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000751 ; [ DW_TAG_subroutine_type ] \
752 [line 0, size 0, align 0, offset 0] [from ]
753 !7 = metadata !{null}
Bill Wendlinge814a372013-10-27 04:50:34 +0000754 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2}
755 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"}
756 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2,
757 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \
758 [line 2]
759 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32,
760 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \
761 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed]
762 !12 = metadata !{i32 2, i32 0, metadata !4, null}
763 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3,
764 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \
David Blaikiec4fe5db2013-05-29 02:05:13 +0000765 [line 3]
Bill Wendlinge814a372013-10-27 04:50:34 +0000766 !14 = metadata !{i32 3, i32 0, metadata !4, null}
767 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5,
768 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \
David Blaikiec4fe5db2013-05-29 02:05:13 +0000769 [line 5]
David Blaikie2f3f76f2014-08-21 22:45:21 +0000770 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
Bill Wendlinge814a372013-10-27 04:50:34 +0000771 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
772 !17 = metadata !{i32 5, i32 0, metadata !16, null}
773 !18 = metadata !{i32 6, i32 0, metadata !16, null}
774 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ]
775 !20 = metadata !{i32 9, i32 0, metadata !4, null}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000776
777This example illustrates a few important details about LLVM debugging
778information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
779location information, which are attached to an instruction, are applied
780together to allow a debugger to analyze the relationship between statements,
781variable definitions, and the code used to implement the function.
782
783.. code-block:: llvm
784
Bill Wendlinge814a372013-10-27 04:50:34 +0000785 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12
David Blaikiec4fe5db2013-05-29 02:05:13 +0000786 ; [debug line = 2:7] [debug variable = X]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000787
788The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
Bill Wendlinge814a372013-10-27 04:50:34 +0000789variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000790scope information for the variable ``X``.
791
792.. code-block:: llvm
793
Bill Wendlinge814a372013-10-27 04:50:34 +0000794 !12 = metadata !{i32 2, i32 0, metadata !4, null}
David Blaikiec4fe5db2013-05-29 02:05:13 +0000795 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo",
Bill Wendlinge814a372013-10-27 04:50:34 +0000796 metadata !"foo", metadata !"", i32 1, metadata !6,
797 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false,
798 void ()* @foo, null, null, metadata !2, i32 1}
799 ; [ DW_TAG_subprogram ] [line 1] [def] [foo]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000800
Bill Wendlinge814a372013-10-27 04:50:34 +0000801Here ``!12`` is metadata providing location information. It has four fields:
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000802line number, column number, scope, and original scope. The original scope
803represents inline location if this instruction is inlined inside a caller, and
David Blaikiec4fe5db2013-05-29 02:05:13 +0000804is null otherwise. In this example, scope is encoded by ``!4``, a
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000805:ref:`subprogram descriptor <format_subprograms>`. This way the location
806information attached to the intrinsics indicates that the variable ``X`` is
807declared at line number 2 at a function level scope in function ``foo``.
808
809Now lets take another example.
810
811.. code-block:: llvm
812
David Blaikiec4fe5db2013-05-29 02:05:13 +0000813 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17
814 ; [debug line = 5:9] [debug variable = Z]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000815
David Blaikiec4fe5db2013-05-29 02:05:13 +0000816The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
817variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000818scope information for the variable ``Z``.
819
820.. code-block:: llvm
821
David Blaikie2f3f76f2014-08-21 22:45:21 +0000822 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0} \
Bill Wendlinge814a372013-10-27 04:50:34 +0000823 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c]
824 !17 = metadata !{i32 5, i32 0, metadata !16, null}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000825
David Blaikiec4fe5db2013-05-29 02:05:13 +0000826Here ``!15`` indicates that ``Z`` is declared at line number 5 and
Bill Wendlinge814a372013-10-27 04:50:34 +0000827column number 0 inside of lexical scope ``!16``. The lexical scope itself
David Blaikiec4fe5db2013-05-29 02:05:13 +0000828resides inside of subprogram ``!4`` described above.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000829
830The scope information attached with each instruction provides a straightforward
831way to find instructions covered by a scope.
832
833.. _ccxx_frontend:
834
835C/C++ front-end specific debug information
836==========================================
837
838The C and C++ front-ends represent information about the program in a format
839that is effectively identical to `DWARF 3.0
840<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
841content. This allows code generators to trivially support native debuggers by
842generating standard dwarf information, and contains enough information for
843non-dwarf targets to translate it as needed.
844
845This section describes the forms used to represent C and C++ programs. Other
846languages could pattern themselves after this (which itself is tuned to
847representing programs in the same way that DWARF 3 does), or they could choose
848to provide completely different forms if they don't fit into the DWARF model.
849As support for debugging information gets added to the various LLVM
850source-language front-ends, the information used should be documented here.
851
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000852The following sections provide examples of a few C/C++ constructs and the debug
853information that would best describe those constructs. The canonical
854references are the ``DIDescriptor`` classes defined in
855``include/llvm/IR/DebugInfo.h`` and the implementations of the helper functions
856in ``lib/IR/DIBuilder.cpp``.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000857
858C/C++ source file information
859-----------------------------
860
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000861``llvm::Instruction`` provides easy access to metadata attached with an
862instruction. One can extract line number information encoded in LLVM IR using
863``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
864
865.. code-block:: c++
866
867 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
868 DILocation Loc(N); // DILocation is in DebugInfo.h
869 unsigned Line = Loc.getLineNumber();
870 StringRef File = Loc.getFilename();
871 StringRef Dir = Loc.getDirectory();
872 }
873
874C/C++ global variable information
875---------------------------------
876
877Given an integer global variable declared as follows:
878
879.. code-block:: c
880
881 int MyGlobal = 100;
882
883a C/C++ front-end would generate the following descriptors:
884
885.. code-block:: llvm
886
887 ;;
888 ;; Define the global itself.
889 ;;
890 %MyGlobal = global int 100
891 ...
892 ;;
893 ;; List of debug info of globals
894 ;;
895 !llvm.dbg.cu = !{!0}
896
897 ;; Define the compile unit.
898 !0 = metadata !{
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000899 ; Header(
900 ; i32 17, ;; Tag
901 ; i32 0, ;; Context
902 ; i32 4, ;; Language
903 ; metadata !"clang version 3.6.0 ", ;; Producer
904 ; i1 false, ;; "isOptimized"?
905 ; metadata !"", ;; Flags
906 ; i32 0, ;; Runtime Version
907 ; "", ;; Split debug filename
908 ; 1 ;; Full debug info
909 ; )
910 metadata !"0x11\0012\00clang version 3.6.0 \000\00\000\00\001",
911 metadata !1, ;; File
912 metadata !2, ;; Enum Types
913 metadata !2, ;; Retained Types
914 metadata !2, ;; Subprograms
915 metadata !3, ;; Global Variables
916 metadata !2 ;; Imported entities
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000917 } ; [ DW_TAG_compile_unit ]
918
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000919 ;; The file/directory pair.
920 !1 = metadata !{
921 metadata !"foo.c", ;; Filename
922 metadata !"/Users/dexonsmith/data/llvm/debug-info" ;; Directory
923 }
924
925 ;; An empty array.
926 !2 = metadata !{}
927
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000928 ;; The Array of Global Variables
929 !3 = metadata !{
930 metadata !4
931 }
932
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000933 ;;
934 ;; Define the global variable itself.
935 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000936 !4 = metadata !{
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000937 ; Header(
Duncan P. N. Exon Smith51d7e882014-10-04 15:35:25 +0000938 ; i32 52, ;; Tag
939 ; metadata !"MyGlobal", ;; Name
940 ; metadata !"MyGlobal", ;; Display Name
941 ; metadata !"", ;; Linkage Name
942 ; i32 1, ;; Line
943 ; i32 0, ;; IsLocalToUnit
944 ; i32 1 ;; IsDefinition
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000945 ; )
946 metadata !"0x34\00MyGlobal\00MyGlobal\00\001\000\001",
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000947 null, ;; Unused
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000948 metadata !5, ;; File
949 metadata !6, ;; Type
David Blaikiec4fe5db2013-05-29 02:05:13 +0000950 i32* @MyGlobal, ;; LLVM-IR Value
951 null ;; Static member declaration
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000952 } ; [ DW_TAG_variable ]
953
954 ;;
955 ;; Define the file
956 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000957 !5 = metadata !{
Duncan P. N. Exon Smith7db88d42014-10-04 15:31:08 +0000958 ; Header(
959 ; i32 41 ;; Tag
960 ; )
961 metadata !"0x29",
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000962 metadata !1 ;; File/directory pair
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000963 } ; [ DW_TAG_file_type ]
964
965 ;;
966 ;; Define the type
967 ;;
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000968 !6 = metadata !{
969 ; Header(
Duncan P. N. Exon Smith51d7e882014-10-04 15:35:25 +0000970 ; i32 36, ;; Tag
971 ; metadata !"int", ;; Name
972 ; i32 0, ;; Line
973 ; i64 32, ;; Size in Bits
974 ; i64 32, ;; Align in Bits
975 ; i64 0, ;; Offset
976 ; i32 0, ;; Flags
977 ; i32 5 ;; Encoding
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000978 ; )
979 metadata !"0x24\00int\000\0032\0032\000\000\005",
980 null, ;; Unused
981 null ;; Unused
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000982 } ; [ DW_TAG_base_type ]
983
984C/C++ function information
985--------------------------
986
987Given a function declared as follows:
988
989.. code-block:: c
990
991 int main(int argc, char *argv[]) {
992 return 0;
993 }
994
995a C/C++ front-end would generate the following descriptors:
996
997.. code-block:: llvm
998
999 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +00001000 ;; Define the anchor for subprograms.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001001 ;;
1002 !6 = metadata !{
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +00001003 ; Header(
Duncan P. N. Exon Smith51d7e882014-10-04 15:35:25 +00001004 ; i32 46, ;; Tag
1005 ; metadata !"main", ;; Name
1006 ; metadata !"main", ;; Display name
1007 ; metadata !"", ;; Linkage name
1008 ; i32 1, ;; Line number
1009 ; i1 false, ;; Is local
1010 ; i1 true, ;; Is definition
1011 ; i32 0, ;; Virtuality attribute, e.g. pure virtual function
1012 ; i32 0, ;; Index into virtual table for C++ methods
1013 ; i32 256, ;; Flags
1014 ; i1 0, ;; True if this function is optimized
1015 ; 1 ;; Line number of the opening '{' of the function
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +00001016 ; )
1017 metadata !"0x2e\00main\00main\00\001\000\001\000\000\00256\000\001",
1018 metadata !1, ;; File
1019 metadata !5, ;; Context
1020 metadata !6, ;; Type
1021 null, ;; Containing type
1022 i32 (i32, i8**)* @main, ;; Pointer to llvm::Function
1023 null, ;; Function template parameters
1024 null, ;; Function declaration
1025 metadata !2 ;; List of function variables (emitted when optimizing)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001026 }
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +00001027
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001028 ;;
1029 ;; Define the subprogram itself.
1030 ;;
1031 define i32 @main(i32 %argc, i8** %argv) {
1032 ...
1033 }
1034
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001035Debugging information format
1036============================
1037
1038Debugging Information Extension for Objective C Properties
1039----------------------------------------------------------
1040
1041Introduction
1042^^^^^^^^^^^^
1043
1044Objective C provides a simpler way to declare and define accessor methods using
1045declared properties. The language provides features to declare a property and
1046to let compiler synthesize accessor methods.
1047
1048The debugger lets developer inspect Objective C interfaces and their instance
1049variables and class variables. However, the debugger does not know anything
1050about the properties defined in Objective C interfaces. The debugger consumes
1051information generated by compiler in DWARF format. The format does not support
1052encoding of Objective C properties. This proposal describes DWARF extensions to
1053encode Objective C properties, which the debugger can use to let developers
1054inspect Objective C properties.
1055
1056Proposal
1057^^^^^^^^
1058
1059Objective C properties exist separately from class members. A property can be
1060defined only by "setter" and "getter" selectors, and be calculated anew on each
1061access. Or a property can just be a direct access to some declared ivar.
1062Finally it can have an ivar "automatically synthesized" for it by the compiler,
1063in which case the property can be referred to in user code directly using the
1064standard C dereference syntax as well as through the property "dot" syntax, but
1065there is no entry in the ``@interface`` declaration corresponding to this ivar.
1066
1067To facilitate debugging, these properties we will add a new DWARF TAG into the
1068``DW_TAG_structure_type`` definition for the class to hold the description of a
1069given property, and a set of DWARF attributes that provide said description.
1070The property tag will also contain the name and declared type of the property.
1071
1072If there is a related ivar, there will also be a DWARF property attribute placed
1073in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1074for that property. And in the case where the compiler synthesizes the ivar
1075directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1076ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1077to access this ivar directly in code, and with the property attribute pointing
1078back to the property it is backing.
1079
1080The following examples will serve as illustration for our discussion:
1081
1082.. code-block:: objc
1083
1084 @interface I1 {
1085 int n2;
1086 }
1087
1088 @property int p1;
1089 @property int p2;
1090 @end
1091
1092 @implementation I1
1093 @synthesize p1;
1094 @synthesize p2 = n2;
1095 @end
1096
1097This produces the following DWARF (this is a "pseudo dwarfdump" output):
1098
1099.. code-block:: none
1100
1101 0x00000100: TAG_structure_type [7] *
1102 AT_APPLE_runtime_class( 0x10 )
1103 AT_name( "I1" )
1104 AT_decl_file( "Objc_Property.m" )
1105 AT_decl_line( 3 )
1106
1107 0x00000110 TAG_APPLE_property
1108 AT_name ( "p1" )
1109 AT_type ( {0x00000150} ( int ) )
1110
1111 0x00000120: TAG_APPLE_property
1112 AT_name ( "p2" )
1113 AT_type ( {0x00000150} ( int ) )
1114
1115 0x00000130: TAG_member [8]
1116 AT_name( "_p1" )
1117 AT_APPLE_property ( {0x00000110} "p1" )
1118 AT_type( {0x00000150} ( int ) )
1119 AT_artificial ( 0x1 )
1120
1121 0x00000140: TAG_member [8]
1122 AT_name( "n2" )
1123 AT_APPLE_property ( {0x00000120} "p2" )
1124 AT_type( {0x00000150} ( int ) )
1125
1126 0x00000150: AT_type( ( int ) )
1127
1128Note, the current convention is that the name of the ivar for an
1129auto-synthesized property is the name of the property from which it derives
1130with an underscore prepended, as is shown in the example. But we actually
1131don't need to know this convention, since we are given the name of the ivar
1132directly.
1133
1134Also, it is common practice in ObjC to have different property declarations in
1135the @interface and @implementation - e.g. to provide a read-only property in
1136the interface,and a read-write interface in the implementation. In that case,
1137the compiler should emit whichever property declaration will be in force in the
1138current translation unit.
1139
1140Developers can decorate a property with attributes which are encoded using
1141``DW_AT_APPLE_property_attribute``.
1142
1143.. code-block:: objc
1144
1145 @property (readonly, nonatomic) int pr;
1146
1147.. code-block:: none
1148
1149 TAG_APPLE_property [8]
1150 AT_name( "pr" )
1151 AT_type ( {0x00000147} (int) )
1152 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1153
1154The setter and getter method names are attached to the property using
1155``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1156
1157.. code-block:: objc
1158
1159 @interface I1
1160 @property (setter=myOwnP3Setter:) int p3;
1161 -(void)myOwnP3Setter:(int)a;
1162 @end
1163
1164 @implementation I1
1165 @synthesize p3;
1166 -(void)myOwnP3Setter:(int)a{ }
1167 @end
1168
1169The DWARF for this would be:
1170
1171.. code-block:: none
1172
1173 0x000003bd: TAG_structure_type [7] *
1174 AT_APPLE_runtime_class( 0x10 )
1175 AT_name( "I1" )
1176 AT_decl_file( "Objc_Property.m" )
1177 AT_decl_line( 3 )
1178
1179 0x000003cd TAG_APPLE_property
1180 AT_name ( "p3" )
1181 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1182 AT_type( {0x00000147} ( int ) )
1183
1184 0x000003f3: TAG_member [8]
1185 AT_name( "_p3" )
1186 AT_type ( {0x00000147} ( int ) )
1187 AT_APPLE_property ( {0x000003cd} )
1188 AT_artificial ( 0x1 )
1189
1190New DWARF Tags
1191^^^^^^^^^^^^^^
1192
1193+-----------------------+--------+
1194| TAG | Value |
1195+=======================+========+
1196| DW_TAG_APPLE_property | 0x4200 |
1197+-----------------------+--------+
1198
1199New DWARF Attributes
1200^^^^^^^^^^^^^^^^^^^^
1201
1202+--------------------------------+--------+-----------+
1203| Attribute | Value | Classes |
1204+================================+========+===========+
1205| DW_AT_APPLE_property | 0x3fed | Reference |
1206+--------------------------------+--------+-----------+
1207| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1208+--------------------------------+--------+-----------+
1209| DW_AT_APPLE_property_setter | 0x3fea | String |
1210+--------------------------------+--------+-----------+
1211| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1212+--------------------------------+--------+-----------+
1213
1214New DWARF Constants
1215^^^^^^^^^^^^^^^^^^^
1216
1217+--------------------------------+-------+
1218| Name | Value |
1219+================================+=======+
1220| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1221+--------------------------------+-------+
1222| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1223+--------------------------------+-------+
1224| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1225+--------------------------------+-------+
1226| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1227+--------------------------------+-------+
1228| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1229+--------------------------------+-------+
1230| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1231+--------------------------------+-------+
1232
1233Name Accelerator Tables
1234-----------------------
1235
1236Introduction
1237^^^^^^^^^^^^
1238
1239The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1240debugger needs. The "``pub``" in the section name indicates that the entries
1241in the table are publicly visible names only. This means no static or hidden
1242functions show up in the "``.debug_pubnames``". No static variables or private
1243class variables are in the "``.debug_pubtypes``". Many compilers add different
1244things to these tables, so we can't rely upon the contents between gcc, icc, or
1245clang.
1246
1247The typical query given by users tends not to match up with the contents of
1248these tables. For example, the DWARF spec states that "In the case of the name
1249of a function member or static data member of a C++ structure, class or union,
1250the name presented in the "``.debug_pubnames``" section is not the simple name
1251given by the ``DW_AT_name attribute`` of the referenced debugging information
1252entry, but rather the fully qualified name of the data or function member."
1253So the only names in these tables for complex C++ entries is a fully
1254qualified name. Debugger users tend not to enter their search strings as
1255"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1256"``a::b::c``". So the name entered in the name table must be demangled in
1257order to chop it up appropriately and additional names must be manually entered
1258into the table to make it effective as a name lookup table for debuggers to
1259se.
1260
1261All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1262its inconsistent and useless public-only name content making it a waste of
1263space in the object file. These tables, when they are written to disk, are not
1264sorted in any way, leaving every debugger to do its own parsing and sorting.
1265These tables also include an inlined copy of the string values in the table
1266itself making the tables much larger than they need to be on disk, especially
1267for large C++ programs.
1268
1269Can't we just fix the sections by adding all of the names we need to this
1270table? No, because that is not what the tables are defined to contain and we
1271won't know the difference between the old bad tables and the new good tables.
1272At best we could make our own renamed sections that contain all of the data we
1273need.
1274
1275These tables are also insufficient for what a debugger like LLDB needs. LLDB
1276uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1277often asked to look for type "``foo``" or namespace "``bar``", or list items in
1278namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1279tables. Since clang asks a lot of questions when it is parsing an expression,
1280we need to be very fast when looking up names, as it happens a lot. Having new
1281accelerator tables that are optimized for very quick lookups will benefit this
1282type of debugging experience greatly.
1283
1284We would like to generate name lookup tables that can be mapped into memory
1285from disk, and used as is, with little or no up-front parsing. We would also
1286be able to control the exact content of these different tables so they contain
1287exactly what we need. The Name Accelerator Tables were designed to fix these
1288issues. In order to solve these issues we need to:
1289
1290* Have a format that can be mapped into memory from disk and used as is
1291* Lookups should be very fast
1292* Extensible table format so these tables can be made by many producers
1293* Contain all of the names needed for typical lookups out of the box
1294* Strict rules for the contents of tables
1295
1296Table size is important and the accelerator table format should allow the reuse
1297of strings from common string tables so the strings for the names are not
1298duplicated. We also want to make sure the table is ready to be used as-is by
1299simply mapping the table into memory with minimal header parsing.
1300
1301The name lookups need to be fast and optimized for the kinds of lookups that
1302debuggers tend to do. Optimally we would like to touch as few parts of the
1303mapped table as possible when doing a name lookup and be able to quickly find
1304the name entry we are looking for, or discover there are no matches. In the
1305case of debuggers we optimized for lookups that fail most of the time.
1306
1307Each table that is defined should have strict rules on exactly what is in the
1308accelerator tables and documented so clients can rely on the content.
1309
1310Hash Tables
1311^^^^^^^^^^^
1312
1313Standard Hash Tables
1314""""""""""""""""""""
1315
1316Typical hash tables have a header, buckets, and each bucket points to the
1317bucket contents:
1318
1319.. code-block:: none
1320
1321 .------------.
1322 | HEADER |
1323 |------------|
1324 | BUCKETS |
1325 |------------|
1326 | DATA |
1327 `------------'
1328
1329The BUCKETS are an array of offsets to DATA for each hash:
1330
1331.. code-block:: none
1332
1333 .------------.
1334 | 0x00001000 | BUCKETS[0]
1335 | 0x00002000 | BUCKETS[1]
1336 | 0x00002200 | BUCKETS[2]
1337 | 0x000034f0 | BUCKETS[3]
1338 | | ...
1339 | 0xXXXXXXXX | BUCKETS[n_buckets]
1340 '------------'
1341
1342So for ``bucket[3]`` in the example above, we have an offset into the table
13430x000034f0 which points to a chain of entries for the bucket. Each bucket must
1344contain a next pointer, full 32 bit hash value, the string itself, and the data
1345for the current string value.
1346
1347.. code-block:: none
1348
1349 .------------.
1350 0x000034f0: | 0x00003500 | next pointer
1351 | 0x12345678 | 32 bit hash
1352 | "erase" | string value
1353 | data[n] | HashData for this bucket
1354 |------------|
1355 0x00003500: | 0x00003550 | next pointer
1356 | 0x29273623 | 32 bit hash
1357 | "dump" | string value
1358 | data[n] | HashData for this bucket
1359 |------------|
1360 0x00003550: | 0x00000000 | next pointer
1361 | 0x82638293 | 32 bit hash
1362 | "main" | string value
1363 | data[n] | HashData for this bucket
1364 `------------'
1365
1366The problem with this layout for debuggers is that we need to optimize for the
1367negative lookup case where the symbol we're searching for is not present. So
1368if we were to lookup "``printf``" in the table above, we would make a 32 hash
1369for "``printf``", it might match ``bucket[3]``. We would need to go to the
1370offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1371so, we need to read the next pointer, then read the hash, compare it, and skip
1372to the next bucket. Each time we are skipping many bytes in memory and
1373touching new cache pages just to do the compare on the full 32 bit hash. All
1374of these accesses then tell us that we didn't have a match.
1375
1376Name Hash Tables
1377""""""""""""""""
1378
1379To solve the issues mentioned above we have structured the hash tables a bit
1380differently: a header, buckets, an array of all unique 32 bit hash values,
1381followed by an array of hash value data offsets, one for each hash value, then
1382the data for all hash values:
1383
1384.. code-block:: none
1385
1386 .-------------.
1387 | HEADER |
1388 |-------------|
1389 | BUCKETS |
1390 |-------------|
1391 | HASHES |
1392 |-------------|
1393 | OFFSETS |
1394 |-------------|
1395 | DATA |
1396 `-------------'
1397
1398The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1399making all of the full 32 bit hash values contiguous in memory, we allow
1400ourselves to efficiently check for a match while touching as little memory as
1401possible. Most often checking the 32 bit hash values is as far as the lookup
1402goes. If it does match, it usually is a match with no collisions. So for a
1403table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1404values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1405``OFFSETS`` as:
1406
1407.. code-block:: none
1408
1409 .-------------------------.
1410 | HEADER.magic | uint32_t
1411 | HEADER.version | uint16_t
1412 | HEADER.hash_function | uint16_t
1413 | HEADER.bucket_count | uint32_t
1414 | HEADER.hashes_count | uint32_t
1415 | HEADER.header_data_len | uint32_t
1416 | HEADER_DATA | HeaderData
1417 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +00001418 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001419 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +00001420 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001421 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +00001422 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001423 |-------------------------|
1424 | ALL HASH DATA |
1425 `-------------------------'
1426
1427So taking the exact same data from the standard hash example above we end up
1428with:
1429
1430.. code-block:: none
1431
1432 .------------.
1433 | HEADER |
1434 |------------|
1435 | 0 | BUCKETS[0]
1436 | 2 | BUCKETS[1]
1437 | 5 | BUCKETS[2]
1438 | 6 | BUCKETS[3]
1439 | | ...
1440 | ... | BUCKETS[n_buckets]
1441 |------------|
1442 | 0x........ | HASHES[0]
1443 | 0x........ | HASHES[1]
1444 | 0x........ | HASHES[2]
1445 | 0x........ | HASHES[3]
1446 | 0x........ | HASHES[4]
1447 | 0x........ | HASHES[5]
1448 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1449 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1450 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1451 | 0x........ | HASHES[9]
1452 | 0x........ | HASHES[10]
1453 | 0x........ | HASHES[11]
1454 | 0x........ | HASHES[12]
1455 | 0x........ | HASHES[13]
1456 | 0x........ | HASHES[n_hashes]
1457 |------------|
1458 | 0x........ | OFFSETS[0]
1459 | 0x........ | OFFSETS[1]
1460 | 0x........ | OFFSETS[2]
1461 | 0x........ | OFFSETS[3]
1462 | 0x........ | OFFSETS[4]
1463 | 0x........ | OFFSETS[5]
1464 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1465 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1466 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1467 | 0x........ | OFFSETS[9]
1468 | 0x........ | OFFSETS[10]
1469 | 0x........ | OFFSETS[11]
1470 | 0x........ | OFFSETS[12]
1471 | 0x........ | OFFSETS[13]
1472 | 0x........ | OFFSETS[n_hashes]
1473 |------------|
1474 | |
1475 | |
1476 | |
1477 | |
1478 | |
1479 |------------|
1480 0x000034f0: | 0x00001203 | .debug_str ("erase")
1481 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1482 | 0x........ | HashData[0]
1483 | 0x........ | HashData[1]
1484 | 0x........ | HashData[2]
1485 | 0x........ | HashData[3]
1486 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1487 |------------|
1488 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1489 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1490 | 0x........ | HashData[0]
1491 | 0x........ | HashData[1]
1492 | 0x00001203 | String offset into .debug_str ("dump")
1493 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1494 | 0x........ | HashData[0]
1495 | 0x........ | HashData[1]
1496 | 0x........ | HashData[2]
1497 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1498 |------------|
1499 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1500 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1501 | 0x........ | HashData[0]
1502 | 0x........ | HashData[1]
1503 | 0x........ | HashData[2]
1504 | 0x........ | HashData[3]
1505 | 0x........ | HashData[4]
1506 | 0x........ | HashData[5]
1507 | 0x........ | HashData[6]
1508 | 0x........ | HashData[7]
1509 | 0x........ | HashData[8]
1510 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1511 `------------'
1512
1513So we still have all of the same data, we just organize it more efficiently for
1514debugger lookup. If we repeat the same "``printf``" lookup from above, we
1515would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1516hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1517is the index into the ``HASHES`` table. We would then compare any consecutive
151832 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1519``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1520``n_buckets`` is still 3. In the case of a failed lookup we would access the
1521memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1522before we know that we have no match. We don't end up marching through
1523multiple words of memory and we really keep the number of processor data cache
1524lines being accessed as small as possible.
1525
1526The string hash that is used for these lookup tables is the Daniel J.
1527Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1528very good hash for all kinds of names in programs with very few hash
1529collisions.
1530
1531Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1532
1533Details
1534^^^^^^^
1535
1536These name hash tables are designed to be generic where specializations of the
1537table get to define additional data that goes into the header ("``HeaderData``"),
1538how the string value is stored ("``KeyType``") and the content of the data for each
1539hash value.
1540
1541Header Layout
1542"""""""""""""
1543
1544The header has a fixed part, and the specialized part. The exact format of the
1545header is:
1546
1547.. code-block:: c
1548
1549 struct Header
1550 {
1551 uint32_t magic; // 'HASH' magic value to allow endian detection
1552 uint16_t version; // Version number
1553 uint16_t hash_function; // The hash function enumeration that was used
1554 uint32_t bucket_count; // The number of buckets in this hash table
1555 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1556 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1557 // Specifically the length of the following HeaderData field - this does not
1558 // include the size of the preceding fields
1559 HeaderData header_data; // Implementation specific header data
1560 };
1561
1562The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1563encoded as an ASCII integer. This allows the detection of the start of the
1564hash table and also allows the table's byte order to be determined so the table
1565can be correctly extracted. The "``magic``" value is followed by a 16 bit
1566``version`` number which allows the table to be revised and modified in the
1567future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1568enumeration that specifies which hash function was used to produce this table.
1569The current values for the hash function enumerations include:
1570
1571.. code-block:: c
1572
1573 enum HashFunctionType
1574 {
1575 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1576 };
1577
1578``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1579are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1580hash values that are in the ``HASHES`` array, and is the same number of offsets
1581are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1582in bytes of the ``HeaderData`` that is filled in by specialized versions of
1583this table.
1584
1585Fixed Lookup
1586""""""""""""
1587
1588The header is followed by the buckets, hashes, offsets, and hash value data.
1589
1590.. code-block:: c
1591
1592 struct FixedTable
1593 {
1594 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1595 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1596 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1597 };
1598
1599``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
1600``hashes`` array contains all of the 32 bit hash values for all names in the
1601hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
1602array that points to the data for the hash value.
1603
1604This table setup makes it very easy to repurpose these tables to contain
1605different data, while keeping the lookup mechanism the same for all tables.
1606This layout also makes it possible to save the table to disk and map it in
1607later and do very efficient name lookups with little or no parsing.
1608
1609DWARF lookup tables can be implemented in a variety of ways and can store a lot
1610of information for each name. We want to make the DWARF tables extensible and
1611able to store the data efficiently so we have used some of the DWARF features
1612that enable efficient data storage to define exactly what kind of data we store
1613for each name.
1614
1615The ``HeaderData`` contains a definition of the contents of each HashData chunk.
1616We might want to store an offset to all of the debug information entries (DIEs)
1617for each name. To keep things extensible, we create a list of items, or
1618Atoms, that are contained in the data for each name. First comes the type of
1619the data in each atom:
1620
1621.. code-block:: c
1622
1623 enum AtomType
1624 {
1625 eAtomTypeNULL = 0u,
1626 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
1627 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
1628 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
1629 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
1630 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
1631 };
1632
1633The enumeration values and their meanings are:
1634
1635.. code-block:: none
1636
1637 eAtomTypeNULL - a termination atom that specifies the end of the atom list
1638 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
1639 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
1640 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
1641 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
1642 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
1643
1644Then we allow each atom type to define the atom type and how the data for each
1645atom type data is encoded:
1646
1647.. code-block:: c
1648
1649 struct Atom
1650 {
1651 uint16_t type; // AtomType enum value
1652 uint16_t form; // DWARF DW_FORM_XXX defines
1653 };
1654
1655The ``form`` type above is from the DWARF specification and defines the exact
1656encoding of the data for the Atom type. See the DWARF specification for the
1657``DW_FORM_`` definitions.
1658
1659.. code-block:: c
1660
1661 struct HeaderData
1662 {
1663 uint32_t die_offset_base;
1664 uint32_t atom_count;
1665 Atoms atoms[atom_count0];
1666 };
1667
1668``HeaderData`` defines the base DIE offset that should be added to any atoms
1669that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
1670``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
1671what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
1672each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
1673should be interpreted.
1674
1675For the current implementations of the "``.apple_names``" (all functions +
1676globals), the "``.apple_types``" (names of all types that are defined), and
1677the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
1678array to be:
1679
1680.. code-block:: c
1681
1682 HeaderData.atom_count = 1;
1683 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
1684 HeaderData.atoms[0].form = DW_FORM_data4;
1685
1686This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
Eric Christopher911f1d32013-03-19 23:10:26 +00001687encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
1688multiple matching DIEs in a single file, which could come up with an inlined
1689function for instance. Future tables could include more information about the
1690DIE such as flags indicating if the DIE is a function, method, block,
1691or inlined.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001692
1693The KeyType for the DWARF table is a 32 bit string table offset into the
Eric Christopher911f1d32013-03-19 23:10:26 +00001694".debug_str" table. The ".debug_str" is the string table for the DWARF which
1695may already contain copies of all of the strings. This helps make sure, with
1696help from the compiler, that we reuse the strings between all of the DWARF
1697sections and keeps the hash table size down. Another benefit to having the
1698compiler generate all strings as DW_FORM_strp in the debug info, is that
1699DWARF parsing can be made much faster.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001700
1701After a lookup is made, we get an offset into the hash data. The hash data
Eric Christopher911f1d32013-03-19 23:10:26 +00001702needs to be able to deal with 32 bit hash collisions, so the chunk of data
1703at the offset in the hash data consists of a triple:
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001704
1705.. code-block:: c
1706
1707 uint32_t str_offset
1708 uint32_t hash_data_count
1709 HashData[hash_data_count]
1710
1711If "str_offset" is zero, then the bucket contents are done. 99.9% of the
Eric Christopher911f1d32013-03-19 23:10:26 +00001712hash data chunks contain a single item (no 32 bit hash collision):
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001713
1714.. code-block:: none
1715
1716 .------------.
1717 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1718 | 0x00000004 | uint32_t HashData count
1719 | 0x........ | uint32_t HashData[0] DIE offset
1720 | 0x........ | uint32_t HashData[1] DIE offset
1721 | 0x........ | uint32_t HashData[2] DIE offset
1722 | 0x........ | uint32_t HashData[3] DIE offset
1723 | 0x00000000 | uint32_t KeyType (end of hash chain)
1724 `------------'
1725
1726If there are collisions, you will have multiple valid string offsets:
1727
1728.. code-block:: none
1729
1730 .------------.
1731 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1732 | 0x00000004 | uint32_t HashData count
1733 | 0x........ | uint32_t HashData[0] DIE offset
1734 | 0x........ | uint32_t HashData[1] DIE offset
1735 | 0x........ | uint32_t HashData[2] DIE offset
1736 | 0x........ | uint32_t HashData[3] DIE offset
1737 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
1738 | 0x00000002 | uint32_t HashData count
1739 | 0x........ | uint32_t HashData[0] DIE offset
1740 | 0x........ | uint32_t HashData[1] DIE offset
1741 | 0x00000000 | uint32_t KeyType (end of hash chain)
1742 `------------'
1743
1744Current testing with real world C++ binaries has shown that there is around 1
174532 bit hash collision per 100,000 name entries.
1746
1747Contents
1748^^^^^^^^
1749
1750As we said, we want to strictly define exactly what is included in the
1751different tables. For DWARF, we have 3 tables: "``.apple_names``",
1752"``.apple_types``", and "``.apple_namespaces``".
1753
1754"``.apple_names``" sections should contain an entry for each DWARF DIE whose
1755``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
1756``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
1757``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
1758``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
1759static variables). All global and static variables should be included,
1760including those scoped within functions and classes. For example using the
1761following code:
1762
1763.. code-block:: c
1764
1765 static int var = 0;
1766
1767 void f ()
1768 {
1769 static int var = 0;
1770 }
1771
1772Both of the static ``var`` variables would be included in the table. All
1773functions should emit both their full names and their basenames. For C or C++,
1774the full name is the mangled name (if available) which is usually in the
1775``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
1776function basename. If global or static variables have a mangled name in a
1777``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
1778simple name found in the ``DW_AT_name`` attribute.
1779
1780"``.apple_types``" sections should contain an entry for each DWARF DIE whose
1781tag is one of:
1782
1783* DW_TAG_array_type
1784* DW_TAG_class_type
1785* DW_TAG_enumeration_type
1786* DW_TAG_pointer_type
1787* DW_TAG_reference_type
1788* DW_TAG_string_type
1789* DW_TAG_structure_type
1790* DW_TAG_subroutine_type
1791* DW_TAG_typedef
1792* DW_TAG_union_type
1793* DW_TAG_ptr_to_member_type
1794* DW_TAG_set_type
1795* DW_TAG_subrange_type
1796* DW_TAG_base_type
1797* DW_TAG_const_type
1798* DW_TAG_constant
1799* DW_TAG_file_type
1800* DW_TAG_namelist
1801* DW_TAG_packed_type
1802* DW_TAG_volatile_type
1803* DW_TAG_restrict_type
1804* DW_TAG_interface_type
1805* DW_TAG_unspecified_type
1806* DW_TAG_shared_type
1807
1808Only entries with a ``DW_AT_name`` attribute are included, and the entry must
1809not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
1810value). For example, using the following code:
1811
1812.. code-block:: c
1813
1814 int main ()
1815 {
1816 int *b = 0;
1817 return *b;
1818 }
1819
1820We get a few type DIEs:
1821
1822.. code-block:: none
1823
1824 0x00000067: TAG_base_type [5]
1825 AT_encoding( DW_ATE_signed )
1826 AT_name( "int" )
1827 AT_byte_size( 0x04 )
1828
1829 0x0000006e: TAG_pointer_type [6]
1830 AT_type( {0x00000067} ( int ) )
1831 AT_byte_size( 0x08 )
1832
1833The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
1834
1835"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
1836If we run into a namespace that has no name this is an anonymous namespace, and
1837the name should be output as "``(anonymous namespace)``" (without the quotes).
1838Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
1839standard C++ library that demangles mangled names.
1840
1841
1842Language Extensions and File Format Changes
1843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1844
1845Objective-C Extensions
1846""""""""""""""""""""""
1847
1848"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
1849Objective-C class. The name used in the hash table is the name of the
1850Objective-C class itself. If the Objective-C class has a category, then an
1851entry is made for both the class name without the category, and for the class
1852name with the category. So if we have a DIE at offset 0x1234 with a name of
1853method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
1854an entry for "``NSString``" that points to DIE 0x1234, and an entry for
1855"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
1856track down all Objective-C methods for an Objective-C class when doing
1857expressions. It is needed because of the dynamic nature of Objective-C where
1858anyone can add methods to a class. The DWARF for Objective-C methods is also
1859emitted differently from C++ classes where the methods are not usually
1860contained in the class definition, they are scattered about across one or more
1861compile units. Categories can also be defined in different shared libraries.
1862So we need to be able to quickly find all of the methods and class functions
1863given the Objective-C class name, or quickly find all methods and class
1864functions for a class + category name. This table does not contain any
1865selector names, it just maps Objective-C class names (or class names +
1866category) to all of the methods and class functions. The selectors are added
1867as function basenames in the "``.debug_names``" section.
1868
1869In the "``.apple_names``" section for Objective-C functions, the full name is
1870the entire function name with the brackets ("``-[NSString
1871stringWithCString:]``") and the basename is the selector only
1872("``stringWithCString:``").
1873
1874Mach-O Changes
1875""""""""""""""
1876
Alp Tokerf907b892013-12-05 05:44:44 +00001877The sections names for the apple hash tables are for non-mach-o files. For
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001878mach-o files, the sections should be contained in the ``__DWARF`` segment with
1879names as follows:
1880
1881* "``.apple_names``" -> "``__apple_names``"
1882* "``.apple_types``" -> "``__apple_types``"
1883* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
1884* "``.apple_objc``" -> "``__apple_objc``"
1885