blob: b5ed0755a4bf5d4d3e6ead0c7e2a092c9d2c0a3b [file] [log] [blame]
Eugene Zelenko076468c2017-09-20 21:35:51 +00001//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Chandler Carruth664e3542013-01-07 01:37:14 +00006//
7//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +00008
Chandler Carruth93dcdc42015-01-31 11:17:59 +00009#include "ARMTargetTransformInfo.h"
Eugene Zelenko076468c2017-09-20 21:35:51 +000010#include "ARMSubtarget.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "llvm/ADT/APInt.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/Analysis/LoopInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000015#include "llvm/CodeGen/CostTable.h"
Eugene Zelenko076468c2017-09-20 21:35:51 +000016#include "llvm/CodeGen/ISDOpcodes.h"
Craig Topper2fa14362018-03-29 17:21:10 +000017#include "llvm/CodeGen/ValueTypes.h"
Eugene Zelenko076468c2017-09-20 21:35:51 +000018#include "llvm/IR/BasicBlock.h"
19#include "llvm/IR/CallSite.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/Instruction.h"
23#include "llvm/IR/Instructions.h"
Sjoerd Meijerea31ddb2019-04-30 10:28:50 +000024#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko076468c2017-09-20 21:35:51 +000025#include "llvm/IR/Type.h"
26#include "llvm/MC/SubtargetFeature.h"
27#include "llvm/Support/Casting.h"
David Blaikie13e77db2018-03-23 23:58:25 +000028#include "llvm/Support/MachineValueType.h"
Eugene Zelenko076468c2017-09-20 21:35:51 +000029#include "llvm/Target/TargetMachine.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <utility>
34
Chandler Carruth664e3542013-01-07 01:37:14 +000035using namespace llvm;
36
Chandler Carruth84e68b22014-04-22 02:41:26 +000037#define DEBUG_TYPE "armtti"
38
David Greenb325c052019-09-15 14:14:47 +000039static cl::opt<bool> EnableMaskedLoadStores(
40 "enable-arm-maskedldst", cl::Hidden, cl::init(false),
41 cl::desc("Enable the generation of masked loads and stores"));
42
Sam Parker757ac022019-06-12 12:00:42 +000043static cl::opt<bool> DisableLowOverheadLoops(
Sam Parkere3a4a132019-07-30 08:14:28 +000044 "disable-arm-loloops", cl::Hidden, cl::init(false),
Sam Parker757ac022019-06-12 12:00:42 +000045 cl::desc("Disable the generation of low-overhead loops"));
46
Florian Hahn4adcfcf2017-07-13 08:26:17 +000047bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
48 const Function *Callee) const {
49 const TargetMachine &TM = getTLI()->getTargetMachine();
50 const FeatureBitset &CallerBits =
51 TM.getSubtargetImpl(*Caller)->getFeatureBits();
52 const FeatureBitset &CalleeBits =
53 TM.getSubtargetImpl(*Callee)->getFeatureBits();
54
55 // To inline a callee, all features not in the whitelist must match exactly.
56 bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
57 (CalleeBits & ~InlineFeatureWhitelist);
58 // For features in the whitelist, the callee's features must be a subset of
59 // the callers'.
60 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
61 (CalleeBits & InlineFeatureWhitelist);
62 return MatchExact && MatchSubset;
63}
64
Chandler Carruth93205eb2015-08-05 18:08:10 +000065int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Chandler Carruth664e3542013-01-07 01:37:14 +000066 assert(Ty->isIntegerTy());
67
Tim Northover5c02f9a2016-04-13 23:08:27 +000068 unsigned Bits = Ty->getPrimitiveSizeInBits();
Weiming Zhao5410edd2016-06-28 22:30:45 +000069 if (Bits == 0 || Imm.getActiveBits() >= 64)
Tim Northover5c02f9a2016-04-13 23:08:27 +000070 return 4;
Chandler Carruth664e3542013-01-07 01:37:14 +000071
Tim Northover5c02f9a2016-04-13 23:08:27 +000072 int64_t SImmVal = Imm.getSExtValue();
73 uint64_t ZImmVal = Imm.getZExtValue();
Chandler Carruth664e3542013-01-07 01:37:14 +000074 if (!ST->isThumb()) {
75 if ((SImmVal >= 0 && SImmVal < 65536) ||
76 (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
77 (ARM_AM::getSOImmVal(~ZImmVal) != -1))
78 return 1;
79 return ST->hasV6T2Ops() ? 2 : 3;
Duncan P. N. Exon Smith429d2602014-03-08 15:15:42 +000080 }
81 if (ST->isThumb2()) {
Chandler Carruth664e3542013-01-07 01:37:14 +000082 if ((SImmVal >= 0 && SImmVal < 65536) ||
83 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
84 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
85 return 1;
86 return ST->hasV6T2Ops() ? 2 : 3;
Chandler Carruth664e3542013-01-07 01:37:14 +000087 }
Zhaoshi Zheng05b46dc2018-09-24 16:15:23 +000088 // Thumb1, any i8 imm cost 1.
89 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
Duncan P. N. Exon Smith429d2602014-03-08 15:15:42 +000090 return 1;
James Molloy7c7255e2016-09-08 12:58:04 +000091 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
Duncan P. N. Exon Smith429d2602014-03-08 15:15:42 +000092 return 2;
93 // Load from constantpool.
94 return 3;
Chandler Carruth664e3542013-01-07 01:37:14 +000095}
Renato Golin5e9d55e2013-01-29 23:31:38 +000096
Sjoerd Meijer38c2cd02016-07-14 07:44:20 +000097// Constants smaller than 256 fit in the immediate field of
98// Thumb1 instructions so we return a zero cost and 1 otherwise.
99int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
100 const APInt &Imm, Type *Ty) {
101 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
102 return 0;
103
104 return 1;
105}
106
Tim Northover903f81b2016-04-15 18:17:18 +0000107int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
108 Type *Ty) {
109 // Division by a constant can be turned into multiplication, but only if we
110 // know it's constant. So it's not so much that the immediate is cheap (it's
111 // not), but that the alternative is worse.
112 // FIXME: this is probably unneeded with GlobalISel.
113 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
114 Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
115 Idx == 1)
116 return 0;
117
David Greenb4f36a22019-02-04 11:58:48 +0000118 if (Opcode == Instruction::And) {
119 // UXTB/UXTH
120 if (Imm == 255 || Imm == 65535)
121 return 0;
122 // Conversion to BIC is free, and means we can use ~Imm instead.
123 return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
124 }
James Molloy753c18f2016-09-08 12:58:12 +0000125
James Molloy57d9dfa2016-09-09 13:35:36 +0000126 if (Opcode == Instruction::Add)
127 // Conversion to SUB is free, and means we can use -Imm instead.
128 return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
129
James Molloy1454e902016-09-09 13:35:28 +0000130 if (Opcode == Instruction::ICmp && Imm.isNegative() &&
131 Ty->getIntegerBitWidth() == 32) {
132 int64_t NegImm = -Imm.getSExtValue();
133 if (ST->isThumb2() && NegImm < 1<<12)
134 // icmp X, #-C -> cmn X, #C
135 return 0;
136 if (ST->isThumb() && NegImm < 1<<8)
137 // icmp X, #-C -> adds X, #C
138 return 0;
139 }
140
David Green05647642018-02-20 11:07:35 +0000141 // xor a, -1 can always be folded to MVN
David Green01e0f252018-02-22 09:38:57 +0000142 if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
143 return 0;
David Green05647642018-02-20 11:07:35 +0000144
Tim Northover903f81b2016-04-15 18:17:18 +0000145 return getIntImmCost(Imm, Ty);
146}
147
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000148int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
149 const Instruction *I) {
Renato Golin5e9d55e2013-01-29 23:31:38 +0000150 int ISD = TLI->InstructionOpcodeToISD(Opcode);
151 assert(ISD && "Invalid opcode");
152
Arnold Schwaighoferf5284ff2013-03-15 15:10:47 +0000153 // Single to/from double precision conversions.
Craig Topper4b275762015-10-28 04:02:12 +0000154 static const CostTblEntry NEONFltDblTbl[] = {
Arnold Schwaighoferf5284ff2013-03-15 15:10:47 +0000155 // Vector fptrunc/fpext conversions.
156 { ISD::FP_ROUND, MVT::v2f64, 2 },
157 { ISD::FP_EXTEND, MVT::v2f32, 2 },
158 { ISD::FP_EXTEND, MVT::v4f32, 4 }
159 };
160
161 if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
162 ISD == ISD::FP_EXTEND)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +0000163 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Craig Topperee0c8592015-10-27 04:14:24 +0000164 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
165 return LT.first * Entry->Cost;
Arnold Schwaighoferf5284ff2013-03-15 15:10:47 +0000166 }
167
Mehdi Amini44ede332015-07-09 02:09:04 +0000168 EVT SrcTy = TLI->getValueType(DL, Src);
169 EVT DstTy = TLI->getValueType(DL, Dst);
Renato Golin5e9d55e2013-01-29 23:31:38 +0000170
171 if (!SrcTy.isSimple() || !DstTy.isSimple())
Chandler Carruth705b1852015-01-31 03:43:40 +0000172 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Renato Golin5e9d55e2013-01-29 23:31:38 +0000173
David Green86876422019-08-12 17:39:56 +0000174 // The extend of a load is free
175 if (I && isa<LoadInst>(I->getOperand(0))) {
176 static const TypeConversionCostTblEntry LoadConversionTbl[] = {
177 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
178 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
179 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
180 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
181 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
182 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
183 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
184 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
185 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
186 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
187 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
188 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
189 };
190 if (const auto *Entry = ConvertCostTableLookup(
191 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
192 return Entry->Cost;
David Greenb782e612019-08-16 15:13:37 +0000193
194 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
195 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
196 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
197 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
198 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
199 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
200 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
201 };
202 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
203 if (const auto *Entry =
204 ConvertCostTableLookup(MVELoadConversionTbl, ISD,
205 DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
206 return Entry->Cost;
207 }
David Green86876422019-08-12 17:39:56 +0000208 }
209
Renato Golin5e9d55e2013-01-29 23:31:38 +0000210 // Some arithmetic, load and store operations have specific instructions
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000211 // to cast up/down their types automatically at no extra cost.
212 // TODO: Get these tables to know at least what the related operations are.
Craig Topper4b275762015-10-28 04:02:12 +0000213 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
Renato Golin5e9d55e2013-01-29 23:31:38 +0000214 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
215 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
216 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
217 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
218 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
219 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000220
Renato Golin227eb6f2013-03-19 08:15:38 +0000221 // The number of vmovl instructions for the extension.
222 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
223 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
224 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
225 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
226 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
227 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
228 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
229 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
230 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
231 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
232
Jim Grosbach563983c2013-04-21 23:47:41 +0000233 // Operations that we legalize using splitting.
234 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
235 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Arnold Schwaighofer90774f32013-03-12 21:19:22 +0000236
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000237 // Vector float <-> i32 conversions.
238 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
239 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Arnold Schwaighoferae0052f2013-03-18 22:47:09 +0000240
241 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
242 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
243 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
244 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
245 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
246 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
247 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
248 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
249 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
250 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
251 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
252 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
253 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
254 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
255 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
256 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
257 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
258 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
259 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
260 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
261
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000262 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
263 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
Arnold Schwaighofer6c9c3a82013-03-18 22:47:06 +0000264 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
265 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
266 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
267 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000268
269 // Vector double <-> i32 conversions.
270 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
271 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
Arnold Schwaighoferae0052f2013-03-18 22:47:09 +0000272
273 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
274 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
275 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
276 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
277 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
278 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
279
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000280 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
Arnold Schwaighofer6c9c3a82013-03-18 22:47:06 +0000281 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
282 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
283 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
284 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
285 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
Renato Golin5e9d55e2013-01-29 23:31:38 +0000286 };
287
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000288 if (SrcTy.isVector() && ST->hasNEON()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000289 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
290 DstTy.getSimpleVT(),
291 SrcTy.getSimpleVT()))
292 return Entry->Cost;
Renato Golin5e9d55e2013-01-29 23:31:38 +0000293 }
294
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000295 // Scalar float to integer conversions.
Craig Topper4b275762015-10-28 04:02:12 +0000296 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000297 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
298 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
299 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
300 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
301 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
302 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
303 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
304 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
305 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
306 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
307 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
308 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
309 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
310 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
311 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
312 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
313 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
314 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
315 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
316 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
317 };
318 if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000319 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
320 DstTy.getSimpleVT(),
321 SrcTy.getSimpleVT()))
322 return Entry->Cost;
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000323 }
324
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000325 // Scalar integer to float conversions.
Craig Topper4b275762015-10-28 04:02:12 +0000326 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000327 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
328 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
329 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
330 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
331 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
332 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
333 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
334 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
335 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
336 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
337 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
338 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
339 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
340 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
341 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
342 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
343 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
344 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
345 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
346 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
347 };
348
349 if (SrcTy.isInteger() && ST->hasNEON()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000350 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
351 ISD, DstTy.getSimpleVT(),
352 SrcTy.getSimpleVT()))
353 return Entry->Cost;
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000354 }
355
David Green2bfc13f2019-08-19 09:13:22 +0000356 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
357 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
358 // are linearised so take more.
359 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
360 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
361 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
362 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
363 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
364 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
365 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
366 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
367 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
368 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
369 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
370 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
371 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
372 };
373
374 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
375 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
376 ISD, DstTy.getSimpleVT(),
377 SrcTy.getSimpleVT()))
378 return Entry->Cost * ST->getMVEVectorCostFactor();
379 }
380
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000381 // Scalar integer conversion costs.
Craig Topper4b275762015-10-28 04:02:12 +0000382 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000383 // i16 -> i64 requires two dependent operations.
384 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
385
386 // Truncates on i64 are assumed to be free.
387 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
388 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
389 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
390 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
391 };
392
393 if (SrcTy.isInteger()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000394 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
395 DstTy.getSimpleVT(),
396 SrcTy.getSimpleVT()))
397 return Entry->Cost;
Arnold Schwaighofera804bbe2013-02-05 14:05:55 +0000398 }
399
David Greena6553932019-08-13 18:12:08 +0000400 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
401 ? ST->getMVEVectorCostFactor()
402 : 1;
403 return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src);
Renato Golin5e9d55e2013-01-29 23:31:38 +0000404}
Arnold Schwaighofer98f10122013-02-04 02:52:05 +0000405
Chandler Carruth93205eb2015-08-05 18:08:10 +0000406int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
407 unsigned Index) {
Arnold Schwaighofer594fa2d2013-02-08 14:50:48 +0000408 // Penalize inserting into an D-subregister. We end up with a three times
409 // lower estimated throughput on swift.
Diana Picus4879b052016-07-06 09:22:23 +0000410 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
411 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
Arnold Schwaighofer594fa2d2013-02-08 14:50:48 +0000412 return 3;
Arnold Schwaighofer98f10122013-02-04 02:52:05 +0000413
David Green83bbfaa2019-08-12 15:59:52 +0000414 if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
415 Opcode == Instruction::ExtractElement)) {
Silviu Barangad5ac2692015-08-17 15:57:05 +0000416 // Cross-class copies are expensive on many microarchitectures,
417 // so assume they are expensive by default.
418 if (ValTy->getVectorElementType()->isIntegerTy())
419 return 3;
420
421 // Even if it's not a cross class copy, this likely leads to mixing
422 // of NEON and VFP code and should be therefore penalized.
423 if (ValTy->isVectorTy() &&
424 ValTy->getScalarSizeInBits() <= 32)
425 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
426 }
James Molloya9f47b62014-09-12 13:29:40 +0000427
David Greena6553932019-08-13 18:12:08 +0000428 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
429 Opcode == Instruction::ExtractElement)) {
430 // We say MVE moves costs at least the MVEVectorCostFactor, even though
431 // they are scalar instructions. This helps prevent mixing scalar and
432 // vector, to prevent vectorising where we end up just scalarising the
433 // result anyway.
434 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
435 ST->getMVEVectorCostFactor()) *
436 ValTy->getVectorNumElements() / 2;
437 }
438
Chandler Carruth705b1852015-01-31 03:43:40 +0000439 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
Arnold Schwaighofer98f10122013-02-04 02:52:05 +0000440}
Arnold Schwaighofer213fced2013-02-07 16:10:15 +0000441
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000442int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
443 const Instruction *I) {
Arnold Schwaighofer213fced2013-02-07 16:10:15 +0000444 int ISD = TLI->InstructionOpcodeToISD(Opcode);
Hiroshi Inoue7f9f92f2018-02-22 07:48:29 +0000445 // On NEON a vector select gets lowered to vbsl.
Arnold Schwaighofer213fced2013-02-07 16:10:15 +0000446 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
Arnold Schwaighofer8070b382013-03-14 19:17:02 +0000447 // Lowering of some vector selects is currently far from perfect.
Craig Topper4b275762015-10-28 04:02:12 +0000448 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
Arnold Schwaighofer8070b382013-03-14 19:17:02 +0000449 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
450 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
451 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
452 };
453
Mehdi Amini44ede332015-07-09 02:09:04 +0000454 EVT SelCondTy = TLI->getValueType(DL, CondTy);
455 EVT SelValTy = TLI->getValueType(DL, ValTy);
Renato Golin0178a252013-08-02 17:10:04 +0000456 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000457 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
458 SelCondTy.getSimpleVT(),
459 SelValTy.getSimpleVT()))
460 return Entry->Cost;
Renato Golin0178a252013-08-02 17:10:04 +0000461 }
Arnold Schwaighofer8070b382013-03-14 19:17:02 +0000462
Chandler Carruth93205eb2015-08-05 18:08:10 +0000463 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Arnold Schwaighofer213fced2013-02-07 16:10:15 +0000464 return LT.first;
465 }
466
David Greena6553932019-08-13 18:12:08 +0000467 int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy()
468 ? ST->getMVEVectorCostFactor()
469 : 1;
470 return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Arnold Schwaighofer213fced2013-02-07 16:10:15 +0000471}
Arnold Schwaighofer594fa2d2013-02-08 14:50:48 +0000472
Mohammed Agabaria23599ba2017-01-05 14:03:41 +0000473int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
474 const SCEV *Ptr) {
Arnold Schwaighoferda2b3112013-07-12 19:16:04 +0000475 // Address computations in vectorized code with non-consecutive addresses will
476 // likely result in more instructions compared to scalar code where the
477 // computation can more often be merged into the index mode. The resulting
478 // extra micro-ops can significantly decrease throughput.
479 unsigned NumVectorInstToHideOverhead = 10;
Mohammed Agabaria23599ba2017-01-05 14:03:41 +0000480 int MaxMergeDistance = 64;
Arnold Schwaighoferda2b3112013-07-12 19:16:04 +0000481
David Green83bbfaa2019-08-12 15:59:52 +0000482 if (ST->hasNEON()) {
483 if (Ty->isVectorTy() && SE &&
484 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
485 return NumVectorInstToHideOverhead;
Arnold Schwaighoferda2b3112013-07-12 19:16:04 +0000486
David Green83bbfaa2019-08-12 15:59:52 +0000487 // In many cases the address computation is not merged into the instruction
488 // addressing mode.
489 return 1;
490 }
491 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer594fa2d2013-02-08 14:50:48 +0000492}
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000493
Sam Parker527a35e2019-10-14 10:00:21 +0000494bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
David Greenb325c052019-09-15 14:14:47 +0000495 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
496 return false;
497
498 if (DataTy->isVectorTy()) {
499 // We don't yet support narrowing or widening masked loads/stores. Expand
500 // them for the moment.
501 unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
502 if (VecWidth != 128)
503 return false;
504 }
505
506 unsigned EltWidth = DataTy->getScalarSizeInBits();
507 return EltWidth == 32 || EltWidth == 16 || EltWidth == 8;
508}
509
Sjoerd Meijerea31ddb2019-04-30 10:28:50 +0000510int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
511 const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
512 assert(MI && "MemcpyInst expected");
513 ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());
514
515 // To model the cost of a library call, we assume 1 for the call, and
516 // 3 for the argument setup.
517 const unsigned LibCallCost = 4;
518
519 // If 'size' is not a constant, a library call will be generated.
520 if (!C)
521 return LibCallCost;
522
523 const unsigned Size = C->getValue().getZExtValue();
524 const unsigned DstAlign = MI->getDestAlignment();
525 const unsigned SrcAlign = MI->getSourceAlignment();
526 const Function *F = I->getParent()->getParent();
527 const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
528 std::vector<EVT> MemOps;
529
530 // MemOps will be poplulated with a list of data types that needs to be
531 // loaded and stored. That's why we multiply the number of elements by 2 to
532 // get the cost for this memcpy.
533 if (getTLI()->findOptimalMemOpLowering(
534 MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/,
535 false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/,
536 MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
537 F->getAttributes()))
538 return MemOps.size() * 2;
539
540 // If we can't find an optimal memop lowering, return the default cost
541 return LibCallCost;
542}
543
Chandler Carruth93205eb2015-08-05 18:08:10 +0000544int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
545 Type *SubTp) {
David Green83bbfaa2019-08-12 15:59:52 +0000546 if (ST->hasNEON()) {
547 if (Kind == TTI::SK_Broadcast) {
548 static const CostTblEntry NEONDupTbl[] = {
549 // VDUP handles these cases.
550 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
551 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
552 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
553 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
554 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
555 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000556
David Green83bbfaa2019-08-12 15:59:52 +0000557 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
558 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
559 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
560 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
Simon Pilgrim071e8222018-10-25 10:52:36 +0000561
David Green83bbfaa2019-08-12 15:59:52 +0000562 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Simon Pilgrim071e8222018-10-25 10:52:36 +0000563
David Green83bbfaa2019-08-12 15:59:52 +0000564 if (const auto *Entry =
565 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
566 return LT.first * Entry->Cost;
567 }
568 if (Kind == TTI::SK_Reverse) {
569 static const CostTblEntry NEONShuffleTbl[] = {
570 // Reverse shuffle cost one instruction if we are shuffling within a
571 // double word (vrev) or two if we shuffle a quad word (vrev, vext).
572 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
573 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
574 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
575 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
576 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
577 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
Simon Pilgrim071e8222018-10-25 10:52:36 +0000578
David Green83bbfaa2019-08-12 15:59:52 +0000579 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
580 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
581 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
582 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000583
David Green83bbfaa2019-08-12 15:59:52 +0000584 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000585
David Green83bbfaa2019-08-12 15:59:52 +0000586 if (const auto *Entry =
587 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
588 return LT.first * Entry->Cost;
589 }
590 if (Kind == TTI::SK_Select) {
591 static const CostTblEntry NEONSelShuffleTbl[] = {
592 // Select shuffle cost table for ARM. Cost is the number of
593 // instructions
594 // required to create the shuffled vector.
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000595
David Green83bbfaa2019-08-12 15:59:52 +0000596 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
597 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
598 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
599 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000600
David Green83bbfaa2019-08-12 15:59:52 +0000601 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
602 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
603 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
Karthik Bhate03a25d2014-06-20 04:32:48 +0000604
David Green83bbfaa2019-08-12 15:59:52 +0000605 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
Karthik Bhate03a25d2014-06-20 04:32:48 +0000606
David Green83bbfaa2019-08-12 15:59:52 +0000607 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
Karthik Bhate03a25d2014-06-20 04:32:48 +0000608
David Green83bbfaa2019-08-12 15:59:52 +0000609 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
610 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
611 ISD::VECTOR_SHUFFLE, LT.second))
612 return LT.first * Entry->Cost;
613 }
Karthik Bhate03a25d2014-06-20 04:32:48 +0000614 }
David Green3e39f392019-08-12 16:54:07 +0000615 if (ST->hasMVEIntegerOps()) {
616 if (Kind == TTI::SK_Broadcast) {
617 static const CostTblEntry MVEDupTbl[] = {
618 // VDUP handles these cases.
619 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
620 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
621 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
622 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
623 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
624
625 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
626
627 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
628 LT.second))
David Greena6553932019-08-13 18:12:08 +0000629 return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
David Green3e39f392019-08-12 16:54:07 +0000630 }
631 }
David Greena6553932019-08-13 18:12:08 +0000632 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
633 ? ST->getMVEVectorCostFactor()
634 : 1;
635 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Arnold Schwaighofer89aef932013-02-12 02:40:39 +0000636}
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000637
Chandler Carruth93205eb2015-08-05 18:08:10 +0000638int ARMTTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000639 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
640 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000641 TTI::OperandValueProperties Opd2PropInfo,
642 ArrayRef<const Value *> Args) {
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000643 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
Chandler Carruth93205eb2015-08-05 18:08:10 +0000644 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000645
646 const unsigned FunctionCallDivCost = 20;
647 const unsigned ReciprocalDivCost = 10;
Craig Topper4b275762015-10-28 04:02:12 +0000648 static const CostTblEntry CostTbl[] = {
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000649 // Division.
650 // These costs are somewhat random. Choose a cost of 20 to indicate that
651 // vectorizing devision (added function call) is going to be very expensive.
652 // Double registers types.
653 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
654 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
655 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
656 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
657 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
658 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
659 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
660 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
661 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
662 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
663 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
664 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
665 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
666 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
667 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
668 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
669 // Quad register types.
670 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
671 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
672 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
673 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
674 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
675 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
676 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
677 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
678 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
679 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
680 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
681 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
682 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
683 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
684 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
685 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
686 // Multiplication.
687 };
688
David Greena6553932019-08-13 18:12:08 +0000689 if (ST->hasNEON()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000690 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
691 return LT.first * Entry->Cost;
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000692
David Greena6553932019-08-13 18:12:08 +0000693 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
694 Opd1PropInfo, Opd2PropInfo);
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000695
David Greena6553932019-08-13 18:12:08 +0000696 // This is somewhat of a hack. The problem that we are facing is that SROA
697 // creates a sequence of shift, and, or instructions to construct values.
698 // These sequences are recognized by the ISel and have zero-cost. Not so for
699 // the vectorized code. Because we have support for v2i64 but not i64 those
700 // sequences look particularly beneficial to vectorize.
701 // To work around this we increase the cost of v2i64 operations to make them
702 // seem less beneficial.
703 if (LT.second == MVT::v2i64 &&
704 Op2Info == TargetTransformInfo::OK_UniformConstantValue)
705 Cost += 4;
Arnold Schwaighofer77af0f62013-10-29 01:33:53 +0000706
David Greena6553932019-08-13 18:12:08 +0000707 return Cost;
708 }
709
710 int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy()
711 ? ST->getMVEVectorCostFactor()
712 : 1;
713
714 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
715 // without treating floats as more expensive that scalars or increasing the
716 // costs for custom operations. The results is also multiplied by the
717 // MVEVectorCostFactor where appropriate.
718 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
719 return LT.first * BaseCost;
720
721 // Else this is expand, assume that we need to scalarize this op.
722 if (Ty->isVectorTy()) {
723 unsigned Num = Ty->getVectorNumElements();
724 unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
725 // Return the cost of multiple scalar invocation plus the cost of
726 // inserting and extracting the values.
727 return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost;
728 }
729
730 return BaseCost;
Arnold Schwaighofer9881dcf2013-04-25 21:16:18 +0000731}
732
Chandler Carruth93205eb2015-08-05 18:08:10 +0000733int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000734 unsigned AddressSpace, const Instruction *I) {
Chandler Carruth93205eb2015-08-05 18:08:10 +0000735 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Arnold Schwaighofer89ae2172013-10-29 01:33:57 +0000736
David Green83bbfaa2019-08-12 15:59:52 +0000737 if (ST->hasNEON() && Src->isVectorTy() && Alignment != 16 &&
Arnold Schwaighofer89ae2172013-10-29 01:33:57 +0000738 Src->getVectorElementType()->isDoubleTy()) {
739 // Unaligned loads/stores are extremely inefficient.
740 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
741 return LT.first * 4;
742 }
David Greena6553932019-08-13 18:12:08 +0000743 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
744 ? ST->getMVEVectorCostFactor()
745 : 1;
746 return BaseCost * LT.first;
Arnold Schwaighofer89ae2172013-10-29 01:33:57 +0000747}
Hao Liu2cd34bb2015-06-26 02:45:36 +0000748
Chandler Carruth93205eb2015-08-05 18:08:10 +0000749int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
750 unsigned Factor,
751 ArrayRef<unsigned> Indices,
752 unsigned Alignment,
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000753 unsigned AddressSpace,
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000754 bool UseMaskForCond,
755 bool UseMaskForGaps) {
Hao Liu2cd34bb2015-06-26 02:45:36 +0000756 assert(Factor >= 2 && "Invalid interleave factor");
757 assert(isa<VectorType>(VecTy) && "Expect a vector type");
758
759 // vldN/vstN doesn't support vector types of i64/f64 element.
Ahmed Bougacha97564c32015-12-09 01:19:50 +0000760 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
Hao Liu2cd34bb2015-06-26 02:45:36 +0000761
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000762 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000763 !UseMaskForCond && !UseMaskForGaps) {
Hao Liu2cd34bb2015-06-26 02:45:36 +0000764 unsigned NumElts = VecTy->getVectorNumElements();
Matthew Simpson1468d3e2017-04-10 18:34:37 +0000765 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
Hao Liu2cd34bb2015-06-26 02:45:36 +0000766
767 // vldN/vstN only support legal vector types of size 64 or 128 in bits.
Matthew Simpsonaee97712017-03-02 15:15:35 +0000768 // Accesses having vector types that are a multiple of 128 bits can be
769 // matched to more than one vldN/vstN instruction.
Matthew Simpson1468d3e2017-04-10 18:34:37 +0000770 if (NumElts % Factor == 0 &&
771 TLI->isLegalInterleavedAccessType(SubVecTy, DL))
772 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
Hao Liu2cd34bb2015-06-26 02:45:36 +0000773 }
774
775 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000776 Alignment, AddressSpace,
777 UseMaskForCond, UseMaskForGaps);
Hao Liu2cd34bb2015-06-26 02:45:36 +0000778}
Sam Parker19a08e42017-07-25 08:51:30 +0000779
Sam Parker757ac022019-06-12 12:00:42 +0000780bool ARMTTIImpl::isLoweredToCall(const Function *F) {
781 if (!F->isIntrinsic())
782 BaseT::isLoweredToCall(F);
783
784 // Assume all Arm-specific intrinsics map to an instruction.
785 if (F->getName().startswith("llvm.arm"))
786 return false;
787
788 switch (F->getIntrinsicID()) {
789 default: break;
790 case Intrinsic::powi:
791 case Intrinsic::sin:
792 case Intrinsic::cos:
793 case Intrinsic::pow:
794 case Intrinsic::log:
795 case Intrinsic::log10:
796 case Intrinsic::log2:
797 case Intrinsic::exp:
798 case Intrinsic::exp2:
799 return true;
800 case Intrinsic::sqrt:
801 case Intrinsic::fabs:
802 case Intrinsic::copysign:
803 case Intrinsic::floor:
804 case Intrinsic::ceil:
805 case Intrinsic::trunc:
806 case Intrinsic::rint:
807 case Intrinsic::nearbyint:
808 case Intrinsic::round:
809 case Intrinsic::canonicalize:
810 case Intrinsic::lround:
811 case Intrinsic::llround:
812 case Intrinsic::lrint:
813 case Intrinsic::llrint:
814 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
815 return true;
816 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
817 return true;
818 // Some operations can be handled by vector instructions and assume
819 // unsupported vectors will be expanded into supported scalar ones.
820 // TODO Handle scalar operations properly.
821 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
822 case Intrinsic::masked_store:
823 case Intrinsic::masked_load:
824 case Intrinsic::masked_gather:
825 case Intrinsic::masked_scatter:
826 return !ST->hasMVEIntegerOps();
827 case Intrinsic::sadd_with_overflow:
828 case Intrinsic::uadd_with_overflow:
829 case Intrinsic::ssub_with_overflow:
830 case Intrinsic::usub_with_overflow:
831 case Intrinsic::sadd_sat:
832 case Intrinsic::uadd_sat:
833 case Intrinsic::ssub_sat:
834 case Intrinsic::usub_sat:
835 return false;
836 }
837
838 return BaseT::isLoweredToCall(F);
839}
840
841bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
842 AssumptionCache &AC,
843 TargetLibraryInfo *LibInfo,
Chen Zhengc5b918d2019-06-19 01:26:31 +0000844 HardwareLoopInfo &HWLoopInfo) {
Sam Parker757ac022019-06-12 12:00:42 +0000845 // Low-overhead branches are only supported in the 'low-overhead branch'
846 // extension of v8.1-m.
847 if (!ST->hasLOB() || DisableLowOverheadLoops)
848 return false;
849
Sam Parker757ac022019-06-12 12:00:42 +0000850 if (!SE.hasLoopInvariantBackedgeTakenCount(L))
851 return false;
852
853 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
854 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
855 return false;
856
857 const SCEV *TripCountSCEV =
858 SE.getAddExpr(BackedgeTakenCount,
859 SE.getOne(BackedgeTakenCount->getType()));
860
861 // We need to store the trip count in LR, a 32-bit register.
862 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32)
863 return false;
864
865 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
866 // point in generating a hardware loop if that's going to happen.
867 auto MaybeCall = [this](Instruction &I) {
868 const ARMTargetLowering *TLI = getTLI();
869 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
870 EVT VT = TLI->getValueType(DL, I.getType(), true);
871 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
872 return true;
873
874 // Check if an intrinsic will be lowered to a call and assume that any
875 // other CallInst will generate a bl.
876 if (auto *Call = dyn_cast<CallInst>(&I)) {
877 if (isa<IntrinsicInst>(Call)) {
878 if (const Function *F = Call->getCalledFunction())
879 return isLoweredToCall(F);
880 }
881 return true;
882 }
883
884 // FPv5 provides conversions between integer, double-precision,
885 // single-precision, and half-precision formats.
886 switch (I.getOpcode()) {
887 default:
888 break;
889 case Instruction::FPToSI:
890 case Instruction::FPToUI:
891 case Instruction::SIToFP:
892 case Instruction::UIToFP:
893 case Instruction::FPTrunc:
894 case Instruction::FPExt:
895 return !ST->hasFPARMv8Base();
896 }
897
898 // FIXME: Unfortunately the approach of checking the Operation Action does
899 // not catch all cases of Legalization that use library calls. Our
900 // Legalization step categorizes some transformations into library calls as
901 // Custom, Expand or even Legal when doing type legalization. So for now
902 // we have to special case for instance the SDIV of 64bit integers and the
903 // use of floating point emulation.
904 if (VT.isInteger() && VT.getSizeInBits() >= 64) {
905 switch (ISD) {
906 default:
907 break;
908 case ISD::SDIV:
909 case ISD::UDIV:
910 case ISD::SREM:
911 case ISD::UREM:
912 case ISD::SDIVREM:
913 case ISD::UDIVREM:
914 return true;
915 }
916 }
917
918 // Assume all other non-float operations are supported.
919 if (!VT.isFloatingPoint())
920 return false;
921
922 // We'll need a library call to handle most floats when using soft.
923 if (TLI->useSoftFloat()) {
924 switch (I.getOpcode()) {
925 default:
926 return true;
927 case Instruction::Alloca:
928 case Instruction::Load:
929 case Instruction::Store:
930 case Instruction::Select:
931 case Instruction::PHI:
932 return false;
933 }
934 }
935
936 // We'll need a libcall to perform double precision operations on a single
937 // precision only FPU.
938 if (I.getType()->isDoubleTy() && !ST->hasFP64())
939 return true;
940
941 // Likewise for half precision arithmetic.
942 if (I.getType()->isHalfTy() && !ST->hasFullFP16())
943 return true;
944
945 return false;
946 };
947
Sam Parker9d284732019-06-13 08:28:46 +0000948 auto IsHardwareLoopIntrinsic = [](Instruction &I) {
949 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
Sam Parker179e0fa2019-06-13 08:32:56 +0000950 switch (Call->getIntrinsicID()) {
Sam Parker9d284732019-06-13 08:28:46 +0000951 default:
952 break;
953 case Intrinsic::set_loop_iterations:
Sam Parker98722692019-07-01 08:21:28 +0000954 case Intrinsic::test_set_loop_iterations:
Sam Parker9d284732019-06-13 08:28:46 +0000955 case Intrinsic::loop_decrement:
956 case Intrinsic::loop_decrement_reg:
957 return true;
958 }
959 }
960 return false;
961 };
962
Sam Parker757ac022019-06-12 12:00:42 +0000963 // Scan the instructions to see if there's any that we know will turn into a
Sam Parker9d284732019-06-13 08:28:46 +0000964 // call or if this loop is already a low-overhead loop.
965 auto ScanLoop = [&](Loop *L) {
966 for (auto *BB : L->getBlocks()) {
967 for (auto &I : *BB) {
968 if (MaybeCall(I) || IsHardwareLoopIntrinsic(I))
969 return false;
970 }
971 }
972 return true;
973 };
974
975 // Visit inner loops.
976 for (auto Inner : *L)
977 if (!ScanLoop(Inner))
978 return false;
979
980 if (!ScanLoop(L))
981 return false;
Sam Parker757ac022019-06-12 12:00:42 +0000982
983 // TODO: Check whether the trip count calculation is expensive. If L is the
984 // inner loop but we know it has a low trip count, calculating that trip
985 // count (in the parent loop) may be detrimental.
986
987 LLVMContext &C = L->getHeader()->getContext();
988 HWLoopInfo.CounterInReg = true;
Sam Parker9d284732019-06-13 08:28:46 +0000989 HWLoopInfo.IsNestingLegal = false;
Sam Parker98722692019-07-01 08:21:28 +0000990 HWLoopInfo.PerformEntryTest = true;
Sam Parker757ac022019-06-12 12:00:42 +0000991 HWLoopInfo.CountType = Type::getInt32Ty(C);
992 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
993 return true;
994}
995
Sam Parker19a08e42017-07-25 08:51:30 +0000996void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
997 TTI::UnrollingPreferences &UP) {
998 // Only currently enable these preferences for M-Class cores.
Sam Parker84fd0c32017-08-16 07:42:44 +0000999 if (!ST->isMClass())
Sam Parker19a08e42017-07-25 08:51:30 +00001000 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
1001
1002 // Disable loop unrolling for Oz and Os.
1003 UP.OptSizeThreshold = 0;
1004 UP.PartialOptSizeThreshold = 0;
Evandro Menezes85bd3972019-04-04 22:40:06 +00001005 if (L->getHeader()->getParent()->hasOptSize())
Sam Parker487ab862017-10-23 08:05:14 +00001006 return;
1007
1008 // Only enable on Thumb-2 targets.
1009 if (!ST->isThumb2())
1010 return;
1011
1012 SmallVector<BasicBlock*, 4> ExitingBlocks;
1013 L->getExitingBlocks(ExitingBlocks);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001014 LLVM_DEBUG(dbgs() << "Loop has:\n"
1015 << "Blocks: " << L->getNumBlocks() << "\n"
1016 << "Exit blocks: " << ExitingBlocks.size() << "\n");
Sam Parker487ab862017-10-23 08:05:14 +00001017
1018 // Only allow another exit other than the latch. This acts as an early exit
1019 // as it mirrors the profitability calculation of the runtime unroller.
1020 if (ExitingBlocks.size() > 2)
1021 return;
1022
1023 // Limit the CFG of the loop body for targets with a branch predictor.
1024 // Allowing 4 blocks permits if-then-else diamonds in the body.
1025 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
Sam Parker84fd0c32017-08-16 07:42:44 +00001026 return;
Sam Parker19a08e42017-07-25 08:51:30 +00001027
1028 // Scan the loop: don't unroll loops with calls as this could prevent
1029 // inlining.
Sam Parker84fd0c32017-08-16 07:42:44 +00001030 unsigned Cost = 0;
Sam Parker487ab862017-10-23 08:05:14 +00001031 for (auto *BB : L->getBlocks()) {
1032 for (auto &I : *BB) {
1033 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1034 ImmutableCallSite CS(&I);
1035 if (const Function *F = CS.getCalledFunction()) {
1036 if (!isLoweredToCall(F))
1037 continue;
1038 }
1039 return;
Sam Parker19a08e42017-07-25 08:51:30 +00001040 }
David Green11c46022019-08-11 08:53:18 +00001041 // Don't unroll vectorised loop. MVE does not benefit from it as much as
1042 // scalar code.
1043 if (I.getType()->isVectorTy())
1044 return;
1045
Sam Parker487ab862017-10-23 08:05:14 +00001046 SmallVector<const Value*, 4> Operands(I.value_op_begin(),
1047 I.value_op_end());
1048 Cost += getUserCost(&I, Operands);
Sam Parker19a08e42017-07-25 08:51:30 +00001049 }
1050 }
1051
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001052 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
Sam Parker487ab862017-10-23 08:05:14 +00001053
Sam Parker19a08e42017-07-25 08:51:30 +00001054 UP.Partial = true;
1055 UP.Runtime = true;
David Greend847aa52019-06-10 10:22:14 +00001056 UP.UpperBound = true;
Sam Parker84fd0c32017-08-16 07:42:44 +00001057 UP.UnrollRemainder = true;
1058 UP.DefaultUnrollRuntimeCount = 4;
David Green963401d2018-07-01 12:47:30 +00001059 UP.UnrollAndJam = true;
1060 UP.UnrollAndJamInnerLoopThreshold = 60;
Sam Parker84fd0c32017-08-16 07:42:44 +00001061
1062 // Force unrolling small loops can be very useful because of the branch
1063 // taken cost of the backedge.
1064 if (Cost < 12)
1065 UP.Force = true;
Sam Parker19a08e42017-07-25 08:51:30 +00001066}
Sam Tebbsf312c1e2019-08-19 09:38:28 +00001067
1068bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
1069 TTI::ReductionFlags Flags) const {
1070 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
1071 unsigned ScalarBits = Ty->getScalarSizeInBits();
1072 if (!ST->hasMVEIntegerOps())
1073 return false;
1074
1075 switch (Opcode) {
1076 case Instruction::FAdd:
1077 case Instruction::FMul:
1078 case Instruction::And:
1079 case Instruction::Or:
1080 case Instruction::Xor:
1081 case Instruction::Mul:
Sam Tebbsf312c1e2019-08-19 09:38:28 +00001082 case Instruction::FCmp:
1083 return false;
Sam Tebbs1572b682019-09-13 09:11:46 +00001084 case Instruction::ICmp:
Sam Tebbsf312c1e2019-08-19 09:38:28 +00001085 case Instruction::Add:
Sam Tebbs1572b682019-09-13 09:11:46 +00001086 return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128;
Sam Tebbsf312c1e2019-08-19 09:38:28 +00001087 default:
1088 llvm_unreachable("Unhandled reduction opcode");
1089 }
1090 return false;
1091}