Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1 | //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Rewrite an existing set of gc.statepoints such that they make potential |
| 11 | // relocations performed by the garbage collector explicit in the IR. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Pass.h" |
| 16 | #include "llvm/Analysis/CFG.h" |
| 17 | #include "llvm/ADT/SetOperations.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
| 19 | #include "llvm/ADT/DenseSet.h" |
Philip Reames | 4d80ede | 2015-04-10 23:11:26 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/SetVector.h" |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 21 | #include "llvm/IR/BasicBlock.h" |
| 22 | #include "llvm/IR/CallSite.h" |
| 23 | #include "llvm/IR/Dominators.h" |
| 24 | #include "llvm/IR/Function.h" |
| 25 | #include "llvm/IR/IRBuilder.h" |
| 26 | #include "llvm/IR/InstIterator.h" |
| 27 | #include "llvm/IR/Instructions.h" |
| 28 | #include "llvm/IR/Intrinsics.h" |
| 29 | #include "llvm/IR/IntrinsicInst.h" |
| 30 | #include "llvm/IR/Module.h" |
| 31 | #include "llvm/IR/Statepoint.h" |
| 32 | #include "llvm/IR/Value.h" |
| 33 | #include "llvm/IR/Verifier.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include "llvm/Support/CommandLine.h" |
| 36 | #include "llvm/Transforms/Scalar.h" |
| 37 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 38 | #include "llvm/Transforms/Utils/Cloning.h" |
| 39 | #include "llvm/Transforms/Utils/Local.h" |
| 40 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 41 | |
| 42 | #define DEBUG_TYPE "rewrite-statepoints-for-gc" |
| 43 | |
| 44 | using namespace llvm; |
| 45 | |
| 46 | // Print tracing output |
| 47 | static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, |
| 48 | cl::init(false)); |
| 49 | |
| 50 | // Print the liveset found at the insert location |
| 51 | static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, |
| 52 | cl::init(false)); |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 53 | static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, |
| 54 | cl::init(false)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 55 | // Print out the base pointers for debugging |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 56 | static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, |
| 57 | cl::init(false)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 58 | |
Philip Reames | e73300b | 2015-04-13 16:41:32 +0000 | [diff] [blame] | 59 | #ifdef XDEBUG |
| 60 | static bool ClobberNonLive = true; |
| 61 | #else |
| 62 | static bool ClobberNonLive = false; |
| 63 | #endif |
| 64 | static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", |
| 65 | cl::location(ClobberNonLive), |
| 66 | cl::Hidden); |
| 67 | |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 68 | namespace { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 69 | struct RewriteStatepointsForGC : public FunctionPass { |
| 70 | static char ID; // Pass identification, replacement for typeid |
| 71 | |
| 72 | RewriteStatepointsForGC() : FunctionPass(ID) { |
| 73 | initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); |
| 74 | } |
| 75 | bool runOnFunction(Function &F) override; |
| 76 | |
| 77 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 78 | // We add and rewrite a bunch of instructions, but don't really do much |
| 79 | // else. We could in theory preserve a lot more analyses here. |
| 80 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 81 | } |
| 82 | }; |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 83 | } // namespace |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 84 | |
| 85 | char RewriteStatepointsForGC::ID = 0; |
| 86 | |
| 87 | FunctionPass *llvm::createRewriteStatepointsForGCPass() { |
| 88 | return new RewriteStatepointsForGC(); |
| 89 | } |
| 90 | |
| 91 | INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", |
| 92 | "Make relocations explicit at statepoints", false, false) |
| 93 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 94 | INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", |
| 95 | "Make relocations explicit at statepoints", false, false) |
| 96 | |
| 97 | namespace { |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 98 | struct GCPtrLivenessData { |
| 99 | /// Values defined in this block. |
| 100 | DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; |
| 101 | /// Values used in this block (and thus live); does not included values |
| 102 | /// killed within this block. |
| 103 | DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; |
| 104 | |
| 105 | /// Values live into this basic block (i.e. used by any |
| 106 | /// instruction in this basic block or ones reachable from here) |
| 107 | DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; |
| 108 | |
| 109 | /// Values live out of this basic block (i.e. live into |
| 110 | /// any successor block) |
| 111 | DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; |
| 112 | }; |
| 113 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 114 | // The type of the internal cache used inside the findBasePointers family |
| 115 | // of functions. From the callers perspective, this is an opaque type and |
| 116 | // should not be inspected. |
| 117 | // |
| 118 | // In the actual implementation this caches two relations: |
| 119 | // - The base relation itself (i.e. this pointer is based on that one) |
| 120 | // - The base defining value relation (i.e. before base_phi insertion) |
| 121 | // Generally, after the execution of a full findBasePointer call, only the |
| 122 | // base relation will remain. Internally, we add a mixture of the two |
| 123 | // types, then update all the second type to the first type |
Philip Reames | e9c3b9b | 2015-02-20 22:48:20 +0000 | [diff] [blame] | 124 | typedef DenseMap<Value *, Value *> DefiningValueMapTy; |
Philip Reames | 1f01754 | 2015-02-20 23:16:52 +0000 | [diff] [blame] | 125 | typedef DenseSet<llvm::Value *> StatepointLiveSetTy; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 126 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 127 | struct PartiallyConstructedSafepointRecord { |
| 128 | /// The set of values known to be live accross this safepoint |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 129 | StatepointLiveSetTy liveset; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 130 | |
| 131 | /// Mapping from live pointers to a base-defining-value |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 132 | DenseMap<llvm::Value *, llvm::Value *> PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 133 | |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 134 | /// The *new* gc.statepoint instruction itself. This produces the token |
| 135 | /// that normal path gc.relocates and the gc.result are tied to. |
| 136 | Instruction *StatepointToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 137 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 138 | /// Instruction to which exceptional gc relocates are attached |
| 139 | /// Makes it easier to iterate through them during relocationViaAlloca. |
| 140 | Instruction *UnwindToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 141 | }; |
| 142 | } |
| 143 | |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 144 | /// Compute the live-in set for every basic block in the function |
| 145 | static void computeLiveInValues(DominatorTree &DT, Function &F, |
| 146 | GCPtrLivenessData &Data); |
| 147 | |
| 148 | /// Given results from the dataflow liveness computation, find the set of live |
| 149 | /// Values at a particular instruction. |
| 150 | static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, |
| 151 | StatepointLiveSetTy &out); |
| 152 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 153 | // TODO: Once we can get to the GCStrategy, this becomes |
| 154 | // Optional<bool> isGCManagedPointer(const Value *V) const override { |
| 155 | |
| 156 | static bool isGCPointerType(const Type *T) { |
| 157 | if (const PointerType *PT = dyn_cast<PointerType>(T)) |
| 158 | // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
| 159 | // GC managed heap. We know that a pointer into this heap needs to be |
| 160 | // updated and that no other pointer does. |
| 161 | return (1 == PT->getAddressSpace()); |
| 162 | return false; |
| 163 | } |
| 164 | |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 165 | // Return true if this type is one which a) is a gc pointer or contains a GC |
| 166 | // pointer and b) is of a type this code expects to encounter as a live value. |
| 167 | // (The insertion code will assert that a type which matches (a) and not (b) |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 168 | // is not encountered.) |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 169 | static bool isHandledGCPointerType(Type *T) { |
| 170 | // We fully support gc pointers |
| 171 | if (isGCPointerType(T)) |
| 172 | return true; |
| 173 | // We partially support vectors of gc pointers. The code will assert if it |
| 174 | // can't handle something. |
| 175 | if (auto VT = dyn_cast<VectorType>(T)) |
| 176 | if (isGCPointerType(VT->getElementType())) |
| 177 | return true; |
| 178 | return false; |
| 179 | } |
| 180 | |
| 181 | #ifndef NDEBUG |
| 182 | /// Returns true if this type contains a gc pointer whether we know how to |
| 183 | /// handle that type or not. |
| 184 | static bool containsGCPtrType(Type *Ty) { |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 185 | if (isGCPointerType(Ty)) |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 186 | return true; |
| 187 | if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
| 188 | return isGCPointerType(VT->getScalarType()); |
| 189 | if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) |
| 190 | return containsGCPtrType(AT->getElementType()); |
| 191 | if (StructType *ST = dyn_cast<StructType>(Ty)) |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 192 | return std::any_of( |
| 193 | ST->subtypes().begin(), ST->subtypes().end(), |
| 194 | [](Type *SubType) { return containsGCPtrType(SubType); }); |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 195 | return false; |
| 196 | } |
| 197 | |
| 198 | // Returns true if this is a type which a) is a gc pointer or contains a GC |
| 199 | // pointer and b) is of a type which the code doesn't expect (i.e. first class |
| 200 | // aggregates). Used to trip assertions. |
| 201 | static bool isUnhandledGCPointerType(Type *Ty) { |
| 202 | return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); |
| 203 | } |
| 204 | #endif |
| 205 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 206 | static bool order_by_name(llvm::Value *a, llvm::Value *b) { |
| 207 | if (a->hasName() && b->hasName()) { |
| 208 | return -1 == a->getName().compare(b->getName()); |
| 209 | } else if (a->hasName() && !b->hasName()) { |
| 210 | return true; |
| 211 | } else if (!a->hasName() && b->hasName()) { |
| 212 | return false; |
| 213 | } else { |
| 214 | // Better than nothing, but not stable |
| 215 | return a < b; |
| 216 | } |
| 217 | } |
| 218 | |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 219 | // Conservatively identifies any definitions which might be live at the |
| 220 | // given instruction. The analysis is performed immediately before the |
| 221 | // given instruction. Values defined by that instruction are not considered |
| 222 | // live. Values used by that instruction are considered live. |
| 223 | static void analyzeParsePointLiveness( |
| 224 | DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, |
| 225 | const CallSite &CS, PartiallyConstructedSafepointRecord &result) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 226 | Instruction *inst = CS.getInstruction(); |
| 227 | |
Philip Reames | 1f01754 | 2015-02-20 23:16:52 +0000 | [diff] [blame] | 228 | StatepointLiveSetTy liveset; |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 229 | findLiveSetAtInst(inst, OriginalLivenessData, liveset); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 230 | |
| 231 | if (PrintLiveSet) { |
| 232 | // Note: This output is used by several of the test cases |
| 233 | // The order of elemtns in a set is not stable, put them in a vec and sort |
| 234 | // by name |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 235 | SmallVector<Value *, 64> temp; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 236 | temp.insert(temp.end(), liveset.begin(), liveset.end()); |
| 237 | std::sort(temp.begin(), temp.end(), order_by_name); |
| 238 | errs() << "Live Variables:\n"; |
| 239 | for (Value *V : temp) { |
| 240 | errs() << " " << V->getName(); // no newline |
| 241 | V->dump(); |
| 242 | } |
| 243 | } |
| 244 | if (PrintLiveSetSize) { |
| 245 | errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; |
| 246 | errs() << "Number live values: " << liveset.size() << "\n"; |
| 247 | } |
| 248 | result.liveset = liveset; |
| 249 | } |
| 250 | |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 251 | /// If we can trivially determine that this vector contains only base pointers, |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 252 | /// return the base instruction. |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 253 | static Value *findBaseOfVector(Value *I) { |
| 254 | assert(I->getType()->isVectorTy() && |
| 255 | cast<VectorType>(I->getType())->getElementType()->isPointerTy() && |
| 256 | "Illegal to ask for the base pointer of a non-pointer type"); |
| 257 | |
| 258 | // Each case parallels findBaseDefiningValue below, see that code for |
| 259 | // detailed motivation. |
| 260 | |
| 261 | if (isa<Argument>(I)) |
| 262 | // An incoming argument to the function is a base pointer |
| 263 | return I; |
| 264 | |
| 265 | // We shouldn't see the address of a global as a vector value? |
| 266 | assert(!isa<GlobalVariable>(I) && |
| 267 | "unexpected global variable found in base of vector"); |
| 268 | |
| 269 | // inlining could possibly introduce phi node that contains |
| 270 | // undef if callee has multiple returns |
| 271 | if (isa<UndefValue>(I)) |
| 272 | // utterly meaningless, but useful for dealing with partially optimized |
| 273 | // code. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 274 | return I; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 275 | |
| 276 | // Due to inheritance, this must be _after_ the global variable and undef |
| 277 | // checks |
| 278 | if (Constant *Con = dyn_cast<Constant>(I)) { |
| 279 | assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && |
| 280 | "order of checks wrong!"); |
| 281 | assert(Con->isNullValue() && "null is the only case which makes sense"); |
| 282 | return Con; |
| 283 | } |
| 284 | |
| 285 | if (isa<LoadInst>(I)) |
| 286 | return I; |
| 287 | |
| 288 | // Note: This code is currently rather incomplete. We are essentially only |
| 289 | // handling cases where the vector element is trivially a base pointer. We |
| 290 | // need to update the entire base pointer construction algorithm to know how |
| 291 | // to track vector elements and potentially scalarize, but the case which |
| 292 | // would motivate the work hasn't shown up in real workloads yet. |
| 293 | llvm_unreachable("no base found for vector element"); |
| 294 | } |
| 295 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 296 | /// Helper function for findBasePointer - Will return a value which either a) |
| 297 | /// defines the base pointer for the input or b) blocks the simple search |
| 298 | /// (i.e. a PHI or Select of two derived pointers) |
| 299 | static Value *findBaseDefiningValue(Value *I) { |
| 300 | assert(I->getType()->isPointerTy() && |
| 301 | "Illegal to ask for the base pointer of a non-pointer type"); |
| 302 | |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 303 | // This case is a bit of a hack - it only handles extracts from vectors which |
| 304 | // trivially contain only base pointers. See note inside the function for |
| 305 | // how to improve this. |
| 306 | if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { |
| 307 | Value *VectorOperand = EEI->getVectorOperand(); |
| 308 | Value *VectorBase = findBaseOfVector(VectorOperand); |
Philip Reames | f66d737 | 2015-04-10 22:16:58 +0000 | [diff] [blame] | 309 | (void)VectorBase; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 310 | assert(VectorBase && "extract element not known to be a trivial base"); |
| 311 | return EEI; |
| 312 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 313 | |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 314 | if (isa<Argument>(I)) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 315 | // An incoming argument to the function is a base pointer |
| 316 | // We should have never reached here if this argument isn't an gc value |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 317 | return I; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 318 | |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 319 | if (isa<GlobalVariable>(I)) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 320 | // base case |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 321 | return I; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 322 | |
| 323 | // inlining could possibly introduce phi node that contains |
| 324 | // undef if callee has multiple returns |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 325 | if (isa<UndefValue>(I)) |
| 326 | // utterly meaningless, but useful for dealing with |
| 327 | // partially optimized code. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 328 | return I; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 329 | |
| 330 | // Due to inheritance, this must be _after_ the global variable and undef |
| 331 | // checks |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 332 | if (Constant *Con = dyn_cast<Constant>(I)) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 333 | assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && |
| 334 | "order of checks wrong!"); |
| 335 | // Note: Finding a constant base for something marked for relocation |
| 336 | // doesn't really make sense. The most likely case is either a) some |
| 337 | // screwed up the address space usage or b) your validating against |
| 338 | // compiled C++ code w/o the proper separation. The only real exception |
| 339 | // is a null pointer. You could have generic code written to index of |
| 340 | // off a potentially null value and have proven it null. We also use |
| 341 | // null pointers in dead paths of relocation phis (which we might later |
| 342 | // want to find a base pointer for). |
Philip Reames | 24c6cd5 | 2015-03-27 05:47:00 +0000 | [diff] [blame] | 343 | assert(isa<ConstantPointerNull>(Con) && |
| 344 | "null is the only case which makes sense"); |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 345 | return Con; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 346 | } |
| 347 | |
| 348 | if (CastInst *CI = dyn_cast<CastInst>(I)) { |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 349 | Value *Def = CI->stripPointerCasts(); |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 350 | // If we find a cast instruction here, it means we've found a cast which is |
| 351 | // not simply a pointer cast (i.e. an inttoptr). We don't know how to |
| 352 | // handle int->ptr conversion. |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 353 | assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); |
| 354 | return findBaseDefiningValue(Def); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 355 | } |
| 356 | |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 357 | if (isa<LoadInst>(I)) |
| 358 | return I; // The value loaded is an gc base itself |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 359 | |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 360 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) |
| 361 | // The base of this GEP is the base |
| 362 | return findBaseDefiningValue(GEP->getPointerOperand()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 363 | |
| 364 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 365 | switch (II->getIntrinsicID()) { |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 366 | case Intrinsic::experimental_gc_result_ptr: |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 367 | default: |
| 368 | // fall through to general call handling |
| 369 | break; |
| 370 | case Intrinsic::experimental_gc_statepoint: |
| 371 | case Intrinsic::experimental_gc_result_float: |
| 372 | case Intrinsic::experimental_gc_result_int: |
| 373 | llvm_unreachable("these don't produce pointers"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 374 | case Intrinsic::experimental_gc_relocate: { |
| 375 | // Rerunning safepoint insertion after safepoints are already |
| 376 | // inserted is not supported. It could probably be made to work, |
| 377 | // but why are you doing this? There's no good reason. |
| 378 | llvm_unreachable("repeat safepoint insertion is not supported"); |
| 379 | } |
| 380 | case Intrinsic::gcroot: |
| 381 | // Currently, this mechanism hasn't been extended to work with gcroot. |
| 382 | // There's no reason it couldn't be, but I haven't thought about the |
| 383 | // implications much. |
| 384 | llvm_unreachable( |
| 385 | "interaction with the gcroot mechanism is not supported"); |
| 386 | } |
| 387 | } |
| 388 | // We assume that functions in the source language only return base |
| 389 | // pointers. This should probably be generalized via attributes to support |
| 390 | // both source language and internal functions. |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 391 | if (isa<CallInst>(I) || isa<InvokeInst>(I)) |
| 392 | return I; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 393 | |
| 394 | // I have absolutely no idea how to implement this part yet. It's not |
| 395 | // neccessarily hard, I just haven't really looked at it yet. |
| 396 | assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); |
| 397 | |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 398 | if (isa<AtomicCmpXchgInst>(I)) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 399 | // A CAS is effectively a atomic store and load combined under a |
| 400 | // predicate. From the perspective of base pointers, we just treat it |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 401 | // like a load. |
| 402 | return I; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 403 | |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 404 | assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 405 | "binary ops which don't apply to pointers"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 406 | |
| 407 | // The aggregate ops. Aggregates can either be in the heap or on the |
| 408 | // stack, but in either case, this is simply a field load. As a result, |
| 409 | // this is a defining definition of the base just like a load is. |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 410 | if (isa<ExtractValueInst>(I)) |
| 411 | return I; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 412 | |
| 413 | // We should never see an insert vector since that would require we be |
| 414 | // tracing back a struct value not a pointer value. |
| 415 | assert(!isa<InsertValueInst>(I) && |
| 416 | "Base pointer for a struct is meaningless"); |
| 417 | |
| 418 | // The last two cases here don't return a base pointer. Instead, they |
| 419 | // return a value which dynamically selects from amoung several base |
| 420 | // derived pointers (each with it's own base potentially). It's the job of |
| 421 | // the caller to resolve these. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 422 | assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
Philip Reames | aa66dfa | 2015-03-27 05:34:44 +0000 | [diff] [blame] | 423 | "missing instruction case in findBaseDefiningValing"); |
| 424 | return I; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 425 | } |
| 426 | |
| 427 | /// Returns the base defining value for this value. |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 428 | static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { |
| 429 | Value *&Cached = Cache[I]; |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 430 | if (!Cached) { |
| 431 | Cached = findBaseDefiningValue(I); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 432 | } |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 433 | assert(Cache[I] != nullptr); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 434 | |
| 435 | if (TraceLSP) { |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 436 | dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 437 | << "\n"; |
| 438 | } |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 439 | return Cached; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 440 | } |
| 441 | |
| 442 | /// Return a base pointer for this value if known. Otherwise, return it's |
| 443 | /// base defining value. |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 444 | static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { |
| 445 | Value *Def = findBaseDefiningValueCached(I, Cache); |
| 446 | auto Found = Cache.find(Def); |
| 447 | if (Found != Cache.end()) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 448 | // Either a base-of relation, or a self reference. Caller must check. |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 449 | return Found->second; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 450 | } |
| 451 | // Only a BDV available |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 452 | return Def; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 453 | } |
| 454 | |
| 455 | /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, |
| 456 | /// is it known to be a base pointer? Or do we need to continue searching. |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 457 | static bool isKnownBaseResult(Value *V) { |
| 458 | if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 459 | // no recursion possible |
| 460 | return true; |
| 461 | } |
Philip Reames | 18d0feb | 2015-03-27 05:39:32 +0000 | [diff] [blame] | 462 | if (isa<Instruction>(V) && |
| 463 | cast<Instruction>(V)->getMetadata("is_base_value")) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 464 | // This is a previously inserted base phi or select. We know |
| 465 | // that this is a base value. |
| 466 | return true; |
| 467 | } |
| 468 | |
| 469 | // We need to keep searching |
| 470 | return false; |
| 471 | } |
| 472 | |
| 473 | // TODO: find a better name for this |
| 474 | namespace { |
| 475 | class PhiState { |
| 476 | public: |
| 477 | enum Status { Unknown, Base, Conflict }; |
| 478 | |
| 479 | PhiState(Status s, Value *b = nullptr) : status(s), base(b) { |
| 480 | assert(status != Base || b); |
| 481 | } |
| 482 | PhiState(Value *b) : status(Base), base(b) {} |
| 483 | PhiState() : status(Unknown), base(nullptr) {} |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 484 | |
| 485 | Status getStatus() const { return status; } |
| 486 | Value *getBase() const { return base; } |
| 487 | |
| 488 | bool isBase() const { return getStatus() == Base; } |
| 489 | bool isUnknown() const { return getStatus() == Unknown; } |
| 490 | bool isConflict() const { return getStatus() == Conflict; } |
| 491 | |
| 492 | bool operator==(const PhiState &other) const { |
| 493 | return base == other.base && status == other.status; |
| 494 | } |
| 495 | |
| 496 | bool operator!=(const PhiState &other) const { return !(*this == other); } |
| 497 | |
| 498 | void dump() { |
| 499 | errs() << status << " (" << base << " - " |
| 500 | << (base ? base->getName() : "nullptr") << "): "; |
| 501 | } |
| 502 | |
| 503 | private: |
| 504 | Status status; |
| 505 | Value *base; // non null only if status == base |
| 506 | }; |
| 507 | |
Philip Reames | e9c3b9b | 2015-02-20 22:48:20 +0000 | [diff] [blame] | 508 | typedef DenseMap<Value *, PhiState> ConflictStateMapTy; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 509 | // Values of type PhiState form a lattice, and this is a helper |
| 510 | // class that implementes the meet operation. The meat of the meet |
| 511 | // operation is implemented in MeetPhiStates::pureMeet |
| 512 | class MeetPhiStates { |
| 513 | public: |
| 514 | // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 515 | explicit MeetPhiStates(const ConflictStateMapTy &phiStates) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 516 | : phiStates(phiStates) {} |
| 517 | |
| 518 | // Destructively meet the current result with the base V. V can |
| 519 | // either be a merge instruction (SelectInst / PHINode), in which |
| 520 | // case its status is looked up in the phiStates map; or a regular |
| 521 | // SSA value, in which case it is assumed to be a base. |
| 522 | void meetWith(Value *V) { |
| 523 | PhiState otherState = getStateForBDV(V); |
| 524 | assert((MeetPhiStates::pureMeet(otherState, currentResult) == |
| 525 | MeetPhiStates::pureMeet(currentResult, otherState)) && |
| 526 | "math is wrong: meet does not commute!"); |
| 527 | currentResult = MeetPhiStates::pureMeet(otherState, currentResult); |
| 528 | } |
| 529 | |
| 530 | PhiState getResult() const { return currentResult; } |
| 531 | |
| 532 | private: |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 533 | const ConflictStateMapTy &phiStates; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 534 | PhiState currentResult; |
| 535 | |
| 536 | /// Return a phi state for a base defining value. We'll generate a new |
| 537 | /// base state for known bases and expect to find a cached state otherwise |
| 538 | PhiState getStateForBDV(Value *baseValue) { |
| 539 | if (isKnownBaseResult(baseValue)) { |
| 540 | return PhiState(baseValue); |
| 541 | } else { |
| 542 | return lookupFromMap(baseValue); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | PhiState lookupFromMap(Value *V) { |
| 547 | auto I = phiStates.find(V); |
| 548 | assert(I != phiStates.end() && "lookup failed!"); |
| 549 | return I->second; |
| 550 | } |
| 551 | |
| 552 | static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { |
| 553 | switch (stateA.getStatus()) { |
| 554 | case PhiState::Unknown: |
| 555 | return stateB; |
| 556 | |
| 557 | case PhiState::Base: |
| 558 | assert(stateA.getBase() && "can't be null"); |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 559 | if (stateB.isUnknown()) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 560 | return stateA; |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 561 | |
| 562 | if (stateB.isBase()) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 563 | if (stateA.getBase() == stateB.getBase()) { |
| 564 | assert(stateA == stateB && "equality broken!"); |
| 565 | return stateA; |
| 566 | } |
| 567 | return PhiState(PhiState::Conflict); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 568 | } |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 569 | assert(stateB.isConflict() && "only three states!"); |
| 570 | return PhiState(PhiState::Conflict); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 571 | |
| 572 | case PhiState::Conflict: |
| 573 | return stateA; |
| 574 | } |
Reid Kleckner | a070ee5 | 2015-02-20 19:46:02 +0000 | [diff] [blame] | 575 | llvm_unreachable("only three states!"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 576 | } |
| 577 | }; |
| 578 | } |
| 579 | /// For a given value or instruction, figure out what base ptr it's derived |
| 580 | /// from. For gc objects, this is simply itself. On success, returns a value |
| 581 | /// which is the base pointer. (This is reliable and can be used for |
| 582 | /// relocation.) On failure, returns nullptr. |
Philip Reames | ba19849 | 2015-04-14 00:41:34 +0000 | [diff] [blame] | 583 | static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 584 | Value *def = findBaseOrBDV(I, cache); |
| 585 | |
| 586 | if (isKnownBaseResult(def)) { |
| 587 | return def; |
| 588 | } |
| 589 | |
| 590 | // Here's the rough algorithm: |
| 591 | // - For every SSA value, construct a mapping to either an actual base |
| 592 | // pointer or a PHI which obscures the base pointer. |
| 593 | // - Construct a mapping from PHI to unknown TOP state. Use an |
| 594 | // optimistic algorithm to propagate base pointer information. Lattice |
| 595 | // looks like: |
| 596 | // UNKNOWN |
| 597 | // b1 b2 b3 b4 |
| 598 | // CONFLICT |
| 599 | // When algorithm terminates, all PHIs will either have a single concrete |
| 600 | // base or be in a conflict state. |
| 601 | // - For every conflict, insert a dummy PHI node without arguments. Add |
| 602 | // these to the base[Instruction] = BasePtr mapping. For every |
| 603 | // non-conflict, add the actual base. |
| 604 | // - For every conflict, add arguments for the base[a] of each input |
| 605 | // arguments. |
| 606 | // |
| 607 | // Note: A simpler form of this would be to add the conflict form of all |
| 608 | // PHIs without running the optimistic algorithm. This would be |
| 609 | // analougous to pessimistic data flow and would likely lead to an |
| 610 | // overall worse solution. |
| 611 | |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 612 | ConflictStateMapTy states; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 613 | states[def] = PhiState(); |
| 614 | // Recursively fill in all phis & selects reachable from the initial one |
| 615 | // for which we don't already know a definite base value for |
Philip Reames | a226e61 | 2015-02-28 00:47:50 +0000 | [diff] [blame] | 616 | // TODO: This should be rewritten with a worklist |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 617 | bool done = false; |
| 618 | while (!done) { |
| 619 | done = true; |
Philip Reames | a226e61 | 2015-02-28 00:47:50 +0000 | [diff] [blame] | 620 | // Since we're adding elements to 'states' as we run, we can't keep |
| 621 | // iterators into the set. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 622 | SmallVector<Value *, 16> Keys; |
Philip Reames | a226e61 | 2015-02-28 00:47:50 +0000 | [diff] [blame] | 623 | Keys.reserve(states.size()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 624 | for (auto Pair : states) { |
Philip Reames | a226e61 | 2015-02-28 00:47:50 +0000 | [diff] [blame] | 625 | Value *V = Pair.first; |
| 626 | Keys.push_back(V); |
| 627 | } |
| 628 | for (Value *v : Keys) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 629 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 630 | if (PHINode *phi = dyn_cast<PHINode>(v)) { |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 631 | assert(phi->getNumIncomingValues() > 0 && |
| 632 | "zero input phis are illegal"); |
| 633 | for (Value *InVal : phi->incoming_values()) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 634 | Value *local = findBaseOrBDV(InVal, cache); |
| 635 | if (!isKnownBaseResult(local) && states.find(local) == states.end()) { |
| 636 | states[local] = PhiState(); |
| 637 | done = false; |
| 638 | } |
| 639 | } |
| 640 | } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { |
| 641 | Value *local = findBaseOrBDV(sel->getTrueValue(), cache); |
| 642 | if (!isKnownBaseResult(local) && states.find(local) == states.end()) { |
| 643 | states[local] = PhiState(); |
| 644 | done = false; |
| 645 | } |
| 646 | local = findBaseOrBDV(sel->getFalseValue(), cache); |
| 647 | if (!isKnownBaseResult(local) && states.find(local) == states.end()) { |
| 648 | states[local] = PhiState(); |
| 649 | done = false; |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | if (TraceLSP) { |
| 656 | errs() << "States after initialization:\n"; |
| 657 | for (auto Pair : states) { |
| 658 | Instruction *v = cast<Instruction>(Pair.first); |
| 659 | PhiState state = Pair.second; |
| 660 | state.dump(); |
| 661 | v->dump(); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | // TODO: come back and revisit the state transitions around inputs which |
| 666 | // have reached conflict state. The current version seems too conservative. |
| 667 | |
| 668 | bool progress = true; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 669 | while (progress) { |
Yaron Keren | 42a7adf | 2015-02-28 13:11:24 +0000 | [diff] [blame] | 670 | #ifndef NDEBUG |
| 671 | size_t oldSize = states.size(); |
| 672 | #endif |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 673 | progress = false; |
Philip Reames | a226e61 | 2015-02-28 00:47:50 +0000 | [diff] [blame] | 674 | // We're only changing keys in this loop, thus safe to keep iterators |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 675 | for (auto Pair : states) { |
| 676 | MeetPhiStates calculateMeet(states); |
| 677 | Value *v = Pair.first; |
| 678 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 679 | if (SelectInst *select = dyn_cast<SelectInst>(v)) { |
| 680 | calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); |
| 681 | calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 682 | } else |
| 683 | for (Value *Val : cast<PHINode>(v)->incoming_values()) |
| 684 | calculateMeet.meetWith(findBaseOrBDV(Val, cache)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 685 | |
| 686 | PhiState oldState = states[v]; |
| 687 | PhiState newState = calculateMeet.getResult(); |
| 688 | if (oldState != newState) { |
| 689 | progress = true; |
| 690 | states[v] = newState; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | assert(oldSize <= states.size()); |
| 695 | assert(oldSize == states.size() || progress); |
| 696 | } |
| 697 | |
| 698 | if (TraceLSP) { |
| 699 | errs() << "States after meet iteration:\n"; |
| 700 | for (auto Pair : states) { |
| 701 | Instruction *v = cast<Instruction>(Pair.first); |
| 702 | PhiState state = Pair.second; |
| 703 | state.dump(); |
| 704 | v->dump(); |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | // Insert Phis for all conflicts |
Philip Reames | 2e5bcbe | 2015-02-28 01:52:09 +0000 | [diff] [blame] | 709 | // We want to keep naming deterministic in the loop that follows, so |
| 710 | // sort the keys before iteration. This is useful in allowing us to |
| 711 | // write stable tests. Note that there is no invalidation issue here. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 712 | SmallVector<Value *, 16> Keys; |
Philip Reames | 2e5bcbe | 2015-02-28 01:52:09 +0000 | [diff] [blame] | 713 | Keys.reserve(states.size()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 714 | for (auto Pair : states) { |
Philip Reames | 2e5bcbe | 2015-02-28 01:52:09 +0000 | [diff] [blame] | 715 | Value *V = Pair.first; |
| 716 | Keys.push_back(V); |
| 717 | } |
| 718 | std::sort(Keys.begin(), Keys.end(), order_by_name); |
| 719 | // TODO: adjust naming patterns to avoid this order of iteration dependency |
| 720 | for (Value *V : Keys) { |
| 721 | Instruction *v = cast<Instruction>(V); |
| 722 | PhiState state = states[V]; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 723 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 724 | assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); |
Philip Reames | f986d68 | 2015-02-28 00:54:41 +0000 | [diff] [blame] | 725 | if (!state.isConflict()) |
| 726 | continue; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 727 | |
Philip Reames | f986d68 | 2015-02-28 00:54:41 +0000 | [diff] [blame] | 728 | if (isa<PHINode>(v)) { |
| 729 | int num_preds = |
| 730 | std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); |
| 731 | assert(num_preds > 0 && "how did we reach here"); |
| 732 | PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); |
Philip Reames | f986d68 | 2015-02-28 00:54:41 +0000 | [diff] [blame] | 733 | // Add metadata marking this as a base value |
| 734 | auto *const_1 = ConstantInt::get( |
| 735 | Type::getInt32Ty( |
| 736 | v->getParent()->getParent()->getParent()->getContext()), |
| 737 | 1); |
| 738 | auto MDConst = ConstantAsMetadata::get(const_1); |
| 739 | MDNode *md = MDNode::get( |
| 740 | v->getParent()->getParent()->getParent()->getContext(), MDConst); |
| 741 | phi->setMetadata("is_base_value", md); |
| 742 | states[v] = PhiState(PhiState::Conflict, phi); |
| 743 | } else { |
| 744 | SelectInst *sel = cast<SelectInst>(v); |
| 745 | // The undef will be replaced later |
| 746 | UndefValue *undef = UndefValue::get(sel->getType()); |
| 747 | SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, |
| 748 | undef, "base_select", sel); |
Philip Reames | f986d68 | 2015-02-28 00:54:41 +0000 | [diff] [blame] | 749 | // Add metadata marking this as a base value |
| 750 | auto *const_1 = ConstantInt::get( |
| 751 | Type::getInt32Ty( |
| 752 | v->getParent()->getParent()->getParent()->getContext()), |
| 753 | 1); |
| 754 | auto MDConst = ConstantAsMetadata::get(const_1); |
| 755 | MDNode *md = MDNode::get( |
| 756 | v->getParent()->getParent()->getParent()->getContext(), MDConst); |
| 757 | basesel->setMetadata("is_base_value", md); |
| 758 | states[v] = PhiState(PhiState::Conflict, basesel); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 759 | } |
| 760 | } |
| 761 | |
| 762 | // Fixup all the inputs of the new PHIs |
| 763 | for (auto Pair : states) { |
| 764 | Instruction *v = cast<Instruction>(Pair.first); |
| 765 | PhiState state = Pair.second; |
| 766 | |
| 767 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 768 | assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 769 | if (!state.isConflict()) |
| 770 | continue; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 771 | |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 772 | if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { |
| 773 | PHINode *phi = cast<PHINode>(v); |
| 774 | unsigned NumPHIValues = phi->getNumIncomingValues(); |
| 775 | for (unsigned i = 0; i < NumPHIValues; i++) { |
| 776 | Value *InVal = phi->getIncomingValue(i); |
| 777 | BasicBlock *InBB = phi->getIncomingBlock(i); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 778 | |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 779 | // If we've already seen InBB, add the same incoming value |
| 780 | // we added for it earlier. The IR verifier requires phi |
| 781 | // nodes with multiple entries from the same basic block |
| 782 | // to have the same incoming value for each of those |
| 783 | // entries. If we don't do this check here and basephi |
| 784 | // has a different type than base, we'll end up adding two |
| 785 | // bitcasts (and hence two distinct values) as incoming |
| 786 | // values for the same basic block. |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 787 | |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 788 | int blockIndex = basephi->getBasicBlockIndex(InBB); |
| 789 | if (blockIndex != -1) { |
| 790 | Value *oldBase = basephi->getIncomingValue(blockIndex); |
| 791 | basephi->addIncoming(oldBase, InBB); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 792 | #ifndef NDEBUG |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 793 | Value *base = findBaseOrBDV(InVal, cache); |
| 794 | if (!isKnownBaseResult(base)) { |
| 795 | // Either conflict or base. |
| 796 | assert(states.count(base)); |
| 797 | base = states[base].getBase(); |
| 798 | assert(base != nullptr && "unknown PhiState!"); |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 799 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 800 | |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 801 | // In essense this assert states: the only way two |
| 802 | // values incoming from the same basic block may be |
| 803 | // different is by being different bitcasts of the same |
| 804 | // value. A cleanup that remains TODO is changing |
| 805 | // findBaseOrBDV to return an llvm::Value of the correct |
| 806 | // type (and still remain pure). This will remove the |
| 807 | // need to add bitcasts. |
| 808 | assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && |
| 809 | "sanity -- findBaseOrBDV should be pure!"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 810 | #endif |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 811 | continue; |
| 812 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 813 | |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 814 | // Find either the defining value for the PHI or the normal base for |
| 815 | // a non-phi node |
| 816 | Value *base = findBaseOrBDV(InVal, cache); |
| 817 | if (!isKnownBaseResult(base)) { |
| 818 | // Either conflict or base. |
| 819 | assert(states.count(base)); |
| 820 | base = states[base].getBase(); |
| 821 | assert(base != nullptr && "unknown PhiState!"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 822 | } |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 823 | assert(base && "can't be null"); |
| 824 | // Must use original input BB since base may not be Instruction |
| 825 | // The cast is needed since base traversal may strip away bitcasts |
| 826 | if (base->getType() != basephi->getType()) { |
| 827 | base = new BitCastInst(base, basephi->getType(), "cast", |
| 828 | InBB->getTerminator()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 829 | } |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 830 | basephi->addIncoming(base, InBB); |
| 831 | } |
| 832 | assert(basephi->getNumIncomingValues() == NumPHIValues); |
| 833 | } else { |
| 834 | SelectInst *basesel = cast<SelectInst>(state.getBase()); |
| 835 | SelectInst *sel = cast<SelectInst>(v); |
| 836 | // Operand 1 & 2 are true, false path respectively. TODO: refactor to |
| 837 | // something more safe and less hacky. |
| 838 | for (int i = 1; i <= 2; i++) { |
| 839 | Value *InVal = sel->getOperand(i); |
| 840 | // Find either the defining value for the PHI or the normal base for |
| 841 | // a non-phi node |
| 842 | Value *base = findBaseOrBDV(InVal, cache); |
| 843 | if (!isKnownBaseResult(base)) { |
| 844 | // Either conflict or base. |
| 845 | assert(states.count(base)); |
| 846 | base = states[base].getBase(); |
| 847 | assert(base != nullptr && "unknown PhiState!"); |
| 848 | } |
| 849 | assert(base && "can't be null"); |
| 850 | // Must use original input BB since base may not be Instruction |
| 851 | // The cast is needed since base traversal may strip away bitcasts |
| 852 | if (base->getType() != basesel->getType()) { |
| 853 | base = new BitCastInst(base, basesel->getType(), "cast", basesel); |
Philip Reames | 28e61ce | 2015-02-28 01:57:44 +0000 | [diff] [blame] | 854 | } |
| 855 | basesel->setOperand(i, base); |
| 856 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 857 | } |
| 858 | } |
| 859 | |
| 860 | // Cache all of our results so we can cheaply reuse them |
| 861 | // NOTE: This is actually two caches: one of the base defining value |
| 862 | // relation and one of the base pointer relation! FIXME |
| 863 | for (auto item : states) { |
| 864 | Value *v = item.first; |
| 865 | Value *base = item.second.getBase(); |
| 866 | assert(v && base); |
| 867 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 868 | |
| 869 | if (TraceLSP) { |
| 870 | std::string fromstr = |
| 871 | cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") |
| 872 | : "none"; |
| 873 | errs() << "Updating base value cache" |
| 874 | << " for: " << (v->hasName() ? v->getName() : "") |
| 875 | << " from: " << fromstr |
| 876 | << " to: " << (base->hasName() ? base->getName() : "") << "\n"; |
| 877 | } |
| 878 | |
| 879 | assert(isKnownBaseResult(base) && |
| 880 | "must be something we 'know' is a base pointer"); |
| 881 | if (cache.count(v)) { |
| 882 | // Once we transition from the BDV relation being store in the cache to |
| 883 | // the base relation being stored, it must be stable |
| 884 | assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && |
| 885 | "base relation should be stable"); |
| 886 | } |
| 887 | cache[v] = base; |
| 888 | } |
| 889 | assert(cache.find(def) != cache.end()); |
| 890 | return cache[def]; |
| 891 | } |
| 892 | |
| 893 | // For a set of live pointers (base and/or derived), identify the base |
| 894 | // pointer of the object which they are derived from. This routine will |
| 895 | // mutate the IR graph as needed to make the 'base' pointer live at the |
| 896 | // definition site of 'derived'. This ensures that any use of 'derived' can |
| 897 | // also use 'base'. This may involve the insertion of a number of |
| 898 | // additional PHI nodes. |
| 899 | // |
| 900 | // preconditions: live is a set of pointer type Values |
| 901 | // |
| 902 | // side effects: may insert PHI nodes into the existing CFG, will preserve |
| 903 | // CFG, will not remove or mutate any existing nodes |
| 904 | // |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 905 | // post condition: PointerToBase contains one (derived, base) pair for every |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 906 | // pointer in live. Note that derived can be equal to base if the original |
| 907 | // pointer was a base pointer. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 908 | static void |
| 909 | findBasePointers(const StatepointLiveSetTy &live, |
| 910 | DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, |
Philip Reames | ba19849 | 2015-04-14 00:41:34 +0000 | [diff] [blame] | 911 | DominatorTree *DT, DefiningValueMapTy &DVCache) { |
Philip Reames | 2e5bcbe | 2015-02-28 01:52:09 +0000 | [diff] [blame] | 912 | // For the naming of values inserted to be deterministic - which makes for |
| 913 | // much cleaner and more stable tests - we need to assign an order to the |
| 914 | // live values. DenseSets do not provide a deterministic order across runs. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 915 | SmallVector<Value *, 64> Temp; |
Philip Reames | 2e5bcbe | 2015-02-28 01:52:09 +0000 | [diff] [blame] | 916 | Temp.insert(Temp.end(), live.begin(), live.end()); |
| 917 | std::sort(Temp.begin(), Temp.end(), order_by_name); |
| 918 | for (Value *ptr : Temp) { |
Philip Reames | ba19849 | 2015-04-14 00:41:34 +0000 | [diff] [blame] | 919 | Value *base = findBasePointer(ptr, DVCache); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 920 | assert(base && "failed to find base pointer"); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 921 | PointerToBase[ptr] = base; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 922 | assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || |
| 923 | DT->dominates(cast<Instruction>(base)->getParent(), |
| 924 | cast<Instruction>(ptr)->getParent())) && |
| 925 | "The base we found better dominate the derived pointer"); |
| 926 | |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 927 | // If you see this trip and like to live really dangerously, the code should |
| 928 | // be correct, just with idioms the verifier can't handle. You can try |
| 929 | // disabling the verifier at your own substaintial risk. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 930 | assert(!isa<ConstantPointerNull>(base) && |
Philip Reames | 24c6cd5 | 2015-03-27 05:47:00 +0000 | [diff] [blame] | 931 | "the relocation code needs adjustment to handle the relocation of " |
| 932 | "a null pointer constant without causing false positives in the " |
| 933 | "safepoint ir verifier."); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 934 | } |
| 935 | } |
| 936 | |
| 937 | /// Find the required based pointers (and adjust the live set) for the given |
| 938 | /// parse point. |
| 939 | static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, |
| 940 | const CallSite &CS, |
| 941 | PartiallyConstructedSafepointRecord &result) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 942 | DenseMap<llvm::Value *, llvm::Value *> PointerToBase; |
Philip Reames | ba19849 | 2015-04-14 00:41:34 +0000 | [diff] [blame] | 943 | findBasePointers(result.liveset, PointerToBase, &DT, DVCache); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 944 | |
| 945 | if (PrintBasePointers) { |
Philip Reames | a5aeaf4 | 2015-02-28 00:20:48 +0000 | [diff] [blame] | 946 | // Note: Need to print these in a stable order since this is checked in |
| 947 | // some tests. |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 948 | errs() << "Base Pairs (w/o Relocation):\n"; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 949 | SmallVector<Value *, 64> Temp; |
Philip Reames | a5aeaf4 | 2015-02-28 00:20:48 +0000 | [diff] [blame] | 950 | Temp.reserve(PointerToBase.size()); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 951 | for (auto Pair : PointerToBase) { |
Philip Reames | a5aeaf4 | 2015-02-28 00:20:48 +0000 | [diff] [blame] | 952 | Temp.push_back(Pair.first); |
| 953 | } |
| 954 | std::sort(Temp.begin(), Temp.end(), order_by_name); |
| 955 | for (Value *Ptr : Temp) { |
| 956 | Value *Base = PointerToBase[Ptr]; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 957 | errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() |
| 958 | << "\n"; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 959 | } |
| 960 | } |
| 961 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 962 | result.PointerToBase = PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 963 | } |
| 964 | |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 965 | /// Given an updated version of the dataflow liveness results, update the |
| 966 | /// liveset and base pointer maps for the call site CS. |
| 967 | static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
| 968 | const CallSite &CS, |
| 969 | PartiallyConstructedSafepointRecord &result); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 970 | |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 971 | static void recomputeLiveInValues( |
| 972 | Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 973 | MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 974 | // TODO-PERF: reuse the original liveness, then simply run the dataflow |
| 975 | // again. The old values are still live and will help it stablize quickly. |
| 976 | GCPtrLivenessData RevisedLivenessData; |
| 977 | computeLiveInValues(DT, F, RevisedLivenessData); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 978 | for (size_t i = 0; i < records.size(); i++) { |
| 979 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 980 | const CallSite &CS = toUpdate[i]; |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 981 | recomputeLiveInValues(RevisedLivenessData, CS, info); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 982 | } |
| 983 | } |
| 984 | |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 985 | // When inserting gc.relocate calls, we need to ensure there are no uses |
| 986 | // of the original value between the gc.statepoint and the gc.relocate call. |
| 987 | // One case which can arise is a phi node starting one of the successor blocks. |
| 988 | // We also need to be able to insert the gc.relocates only on the path which |
| 989 | // goes through the statepoint. We might need to split an edge to make this |
Philip Reames | f209a15 | 2015-04-13 20:00:30 +0000 | [diff] [blame] | 990 | // possible. |
| 991 | static BasicBlock * |
| 992 | normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) { |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 993 | DominatorTree *DT = nullptr; |
| 994 | if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) |
| 995 | DT = &DTP->getDomTree(); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 996 | |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 997 | BasicBlock *Ret = BB; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 998 | if (!BB->getUniquePredecessor()) { |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 999 | Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1000 | } |
| 1001 | |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 1002 | // Now that 'ret' has unique predecessor we can safely remove all phi nodes |
| 1003 | // from it |
| 1004 | FoldSingleEntryPHINodes(Ret); |
| 1005 | assert(!isa<PHINode>(Ret->begin())); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1006 | |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 1007 | // At this point, we can safely insert a gc.relocate as the first instruction |
| 1008 | // in Ret if needed. |
| 1009 | return Ret; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1010 | } |
| 1011 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1012 | static int find_index(ArrayRef<Value *> livevec, Value *val) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1013 | auto itr = std::find(livevec.begin(), livevec.end(), val); |
| 1014 | assert(livevec.end() != itr); |
| 1015 | size_t index = std::distance(livevec.begin(), itr); |
| 1016 | assert(index < livevec.size()); |
| 1017 | return index; |
| 1018 | } |
| 1019 | |
| 1020 | // Create new attribute set containing only attributes which can be transfered |
| 1021 | // from original call to the safepoint. |
| 1022 | static AttributeSet legalizeCallAttributes(AttributeSet AS) { |
| 1023 | AttributeSet ret; |
| 1024 | |
| 1025 | for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { |
| 1026 | unsigned index = AS.getSlotIndex(Slot); |
| 1027 | |
| 1028 | if (index == AttributeSet::ReturnIndex || |
| 1029 | index == AttributeSet::FunctionIndex) { |
| 1030 | |
| 1031 | for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; |
| 1032 | ++it) { |
| 1033 | Attribute attr = *it; |
| 1034 | |
| 1035 | // Do not allow certain attributes - just skip them |
| 1036 | // Safepoint can not be read only or read none. |
| 1037 | if (attr.hasAttribute(Attribute::ReadNone) || |
| 1038 | attr.hasAttribute(Attribute::ReadOnly)) |
| 1039 | continue; |
| 1040 | |
| 1041 | ret = ret.addAttributes( |
| 1042 | AS.getContext(), index, |
| 1043 | AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | // Just skip parameter attributes for now |
| 1048 | } |
| 1049 | |
| 1050 | return ret; |
| 1051 | } |
| 1052 | |
| 1053 | /// Helper function to place all gc relocates necessary for the given |
| 1054 | /// statepoint. |
| 1055 | /// Inputs: |
| 1056 | /// liveVariables - list of variables to be relocated. |
| 1057 | /// liveStart - index of the first live variable. |
| 1058 | /// basePtrs - base pointers. |
| 1059 | /// statepointToken - statepoint instruction to which relocates should be |
| 1060 | /// bound. |
| 1061 | /// Builder - Llvm IR builder to be used to construct new calls. |
Benjamin Kramer | f044d3f | 2015-03-09 16:23:46 +0000 | [diff] [blame] | 1062 | static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, |
| 1063 | const int liveStart, |
| 1064 | ArrayRef<llvm::Value *> basePtrs, |
| 1065 | Instruction *statepointToken, |
| 1066 | IRBuilder<> Builder) { |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1067 | SmallVector<Instruction *, 64> NewDefs; |
| 1068 | NewDefs.reserve(liveVariables.size()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1069 | |
| 1070 | Module *M = statepointToken->getParent()->getParent()->getParent(); |
| 1071 | |
| 1072 | for (unsigned i = 0; i < liveVariables.size(); i++) { |
| 1073 | // We generate a (potentially) unique declaration for every pointer type |
| 1074 | // combination. This results is some blow up the function declarations in |
| 1075 | // the IR, but removes the need for argument bitcasts which shrinks the IR |
| 1076 | // greatly and makes it much more readable. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1077 | SmallVector<Type *, 1> types; // one per 'any' type |
Sanjoy Das | 89c5491 | 2015-05-11 18:49:34 +0000 | [diff] [blame] | 1078 | // All gc_relocate are set to i8 addrspace(1)* type. This could help avoid |
| 1079 | // cases where the actual value's type mangling is not supported by llvm. A |
| 1080 | // bitcast is added later to convert gc_relocate to the actual value's type. |
| 1081 | types.push_back(Type::getInt8PtrTy(M->getContext(), 1)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1082 | Value *gc_relocate_decl = Intrinsic::getDeclaration( |
| 1083 | M, Intrinsic::experimental_gc_relocate, types); |
| 1084 | |
| 1085 | // Generate the gc.relocate call and save the result |
| 1086 | Value *baseIdx = |
| 1087 | ConstantInt::get(Type::getInt32Ty(M->getContext()), |
| 1088 | liveStart + find_index(liveVariables, basePtrs[i])); |
| 1089 | Value *liveIdx = ConstantInt::get( |
| 1090 | Type::getInt32Ty(M->getContext()), |
| 1091 | liveStart + find_index(liveVariables, liveVariables[i])); |
| 1092 | |
| 1093 | // only specify a debug name if we can give a useful one |
| 1094 | Value *reloc = Builder.CreateCall3( |
| 1095 | gc_relocate_decl, statepointToken, baseIdx, liveIdx, |
| 1096 | liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" |
| 1097 | : ""); |
| 1098 | // Trick CodeGen into thinking there are lots of free registers at this |
| 1099 | // fake call. |
| 1100 | cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); |
| 1101 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1102 | NewDefs.push_back(cast<Instruction>(reloc)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1103 | } |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1104 | assert(NewDefs.size() == liveVariables.size() && |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1105 | "missing or extra redefinition at safepoint"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1106 | } |
| 1107 | |
| 1108 | static void |
| 1109 | makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ |
| 1110 | const SmallVectorImpl<llvm::Value *> &basePtrs, |
| 1111 | const SmallVectorImpl<llvm::Value *> &liveVariables, |
| 1112 | Pass *P, |
| 1113 | PartiallyConstructedSafepointRecord &result) { |
| 1114 | assert(basePtrs.size() == liveVariables.size()); |
| 1115 | assert(isStatepoint(CS) && |
| 1116 | "This method expects to be rewriting a statepoint"); |
| 1117 | |
| 1118 | BasicBlock *BB = CS.getInstruction()->getParent(); |
| 1119 | assert(BB); |
| 1120 | Function *F = BB->getParent(); |
| 1121 | assert(F && "must be set"); |
| 1122 | Module *M = F->getParent(); |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 1123 | (void)M; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1124 | assert(M && "must be set"); |
| 1125 | |
| 1126 | // We're not changing the function signature of the statepoint since the gc |
| 1127 | // arguments go into the var args section. |
| 1128 | Function *gc_statepoint_decl = CS.getCalledFunction(); |
| 1129 | |
| 1130 | // Then go ahead and use the builder do actually do the inserts. We insert |
| 1131 | // immediately before the previous instruction under the assumption that all |
| 1132 | // arguments will be available here. We can't insert afterwards since we may |
| 1133 | // be replacing a terminator. |
| 1134 | Instruction *insertBefore = CS.getInstruction(); |
| 1135 | IRBuilder<> Builder(insertBefore); |
| 1136 | // Copy all of the arguments from the original statepoint - this includes the |
| 1137 | // target, call args, and deopt args |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1138 | SmallVector<llvm::Value *, 64> args; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1139 | args.insert(args.end(), CS.arg_begin(), CS.arg_end()); |
| 1140 | // TODO: Clear the 'needs rewrite' flag |
| 1141 | |
| 1142 | // add all the pointers to be relocated (gc arguments) |
| 1143 | // Capture the start of the live variable list for use in the gc_relocates |
| 1144 | const int live_start = args.size(); |
| 1145 | args.insert(args.end(), liveVariables.begin(), liveVariables.end()); |
| 1146 | |
| 1147 | // Create the statepoint given all the arguments |
| 1148 | Instruction *token = nullptr; |
| 1149 | AttributeSet return_attributes; |
| 1150 | if (CS.isCall()) { |
| 1151 | CallInst *toReplace = cast<CallInst>(CS.getInstruction()); |
| 1152 | CallInst *call = |
| 1153 | Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); |
| 1154 | call->setTailCall(toReplace->isTailCall()); |
| 1155 | call->setCallingConv(toReplace->getCallingConv()); |
| 1156 | |
| 1157 | // Currently we will fail on parameter attributes and on certain |
| 1158 | // function attributes. |
| 1159 | AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); |
| 1160 | // In case if we can handle this set of sttributes - set up function attrs |
| 1161 | // directly on statepoint and return attrs later for gc_result intrinsic. |
| 1162 | call->setAttributes(new_attrs.getFnAttributes()); |
| 1163 | return_attributes = new_attrs.getRetAttributes(); |
| 1164 | |
| 1165 | token = call; |
| 1166 | |
| 1167 | // Put the following gc_result and gc_relocate calls immediately after the |
| 1168 | // the old call (which we're about to delete) |
| 1169 | BasicBlock::iterator next(toReplace); |
| 1170 | assert(BB->end() != next && "not a terminator, must have next"); |
| 1171 | next++; |
| 1172 | Instruction *IP = &*(next); |
| 1173 | Builder.SetInsertPoint(IP); |
| 1174 | Builder.SetCurrentDebugLocation(IP->getDebugLoc()); |
| 1175 | |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 1176 | } else { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1177 | InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); |
| 1178 | |
| 1179 | // Insert the new invoke into the old block. We'll remove the old one in a |
| 1180 | // moment at which point this will become the new terminator for the |
| 1181 | // original block. |
| 1182 | InvokeInst *invoke = InvokeInst::Create( |
| 1183 | gc_statepoint_decl, toReplace->getNormalDest(), |
| 1184 | toReplace->getUnwindDest(), args, "", toReplace->getParent()); |
| 1185 | invoke->setCallingConv(toReplace->getCallingConv()); |
| 1186 | |
| 1187 | // Currently we will fail on parameter attributes and on certain |
| 1188 | // function attributes. |
| 1189 | AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); |
| 1190 | // In case if we can handle this set of sttributes - set up function attrs |
| 1191 | // directly on statepoint and return attrs later for gc_result intrinsic. |
| 1192 | invoke->setAttributes(new_attrs.getFnAttributes()); |
| 1193 | return_attributes = new_attrs.getRetAttributes(); |
| 1194 | |
| 1195 | token = invoke; |
| 1196 | |
| 1197 | // Generate gc relocates in exceptional path |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 1198 | BasicBlock *unwindBlock = toReplace->getUnwindDest(); |
| 1199 | assert(!isa<PHINode>(unwindBlock->begin()) && |
| 1200 | unwindBlock->getUniquePredecessor() && |
| 1201 | "can't safely insert in this block!"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1202 | |
| 1203 | Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); |
| 1204 | Builder.SetInsertPoint(IP); |
| 1205 | Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); |
| 1206 | |
| 1207 | // Extract second element from landingpad return value. We will attach |
| 1208 | // exceptional gc relocates to it. |
| 1209 | const unsigned idx = 1; |
| 1210 | Instruction *exceptional_token = |
| 1211 | cast<Instruction>(Builder.CreateExtractValue( |
| 1212 | unwindBlock->getLandingPadInst(), idx, "relocate_token")); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1213 | result.UnwindToken = exceptional_token; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1214 | |
| 1215 | // Just throw away return value. We will use the one we got for normal |
| 1216 | // block. |
| 1217 | (void)CreateGCRelocates(liveVariables, live_start, basePtrs, |
| 1218 | exceptional_token, Builder); |
| 1219 | |
| 1220 | // Generate gc relocates and returns for normal block |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 1221 | BasicBlock *normalDest = toReplace->getNormalDest(); |
| 1222 | assert(!isa<PHINode>(normalDest->begin()) && |
| 1223 | normalDest->getUniquePredecessor() && |
| 1224 | "can't safely insert in this block!"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1225 | |
| 1226 | IP = &*(normalDest->getFirstInsertionPt()); |
| 1227 | Builder.SetInsertPoint(IP); |
| 1228 | |
| 1229 | // gc relocates will be generated later as if it were regular call |
| 1230 | // statepoint |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1231 | } |
| 1232 | assert(token); |
| 1233 | |
| 1234 | // Take the name of the original value call if it had one. |
| 1235 | token->takeName(CS.getInstruction()); |
| 1236 | |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1237 | // The GCResult is already inserted, we just need to find it |
David Blaikie | 5e5d784 | 2015-02-22 20:58:38 +0000 | [diff] [blame] | 1238 | #ifndef NDEBUG |
| 1239 | Instruction *toReplace = CS.getInstruction(); |
| 1240 | assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && |
| 1241 | "only valid use before rewrite is gc.result"); |
| 1242 | assert(!toReplace->hasOneUse() || |
| 1243 | isGCResult(cast<Instruction>(*toReplace->user_begin()))); |
| 1244 | #endif |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1245 | |
| 1246 | // Update the gc.result of the original statepoint (if any) to use the newly |
| 1247 | // inserted statepoint. This is safe to do here since the token can't be |
| 1248 | // considered a live reference. |
| 1249 | CS.getInstruction()->replaceAllUsesWith(token); |
| 1250 | |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1251 | result.StatepointToken = token; |
| 1252 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1253 | // Second, create a gc.relocate for every live variable |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1254 | CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1255 | } |
| 1256 | |
| 1257 | namespace { |
| 1258 | struct name_ordering { |
| 1259 | Value *base; |
| 1260 | Value *derived; |
| 1261 | bool operator()(name_ordering const &a, name_ordering const &b) { |
| 1262 | return -1 == a.derived->getName().compare(b.derived->getName()); |
| 1263 | } |
| 1264 | }; |
| 1265 | } |
| 1266 | static void stablize_order(SmallVectorImpl<Value *> &basevec, |
| 1267 | SmallVectorImpl<Value *> &livevec) { |
| 1268 | assert(basevec.size() == livevec.size()); |
| 1269 | |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 1270 | SmallVector<name_ordering, 64> temp; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1271 | for (size_t i = 0; i < basevec.size(); i++) { |
| 1272 | name_ordering v; |
| 1273 | v.base = basevec[i]; |
| 1274 | v.derived = livevec[i]; |
| 1275 | temp.push_back(v); |
| 1276 | } |
| 1277 | std::sort(temp.begin(), temp.end(), name_ordering()); |
| 1278 | for (size_t i = 0; i < basevec.size(); i++) { |
| 1279 | basevec[i] = temp[i].base; |
| 1280 | livevec[i] = temp[i].derived; |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | // Replace an existing gc.statepoint with a new one and a set of gc.relocates |
| 1285 | // which make the relocations happening at this safepoint explicit. |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1286 | // |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1287 | // WARNING: Does not do any fixup to adjust users of the original live |
| 1288 | // values. That's the callers responsibility. |
| 1289 | static void |
| 1290 | makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, |
| 1291 | PartiallyConstructedSafepointRecord &result) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1292 | auto liveset = result.liveset; |
| 1293 | auto PointerToBase = result.PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1294 | |
| 1295 | // Convert to vector for efficient cross referencing. |
| 1296 | SmallVector<Value *, 64> basevec, livevec; |
| 1297 | livevec.reserve(liveset.size()); |
| 1298 | basevec.reserve(liveset.size()); |
| 1299 | for (Value *L : liveset) { |
| 1300 | livevec.push_back(L); |
| 1301 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1302 | assert(PointerToBase.find(L) != PointerToBase.end()); |
| 1303 | Value *base = PointerToBase[L]; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1304 | basevec.push_back(base); |
| 1305 | } |
| 1306 | assert(livevec.size() == basevec.size()); |
| 1307 | |
| 1308 | // To make the output IR slightly more stable (for use in diffs), ensure a |
| 1309 | // fixed order of the values in the safepoint (by sorting the value name). |
| 1310 | // The order is otherwise meaningless. |
| 1311 | stablize_order(basevec, livevec); |
| 1312 | |
| 1313 | // Do the actual rewriting and delete the old statepoint |
| 1314 | makeStatepointExplicitImpl(CS, basevec, livevec, P, result); |
| 1315 | CS.getInstruction()->eraseFromParent(); |
| 1316 | } |
| 1317 | |
| 1318 | // Helper function for the relocationViaAlloca. |
| 1319 | // It receives iterator to the statepoint gc relocates and emits store to the |
| 1320 | // assigned |
| 1321 | // location (via allocaMap) for the each one of them. |
| 1322 | // Add visited values into the visitedLiveValues set we will later use them |
| 1323 | // for sanity check. |
| 1324 | static void |
| 1325 | insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, |
| 1326 | DenseMap<Value *, Value *> &allocaMap, |
| 1327 | DenseSet<Value *> &visitedLiveValues) { |
| 1328 | |
| 1329 | for (User *U : gcRelocs) { |
| 1330 | if (!isa<IntrinsicInst>(U)) |
| 1331 | continue; |
| 1332 | |
| 1333 | IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); |
| 1334 | |
| 1335 | // We only care about relocates |
| 1336 | if (relocatedValue->getIntrinsicID() != |
| 1337 | Intrinsic::experimental_gc_relocate) { |
| 1338 | continue; |
| 1339 | } |
| 1340 | |
| 1341 | GCRelocateOperands relocateOperands(relocatedValue); |
Sanjoy Das | 499d703 | 2015-05-06 02:36:26 +0000 | [diff] [blame] | 1342 | Value *originalValue = |
| 1343 | const_cast<Value *>(relocateOperands.getDerivedPtr()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1344 | assert(allocaMap.count(originalValue)); |
| 1345 | Value *alloca = allocaMap[originalValue]; |
| 1346 | |
| 1347 | // Emit store into the related alloca |
Sanjoy Das | 89c5491 | 2015-05-11 18:49:34 +0000 | [diff] [blame] | 1348 | // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to |
| 1349 | // the correct type according to alloca. |
| 1350 | assert(relocatedValue->getNextNode() && "Should always have one since it's not a terminator"); |
| 1351 | IRBuilder<> Builder(relocatedValue->getNextNode()); |
| 1352 | Value *CastedRelocatedValue = |
| 1353 | Builder.CreateBitCast(relocatedValue, cast<AllocaInst>(alloca)->getAllocatedType(), |
| 1354 | relocatedValue->hasName() ? relocatedValue->getName() + ".casted" : ""); |
| 1355 | |
| 1356 | StoreInst *store = new StoreInst(CastedRelocatedValue, alloca); |
| 1357 | store->insertAfter(cast<Instruction>(CastedRelocatedValue)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1358 | |
| 1359 | #ifndef NDEBUG |
| 1360 | visitedLiveValues.insert(originalValue); |
| 1361 | #endif |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | /// do all the relocation update via allocas and mem2reg |
| 1366 | static void relocationViaAlloca( |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1367 | Function &F, DominatorTree &DT, ArrayRef<Value *> live, |
| 1368 | ArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1369 | #ifndef NDEBUG |
Philip Reames | a6ebf07 | 2015-03-27 05:53:16 +0000 | [diff] [blame] | 1370 | // record initial number of (static) allocas; we'll check we have the same |
| 1371 | // number when we get done. |
| 1372 | int InitialAllocaNum = 0; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1373 | for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; |
| 1374 | I++) |
Philip Reames | a6ebf07 | 2015-03-27 05:53:16 +0000 | [diff] [blame] | 1375 | if (isa<AllocaInst>(*I)) |
| 1376 | InitialAllocaNum++; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1377 | #endif |
| 1378 | |
| 1379 | // TODO-PERF: change data structures, reserve |
| 1380 | DenseMap<Value *, Value *> allocaMap; |
| 1381 | SmallVector<AllocaInst *, 200> PromotableAllocas; |
| 1382 | PromotableAllocas.reserve(live.size()); |
| 1383 | |
| 1384 | // emit alloca for each live gc pointer |
| 1385 | for (unsigned i = 0; i < live.size(); i++) { |
| 1386 | Value *liveValue = live[i]; |
| 1387 | AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", |
| 1388 | F.getEntryBlock().getFirstNonPHI()); |
| 1389 | allocaMap[liveValue] = alloca; |
| 1390 | PromotableAllocas.push_back(alloca); |
| 1391 | } |
| 1392 | |
| 1393 | // The next two loops are part of the same conceptual operation. We need to |
| 1394 | // insert a store to the alloca after the original def and at each |
| 1395 | // redefinition. We need to insert a load before each use. These are split |
| 1396 | // into distinct loops for performance reasons. |
| 1397 | |
| 1398 | // update gc pointer after each statepoint |
| 1399 | // either store a relocated value or null (if no relocated value found for |
| 1400 | // this gc pointer and it is not a gc_result) |
| 1401 | // this must happen before we update the statepoint with load of alloca |
| 1402 | // otherwise we lose the link between statepoint and old def |
| 1403 | for (size_t i = 0; i < records.size(); i++) { |
| 1404 | const struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1405 | Value *Statepoint = info.StatepointToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1406 | |
| 1407 | // This will be used for consistency check |
| 1408 | DenseSet<Value *> visitedLiveValues; |
| 1409 | |
| 1410 | // Insert stores for normal statepoint gc relocates |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1411 | insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1412 | |
| 1413 | // In case if it was invoke statepoint |
| 1414 | // we will insert stores for exceptional path gc relocates. |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1415 | if (isa<InvokeInst>(Statepoint)) { |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1416 | insertRelocationStores(info.UnwindToken->users(), allocaMap, |
| 1417 | visitedLiveValues); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1418 | } |
| 1419 | |
Philip Reames | e73300b | 2015-04-13 16:41:32 +0000 | [diff] [blame] | 1420 | if (ClobberNonLive) { |
| 1421 | // As a debuging aid, pretend that an unrelocated pointer becomes null at |
| 1422 | // the gc.statepoint. This will turn some subtle GC problems into |
| 1423 | // slightly easier to debug SEGVs. Note that on large IR files with |
| 1424 | // lots of gc.statepoints this is extremely costly both memory and time |
| 1425 | // wise. |
| 1426 | SmallVector<AllocaInst *, 64> ToClobber; |
| 1427 | for (auto Pair : allocaMap) { |
| 1428 | Value *Def = Pair.first; |
| 1429 | AllocaInst *Alloca = cast<AllocaInst>(Pair.second); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1430 | |
Philip Reames | e73300b | 2015-04-13 16:41:32 +0000 | [diff] [blame] | 1431 | // This value was relocated |
| 1432 | if (visitedLiveValues.count(Def)) { |
| 1433 | continue; |
| 1434 | } |
| 1435 | ToClobber.push_back(Alloca); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1436 | } |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1437 | |
Philip Reames | e73300b | 2015-04-13 16:41:32 +0000 | [diff] [blame] | 1438 | auto InsertClobbersAt = [&](Instruction *IP) { |
| 1439 | for (auto *AI : ToClobber) { |
| 1440 | auto AIType = cast<PointerType>(AI->getType()); |
| 1441 | auto PT = cast<PointerType>(AIType->getElementType()); |
| 1442 | Constant *CPN = ConstantPointerNull::get(PT); |
| 1443 | StoreInst *store = new StoreInst(CPN, AI); |
| 1444 | store->insertBefore(IP); |
| 1445 | } |
| 1446 | }; |
| 1447 | |
| 1448 | // Insert the clobbering stores. These may get intermixed with the |
| 1449 | // gc.results and gc.relocates, but that's fine. |
| 1450 | if (auto II = dyn_cast<InvokeInst>(Statepoint)) { |
| 1451 | InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); |
| 1452 | InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); |
| 1453 | } else { |
| 1454 | BasicBlock::iterator Next(cast<CallInst>(Statepoint)); |
| 1455 | Next++; |
| 1456 | InsertClobbersAt(Next); |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1457 | } |
David Blaikie | 82ad787 | 2015-02-20 23:44:24 +0000 | [diff] [blame] | 1458 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1459 | } |
| 1460 | // update use with load allocas and add store for gc_relocated |
| 1461 | for (auto Pair : allocaMap) { |
| 1462 | Value *def = Pair.first; |
| 1463 | Value *alloca = Pair.second; |
| 1464 | |
| 1465 | // we pre-record the uses of allocas so that we dont have to worry about |
| 1466 | // later update |
| 1467 | // that change the user information. |
| 1468 | SmallVector<Instruction *, 20> uses; |
| 1469 | // PERF: trade a linear scan for repeated reallocation |
| 1470 | uses.reserve(std::distance(def->user_begin(), def->user_end())); |
| 1471 | for (User *U : def->users()) { |
| 1472 | if (!isa<ConstantExpr>(U)) { |
| 1473 | // If the def has a ConstantExpr use, then the def is either a |
| 1474 | // ConstantExpr use itself or null. In either case |
| 1475 | // (recursively in the first, directly in the second), the oop |
| 1476 | // it is ultimately dependent on is null and this particular |
| 1477 | // use does not need to be fixed up. |
| 1478 | uses.push_back(cast<Instruction>(U)); |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | std::sort(uses.begin(), uses.end()); |
| 1483 | auto last = std::unique(uses.begin(), uses.end()); |
| 1484 | uses.erase(last, uses.end()); |
| 1485 | |
| 1486 | for (Instruction *use : uses) { |
| 1487 | if (isa<PHINode>(use)) { |
| 1488 | PHINode *phi = cast<PHINode>(use); |
| 1489 | for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { |
| 1490 | if (def == phi->getIncomingValue(i)) { |
| 1491 | LoadInst *load = new LoadInst( |
| 1492 | alloca, "", phi->getIncomingBlock(i)->getTerminator()); |
| 1493 | phi->setIncomingValue(i, load); |
| 1494 | } |
| 1495 | } |
| 1496 | } else { |
| 1497 | LoadInst *load = new LoadInst(alloca, "", use); |
| 1498 | use->replaceUsesOfWith(def, load); |
| 1499 | } |
| 1500 | } |
| 1501 | |
| 1502 | // emit store for the initial gc value |
| 1503 | // store must be inserted after load, otherwise store will be in alloca's |
| 1504 | // use list and an extra load will be inserted before it |
| 1505 | StoreInst *store = new StoreInst(def, alloca); |
Philip Reames | 6da3785 | 2015-03-04 00:13:52 +0000 | [diff] [blame] | 1506 | if (Instruction *inst = dyn_cast<Instruction>(def)) { |
| 1507 | if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) { |
| 1508 | // InvokeInst is a TerminatorInst so the store need to be inserted |
| 1509 | // into its normal destination block. |
| 1510 | BasicBlock *normalDest = invoke->getNormalDest(); |
| 1511 | store->insertBefore(normalDest->getFirstNonPHI()); |
| 1512 | } else { |
| 1513 | assert(!inst->isTerminator() && |
| 1514 | "The only TerminatorInst that can produce a value is " |
| 1515 | "InvokeInst which is handled above."); |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1516 | store->insertAfter(inst); |
Philip Reames | 6da3785 | 2015-03-04 00:13:52 +0000 | [diff] [blame] | 1517 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1518 | } else { |
Philip Reames | 63294cb | 2015-04-26 19:48:03 +0000 | [diff] [blame] | 1519 | assert(isa<Argument>(def)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1520 | store->insertAfter(cast<Instruction>(alloca)); |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | assert(PromotableAllocas.size() == live.size() && |
| 1525 | "we must have the same allocas with lives"); |
| 1526 | if (!PromotableAllocas.empty()) { |
| 1527 | // apply mem2reg to promote alloca to SSA |
| 1528 | PromoteMemToReg(PromotableAllocas, DT); |
| 1529 | } |
| 1530 | |
| 1531 | #ifndef NDEBUG |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1532 | for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; |
| 1533 | I++) |
Philip Reames | a6ebf07 | 2015-03-27 05:53:16 +0000 | [diff] [blame] | 1534 | if (isa<AllocaInst>(*I)) |
| 1535 | InitialAllocaNum--; |
| 1536 | assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1537 | #endif |
| 1538 | } |
| 1539 | |
| 1540 | /// Implement a unique function which doesn't require we sort the input |
| 1541 | /// vector. Doing so has the effect of changing the output of a couple of |
| 1542 | /// tests in ways which make them less useful in testing fused safepoints. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1543 | template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { |
| 1544 | DenseSet<T> Seen; |
| 1545 | SmallVector<T, 128> TempVec; |
| 1546 | TempVec.reserve(Vec.size()); |
| 1547 | for (auto Element : Vec) |
| 1548 | TempVec.push_back(Element); |
| 1549 | Vec.clear(); |
| 1550 | for (auto V : TempVec) { |
| 1551 | if (Seen.insert(V).second) { |
| 1552 | Vec.push_back(V); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1553 | } |
| 1554 | } |
| 1555 | } |
| 1556 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1557 | /// Insert holders so that each Value is obviously live through the entire |
Philip Reames | f209a15 | 2015-04-13 20:00:30 +0000 | [diff] [blame] | 1558 | /// lifetime of the call. |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1559 | static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, |
Philip Reames | f209a15 | 2015-04-13 20:00:30 +0000 | [diff] [blame] | 1560 | SmallVectorImpl<CallInst *> &Holders) { |
Philip Reames | 2114275 | 2015-04-13 19:07:47 +0000 | [diff] [blame] | 1561 | if (Values.empty()) |
| 1562 | // No values to hold live, might as well not insert the empty holder |
| 1563 | return; |
| 1564 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1565 | Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); |
Philip Reames | f209a15 | 2015-04-13 20:00:30 +0000 | [diff] [blame] | 1566 | // Use a dummy vararg function to actually hold the values live |
| 1567 | Function *Func = cast<Function>(M->getOrInsertFunction( |
| 1568 | "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1569 | if (CS.isCall()) { |
| 1570 | // For call safepoints insert dummy calls right after safepoint |
Philip Reames | f209a15 | 2015-04-13 20:00:30 +0000 | [diff] [blame] | 1571 | BasicBlock::iterator Next(CS.getInstruction()); |
| 1572 | Next++; |
| 1573 | Holders.push_back(CallInst::Create(Func, Values, "", Next)); |
| 1574 | return; |
| 1575 | } |
| 1576 | // For invoke safepooints insert dummy calls both in normal and |
| 1577 | // exceptional destination blocks |
| 1578 | auto *II = cast<InvokeInst>(CS.getInstruction()); |
| 1579 | Holders.push_back(CallInst::Create( |
| 1580 | Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); |
| 1581 | Holders.push_back(CallInst::Create( |
| 1582 | Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1583 | } |
| 1584 | |
| 1585 | static void findLiveReferences( |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1586 | Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, |
| 1587 | MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 1588 | GCPtrLivenessData OriginalLivenessData; |
| 1589 | computeLiveInValues(DT, F, OriginalLivenessData); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1590 | for (size_t i = 0; i < records.size(); i++) { |
| 1591 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1592 | const CallSite &CS = toUpdate[i]; |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 1593 | analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1594 | } |
| 1595 | } |
| 1596 | |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1597 | /// Remove any vector of pointers from the liveset by scalarizing them over the |
| 1598 | /// statepoint instruction. Adds the scalarized pieces to the liveset. It |
| 1599 | /// would be preferrable to include the vector in the statepoint itself, but |
| 1600 | /// the lowering code currently does not handle that. Extending it would be |
| 1601 | /// slightly non-trivial since it requires a format change. Given how rare |
| 1602 | /// such cases are (for the moment?) scalarizing is an acceptable comprimise. |
| 1603 | static void splitVectorValues(Instruction *StatepointInst, |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1604 | StatepointLiveSetTy &LiveSet, DominatorTree &DT) { |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1605 | SmallVector<Value *, 16> ToSplit; |
| 1606 | for (Value *V : LiveSet) |
| 1607 | if (isa<VectorType>(V->getType())) |
| 1608 | ToSplit.push_back(V); |
| 1609 | |
| 1610 | if (ToSplit.empty()) |
| 1611 | return; |
| 1612 | |
| 1613 | Function &F = *(StatepointInst->getParent()->getParent()); |
| 1614 | |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1615 | DenseMap<Value *, AllocaInst *> AllocaMap; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1616 | // First is normal return, second is exceptional return (invoke only) |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1617 | DenseMap<Value *, std::pair<Value *, Value *>> Replacements; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1618 | for (Value *V : ToSplit) { |
| 1619 | LiveSet.erase(V); |
| 1620 | |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1621 | AllocaInst *Alloca = |
| 1622 | new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1623 | AllocaMap[V] = Alloca; |
| 1624 | |
| 1625 | VectorType *VT = cast<VectorType>(V->getType()); |
| 1626 | IRBuilder<> Builder(StatepointInst); |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1627 | SmallVector<Value *, 16> Elements; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1628 | for (unsigned i = 0; i < VT->getNumElements(); i++) |
| 1629 | Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); |
| 1630 | LiveSet.insert(Elements.begin(), Elements.end()); |
| 1631 | |
| 1632 | auto InsertVectorReform = [&](Instruction *IP) { |
| 1633 | Builder.SetInsertPoint(IP); |
| 1634 | Builder.SetCurrentDebugLocation(IP->getDebugLoc()); |
| 1635 | Value *ResultVec = UndefValue::get(VT); |
| 1636 | for (unsigned i = 0; i < VT->getNumElements(); i++) |
| 1637 | ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], |
| 1638 | Builder.getInt32(i)); |
| 1639 | return ResultVec; |
| 1640 | }; |
| 1641 | |
| 1642 | if (isa<CallInst>(StatepointInst)) { |
| 1643 | BasicBlock::iterator Next(StatepointInst); |
| 1644 | Next++; |
| 1645 | Instruction *IP = &*(Next); |
| 1646 | Replacements[V].first = InsertVectorReform(IP); |
| 1647 | Replacements[V].second = nullptr; |
| 1648 | } else { |
| 1649 | InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); |
| 1650 | // We've already normalized - check that we don't have shared destination |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1651 | // blocks |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1652 | BasicBlock *NormalDest = Invoke->getNormalDest(); |
| 1653 | assert(!isa<PHINode>(NormalDest->begin())); |
| 1654 | BasicBlock *UnwindDest = Invoke->getUnwindDest(); |
| 1655 | assert(!isa<PHINode>(UnwindDest->begin())); |
| 1656 | // Insert insert element sequences in both successors |
| 1657 | Instruction *IP = &*(NormalDest->getFirstInsertionPt()); |
| 1658 | Replacements[V].first = InsertVectorReform(IP); |
| 1659 | IP = &*(UnwindDest->getFirstInsertionPt()); |
| 1660 | Replacements[V].second = InsertVectorReform(IP); |
| 1661 | } |
| 1662 | } |
| 1663 | for (Value *V : ToSplit) { |
| 1664 | AllocaInst *Alloca = AllocaMap[V]; |
| 1665 | |
| 1666 | // Capture all users before we start mutating use lists |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1667 | SmallVector<Instruction *, 16> Users; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1668 | for (User *U : V->users()) |
| 1669 | Users.push_back(cast<Instruction>(U)); |
| 1670 | |
| 1671 | for (Instruction *I : Users) { |
| 1672 | if (auto Phi = dyn_cast<PHINode>(I)) { |
| 1673 | for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) |
| 1674 | if (V == Phi->getIncomingValue(i)) { |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1675 | LoadInst *Load = new LoadInst( |
| 1676 | Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1677 | Phi->setIncomingValue(i, Load); |
| 1678 | } |
| 1679 | } else { |
| 1680 | LoadInst *Load = new LoadInst(Alloca, "", I); |
| 1681 | I->replaceUsesOfWith(V, Load); |
| 1682 | } |
| 1683 | } |
| 1684 | |
| 1685 | // Store the original value and the replacement value into the alloca |
| 1686 | StoreInst *Store = new StoreInst(V, Alloca); |
| 1687 | if (auto I = dyn_cast<Instruction>(V)) |
| 1688 | Store->insertAfter(I); |
| 1689 | else |
| 1690 | Store->insertAfter(Alloca); |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1691 | |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1692 | // Normal return for invoke, or call return |
| 1693 | Instruction *Replacement = cast<Instruction>(Replacements[V].first); |
| 1694 | (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); |
| 1695 | // Unwind return for invoke only |
| 1696 | Replacement = cast_or_null<Instruction>(Replacements[V].second); |
| 1697 | if (Replacement) |
| 1698 | (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); |
| 1699 | } |
| 1700 | |
| 1701 | // apply mem2reg to promote alloca to SSA |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1702 | SmallVector<AllocaInst *, 16> Allocas; |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1703 | for (Value *V : ToSplit) |
| 1704 | Allocas.push_back(AllocaMap[V]); |
| 1705 | PromoteMemToReg(Allocas, DT); |
| 1706 | } |
| 1707 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1708 | static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1709 | SmallVectorImpl<CallSite> &toUpdate) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1710 | #ifndef NDEBUG |
| 1711 | // sanity check the input |
| 1712 | std::set<CallSite> uniqued; |
| 1713 | uniqued.insert(toUpdate.begin(), toUpdate.end()); |
| 1714 | assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); |
| 1715 | |
| 1716 | for (size_t i = 0; i < toUpdate.size(); i++) { |
| 1717 | CallSite &CS = toUpdate[i]; |
| 1718 | assert(CS.getInstruction()->getParent()->getParent() == &F); |
| 1719 | assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); |
| 1720 | } |
| 1721 | #endif |
| 1722 | |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 1723 | // When inserting gc.relocates for invokes, we need to be able to insert at |
| 1724 | // the top of the successor blocks. See the comment on |
| 1725 | // normalForInvokeSafepoint on exactly what is needed. Note that this step |
Philip Reames | f209a15 | 2015-04-13 20:00:30 +0000 | [diff] [blame] | 1726 | // may restructure the CFG. |
| 1727 | for (CallSite CS : toUpdate) { |
| 1728 | if (!CS.isInvoke()) |
| 1729 | continue; |
| 1730 | InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); |
| 1731 | normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), |
| 1732 | P); |
| 1733 | normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), |
| 1734 | P); |
| 1735 | } |
Philip Reames | 69e51ca | 2015-04-13 18:07:21 +0000 | [diff] [blame] | 1736 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1737 | // A list of dummy calls added to the IR to keep various values obviously |
| 1738 | // live in the IR. We'll remove all of these when done. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1739 | SmallVector<CallInst *, 64> holders; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1740 | |
| 1741 | // Insert a dummy call with all of the arguments to the vm_state we'll need |
| 1742 | // for the actual safepoint insertion. This ensures reference arguments in |
| 1743 | // the deopt argument list are considered live through the safepoint (and |
| 1744 | // thus makes sure they get relocated.) |
| 1745 | for (size_t i = 0; i < toUpdate.size(); i++) { |
| 1746 | CallSite &CS = toUpdate[i]; |
| 1747 | Statepoint StatepointCS(CS); |
| 1748 | |
| 1749 | SmallVector<Value *, 64> DeoptValues; |
| 1750 | for (Use &U : StatepointCS.vm_state_args()) { |
| 1751 | Value *Arg = cast<Value>(&U); |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1752 | assert(!isUnhandledGCPointerType(Arg->getType()) && |
| 1753 | "support for FCA unimplemented"); |
| 1754 | if (isHandledGCPointerType(Arg->getType())) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1755 | DeoptValues.push_back(Arg); |
| 1756 | } |
| 1757 | insertUseHolderAfter(CS, DeoptValues, holders); |
| 1758 | } |
| 1759 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1760 | SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1761 | records.reserve(toUpdate.size()); |
| 1762 | for (size_t i = 0; i < toUpdate.size(); i++) { |
| 1763 | struct PartiallyConstructedSafepointRecord info; |
| 1764 | records.push_back(info); |
| 1765 | } |
| 1766 | assert(records.size() == toUpdate.size()); |
| 1767 | |
| 1768 | // A) Identify all gc pointers which are staticly live at the given call |
| 1769 | // site. |
| 1770 | findLiveReferences(F, DT, P, toUpdate, records); |
| 1771 | |
Philip Reames | 8531d8c | 2015-04-10 21:48:25 +0000 | [diff] [blame] | 1772 | // Do a limited scalarization of any live at safepoint vector values which |
| 1773 | // contain pointers. This enables this pass to run after vectorization at |
| 1774 | // the cost of some possible performance loss. TODO: it would be nice to |
| 1775 | // natively support vectors all the way through the backend so we don't need |
| 1776 | // to scalarize here. |
| 1777 | for (size_t i = 0; i < records.size(); i++) { |
| 1778 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1779 | Instruction *statepoint = toUpdate[i].getInstruction(); |
| 1780 | splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT); |
| 1781 | } |
| 1782 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1783 | // B) Find the base pointers for each live pointer |
| 1784 | /* scope for caching */ { |
| 1785 | // Cache the 'defining value' relation used in the computation and |
| 1786 | // insertion of base phis and selects. This ensures that we don't insert |
| 1787 | // large numbers of duplicate base_phis. |
| 1788 | DefiningValueMapTy DVCache; |
| 1789 | |
| 1790 | for (size_t i = 0; i < records.size(); i++) { |
| 1791 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1792 | CallSite &CS = toUpdate[i]; |
| 1793 | findBasePointers(DT, DVCache, CS, info); |
| 1794 | } |
| 1795 | } // end of cache scope |
| 1796 | |
| 1797 | // The base phi insertion logic (for any safepoint) may have inserted new |
| 1798 | // instructions which are now live at some safepoint. The simplest such |
| 1799 | // example is: |
| 1800 | // loop: |
| 1801 | // phi a <-- will be a new base_phi here |
| 1802 | // safepoint 1 <-- that needs to be live here |
| 1803 | // gep a + 1 |
| 1804 | // safepoint 2 |
| 1805 | // br loop |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1806 | // We insert some dummy calls after each safepoint to definitely hold live |
| 1807 | // the base pointers which were identified for that safepoint. We'll then |
| 1808 | // ask liveness for _every_ base inserted to see what is now live. Then we |
| 1809 | // remove the dummy calls. |
| 1810 | holders.reserve(holders.size() + records.size()); |
| 1811 | for (size_t i = 0; i < records.size(); i++) { |
| 1812 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1813 | CallSite &CS = toUpdate[i]; |
| 1814 | |
| 1815 | SmallVector<Value *, 128> Bases; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1816 | for (auto Pair : info.PointerToBase) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1817 | Bases.push_back(Pair.second); |
| 1818 | } |
| 1819 | insertUseHolderAfter(CS, Bases, holders); |
| 1820 | } |
| 1821 | |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 1822 | // By selecting base pointers, we've effectively inserted new uses. Thus, we |
| 1823 | // need to rerun liveness. We may *also* have inserted new defs, but that's |
| 1824 | // not the key issue. |
| 1825 | recomputeLiveInValues(F, DT, P, toUpdate, records); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1826 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1827 | if (PrintBasePointers) { |
| 1828 | for (size_t i = 0; i < records.size(); i++) { |
| 1829 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1830 | errs() << "Base Pairs: (w/Relocation)\n"; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1831 | for (auto Pair : info.PointerToBase) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1832 | errs() << " derived %" << Pair.first->getName() << " base %" |
| 1833 | << Pair.second->getName() << "\n"; |
| 1834 | } |
| 1835 | } |
| 1836 | } |
| 1837 | for (size_t i = 0; i < holders.size(); i++) { |
| 1838 | holders[i]->eraseFromParent(); |
| 1839 | holders[i] = nullptr; |
| 1840 | } |
| 1841 | holders.clear(); |
| 1842 | |
| 1843 | // Now run through and replace the existing statepoints with new ones with |
| 1844 | // the live variables listed. We do not yet update uses of the values being |
| 1845 | // relocated. We have references to live variables that need to |
| 1846 | // survive to the last iteration of this loop. (By construction, the |
| 1847 | // previous statepoint can not be a live variable, thus we can and remove |
| 1848 | // the old statepoint calls as we go.) |
| 1849 | for (size_t i = 0; i < records.size(); i++) { |
| 1850 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1851 | CallSite &CS = toUpdate[i]; |
| 1852 | makeStatepointExplicit(DT, CS, P, info); |
| 1853 | } |
| 1854 | toUpdate.clear(); // prevent accident use of invalid CallSites |
| 1855 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1856 | // Do all the fixups of the original live variables to their relocated selves |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1857 | SmallVector<Value *, 128> live; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1858 | for (size_t i = 0; i < records.size(); i++) { |
| 1859 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1860 | // We can't simply save the live set from the original insertion. One of |
| 1861 | // the live values might be the result of a call which needs a safepoint. |
| 1862 | // That Value* no longer exists and we need to use the new gc_result. |
| 1863 | // Thankfully, the liveset is embedded in the statepoint (and updated), so |
| 1864 | // we just grab that. |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1865 | Statepoint statepoint(info.StatepointToken); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1866 | live.insert(live.end(), statepoint.gc_args_begin(), |
| 1867 | statepoint.gc_args_end()); |
Philip Reames | 9a2e01d | 2015-04-13 17:35:55 +0000 | [diff] [blame] | 1868 | #ifndef NDEBUG |
| 1869 | // Do some basic sanity checks on our liveness results before performing |
| 1870 | // relocation. Relocation can and will turn mistakes in liveness results |
| 1871 | // into non-sensical code which is must harder to debug. |
| 1872 | // TODO: It would be nice to test consistency as well |
| 1873 | assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && |
| 1874 | "statepoint must be reachable or liveness is meaningless"); |
| 1875 | for (Value *V : statepoint.gc_args()) { |
| 1876 | if (!isa<Instruction>(V)) |
| 1877 | // Non-instruction values trivial dominate all possible uses |
| 1878 | continue; |
| 1879 | auto LiveInst = cast<Instruction>(V); |
| 1880 | assert(DT.isReachableFromEntry(LiveInst->getParent()) && |
| 1881 | "unreachable values should never be live"); |
| 1882 | assert(DT.dominates(LiveInst, info.StatepointToken) && |
| 1883 | "basic SSA liveness expectation violated by liveness analysis"); |
| 1884 | } |
| 1885 | #endif |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1886 | } |
| 1887 | unique_unsorted(live); |
| 1888 | |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 1889 | #ifndef NDEBUG |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1890 | // sanity check |
| 1891 | for (auto ptr : live) { |
| 1892 | assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); |
| 1893 | } |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 1894 | #endif |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1895 | |
| 1896 | relocationViaAlloca(F, DT, live, records); |
| 1897 | return !records.empty(); |
| 1898 | } |
| 1899 | |
| 1900 | /// Returns true if this function should be rewritten by this pass. The main |
| 1901 | /// point of this function is as an extension point for custom logic. |
| 1902 | static bool shouldRewriteStatepointsIn(Function &F) { |
| 1903 | // TODO: This should check the GCStrategy |
Philip Reames | 2ef029c | 2015-02-20 18:56:14 +0000 | [diff] [blame] | 1904 | if (F.hasGC()) { |
| 1905 | const std::string StatepointExampleName("statepoint-example"); |
| 1906 | return StatepointExampleName == F.getGC(); |
| 1907 | } else |
| 1908 | return false; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1909 | } |
| 1910 | |
| 1911 | bool RewriteStatepointsForGC::runOnFunction(Function &F) { |
| 1912 | // Nothing to do for declarations. |
| 1913 | if (F.isDeclaration() || F.empty()) |
| 1914 | return false; |
| 1915 | |
| 1916 | // Policy choice says not to rewrite - the most common reason is that we're |
| 1917 | // compiling code without a GCStrategy. |
| 1918 | if (!shouldRewriteStatepointsIn(F)) |
| 1919 | return false; |
| 1920 | |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1921 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1922 | |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1923 | // Gather all the statepoints which need rewritten. Be careful to only |
| 1924 | // consider those in reachable code since we need to ask dominance queries |
| 1925 | // when rewriting. We'll delete the unreachable ones in a moment. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1926 | SmallVector<CallSite, 64> ParsePointNeeded; |
Philip Reames | f66d737 | 2015-04-10 22:16:58 +0000 | [diff] [blame] | 1927 | bool HasUnreachableStatepoint = false; |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame] | 1928 | for (Instruction &I : inst_range(F)) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1929 | // TODO: only the ones with the flag set! |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1930 | if (isStatepoint(I)) { |
| 1931 | if (DT.isReachableFromEntry(I.getParent())) |
| 1932 | ParsePointNeeded.push_back(CallSite(&I)); |
| 1933 | else |
Philip Reames | f66d737 | 2015-04-10 22:16:58 +0000 | [diff] [blame] | 1934 | HasUnreachableStatepoint = true; |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1935 | } |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1936 | } |
| 1937 | |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1938 | bool MadeChange = false; |
Philip Reames | 704e78b | 2015-04-10 22:34:56 +0000 | [diff] [blame] | 1939 | |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1940 | // Delete any unreachable statepoints so that we don't have unrewritten |
| 1941 | // statepoints surviving this pass. This makes testing easier and the |
| 1942 | // resulting IR less confusing to human readers. Rather than be fancy, we |
| 1943 | // just reuse a utility function which removes the unreachable blocks. |
Philip Reames | f66d737 | 2015-04-10 22:16:58 +0000 | [diff] [blame] | 1944 | if (HasUnreachableStatepoint) |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1945 | MadeChange |= removeUnreachableBlocks(F); |
| 1946 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1947 | // Return early if no work to do. |
| 1948 | if (ParsePointNeeded.empty()) |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1949 | return MadeChange; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1950 | |
Philip Reames | 85b36a8 | 2015-04-10 22:07:04 +0000 | [diff] [blame] | 1951 | // As a prepass, go ahead and aggressively destroy single entry phi nodes. |
| 1952 | // These are created by LCSSA. They have the effect of increasing the size |
| 1953 | // of liveness sets for no good reason. It may be harder to do this post |
| 1954 | // insertion since relocations and base phis can confuse things. |
| 1955 | for (BasicBlock &BB : F) |
| 1956 | if (BB.getUniquePredecessor()) { |
| 1957 | MadeChange = true; |
| 1958 | FoldSingleEntryPHINodes(&BB); |
| 1959 | } |
| 1960 | |
| 1961 | MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); |
| 1962 | return MadeChange; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1963 | } |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 1964 | |
| 1965 | // liveness computation via standard dataflow |
| 1966 | // ------------------------------------------------------------------- |
| 1967 | |
| 1968 | // TODO: Consider using bitvectors for liveness, the set of potentially |
| 1969 | // interesting values should be small and easy to pre-compute. |
| 1970 | |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 1971 | /// Compute the live-in set for the location rbegin starting from |
| 1972 | /// the live-out set of the basic block |
| 1973 | static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, |
| 1974 | BasicBlock::reverse_iterator rend, |
| 1975 | DenseSet<Value *> &LiveTmp) { |
| 1976 | |
| 1977 | for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { |
| 1978 | Instruction *I = &*ritr; |
| 1979 | |
| 1980 | // KILL/Def - Remove this definition from LiveIn |
| 1981 | LiveTmp.erase(I); |
| 1982 | |
| 1983 | // Don't consider *uses* in PHI nodes, we handle their contribution to |
| 1984 | // predecessor blocks when we seed the LiveOut sets |
| 1985 | if (isa<PHINode>(I)) |
| 1986 | continue; |
| 1987 | |
| 1988 | // USE - Add to the LiveIn set for this instruction |
| 1989 | for (Value *V : I->operands()) { |
| 1990 | assert(!isUnhandledGCPointerType(V->getType()) && |
| 1991 | "support for FCA unimplemented"); |
Philip Reames | 63294cb | 2015-04-26 19:48:03 +0000 | [diff] [blame] | 1992 | if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { |
| 1993 | // The choice to exclude all things constant here is slightly subtle. |
| 1994 | // There are two idependent reasons: |
| 1995 | // - We assume that things which are constant (from LLVM's definition) |
| 1996 | // do not move at runtime. For example, the address of a global |
| 1997 | // variable is fixed, even though it's contents may not be. |
| 1998 | // - Second, we can't disallow arbitrary inttoptr constants even |
| 1999 | // if the language frontend does. Optimization passes are free to |
| 2000 | // locally exploit facts without respect to global reachability. This |
| 2001 | // can create sections of code which are dynamically unreachable and |
| 2002 | // contain just about anything. (see constants.ll in tests) |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2003 | LiveTmp.insert(V); |
| 2004 | } |
| 2005 | } |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { |
| 2010 | |
| 2011 | for (BasicBlock *Succ : successors(BB)) { |
| 2012 | const BasicBlock::iterator E(Succ->getFirstNonPHI()); |
| 2013 | for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { |
| 2014 | PHINode *Phi = cast<PHINode>(&*I); |
| 2015 | Value *V = Phi->getIncomingValueForBlock(BB); |
| 2016 | assert(!isUnhandledGCPointerType(V->getType()) && |
| 2017 | "support for FCA unimplemented"); |
Philip Reames | 63294cb | 2015-04-26 19:48:03 +0000 | [diff] [blame] | 2018 | if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2019 | LiveTmp.insert(V); |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | } |
| 2024 | |
| 2025 | static DenseSet<Value *> computeKillSet(BasicBlock *BB) { |
| 2026 | DenseSet<Value *> KillSet; |
| 2027 | for (Instruction &I : *BB) |
| 2028 | if (isHandledGCPointerType(I.getType())) |
| 2029 | KillSet.insert(&I); |
| 2030 | return KillSet; |
| 2031 | } |
| 2032 | |
Philip Reames | 9638ff9 | 2015-04-11 00:06:47 +0000 | [diff] [blame] | 2033 | #ifndef NDEBUG |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2034 | /// Check that the items in 'Live' dominate 'TI'. This is used as a basic |
| 2035 | /// sanity check for the liveness computation. |
| 2036 | static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, |
| 2037 | TerminatorInst *TI, bool TermOkay = false) { |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2038 | for (Value *V : Live) { |
| 2039 | if (auto *I = dyn_cast<Instruction>(V)) { |
| 2040 | // The terminator can be a member of the LiveOut set. LLVM's definition |
| 2041 | // of instruction dominance states that V does not dominate itself. As |
| 2042 | // such, we need to special case this to allow it. |
| 2043 | if (TermOkay && TI == I) |
| 2044 | continue; |
| 2045 | assert(DT.dominates(I, TI) && |
| 2046 | "basic SSA liveness expectation violated by liveness analysis"); |
| 2047 | } |
| 2048 | } |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2049 | } |
| 2050 | |
| 2051 | /// Check that all the liveness sets used during the computation of liveness |
| 2052 | /// obey basic SSA properties. This is useful for finding cases where we miss |
| 2053 | /// a def. |
| 2054 | static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, |
| 2055 | BasicBlock &BB) { |
| 2056 | checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); |
| 2057 | checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); |
| 2058 | checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); |
| 2059 | } |
Philip Reames | 9638ff9 | 2015-04-11 00:06:47 +0000 | [diff] [blame] | 2060 | #endif |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2061 | |
| 2062 | static void computeLiveInValues(DominatorTree &DT, Function &F, |
| 2063 | GCPtrLivenessData &Data) { |
| 2064 | |
Philip Reames | 4d80ede | 2015-04-10 23:11:26 +0000 | [diff] [blame] | 2065 | SmallSetVector<BasicBlock *, 200> Worklist; |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2066 | auto AddPredsToWorklist = [&](BasicBlock *BB) { |
Philip Reames | 4d80ede | 2015-04-10 23:11:26 +0000 | [diff] [blame] | 2067 | // We use a SetVector so that we don't have duplicates in the worklist. |
| 2068 | Worklist.insert(pred_begin(BB), pred_end(BB)); |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2069 | }; |
| 2070 | auto NextItem = [&]() { |
| 2071 | BasicBlock *BB = Worklist.back(); |
| 2072 | Worklist.pop_back(); |
Philip Reames | df1ef08 | 2015-04-10 22:53:14 +0000 | [diff] [blame] | 2073 | return BB; |
| 2074 | }; |
| 2075 | |
| 2076 | // Seed the liveness for each individual block |
| 2077 | for (BasicBlock &BB : F) { |
| 2078 | Data.KillSet[&BB] = computeKillSet(&BB); |
| 2079 | Data.LiveSet[&BB].clear(); |
| 2080 | computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); |
| 2081 | |
| 2082 | #ifndef NDEBUG |
| 2083 | for (Value *Kill : Data.KillSet[&BB]) |
| 2084 | assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); |
| 2085 | #endif |
| 2086 | |
| 2087 | Data.LiveOut[&BB] = DenseSet<Value *>(); |
| 2088 | computeLiveOutSeed(&BB, Data.LiveOut[&BB]); |
| 2089 | Data.LiveIn[&BB] = Data.LiveSet[&BB]; |
| 2090 | set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); |
| 2091 | set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); |
| 2092 | if (!Data.LiveIn[&BB].empty()) |
| 2093 | AddPredsToWorklist(&BB); |
| 2094 | } |
| 2095 | |
| 2096 | // Propagate that liveness until stable |
| 2097 | while (!Worklist.empty()) { |
| 2098 | BasicBlock *BB = NextItem(); |
| 2099 | |
| 2100 | // Compute our new liveout set, then exit early if it hasn't changed |
| 2101 | // despite the contribution of our successor. |
| 2102 | DenseSet<Value *> LiveOut = Data.LiveOut[BB]; |
| 2103 | const auto OldLiveOutSize = LiveOut.size(); |
| 2104 | for (BasicBlock *Succ : successors(BB)) { |
| 2105 | assert(Data.LiveIn.count(Succ)); |
| 2106 | set_union(LiveOut, Data.LiveIn[Succ]); |
| 2107 | } |
| 2108 | // assert OutLiveOut is a subset of LiveOut |
| 2109 | if (OldLiveOutSize == LiveOut.size()) { |
| 2110 | // If the sets are the same size, then we didn't actually add anything |
| 2111 | // when unioning our successors LiveIn Thus, the LiveIn of this block |
| 2112 | // hasn't changed. |
| 2113 | continue; |
| 2114 | } |
| 2115 | Data.LiveOut[BB] = LiveOut; |
| 2116 | |
| 2117 | // Apply the effects of this basic block |
| 2118 | DenseSet<Value *> LiveTmp = LiveOut; |
| 2119 | set_union(LiveTmp, Data.LiveSet[BB]); |
| 2120 | set_subtract(LiveTmp, Data.KillSet[BB]); |
| 2121 | |
| 2122 | assert(Data.LiveIn.count(BB)); |
| 2123 | const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; |
| 2124 | // assert: OldLiveIn is a subset of LiveTmp |
| 2125 | if (OldLiveIn.size() != LiveTmp.size()) { |
| 2126 | Data.LiveIn[BB] = LiveTmp; |
| 2127 | AddPredsToWorklist(BB); |
| 2128 | } |
| 2129 | } // while( !worklist.empty() ) |
| 2130 | |
| 2131 | #ifndef NDEBUG |
| 2132 | // Sanity check our ouput against SSA properties. This helps catch any |
| 2133 | // missing kills during the above iteration. |
| 2134 | for (BasicBlock &BB : F) { |
| 2135 | checkBasicSSA(DT, Data, BB); |
| 2136 | } |
| 2137 | #endif |
| 2138 | } |
| 2139 | |
| 2140 | static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, |
| 2141 | StatepointLiveSetTy &Out) { |
| 2142 | |
| 2143 | BasicBlock *BB = Inst->getParent(); |
| 2144 | |
| 2145 | // Note: The copy is intentional and required |
| 2146 | assert(Data.LiveOut.count(BB)); |
| 2147 | DenseSet<Value *> LiveOut = Data.LiveOut[BB]; |
| 2148 | |
| 2149 | // We want to handle the statepoint itself oddly. It's |
| 2150 | // call result is not live (normal), nor are it's arguments |
| 2151 | // (unless they're used again later). This adjustment is |
| 2152 | // specifically what we need to relocate |
| 2153 | BasicBlock::reverse_iterator rend(Inst); |
| 2154 | computeLiveInValues(BB->rbegin(), rend, LiveOut); |
| 2155 | LiveOut.erase(Inst); |
| 2156 | Out.insert(LiveOut.begin(), LiveOut.end()); |
| 2157 | } |
| 2158 | |
| 2159 | static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
| 2160 | const CallSite &CS, |
| 2161 | PartiallyConstructedSafepointRecord &Info) { |
| 2162 | Instruction *Inst = CS.getInstruction(); |
| 2163 | StatepointLiveSetTy Updated; |
| 2164 | findLiveSetAtInst(Inst, RevisedLivenessData, Updated); |
| 2165 | |
| 2166 | #ifndef NDEBUG |
| 2167 | DenseSet<Value *> Bases; |
| 2168 | for (auto KVPair : Info.PointerToBase) { |
| 2169 | Bases.insert(KVPair.second); |
| 2170 | } |
| 2171 | #endif |
| 2172 | // We may have base pointers which are now live that weren't before. We need |
| 2173 | // to update the PointerToBase structure to reflect this. |
| 2174 | for (auto V : Updated) |
| 2175 | if (!Info.PointerToBase.count(V)) { |
| 2176 | assert(Bases.count(V) && "can't find base for unexpected live value"); |
| 2177 | Info.PointerToBase[V] = V; |
| 2178 | continue; |
| 2179 | } |
| 2180 | |
| 2181 | #ifndef NDEBUG |
| 2182 | for (auto V : Updated) { |
| 2183 | assert(Info.PointerToBase.count(V) && |
| 2184 | "must be able to find base for live value"); |
| 2185 | } |
| 2186 | #endif |
| 2187 | |
| 2188 | // Remove any stale base mappings - this can happen since our liveness is |
| 2189 | // more precise then the one inherent in the base pointer analysis |
| 2190 | DenseSet<Value *> ToErase; |
| 2191 | for (auto KVPair : Info.PointerToBase) |
| 2192 | if (!Updated.count(KVPair.first)) |
| 2193 | ToErase.insert(KVPair.first); |
| 2194 | for (auto V : ToErase) |
| 2195 | Info.PointerToBase.erase(V); |
| 2196 | |
| 2197 | #ifndef NDEBUG |
| 2198 | for (auto KVPair : Info.PointerToBase) |
| 2199 | assert(Updated.count(KVPair.first) && "record for non-live value"); |
| 2200 | #endif |
| 2201 | |
| 2202 | Info.liveset = Updated; |
| 2203 | } |