blob: d0f2381e87bcb52460d9d4cb3b9c9651fd9d66c4 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
17#include "llvm/ADT/SetOperations.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/InstIterator.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Statepoint.h"
31#include "llvm/IR/Value.h"
32#include "llvm/IR/Verifier.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40
41#define DEBUG_TYPE "rewrite-statepoints-for-gc"
42
43using namespace llvm;
44
45// Print tracing output
46static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
47 cl::init(false));
48
49// Print the liveset found at the insert location
50static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
51 cl::init(false));
52static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size",
53 cl::Hidden, cl::init(false));
54// Print out the base pointers for debugging
55static cl::opt<bool> PrintBasePointers("spp-print-base-pointers",
56 cl::Hidden, cl::init(false));
57
Benjamin Kramer6f665452015-02-20 14:00:58 +000058namespace {
Philip Reamesd16a9b12015-02-20 01:06:44 +000059struct RewriteStatepointsForGC : public FunctionPass {
60 static char ID; // Pass identification, replacement for typeid
61
62 RewriteStatepointsForGC() : FunctionPass(ID) {
63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
64 }
65 bool runOnFunction(Function &F) override;
66
67 void getAnalysisUsage(AnalysisUsage &AU) const override {
68 // We add and rewrite a bunch of instructions, but don't really do much
69 // else. We could in theory preserve a lot more analyses here.
70 AU.addRequired<DominatorTreeWrapperPass>();
71 }
72};
Benjamin Kramer6f665452015-02-20 14:00:58 +000073} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +000074
75char RewriteStatepointsForGC::ID = 0;
76
77FunctionPass *llvm::createRewriteStatepointsForGCPass() {
78 return new RewriteStatepointsForGC();
79}
80
81INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
82 "Make relocations explicit at statepoints", false, false)
83INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
84INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
85 "Make relocations explicit at statepoints", false, false)
86
87namespace {
88// The type of the internal cache used inside the findBasePointers family
89// of functions. From the callers perspective, this is an opaque type and
90// should not be inspected.
91//
92// In the actual implementation this caches two relations:
93// - The base relation itself (i.e. this pointer is based on that one)
94// - The base defining value relation (i.e. before base_phi insertion)
95// Generally, after the execution of a full findBasePointer call, only the
96// base relation will remain. Internally, we add a mixture of the two
97// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +000098typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Philip Reames1f017542015-02-20 23:16:52 +000099typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000100
Philip Reamesd16a9b12015-02-20 01:06:44 +0000101struct PartiallyConstructedSafepointRecord {
102 /// The set of values known to be live accross this safepoint
Philip Reames860660e2015-02-20 22:05:18 +0000103 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000104
105 /// Mapping from live pointers to a base-defining-value
Philip Reamesf2041322015-02-20 19:26:04 +0000106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000107
108 /// Any new values which were added to the IR during base pointer analysis
109 /// for this safepoint
Philip Reamesf2041322015-02-20 19:26:04 +0000110 DenseSet<llvm::Value *> NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000111
Philip Reames0a3240f2015-02-20 21:34:11 +0000112 /// The *new* gc.statepoint instruction itself. This produces the token
113 /// that normal path gc.relocates and the gc.result are tied to.
114 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000115
Philip Reamesf2041322015-02-20 19:26:04 +0000116 /// Instruction to which exceptional gc relocates are attached
117 /// Makes it easier to iterate through them during relocationViaAlloca.
118 Instruction *UnwindToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000119};
120}
121
122// TODO: Once we can get to the GCStrategy, this becomes
123// Optional<bool> isGCManagedPointer(const Value *V) const override {
124
125static bool isGCPointerType(const Type *T) {
126 if (const PointerType *PT = dyn_cast<PointerType>(T))
127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
128 // GC managed heap. We know that a pointer into this heap needs to be
129 // updated and that no other pointer does.
130 return (1 == PT->getAddressSpace());
131 return false;
132}
133
Philip Reames8531d8c2015-04-10 21:48:25 +0000134// Return true if this type is one which a) is a gc pointer or contains a GC
135// pointer and b) is of a type this code expects to encounter as a live value.
136// (The insertion code will assert that a type which matches (a) and not (b)
137// is not encountered.)
138static bool isHandledGCPointerType(Type *T) {
139 // We fully support gc pointers
140 if (isGCPointerType(T))
141 return true;
142 // We partially support vectors of gc pointers. The code will assert if it
143 // can't handle something.
144 if (auto VT = dyn_cast<VectorType>(T))
145 if (isGCPointerType(VT->getElementType()))
146 return true;
147 return false;
148}
149
150#ifndef NDEBUG
151/// Returns true if this type contains a gc pointer whether we know how to
152/// handle that type or not.
153static bool containsGCPtrType(Type *Ty) {
154 if(isGCPointerType(Ty))
155 return true;
156 if (VectorType *VT = dyn_cast<VectorType>(Ty))
157 return isGCPointerType(VT->getScalarType());
158 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
159 return containsGCPtrType(AT->getElementType());
160 if (StructType *ST = dyn_cast<StructType>(Ty))
161 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
162 [](Type *SubType) {
163 return containsGCPtrType(SubType);
164 });
165 return false;
166}
167
168// Returns true if this is a type which a) is a gc pointer or contains a GC
169// pointer and b) is of a type which the code doesn't expect (i.e. first class
170// aggregates). Used to trip assertions.
171static bool isUnhandledGCPointerType(Type *Ty) {
172 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
173}
174#endif
175
Philip Reamesd16a9b12015-02-20 01:06:44 +0000176/// Return true if the Value is a gc reference type which is potentially used
177/// after the instruction 'loc'. This is only used with the edge reachability
178/// liveness code. Note: It is assumed the V dominates loc.
Philip Reames8531d8c2015-04-10 21:48:25 +0000179static bool isLiveGCReferenceAt(Value &V, Instruction *Loc, DominatorTree &DT,
Philip Reamesd16a9b12015-02-20 01:06:44 +0000180 LoopInfo *LI) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000181 if (!isHandledGCPointerType(V.getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000182 return false;
183
184 if (V.use_empty())
185 return false;
186
187 // Given assumption that V dominates loc, this may be live
188 return true;
189}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000190
Philip Reamesd16a9b12015-02-20 01:06:44 +0000191// Conservatively identifies any definitions which might be live at the
192// given instruction. The analysis is performed immediately before the
193// given instruction. Values defined by that instruction are not considered
194// live. Values used by that instruction are considered live.
195//
196// preconditions: valid IR graph, term is either a terminator instruction or
197// a call instruction, pred is the basic block of term, DT, LI are valid
198//
199// side effects: none, does not mutate IR
200//
201// postconditions: populates liveValues as discussed above
202static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred,
203 DominatorTree &DT, LoopInfo *LI,
Philip Reames1f017542015-02-20 23:16:52 +0000204 StatepointLiveSetTy &liveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000205 liveValues.clear();
206
207 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator());
208
209 Function *F = pred->getParent();
210
211 auto is_live_gc_reference =
212 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); };
213
214 // Are there any gc pointer arguments live over this point? This needs to be
215 // special cased since arguments aren't defined in basic blocks.
216 for (Argument &arg : F->args()) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000217 assert(!isUnhandledGCPointerType(arg.getType()) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +0000218 "support for FCA unimplemented");
219
220 if (is_live_gc_reference(arg)) {
221 liveValues.insert(&arg);
222 }
223 }
224
225 // Walk through all dominating blocks - the ones which can contain
226 // definitions used in this block - and check to see if any of the values
227 // they define are used in locations potentially reachable from the
228 // interesting instruction.
229 BasicBlock *BBI = pred;
230 while (true) {
231 if (TraceLSP) {
232 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n";
233 }
234 assert(DT.dominates(BBI, pred));
235 assert(isPotentiallyReachable(BBI, pred, &DT) &&
236 "dominated block must be reachable");
237
238 // Walk through the instructions in dominating blocks and keep any
239 // that have a use potentially reachable from the block we're
240 // considering putting the safepoint in
241 for (Instruction &inst : *BBI) {
242 if (TraceLSP) {
243 errs() << "[LSP] Looking at instruction ";
244 inst.dump();
245 }
246
247 if (pred == BBI && (&inst) == term) {
248 if (TraceLSP) {
249 errs() << "[LSP] stopped because we encountered the safepoint "
250 "instruction.\n";
251 }
252
253 // If we're in the block which defines the interesting instruction,
254 // we don't want to include any values as live which are defined
255 // _after_ the interesting line or as part of the line itself
256 // i.e. "term" is the call instruction for a call safepoint, the
257 // results of the call should not be considered live in that stackmap
258 break;
259 }
260
Philip Reames8531d8c2015-04-10 21:48:25 +0000261 assert(!isUnhandledGCPointerType(inst.getType()) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +0000262 "support for FCA unimplemented");
263
264 if (is_live_gc_reference(inst)) {
265 if (TraceLSP) {
266 errs() << "[LSP] found live value for this safepoint ";
267 inst.dump();
268 term->dump();
269 }
270 liveValues.insert(&inst);
271 }
272 }
273 if (!DT.getNode(BBI)->getIDom()) {
274 assert(BBI == &F->getEntryBlock() &&
275 "failed to find a dominator for something other than "
276 "the entry block");
277 break;
278 }
279 BBI = DT.getNode(BBI)->getIDom()->getBlock();
280 }
281}
282
283static bool order_by_name(llvm::Value *a, llvm::Value *b) {
284 if (a->hasName() && b->hasName()) {
285 return -1 == a->getName().compare(b->getName());
286 } else if (a->hasName() && !b->hasName()) {
287 return true;
288 } else if (!a->hasName() && b->hasName()) {
289 return false;
290 } else {
291 // Better than nothing, but not stable
292 return a < b;
293 }
294}
295
296/// Find the initial live set. Note that due to base pointer
297/// insertion, the live set may be incomplete.
298static void
299analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS,
300 PartiallyConstructedSafepointRecord &result) {
301 Instruction *inst = CS.getInstruction();
302
303 BasicBlock *BB = inst->getParent();
Philip Reames1f017542015-02-20 23:16:52 +0000304 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000305 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset);
306
307 if (PrintLiveSet) {
308 // Note: This output is used by several of the test cases
309 // The order of elemtns in a set is not stable, put them in a vec and sort
310 // by name
Philip Reames860660e2015-02-20 22:05:18 +0000311 SmallVector<Value *, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000312 temp.insert(temp.end(), liveset.begin(), liveset.end());
313 std::sort(temp.begin(), temp.end(), order_by_name);
314 errs() << "Live Variables:\n";
315 for (Value *V : temp) {
316 errs() << " " << V->getName(); // no newline
317 V->dump();
318 }
319 }
320 if (PrintLiveSetSize) {
321 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
322 errs() << "Number live values: " << liveset.size() << "\n";
323 }
324 result.liveset = liveset;
325}
326
Philip Reames8531d8c2015-04-10 21:48:25 +0000327/// If we can trivially determine that this vector contains only base pointers,
328/// return the base instruction.
329static Value *findBaseOfVector(Value *I) {
330 assert(I->getType()->isVectorTy() &&
331 cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
332 "Illegal to ask for the base pointer of a non-pointer type");
333
334 // Each case parallels findBaseDefiningValue below, see that code for
335 // detailed motivation.
336
337 if (isa<Argument>(I))
338 // An incoming argument to the function is a base pointer
339 return I;
340
341 // We shouldn't see the address of a global as a vector value?
342 assert(!isa<GlobalVariable>(I) &&
343 "unexpected global variable found in base of vector");
344
345 // inlining could possibly introduce phi node that contains
346 // undef if callee has multiple returns
347 if (isa<UndefValue>(I))
348 // utterly meaningless, but useful for dealing with partially optimized
349 // code.
350 return I;
351
352 // Due to inheritance, this must be _after_ the global variable and undef
353 // checks
354 if (Constant *Con = dyn_cast<Constant>(I)) {
355 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
356 "order of checks wrong!");
357 assert(Con->isNullValue() && "null is the only case which makes sense");
358 return Con;
359 }
360
361 if (isa<LoadInst>(I))
362 return I;
363
364 // Note: This code is currently rather incomplete. We are essentially only
365 // handling cases where the vector element is trivially a base pointer. We
366 // need to update the entire base pointer construction algorithm to know how
367 // to track vector elements and potentially scalarize, but the case which
368 // would motivate the work hasn't shown up in real workloads yet.
369 llvm_unreachable("no base found for vector element");
370}
371
Philip Reamesd16a9b12015-02-20 01:06:44 +0000372/// Helper function for findBasePointer - Will return a value which either a)
373/// defines the base pointer for the input or b) blocks the simple search
374/// (i.e. a PHI or Select of two derived pointers)
375static Value *findBaseDefiningValue(Value *I) {
376 assert(I->getType()->isPointerTy() &&
377 "Illegal to ask for the base pointer of a non-pointer type");
378
Philip Reames8531d8c2015-04-10 21:48:25 +0000379 // This case is a bit of a hack - it only handles extracts from vectors which
380 // trivially contain only base pointers. See note inside the function for
381 // how to improve this.
382 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
383 Value *VectorOperand = EEI->getVectorOperand();
384 Value *VectorBase = findBaseOfVector(VectorOperand);
Philip Reamesf66d7372015-04-10 22:16:58 +0000385 (void)VectorBase;
Philip Reames8531d8c2015-04-10 21:48:25 +0000386 assert(VectorBase && "extract element not known to be a trivial base");
387 return EEI;
388 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000389
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000390 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000391 // An incoming argument to the function is a base pointer
392 // We should have never reached here if this argument isn't an gc value
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000393 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000394
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000395 if (isa<GlobalVariable>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000396 // base case
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000397 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000398
399 // inlining could possibly introduce phi node that contains
400 // undef if callee has multiple returns
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000401 if (isa<UndefValue>(I))
402 // utterly meaningless, but useful for dealing with
403 // partially optimized code.
404 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000405
406 // Due to inheritance, this must be _after_ the global variable and undef
407 // checks
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000408 if (Constant *Con = dyn_cast<Constant>(I)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000409 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
410 "order of checks wrong!");
411 // Note: Finding a constant base for something marked for relocation
412 // doesn't really make sense. The most likely case is either a) some
413 // screwed up the address space usage or b) your validating against
414 // compiled C++ code w/o the proper separation. The only real exception
415 // is a null pointer. You could have generic code written to index of
416 // off a potentially null value and have proven it null. We also use
417 // null pointers in dead paths of relocation phis (which we might later
418 // want to find a base pointer for).
Philip Reames24c6cd52015-03-27 05:47:00 +0000419 assert(isa<ConstantPointerNull>(Con) &&
420 "null is the only case which makes sense");
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000421 return Con;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000422 }
423
424 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000425 Value *Def = CI->stripPointerCasts();
David Blaikie82ad7872015-02-20 23:44:24 +0000426 // If we find a cast instruction here, it means we've found a cast which is
427 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
428 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000429 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
430 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000431 }
432
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000433 if (isa<LoadInst>(I))
434 return I; // The value loaded is an gc base itself
Philip Reamesd16a9b12015-02-20 01:06:44 +0000435
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000436 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
437 // The base of this GEP is the base
438 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000439
440 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
441 switch (II->getIntrinsicID()) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000442 case Intrinsic::experimental_gc_result_ptr:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000443 default:
444 // fall through to general call handling
445 break;
446 case Intrinsic::experimental_gc_statepoint:
447 case Intrinsic::experimental_gc_result_float:
448 case Intrinsic::experimental_gc_result_int:
449 llvm_unreachable("these don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000450 case Intrinsic::experimental_gc_relocate: {
451 // Rerunning safepoint insertion after safepoints are already
452 // inserted is not supported. It could probably be made to work,
453 // but why are you doing this? There's no good reason.
454 llvm_unreachable("repeat safepoint insertion is not supported");
455 }
456 case Intrinsic::gcroot:
457 // Currently, this mechanism hasn't been extended to work with gcroot.
458 // There's no reason it couldn't be, but I haven't thought about the
459 // implications much.
460 llvm_unreachable(
461 "interaction with the gcroot mechanism is not supported");
462 }
463 }
464 // We assume that functions in the source language only return base
465 // pointers. This should probably be generalized via attributes to support
466 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000467 if (isa<CallInst>(I) || isa<InvokeInst>(I))
468 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000469
470 // I have absolutely no idea how to implement this part yet. It's not
471 // neccessarily hard, I just haven't really looked at it yet.
472 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
473
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000474 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000475 // A CAS is effectively a atomic store and load combined under a
476 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000477 // like a load.
478 return I;
479
480 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
481 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000482
483 // The aggregate ops. Aggregates can either be in the heap or on the
484 // stack, but in either case, this is simply a field load. As a result,
485 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000486 if (isa<ExtractValueInst>(I))
487 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000488
489 // We should never see an insert vector since that would require we be
490 // tracing back a struct value not a pointer value.
491 assert(!isa<InsertValueInst>(I) &&
492 "Base pointer for a struct is meaningless");
493
494 // The last two cases here don't return a base pointer. Instead, they
495 // return a value which dynamically selects from amoung several base
496 // derived pointers (each with it's own base potentially). It's the job of
497 // the caller to resolve these.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000498 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
499 "missing instruction case in findBaseDefiningValing");
500 return I;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000501}
502
503/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000504static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
505 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000506 if (!Cached) {
507 Cached = findBaseDefiningValue(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000508 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000509 assert(Cache[I] != nullptr);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000510
511 if (TraceLSP) {
Philip Reames18d0feb2015-03-27 05:39:32 +0000512 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
Philip Reamesd16a9b12015-02-20 01:06:44 +0000513 << "\n";
514 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000515 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000516}
517
518/// Return a base pointer for this value if known. Otherwise, return it's
519/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000520static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
521 Value *Def = findBaseDefiningValueCached(I, Cache);
522 auto Found = Cache.find(Def);
523 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000524 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000525 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000526 }
527 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000528 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000529}
530
531/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
532/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000533static bool isKnownBaseResult(Value *V) {
534 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000535 // no recursion possible
536 return true;
537 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000538 if (isa<Instruction>(V) &&
539 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000540 // This is a previously inserted base phi or select. We know
541 // that this is a base value.
542 return true;
543 }
544
545 // We need to keep searching
546 return false;
547}
548
549// TODO: find a better name for this
550namespace {
551class PhiState {
552public:
553 enum Status { Unknown, Base, Conflict };
554
555 PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
556 assert(status != Base || b);
557 }
558 PhiState(Value *b) : status(Base), base(b) {}
559 PhiState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000560
561 Status getStatus() const { return status; }
562 Value *getBase() const { return base; }
563
564 bool isBase() const { return getStatus() == Base; }
565 bool isUnknown() const { return getStatus() == Unknown; }
566 bool isConflict() const { return getStatus() == Conflict; }
567
568 bool operator==(const PhiState &other) const {
569 return base == other.base && status == other.status;
570 }
571
572 bool operator!=(const PhiState &other) const { return !(*this == other); }
573
574 void dump() {
575 errs() << status << " (" << base << " - "
576 << (base ? base->getName() : "nullptr") << "): ";
577 }
578
579private:
580 Status status;
581 Value *base; // non null only if status == base
582};
583
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000584typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000585// Values of type PhiState form a lattice, and this is a helper
586// class that implementes the meet operation. The meat of the meet
587// operation is implemented in MeetPhiStates::pureMeet
588class MeetPhiStates {
589public:
590 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
Philip Reames860660e2015-02-20 22:05:18 +0000591 explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
Philip Reamesd16a9b12015-02-20 01:06:44 +0000592 : phiStates(phiStates) {}
593
594 // Destructively meet the current result with the base V. V can
595 // either be a merge instruction (SelectInst / PHINode), in which
596 // case its status is looked up in the phiStates map; or a regular
597 // SSA value, in which case it is assumed to be a base.
598 void meetWith(Value *V) {
599 PhiState otherState = getStateForBDV(V);
600 assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
601 MeetPhiStates::pureMeet(currentResult, otherState)) &&
602 "math is wrong: meet does not commute!");
603 currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
604 }
605
606 PhiState getResult() const { return currentResult; }
607
608private:
Philip Reames860660e2015-02-20 22:05:18 +0000609 const ConflictStateMapTy &phiStates;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000610 PhiState currentResult;
611
612 /// Return a phi state for a base defining value. We'll generate a new
613 /// base state for known bases and expect to find a cached state otherwise
614 PhiState getStateForBDV(Value *baseValue) {
615 if (isKnownBaseResult(baseValue)) {
616 return PhiState(baseValue);
617 } else {
618 return lookupFromMap(baseValue);
619 }
620 }
621
622 PhiState lookupFromMap(Value *V) {
623 auto I = phiStates.find(V);
624 assert(I != phiStates.end() && "lookup failed!");
625 return I->second;
626 }
627
628 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
629 switch (stateA.getStatus()) {
630 case PhiState::Unknown:
631 return stateB;
632
633 case PhiState::Base:
634 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000635 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000636 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000637
638 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000639 if (stateA.getBase() == stateB.getBase()) {
640 assert(stateA == stateB && "equality broken!");
641 return stateA;
642 }
643 return PhiState(PhiState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000644 }
David Blaikie82ad7872015-02-20 23:44:24 +0000645 assert(stateB.isConflict() && "only three states!");
646 return PhiState(PhiState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000647
648 case PhiState::Conflict:
649 return stateA;
650 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000651 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000652 }
653};
654}
655/// For a given value or instruction, figure out what base ptr it's derived
656/// from. For gc objects, this is simply itself. On success, returns a value
657/// which is the base pointer. (This is reliable and can be used for
658/// relocation.) On failure, returns nullptr.
659static Value *findBasePointer(Value *I, DefiningValueMapTy &cache,
Philip Reamesf2041322015-02-20 19:26:04 +0000660 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000661 Value *def = findBaseOrBDV(I, cache);
662
663 if (isKnownBaseResult(def)) {
664 return def;
665 }
666
667 // Here's the rough algorithm:
668 // - For every SSA value, construct a mapping to either an actual base
669 // pointer or a PHI which obscures the base pointer.
670 // - Construct a mapping from PHI to unknown TOP state. Use an
671 // optimistic algorithm to propagate base pointer information. Lattice
672 // looks like:
673 // UNKNOWN
674 // b1 b2 b3 b4
675 // CONFLICT
676 // When algorithm terminates, all PHIs will either have a single concrete
677 // base or be in a conflict state.
678 // - For every conflict, insert a dummy PHI node without arguments. Add
679 // these to the base[Instruction] = BasePtr mapping. For every
680 // non-conflict, add the actual base.
681 // - For every conflict, add arguments for the base[a] of each input
682 // arguments.
683 //
684 // Note: A simpler form of this would be to add the conflict form of all
685 // PHIs without running the optimistic algorithm. This would be
686 // analougous to pessimistic data flow and would likely lead to an
687 // overall worse solution.
688
Philip Reames860660e2015-02-20 22:05:18 +0000689 ConflictStateMapTy states;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000690 states[def] = PhiState();
691 // Recursively fill in all phis & selects reachable from the initial one
692 // for which we don't already know a definite base value for
Philip Reamesa226e612015-02-28 00:47:50 +0000693 // TODO: This should be rewritten with a worklist
Philip Reamesd16a9b12015-02-20 01:06:44 +0000694 bool done = false;
695 while (!done) {
696 done = true;
Philip Reamesa226e612015-02-28 00:47:50 +0000697 // Since we're adding elements to 'states' as we run, we can't keep
698 // iterators into the set.
699 SmallVector<Value*, 16> Keys;
700 Keys.reserve(states.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000701 for (auto Pair : states) {
Philip Reamesa226e612015-02-28 00:47:50 +0000702 Value *V = Pair.first;
703 Keys.push_back(V);
704 }
705 for (Value *v : Keys) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000706 assert(!isKnownBaseResult(v) && "why did it get added?");
707 if (PHINode *phi = dyn_cast<PHINode>(v)) {
David Blaikie82ad7872015-02-20 23:44:24 +0000708 assert(phi->getNumIncomingValues() > 0 &&
709 "zero input phis are illegal");
710 for (Value *InVal : phi->incoming_values()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000711 Value *local = findBaseOrBDV(InVal, cache);
712 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
713 states[local] = PhiState();
714 done = false;
715 }
716 }
717 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
718 Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
719 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
720 states[local] = PhiState();
721 done = false;
722 }
723 local = findBaseOrBDV(sel->getFalseValue(), cache);
724 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
725 states[local] = PhiState();
726 done = false;
727 }
728 }
729 }
730 }
731
732 if (TraceLSP) {
733 errs() << "States after initialization:\n";
734 for (auto Pair : states) {
735 Instruction *v = cast<Instruction>(Pair.first);
736 PhiState state = Pair.second;
737 state.dump();
738 v->dump();
739 }
740 }
741
742 // TODO: come back and revisit the state transitions around inputs which
743 // have reached conflict state. The current version seems too conservative.
744
745 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000746 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000747#ifndef NDEBUG
748 size_t oldSize = states.size();
749#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000750 progress = false;
Philip Reamesa226e612015-02-28 00:47:50 +0000751 // We're only changing keys in this loop, thus safe to keep iterators
Philip Reamesd16a9b12015-02-20 01:06:44 +0000752 for (auto Pair : states) {
753 MeetPhiStates calculateMeet(states);
754 Value *v = Pair.first;
755 assert(!isKnownBaseResult(v) && "why did it get added?");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000756 if (SelectInst *select = dyn_cast<SelectInst>(v)) {
757 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
758 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
David Blaikie82ad7872015-02-20 23:44:24 +0000759 } else
760 for (Value *Val : cast<PHINode>(v)->incoming_values())
761 calculateMeet.meetWith(findBaseOrBDV(Val, cache));
Philip Reamesd16a9b12015-02-20 01:06:44 +0000762
763 PhiState oldState = states[v];
764 PhiState newState = calculateMeet.getResult();
765 if (oldState != newState) {
766 progress = true;
767 states[v] = newState;
768 }
769 }
770
771 assert(oldSize <= states.size());
772 assert(oldSize == states.size() || progress);
773 }
774
775 if (TraceLSP) {
776 errs() << "States after meet iteration:\n";
777 for (auto Pair : states) {
778 Instruction *v = cast<Instruction>(Pair.first);
779 PhiState state = Pair.second;
780 state.dump();
781 v->dump();
782 }
783 }
784
785 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000786 // We want to keep naming deterministic in the loop that follows, so
787 // sort the keys before iteration. This is useful in allowing us to
788 // write stable tests. Note that there is no invalidation issue here.
789 SmallVector<Value*, 16> Keys;
790 Keys.reserve(states.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000791 for (auto Pair : states) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000792 Value *V = Pair.first;
793 Keys.push_back(V);
794 }
795 std::sort(Keys.begin(), Keys.end(), order_by_name);
796 // TODO: adjust naming patterns to avoid this order of iteration dependency
797 for (Value *V : Keys) {
798 Instruction *v = cast<Instruction>(V);
799 PhiState state = states[V];
Philip Reamesd16a9b12015-02-20 01:06:44 +0000800 assert(!isKnownBaseResult(v) && "why did it get added?");
801 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reamesf986d682015-02-28 00:54:41 +0000802 if (!state.isConflict())
803 continue;
804
805 if (isa<PHINode>(v)) {
806 int num_preds =
807 std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
808 assert(num_preds > 0 && "how did we reach here");
809 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
810 NewInsertedDefs.insert(phi);
811 // Add metadata marking this as a base value
812 auto *const_1 = ConstantInt::get(
813 Type::getInt32Ty(
814 v->getParent()->getParent()->getParent()->getContext()),
815 1);
816 auto MDConst = ConstantAsMetadata::get(const_1);
817 MDNode *md = MDNode::get(
818 v->getParent()->getParent()->getParent()->getContext(), MDConst);
819 phi->setMetadata("is_base_value", md);
820 states[v] = PhiState(PhiState::Conflict, phi);
821 } else {
822 SelectInst *sel = cast<SelectInst>(v);
823 // The undef will be replaced later
824 UndefValue *undef = UndefValue::get(sel->getType());
825 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
826 undef, "base_select", sel);
827 NewInsertedDefs.insert(basesel);
828 // Add metadata marking this as a base value
829 auto *const_1 = ConstantInt::get(
830 Type::getInt32Ty(
831 v->getParent()->getParent()->getParent()->getContext()),
832 1);
833 auto MDConst = ConstantAsMetadata::get(const_1);
834 MDNode *md = MDNode::get(
835 v->getParent()->getParent()->getParent()->getContext(), MDConst);
836 basesel->setMetadata("is_base_value", md);
837 states[v] = PhiState(PhiState::Conflict, basesel);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000838 }
839 }
840
841 // Fixup all the inputs of the new PHIs
842 for (auto Pair : states) {
843 Instruction *v = cast<Instruction>(Pair.first);
844 PhiState state = Pair.second;
845
846 assert(!isKnownBaseResult(v) && "why did it get added?");
847 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames28e61ce2015-02-28 01:57:44 +0000848 if (!state.isConflict())
849 continue;
850
851 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
852 PHINode *phi = cast<PHINode>(v);
853 unsigned NumPHIValues = phi->getNumIncomingValues();
854 for (unsigned i = 0; i < NumPHIValues; i++) {
855 Value *InVal = phi->getIncomingValue(i);
856 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000857
Philip Reames28e61ce2015-02-28 01:57:44 +0000858 // If we've already seen InBB, add the same incoming value
859 // we added for it earlier. The IR verifier requires phi
860 // nodes with multiple entries from the same basic block
861 // to have the same incoming value for each of those
862 // entries. If we don't do this check here and basephi
863 // has a different type than base, we'll end up adding two
864 // bitcasts (and hence two distinct values) as incoming
865 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000866
Philip Reames28e61ce2015-02-28 01:57:44 +0000867 int blockIndex = basephi->getBasicBlockIndex(InBB);
868 if (blockIndex != -1) {
869 Value *oldBase = basephi->getIncomingValue(blockIndex);
870 basephi->addIncoming(oldBase, InBB);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000871#ifndef NDEBUG
Philip Reames28e61ce2015-02-28 01:57:44 +0000872 Value *base = findBaseOrBDV(InVal, cache);
873 if (!isKnownBaseResult(base)) {
874 // Either conflict or base.
875 assert(states.count(base));
876 base = states[base].getBase();
877 assert(base != nullptr && "unknown PhiState!");
878 assert(NewInsertedDefs.count(base) &&
879 "should have already added this in a prev. iteration!");
880 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000881
Philip Reames28e61ce2015-02-28 01:57:44 +0000882 // In essense this assert states: the only way two
883 // values incoming from the same basic block may be
884 // different is by being different bitcasts of the same
885 // value. A cleanup that remains TODO is changing
886 // findBaseOrBDV to return an llvm::Value of the correct
887 // type (and still remain pure). This will remove the
888 // need to add bitcasts.
889 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
890 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000891#endif
Philip Reames28e61ce2015-02-28 01:57:44 +0000892 continue;
893 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000894
Philip Reames28e61ce2015-02-28 01:57:44 +0000895 // Find either the defining value for the PHI or the normal base for
896 // a non-phi node
897 Value *base = findBaseOrBDV(InVal, cache);
898 if (!isKnownBaseResult(base)) {
899 // Either conflict or base.
900 assert(states.count(base));
901 base = states[base].getBase();
902 assert(base != nullptr && "unknown PhiState!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000903 }
Philip Reames28e61ce2015-02-28 01:57:44 +0000904 assert(base && "can't be null");
905 // Must use original input BB since base may not be Instruction
906 // The cast is needed since base traversal may strip away bitcasts
907 if (base->getType() != basephi->getType()) {
908 base = new BitCastInst(base, basephi->getType(), "cast",
909 InBB->getTerminator());
910 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000911 }
Philip Reames28e61ce2015-02-28 01:57:44 +0000912 basephi->addIncoming(base, InBB);
913 }
914 assert(basephi->getNumIncomingValues() == NumPHIValues);
915 } else {
916 SelectInst *basesel = cast<SelectInst>(state.getBase());
917 SelectInst *sel = cast<SelectInst>(v);
918 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
919 // something more safe and less hacky.
920 for (int i = 1; i <= 2; i++) {
921 Value *InVal = sel->getOperand(i);
922 // Find either the defining value for the PHI or the normal base for
923 // a non-phi node
924 Value *base = findBaseOrBDV(InVal, cache);
925 if (!isKnownBaseResult(base)) {
926 // Either conflict or base.
927 assert(states.count(base));
928 base = states[base].getBase();
929 assert(base != nullptr && "unknown PhiState!");
930 }
931 assert(base && "can't be null");
932 // Must use original input BB since base may not be Instruction
933 // The cast is needed since base traversal may strip away bitcasts
934 if (base->getType() != basesel->getType()) {
935 base = new BitCastInst(base, basesel->getType(), "cast", basesel);
936 NewInsertedDefs.insert(base);
937 }
938 basesel->setOperand(i, base);
939 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000940 }
941 }
942
943 // Cache all of our results so we can cheaply reuse them
944 // NOTE: This is actually two caches: one of the base defining value
945 // relation and one of the base pointer relation! FIXME
946 for (auto item : states) {
947 Value *v = item.first;
948 Value *base = item.second.getBase();
949 assert(v && base);
950 assert(!isKnownBaseResult(v) && "why did it get added?");
951
952 if (TraceLSP) {
953 std::string fromstr =
954 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
955 : "none";
956 errs() << "Updating base value cache"
957 << " for: " << (v->hasName() ? v->getName() : "")
958 << " from: " << fromstr
959 << " to: " << (base->hasName() ? base->getName() : "") << "\n";
960 }
961
962 assert(isKnownBaseResult(base) &&
963 "must be something we 'know' is a base pointer");
964 if (cache.count(v)) {
965 // Once we transition from the BDV relation being store in the cache to
966 // the base relation being stored, it must be stable
967 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
968 "base relation should be stable");
969 }
970 cache[v] = base;
971 }
972 assert(cache.find(def) != cache.end());
973 return cache[def];
974}
975
976// For a set of live pointers (base and/or derived), identify the base
977// pointer of the object which they are derived from. This routine will
978// mutate the IR graph as needed to make the 'base' pointer live at the
979// definition site of 'derived'. This ensures that any use of 'derived' can
980// also use 'base'. This may involve the insertion of a number of
981// additional PHI nodes.
982//
983// preconditions: live is a set of pointer type Values
984//
985// side effects: may insert PHI nodes into the existing CFG, will preserve
986// CFG, will not remove or mutate any existing nodes
987//
Philip Reamesf2041322015-02-20 19:26:04 +0000988// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +0000989// pointer in live. Note that derived can be equal to base if the original
990// pointer was a base pointer.
Philip Reames1f017542015-02-20 23:16:52 +0000991static void findBasePointers(const StatepointLiveSetTy &live,
Philip Reamesf2041322015-02-20 19:26:04 +0000992 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
Philip Reamesd16a9b12015-02-20 01:06:44 +0000993 DominatorTree *DT, DefiningValueMapTy &DVCache,
Philip Reamesf2041322015-02-20 19:26:04 +0000994 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000995 // For the naming of values inserted to be deterministic - which makes for
996 // much cleaner and more stable tests - we need to assign an order to the
997 // live values. DenseSets do not provide a deterministic order across runs.
998 SmallVector<Value*, 64> Temp;
999 Temp.insert(Temp.end(), live.begin(), live.end());
1000 std::sort(Temp.begin(), Temp.end(), order_by_name);
1001 for (Value *ptr : Temp) {
Philip Reamesf2041322015-02-20 19:26:04 +00001002 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001003 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001004 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001005 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1006 DT->dominates(cast<Instruction>(base)->getParent(),
1007 cast<Instruction>(ptr)->getParent())) &&
1008 "The base we found better dominate the derived pointer");
1009
David Blaikie82ad7872015-02-20 23:44:24 +00001010 // If you see this trip and like to live really dangerously, the code should
1011 // be correct, just with idioms the verifier can't handle. You can try
1012 // disabling the verifier at your own substaintial risk.
Philip Reames24c6cd52015-03-27 05:47:00 +00001013 assert(!isa<ConstantPointerNull>(base) &&
1014 "the relocation code needs adjustment to handle the relocation of "
1015 "a null pointer constant without causing false positives in the "
1016 "safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001017 }
1018}
1019
1020/// Find the required based pointers (and adjust the live set) for the given
1021/// parse point.
1022static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1023 const CallSite &CS,
1024 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001025 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
1026 DenseSet<llvm::Value *> NewInsertedDefs;
1027 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001028
1029 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001030 // Note: Need to print these in a stable order since this is checked in
1031 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001032 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001033 SmallVector<Value*, 64> Temp;
1034 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001035 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001036 Temp.push_back(Pair.first);
1037 }
1038 std::sort(Temp.begin(), Temp.end(), order_by_name);
1039 for (Value *Ptr : Temp) {
1040 Value *Base = PointerToBase[Ptr];
1041 errs() << " derived %" << Ptr->getName() << " base %"
1042 << Base->getName() << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +00001043 }
1044 }
1045
Philip Reamesf2041322015-02-20 19:26:04 +00001046 result.PointerToBase = PointerToBase;
1047 result.NewInsertedDefs = NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001048}
1049
1050/// Check for liveness of items in the insert defs and add them to the live
1051/// and base pointer sets
1052static void fixupLiveness(DominatorTree &DT, const CallSite &CS,
Philip Reames1f017542015-02-20 23:16:52 +00001053 const DenseSet<Value *> &allInsertedDefs,
Philip Reamesd16a9b12015-02-20 01:06:44 +00001054 PartiallyConstructedSafepointRecord &result) {
1055 Instruction *inst = CS.getInstruction();
1056
Philip Reamesf2041322015-02-20 19:26:04 +00001057 auto liveset = result.liveset;
1058 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001059
1060 auto is_live_gc_reference =
1061 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); };
1062
1063 // For each new definition, check to see if a) the definition dominates the
1064 // instruction we're interested in, and b) one of the uses of that definition
1065 // is edge-reachable from the instruction we're interested in. This is the
1066 // same definition of liveness we used in the intial liveness analysis
1067 for (Value *newDef : allInsertedDefs) {
1068 if (liveset.count(newDef)) {
1069 // already live, no action needed
1070 continue;
1071 }
1072
1073 // PERF: Use DT to check instruction domination might not be good for
1074 // compilation time, and we could change to optimal solution if this
1075 // turn to be a issue
1076 if (!DT.dominates(cast<Instruction>(newDef), inst)) {
1077 // can't possibly be live at inst
1078 continue;
1079 }
1080
1081 if (is_live_gc_reference(*newDef)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001082 // Add the live new defs into liveset and PointerToBase
Philip Reamesd16a9b12015-02-20 01:06:44 +00001083 liveset.insert(newDef);
Philip Reamesf2041322015-02-20 19:26:04 +00001084 PointerToBase[newDef] = newDef;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001085 }
1086 }
1087
1088 result.liveset = liveset;
Philip Reamesf2041322015-02-20 19:26:04 +00001089 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001090}
1091
1092static void fixupLiveReferences(
1093 Function &F, DominatorTree &DT, Pass *P,
Philip Reames1f017542015-02-20 23:16:52 +00001094 const DenseSet<llvm::Value *> &allInsertedDefs,
Philip Reamesd2b66462015-02-20 22:39:41 +00001095 ArrayRef<CallSite> toUpdate,
1096 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001097 for (size_t i = 0; i < records.size(); i++) {
1098 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001099 const CallSite &CS = toUpdate[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001100 fixupLiveness(DT, CS, allInsertedDefs, info);
1101 }
1102}
1103
1104// Normalize basic block to make it ready to be target of invoke statepoint.
1105// It means spliting it to have single predecessor. Return newly created BB
1106// ready to be successor of invoke statepoint.
1107static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB,
1108 BasicBlock *InvokeParent,
1109 Pass *P) {
1110 BasicBlock *ret = BB;
1111
1112 if (!BB->getUniquePredecessor()) {
1113 ret = SplitBlockPredecessors(BB, InvokeParent, "");
1114 }
1115
1116 // Another requirement for such basic blocks is to not have any phi nodes.
1117 // Since we just ensured that new BB will have single predecessor,
1118 // all phi nodes in it will have one value. Here it would be naturall place
1119 // to
1120 // remove them all. But we can not do this because we are risking to remove
1121 // one of the values stored in liveset of another statepoint. We will do it
1122 // later after placing all safepoints.
1123
1124 return ret;
1125}
1126
Philip Reamesd2b66462015-02-20 22:39:41 +00001127static int find_index(ArrayRef<Value *> livevec, Value *val) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001128 auto itr = std::find(livevec.begin(), livevec.end(), val);
1129 assert(livevec.end() != itr);
1130 size_t index = std::distance(livevec.begin(), itr);
1131 assert(index < livevec.size());
1132 return index;
1133}
1134
1135// Create new attribute set containing only attributes which can be transfered
1136// from original call to the safepoint.
1137static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1138 AttributeSet ret;
1139
1140 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1141 unsigned index = AS.getSlotIndex(Slot);
1142
1143 if (index == AttributeSet::ReturnIndex ||
1144 index == AttributeSet::FunctionIndex) {
1145
1146 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1147 ++it) {
1148 Attribute attr = *it;
1149
1150 // Do not allow certain attributes - just skip them
1151 // Safepoint can not be read only or read none.
1152 if (attr.hasAttribute(Attribute::ReadNone) ||
1153 attr.hasAttribute(Attribute::ReadOnly))
1154 continue;
1155
1156 ret = ret.addAttributes(
1157 AS.getContext(), index,
1158 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1159 }
1160 }
1161
1162 // Just skip parameter attributes for now
1163 }
1164
1165 return ret;
1166}
1167
1168/// Helper function to place all gc relocates necessary for the given
1169/// statepoint.
1170/// Inputs:
1171/// liveVariables - list of variables to be relocated.
1172/// liveStart - index of the first live variable.
1173/// basePtrs - base pointers.
1174/// statepointToken - statepoint instruction to which relocates should be
1175/// bound.
1176/// Builder - Llvm IR builder to be used to construct new calls.
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001177static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
1178 const int liveStart,
1179 ArrayRef<llvm::Value *> basePtrs,
1180 Instruction *statepointToken,
1181 IRBuilder<> Builder) {
Philip Reamesd2b66462015-02-20 22:39:41 +00001182 SmallVector<Instruction *, 64> NewDefs;
1183 NewDefs.reserve(liveVariables.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001184
1185 Module *M = statepointToken->getParent()->getParent()->getParent();
1186
1187 for (unsigned i = 0; i < liveVariables.size(); i++) {
1188 // We generate a (potentially) unique declaration for every pointer type
1189 // combination. This results is some blow up the function declarations in
1190 // the IR, but removes the need for argument bitcasts which shrinks the IR
1191 // greatly and makes it much more readable.
Philip Reamesd2b66462015-02-20 22:39:41 +00001192 SmallVector<Type *, 1> types; // one per 'any' type
Philip Reamesd16a9b12015-02-20 01:06:44 +00001193 types.push_back(liveVariables[i]->getType()); // result type
1194 Value *gc_relocate_decl = Intrinsic::getDeclaration(
1195 M, Intrinsic::experimental_gc_relocate, types);
1196
1197 // Generate the gc.relocate call and save the result
1198 Value *baseIdx =
1199 ConstantInt::get(Type::getInt32Ty(M->getContext()),
1200 liveStart + find_index(liveVariables, basePtrs[i]));
1201 Value *liveIdx = ConstantInt::get(
1202 Type::getInt32Ty(M->getContext()),
1203 liveStart + find_index(liveVariables, liveVariables[i]));
1204
1205 // only specify a debug name if we can give a useful one
1206 Value *reloc = Builder.CreateCall3(
1207 gc_relocate_decl, statepointToken, baseIdx, liveIdx,
1208 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
1209 : "");
1210 // Trick CodeGen into thinking there are lots of free registers at this
1211 // fake call.
1212 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
1213
Philip Reamesd2b66462015-02-20 22:39:41 +00001214 NewDefs.push_back(cast<Instruction>(reloc));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001215 }
Philip Reamesd2b66462015-02-20 22:39:41 +00001216 assert(NewDefs.size() == liveVariables.size() &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001217 "missing or extra redefinition at safepoint");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001218}
1219
1220static void
1221makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1222 const SmallVectorImpl<llvm::Value *> &basePtrs,
1223 const SmallVectorImpl<llvm::Value *> &liveVariables,
1224 Pass *P,
1225 PartiallyConstructedSafepointRecord &result) {
1226 assert(basePtrs.size() == liveVariables.size());
1227 assert(isStatepoint(CS) &&
1228 "This method expects to be rewriting a statepoint");
1229
1230 BasicBlock *BB = CS.getInstruction()->getParent();
1231 assert(BB);
1232 Function *F = BB->getParent();
1233 assert(F && "must be set");
1234 Module *M = F->getParent();
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001235 (void)M;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001236 assert(M && "must be set");
1237
1238 // We're not changing the function signature of the statepoint since the gc
1239 // arguments go into the var args section.
1240 Function *gc_statepoint_decl = CS.getCalledFunction();
1241
1242 // Then go ahead and use the builder do actually do the inserts. We insert
1243 // immediately before the previous instruction under the assumption that all
1244 // arguments will be available here. We can't insert afterwards since we may
1245 // be replacing a terminator.
1246 Instruction *insertBefore = CS.getInstruction();
1247 IRBuilder<> Builder(insertBefore);
1248 // Copy all of the arguments from the original statepoint - this includes the
1249 // target, call args, and deopt args
Philip Reamesd2b66462015-02-20 22:39:41 +00001250 SmallVector<llvm::Value *, 64> args;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001251 args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1252 // TODO: Clear the 'needs rewrite' flag
1253
1254 // add all the pointers to be relocated (gc arguments)
1255 // Capture the start of the live variable list for use in the gc_relocates
1256 const int live_start = args.size();
1257 args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1258
1259 // Create the statepoint given all the arguments
1260 Instruction *token = nullptr;
1261 AttributeSet return_attributes;
1262 if (CS.isCall()) {
1263 CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1264 CallInst *call =
1265 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1266 call->setTailCall(toReplace->isTailCall());
1267 call->setCallingConv(toReplace->getCallingConv());
1268
1269 // Currently we will fail on parameter attributes and on certain
1270 // function attributes.
1271 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1272 // In case if we can handle this set of sttributes - set up function attrs
1273 // directly on statepoint and return attrs later for gc_result intrinsic.
1274 call->setAttributes(new_attrs.getFnAttributes());
1275 return_attributes = new_attrs.getRetAttributes();
1276
1277 token = call;
1278
1279 // Put the following gc_result and gc_relocate calls immediately after the
1280 // the old call (which we're about to delete)
1281 BasicBlock::iterator next(toReplace);
1282 assert(BB->end() != next && "not a terminator, must have next");
1283 next++;
1284 Instruction *IP = &*(next);
1285 Builder.SetInsertPoint(IP);
1286 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1287
David Blaikie82ad7872015-02-20 23:44:24 +00001288 } else {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001289 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1290
1291 // Insert the new invoke into the old block. We'll remove the old one in a
1292 // moment at which point this will become the new terminator for the
1293 // original block.
1294 InvokeInst *invoke = InvokeInst::Create(
1295 gc_statepoint_decl, toReplace->getNormalDest(),
1296 toReplace->getUnwindDest(), args, "", toReplace->getParent());
1297 invoke->setCallingConv(toReplace->getCallingConv());
1298
1299 // Currently we will fail on parameter attributes and on certain
1300 // function attributes.
1301 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1302 // In case if we can handle this set of sttributes - set up function attrs
1303 // directly on statepoint and return attrs later for gc_result intrinsic.
1304 invoke->setAttributes(new_attrs.getFnAttributes());
1305 return_attributes = new_attrs.getRetAttributes();
1306
1307 token = invoke;
1308
1309 // Generate gc relocates in exceptional path
1310 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint(
1311 toReplace->getUnwindDest(), invoke->getParent(), P);
1312
1313 Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1314 Builder.SetInsertPoint(IP);
1315 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1316
1317 // Extract second element from landingpad return value. We will attach
1318 // exceptional gc relocates to it.
1319 const unsigned idx = 1;
1320 Instruction *exceptional_token =
1321 cast<Instruction>(Builder.CreateExtractValue(
1322 unwindBlock->getLandingPadInst(), idx, "relocate_token"));
Philip Reamesf2041322015-02-20 19:26:04 +00001323 result.UnwindToken = exceptional_token;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001324
1325 // Just throw away return value. We will use the one we got for normal
1326 // block.
1327 (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
1328 exceptional_token, Builder);
1329
1330 // Generate gc relocates and returns for normal block
1331 BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
1332 toReplace->getNormalDest(), invoke->getParent(), P);
1333
1334 IP = &*(normalDest->getFirstInsertionPt());
1335 Builder.SetInsertPoint(IP);
1336
1337 // gc relocates will be generated later as if it were regular call
1338 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001339 }
1340 assert(token);
1341
1342 // Take the name of the original value call if it had one.
1343 token->takeName(CS.getInstruction());
1344
1345 // The GCResult is already inserted, we just need to find it
David Blaikie5e5d7842015-02-22 20:58:38 +00001346#ifndef NDEBUG
1347 Instruction *toReplace = CS.getInstruction();
1348 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1349 "only valid use before rewrite is gc.result");
1350 assert(!toReplace->hasOneUse() ||
1351 isGCResult(cast<Instruction>(*toReplace->user_begin())));
1352#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001353
1354 // Update the gc.result of the original statepoint (if any) to use the newly
1355 // inserted statepoint. This is safe to do here since the token can't be
1356 // considered a live reference.
1357 CS.getInstruction()->replaceAllUsesWith(token);
1358
Philip Reames0a3240f2015-02-20 21:34:11 +00001359 result.StatepointToken = token;
1360
Philip Reamesd16a9b12015-02-20 01:06:44 +00001361 // Second, create a gc.relocate for every live variable
Philip Reames0a3240f2015-02-20 21:34:11 +00001362 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001363
Philip Reamesd16a9b12015-02-20 01:06:44 +00001364}
1365
1366namespace {
1367struct name_ordering {
1368 Value *base;
1369 Value *derived;
1370 bool operator()(name_ordering const &a, name_ordering const &b) {
1371 return -1 == a.derived->getName().compare(b.derived->getName());
1372 }
1373};
1374}
1375static void stablize_order(SmallVectorImpl<Value *> &basevec,
1376 SmallVectorImpl<Value *> &livevec) {
1377 assert(basevec.size() == livevec.size());
1378
Philip Reames860660e2015-02-20 22:05:18 +00001379 SmallVector<name_ordering, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001380 for (size_t i = 0; i < basevec.size(); i++) {
1381 name_ordering v;
1382 v.base = basevec[i];
1383 v.derived = livevec[i];
1384 temp.push_back(v);
1385 }
1386 std::sort(temp.begin(), temp.end(), name_ordering());
1387 for (size_t i = 0; i < basevec.size(); i++) {
1388 basevec[i] = temp[i].base;
1389 livevec[i] = temp[i].derived;
1390 }
1391}
1392
1393// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1394// which make the relocations happening at this safepoint explicit.
1395//
1396// WARNING: Does not do any fixup to adjust users of the original live
1397// values. That's the callers responsibility.
1398static void
1399makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1400 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001401 auto liveset = result.liveset;
1402 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001403
1404 // Convert to vector for efficient cross referencing.
1405 SmallVector<Value *, 64> basevec, livevec;
1406 livevec.reserve(liveset.size());
1407 basevec.reserve(liveset.size());
1408 for (Value *L : liveset) {
1409 livevec.push_back(L);
1410
Philip Reamesf2041322015-02-20 19:26:04 +00001411 assert(PointerToBase.find(L) != PointerToBase.end());
1412 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001413 basevec.push_back(base);
1414 }
1415 assert(livevec.size() == basevec.size());
1416
1417 // To make the output IR slightly more stable (for use in diffs), ensure a
1418 // fixed order of the values in the safepoint (by sorting the value name).
1419 // The order is otherwise meaningless.
1420 stablize_order(basevec, livevec);
1421
1422 // Do the actual rewriting and delete the old statepoint
1423 makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1424 CS.getInstruction()->eraseFromParent();
1425}
1426
1427// Helper function for the relocationViaAlloca.
1428// It receives iterator to the statepoint gc relocates and emits store to the
1429// assigned
1430// location (via allocaMap) for the each one of them.
1431// Add visited values into the visitedLiveValues set we will later use them
1432// for sanity check.
1433static void
1434insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
1435 DenseMap<Value *, Value *> &allocaMap,
1436 DenseSet<Value *> &visitedLiveValues) {
1437
1438 for (User *U : gcRelocs) {
1439 if (!isa<IntrinsicInst>(U))
1440 continue;
1441
1442 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
1443
1444 // We only care about relocates
1445 if (relocatedValue->getIntrinsicID() !=
1446 Intrinsic::experimental_gc_relocate) {
1447 continue;
1448 }
1449
1450 GCRelocateOperands relocateOperands(relocatedValue);
1451 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
1452 assert(allocaMap.count(originalValue));
1453 Value *alloca = allocaMap[originalValue];
1454
1455 // Emit store into the related alloca
1456 StoreInst *store = new StoreInst(relocatedValue, alloca);
1457 store->insertAfter(relocatedValue);
1458
1459#ifndef NDEBUG
1460 visitedLiveValues.insert(originalValue);
1461#endif
1462 }
1463}
1464
1465/// do all the relocation update via allocas and mem2reg
1466static void relocationViaAlloca(
Philip Reamesd2b66462015-02-20 22:39:41 +00001467 Function &F, DominatorTree &DT, ArrayRef<Value *> live,
1468 ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001469#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001470 // record initial number of (static) allocas; we'll check we have the same
1471 // number when we get done.
1472 int InitialAllocaNum = 0;
1473 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end();
1474 I != E; I++)
1475 if (isa<AllocaInst>(*I))
1476 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001477#endif
1478
1479 // TODO-PERF: change data structures, reserve
1480 DenseMap<Value *, Value *> allocaMap;
1481 SmallVector<AllocaInst *, 200> PromotableAllocas;
1482 PromotableAllocas.reserve(live.size());
1483
1484 // emit alloca for each live gc pointer
1485 for (unsigned i = 0; i < live.size(); i++) {
1486 Value *liveValue = live[i];
1487 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
1488 F.getEntryBlock().getFirstNonPHI());
1489 allocaMap[liveValue] = alloca;
1490 PromotableAllocas.push_back(alloca);
1491 }
1492
1493 // The next two loops are part of the same conceptual operation. We need to
1494 // insert a store to the alloca after the original def and at each
1495 // redefinition. We need to insert a load before each use. These are split
1496 // into distinct loops for performance reasons.
1497
1498 // update gc pointer after each statepoint
1499 // either store a relocated value or null (if no relocated value found for
1500 // this gc pointer and it is not a gc_result)
1501 // this must happen before we update the statepoint with load of alloca
1502 // otherwise we lose the link between statepoint and old def
1503 for (size_t i = 0; i < records.size(); i++) {
1504 const struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reames0a3240f2015-02-20 21:34:11 +00001505 Value *Statepoint = info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001506
1507 // This will be used for consistency check
1508 DenseSet<Value *> visitedLiveValues;
1509
1510 // Insert stores for normal statepoint gc relocates
Philip Reames0a3240f2015-02-20 21:34:11 +00001511 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001512
1513 // In case if it was invoke statepoint
1514 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001515 if (isa<InvokeInst>(Statepoint)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001516 insertRelocationStores(info.UnwindToken->users(),
Philip Reamesd16a9b12015-02-20 01:06:44 +00001517 allocaMap, visitedLiveValues);
1518 }
1519
1520#ifndef NDEBUG
Philip Reamesf2041322015-02-20 19:26:04 +00001521 // As a debuging aid, pretend that an unrelocated pointer becomes null at
1522 // the gc.statepoint. This will turn some subtle GC problems into slightly
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001523 // easier to debug SEGVs
1524 SmallVector<AllocaInst *, 64> ToClobber;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001525 for (auto Pair : allocaMap) {
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001526 Value *Def = Pair.first;
1527 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001528
1529 // This value was relocated
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001530 if (visitedLiveValues.count(Def)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001531 continue;
1532 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001533 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001534 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001535
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001536 auto InsertClobbersAt = [&](Instruction *IP) {
1537 for (auto *AI : ToClobber) {
1538 auto AIType = cast<PointerType>(AI->getType());
1539 auto PT = cast<PointerType>(AIType->getElementType());
1540 Constant *CPN = ConstantPointerNull::get(PT);
1541 StoreInst *store = new StoreInst(CPN, AI);
1542 store->insertBefore(IP);
1543 }
1544 };
1545
1546 // Insert the clobbering stores. These may get intermixed with the
1547 // gc.results and gc.relocates, but that's fine.
1548 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1549 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1550 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
David Blaikie82ad7872015-02-20 23:44:24 +00001551 } else {
1552 BasicBlock::iterator Next(cast<CallInst>(Statepoint));
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001553 Next++;
1554 InsertClobbersAt(Next);
David Blaikie82ad7872015-02-20 23:44:24 +00001555 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001556#endif
1557 }
1558 // update use with load allocas and add store for gc_relocated
1559 for (auto Pair : allocaMap) {
1560 Value *def = Pair.first;
1561 Value *alloca = Pair.second;
1562
1563 // we pre-record the uses of allocas so that we dont have to worry about
1564 // later update
1565 // that change the user information.
1566 SmallVector<Instruction *, 20> uses;
1567 // PERF: trade a linear scan for repeated reallocation
1568 uses.reserve(std::distance(def->user_begin(), def->user_end()));
1569 for (User *U : def->users()) {
1570 if (!isa<ConstantExpr>(U)) {
1571 // If the def has a ConstantExpr use, then the def is either a
1572 // ConstantExpr use itself or null. In either case
1573 // (recursively in the first, directly in the second), the oop
1574 // it is ultimately dependent on is null and this particular
1575 // use does not need to be fixed up.
1576 uses.push_back(cast<Instruction>(U));
1577 }
1578 }
1579
1580 std::sort(uses.begin(), uses.end());
1581 auto last = std::unique(uses.begin(), uses.end());
1582 uses.erase(last, uses.end());
1583
1584 for (Instruction *use : uses) {
1585 if (isa<PHINode>(use)) {
1586 PHINode *phi = cast<PHINode>(use);
1587 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
1588 if (def == phi->getIncomingValue(i)) {
1589 LoadInst *load = new LoadInst(
1590 alloca, "", phi->getIncomingBlock(i)->getTerminator());
1591 phi->setIncomingValue(i, load);
1592 }
1593 }
1594 } else {
1595 LoadInst *load = new LoadInst(alloca, "", use);
1596 use->replaceUsesOfWith(def, load);
1597 }
1598 }
1599
1600 // emit store for the initial gc value
1601 // store must be inserted after load, otherwise store will be in alloca's
1602 // use list and an extra load will be inserted before it
1603 StoreInst *store = new StoreInst(def, alloca);
Philip Reames6da37852015-03-04 00:13:52 +00001604 if (Instruction *inst = dyn_cast<Instruction>(def)) {
1605 if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) {
1606 // InvokeInst is a TerminatorInst so the store need to be inserted
1607 // into its normal destination block.
1608 BasicBlock *normalDest = invoke->getNormalDest();
1609 store->insertBefore(normalDest->getFirstNonPHI());
1610 } else {
1611 assert(!inst->isTerminator() &&
1612 "The only TerminatorInst that can produce a value is "
1613 "InvokeInst which is handled above.");
1614 store->insertAfter(inst);
1615 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001616 } else {
1617 assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
Philip Reames24c6cd52015-03-27 05:47:00 +00001618 isa<ConstantPointerNull>(def)) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001619 "Must be argument or global");
1620 store->insertAfter(cast<Instruction>(alloca));
1621 }
1622 }
1623
1624 assert(PromotableAllocas.size() == live.size() &&
1625 "we must have the same allocas with lives");
1626 if (!PromotableAllocas.empty()) {
1627 // apply mem2reg to promote alloca to SSA
1628 PromoteMemToReg(PromotableAllocas, DT);
1629 }
1630
1631#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001632 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end();
1633 I != E; I++)
1634 if (isa<AllocaInst>(*I))
1635 InitialAllocaNum--;
1636 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001637#endif
1638}
1639
1640/// Implement a unique function which doesn't require we sort the input
1641/// vector. Doing so has the effect of changing the output of a couple of
1642/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001643template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1644 DenseSet<T> Seen;
1645 SmallVector<T, 128> TempVec;
1646 TempVec.reserve(Vec.size());
1647 for (auto Element : Vec)
1648 TempVec.push_back(Element);
1649 Vec.clear();
1650 for (auto V : TempVec) {
1651 if (Seen.insert(V).second) {
1652 Vec.push_back(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001653 }
1654 }
1655}
1656
1657static Function *getUseHolder(Module &M) {
1658 FunctionType *ftype =
1659 FunctionType::get(Type::getVoidTy(M.getContext()), true);
1660 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype));
1661 return Func;
1662}
1663
1664/// Insert holders so that each Value is obviously live through the entire
1665/// liftetime of the call.
1666static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesd2b66462015-02-20 22:39:41 +00001667 SmallVectorImpl<CallInst *> &holders) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001668 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1669 Function *Func = getUseHolder(*M);
1670 if (CS.isCall()) {
1671 // For call safepoints insert dummy calls right after safepoint
1672 BasicBlock::iterator next(CS.getInstruction());
1673 next++;
1674 CallInst *base_holder = CallInst::Create(Func, Values, "", next);
1675 holders.push_back(base_holder);
1676 } else if (CS.isInvoke()) {
1677 // For invoke safepooints insert dummy calls both in normal and
1678 // exceptional destination blocks
1679 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
1680 CallInst *normal_holder = CallInst::Create(
1681 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt());
1682 CallInst *unwind_holder = CallInst::Create(
1683 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt());
1684 holders.push_back(normal_holder);
1685 holders.push_back(unwind_holder);
Philip Reames860660e2015-02-20 22:05:18 +00001686 } else
1687 llvm_unreachable("unsupported call type");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001688}
1689
1690static void findLiveReferences(
Philip Reamesd2b66462015-02-20 22:39:41 +00001691 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1692 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001693 for (size_t i = 0; i < records.size(); i++) {
1694 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001695 const CallSite &CS = toUpdate[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001696 analyzeParsePointLiveness(DT, CS, info);
1697 }
1698}
1699
Philip Reames1f017542015-02-20 23:16:52 +00001700static void addBasesAsLiveValues(StatepointLiveSetTy &liveset,
Philip Reamesf2041322015-02-20 19:26:04 +00001701 DenseMap<Value *, Value *> &PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001702 // Identify any base pointers which are used in this safepoint, but not
1703 // themselves relocated. We need to relocate them so that later inserted
1704 // safepoints can get the properly relocated base register.
1705 DenseSet<Value *> missing;
1706 for (Value *L : liveset) {
Philip Reamesf2041322015-02-20 19:26:04 +00001707 assert(PointerToBase.find(L) != PointerToBase.end());
1708 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001709 assert(base);
1710 if (liveset.find(base) == liveset.end()) {
Philip Reamesf2041322015-02-20 19:26:04 +00001711 assert(PointerToBase.find(base) == PointerToBase.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001712 // uniqued by set insert
1713 missing.insert(base);
1714 }
1715 }
1716
1717 // Note that we want these at the end of the list, otherwise
1718 // register placement gets screwed up once we lower to STATEPOINT
1719 // instructions. This is an utter hack, but there doesn't seem to be a
1720 // better one.
1721 for (Value *base : missing) {
1722 assert(base);
1723 liveset.insert(base);
Philip Reamesf2041322015-02-20 19:26:04 +00001724 PointerToBase[base] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001725 }
Philip Reamesf2041322015-02-20 19:26:04 +00001726 assert(liveset.size() == PointerToBase.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001727}
1728
Philip Reames8531d8c2015-04-10 21:48:25 +00001729/// Remove any vector of pointers from the liveset by scalarizing them over the
1730/// statepoint instruction. Adds the scalarized pieces to the liveset. It
1731/// would be preferrable to include the vector in the statepoint itself, but
1732/// the lowering code currently does not handle that. Extending it would be
1733/// slightly non-trivial since it requires a format change. Given how rare
1734/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
1735static void splitVectorValues(Instruction *StatepointInst,
1736 StatepointLiveSetTy& LiveSet, DominatorTree &DT) {
1737 SmallVector<Value *, 16> ToSplit;
1738 for (Value *V : LiveSet)
1739 if (isa<VectorType>(V->getType()))
1740 ToSplit.push_back(V);
1741
1742 if (ToSplit.empty())
1743 return;
1744
1745 Function &F = *(StatepointInst->getParent()->getParent());
1746
1747 DenseMap<Value*, AllocaInst*> AllocaMap;
1748 // First is normal return, second is exceptional return (invoke only)
1749 DenseMap<Value*, std::pair<Value*,Value*>> Replacements;
1750 for (Value *V : ToSplit) {
1751 LiveSet.erase(V);
1752
1753 AllocaInst *Alloca = new AllocaInst(V->getType(), "",
1754 F.getEntryBlock().getFirstNonPHI());
1755 AllocaMap[V] = Alloca;
1756
1757 VectorType *VT = cast<VectorType>(V->getType());
1758 IRBuilder<> Builder(StatepointInst);
1759 SmallVector<Value*, 16> Elements;
1760 for (unsigned i = 0; i < VT->getNumElements(); i++)
1761 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1762 LiveSet.insert(Elements.begin(), Elements.end());
1763
1764 auto InsertVectorReform = [&](Instruction *IP) {
1765 Builder.SetInsertPoint(IP);
1766 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1767 Value *ResultVec = UndefValue::get(VT);
1768 for (unsigned i = 0; i < VT->getNumElements(); i++)
1769 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1770 Builder.getInt32(i));
1771 return ResultVec;
1772 };
1773
1774 if (isa<CallInst>(StatepointInst)) {
1775 BasicBlock::iterator Next(StatepointInst);
1776 Next++;
1777 Instruction *IP = &*(Next);
1778 Replacements[V].first = InsertVectorReform(IP);
1779 Replacements[V].second = nullptr;
1780 } else {
1781 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1782 // We've already normalized - check that we don't have shared destination
1783 // blocks
1784 BasicBlock *NormalDest = Invoke->getNormalDest();
1785 assert(!isa<PHINode>(NormalDest->begin()));
1786 BasicBlock *UnwindDest = Invoke->getUnwindDest();
1787 assert(!isa<PHINode>(UnwindDest->begin()));
1788 // Insert insert element sequences in both successors
1789 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1790 Replacements[V].first = InsertVectorReform(IP);
1791 IP = &*(UnwindDest->getFirstInsertionPt());
1792 Replacements[V].second = InsertVectorReform(IP);
1793 }
1794 }
1795 for (Value *V : ToSplit) {
1796 AllocaInst *Alloca = AllocaMap[V];
1797
1798 // Capture all users before we start mutating use lists
1799 SmallVector<Instruction*, 16> Users;
1800 for (User *U : V->users())
1801 Users.push_back(cast<Instruction>(U));
1802
1803 for (Instruction *I : Users) {
1804 if (auto Phi = dyn_cast<PHINode>(I)) {
1805 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
1806 if (V == Phi->getIncomingValue(i)) {
1807 LoadInst *Load = new LoadInst(Alloca, "",
1808 Phi->getIncomingBlock(i)->getTerminator());
1809 Phi->setIncomingValue(i, Load);
1810 }
1811 } else {
1812 LoadInst *Load = new LoadInst(Alloca, "", I);
1813 I->replaceUsesOfWith(V, Load);
1814 }
1815 }
1816
1817 // Store the original value and the replacement value into the alloca
1818 StoreInst *Store = new StoreInst(V, Alloca);
1819 if (auto I = dyn_cast<Instruction>(V))
1820 Store->insertAfter(I);
1821 else
1822 Store->insertAfter(Alloca);
1823
1824 // Normal return for invoke, or call return
1825 Instruction *Replacement = cast<Instruction>(Replacements[V].first);
1826 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1827 // Unwind return for invoke only
1828 Replacement = cast_or_null<Instruction>(Replacements[V].second);
1829 if (Replacement)
1830 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1831 }
1832
1833 // apply mem2reg to promote alloca to SSA
1834 SmallVector<AllocaInst*, 16> Allocas;
1835 for (Value *V : ToSplit)
1836 Allocas.push_back(AllocaMap[V]);
1837 PromoteMemToReg(Allocas, DT);
1838}
1839
Philip Reamesd16a9b12015-02-20 01:06:44 +00001840static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
Philip Reamesd2b66462015-02-20 22:39:41 +00001841 SmallVectorImpl<CallSite> &toUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001842#ifndef NDEBUG
1843 // sanity check the input
1844 std::set<CallSite> uniqued;
1845 uniqued.insert(toUpdate.begin(), toUpdate.end());
1846 assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
1847
1848 for (size_t i = 0; i < toUpdate.size(); i++) {
1849 CallSite &CS = toUpdate[i];
1850 assert(CS.getInstruction()->getParent()->getParent() == &F);
1851 assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
1852 }
1853#endif
1854
1855 // A list of dummy calls added to the IR to keep various values obviously
1856 // live in the IR. We'll remove all of these when done.
Philip Reamesd2b66462015-02-20 22:39:41 +00001857 SmallVector<CallInst *, 64> holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001858
1859 // Insert a dummy call with all of the arguments to the vm_state we'll need
1860 // for the actual safepoint insertion. This ensures reference arguments in
1861 // the deopt argument list are considered live through the safepoint (and
1862 // thus makes sure they get relocated.)
1863 for (size_t i = 0; i < toUpdate.size(); i++) {
1864 CallSite &CS = toUpdate[i];
1865 Statepoint StatepointCS(CS);
1866
1867 SmallVector<Value *, 64> DeoptValues;
1868 for (Use &U : StatepointCS.vm_state_args()) {
1869 Value *Arg = cast<Value>(&U);
Philip Reames8531d8c2015-04-10 21:48:25 +00001870 assert(!isUnhandledGCPointerType(Arg->getType()) &&
1871 "support for FCA unimplemented");
1872 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00001873 DeoptValues.push_back(Arg);
1874 }
1875 insertUseHolderAfter(CS, DeoptValues, holders);
1876 }
1877
Philip Reamesd2b66462015-02-20 22:39:41 +00001878 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001879 records.reserve(toUpdate.size());
1880 for (size_t i = 0; i < toUpdate.size(); i++) {
1881 struct PartiallyConstructedSafepointRecord info;
1882 records.push_back(info);
1883 }
1884 assert(records.size() == toUpdate.size());
1885
1886 // A) Identify all gc pointers which are staticly live at the given call
1887 // site.
1888 findLiveReferences(F, DT, P, toUpdate, records);
1889
Philip Reames8531d8c2015-04-10 21:48:25 +00001890 // Do a limited scalarization of any live at safepoint vector values which
1891 // contain pointers. This enables this pass to run after vectorization at
1892 // the cost of some possible performance loss. TODO: it would be nice to
1893 // natively support vectors all the way through the backend so we don't need
1894 // to scalarize here.
1895 for (size_t i = 0; i < records.size(); i++) {
1896 struct PartiallyConstructedSafepointRecord &info = records[i];
1897 Instruction *statepoint = toUpdate[i].getInstruction();
1898 splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT);
1899 }
1900
Philip Reamesd16a9b12015-02-20 01:06:44 +00001901 // B) Find the base pointers for each live pointer
1902 /* scope for caching */ {
1903 // Cache the 'defining value' relation used in the computation and
1904 // insertion of base phis and selects. This ensures that we don't insert
1905 // large numbers of duplicate base_phis.
1906 DefiningValueMapTy DVCache;
1907
1908 for (size_t i = 0; i < records.size(); i++) {
1909 struct PartiallyConstructedSafepointRecord &info = records[i];
1910 CallSite &CS = toUpdate[i];
1911 findBasePointers(DT, DVCache, CS, info);
1912 }
1913 } // end of cache scope
1914
1915 // The base phi insertion logic (for any safepoint) may have inserted new
1916 // instructions which are now live at some safepoint. The simplest such
1917 // example is:
1918 // loop:
1919 // phi a <-- will be a new base_phi here
1920 // safepoint 1 <-- that needs to be live here
1921 // gep a + 1
1922 // safepoint 2
1923 // br loop
Philip Reames1f017542015-02-20 23:16:52 +00001924 DenseSet<llvm::Value *> allInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001925 for (size_t i = 0; i < records.size(); i++) {
1926 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001927 allInsertedDefs.insert(info.NewInsertedDefs.begin(),
1928 info.NewInsertedDefs.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001929 }
1930
1931 // We insert some dummy calls after each safepoint to definitely hold live
1932 // the base pointers which were identified for that safepoint. We'll then
1933 // ask liveness for _every_ base inserted to see what is now live. Then we
1934 // remove the dummy calls.
1935 holders.reserve(holders.size() + records.size());
1936 for (size_t i = 0; i < records.size(); i++) {
1937 struct PartiallyConstructedSafepointRecord &info = records[i];
1938 CallSite &CS = toUpdate[i];
1939
1940 SmallVector<Value *, 128> Bases;
Philip Reamesf2041322015-02-20 19:26:04 +00001941 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001942 Bases.push_back(Pair.second);
1943 }
1944 insertUseHolderAfter(CS, Bases, holders);
1945 }
1946
1947 // Add the bases explicitly to the live vector set. This may result in a few
1948 // extra relocations, but the base has to be available whenever a pointer
1949 // derived from it is used. Thus, we need it to be part of the statepoint's
1950 // gc arguments list. TODO: Introduce an explicit notion (in the following
1951 // code) of the GC argument list as seperate from the live Values at a
1952 // given statepoint.
1953 for (size_t i = 0; i < records.size(); i++) {
1954 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001955 addBasesAsLiveValues(info.liveset, info.PointerToBase);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001956 }
1957
1958 // If we inserted any new values, we need to adjust our notion of what is
1959 // live at a particular safepoint.
1960 if (!allInsertedDefs.empty()) {
1961 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records);
1962 }
1963 if (PrintBasePointers) {
1964 for (size_t i = 0; i < records.size(); i++) {
1965 struct PartiallyConstructedSafepointRecord &info = records[i];
1966 errs() << "Base Pairs: (w/Relocation)\n";
Philip Reamesf2041322015-02-20 19:26:04 +00001967 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001968 errs() << " derived %" << Pair.first->getName() << " base %"
1969 << Pair.second->getName() << "\n";
1970 }
1971 }
1972 }
1973 for (size_t i = 0; i < holders.size(); i++) {
1974 holders[i]->eraseFromParent();
1975 holders[i] = nullptr;
1976 }
1977 holders.clear();
1978
1979 // Now run through and replace the existing statepoints with new ones with
1980 // the live variables listed. We do not yet update uses of the values being
1981 // relocated. We have references to live variables that need to
1982 // survive to the last iteration of this loop. (By construction, the
1983 // previous statepoint can not be a live variable, thus we can and remove
1984 // the old statepoint calls as we go.)
1985 for (size_t i = 0; i < records.size(); i++) {
1986 struct PartiallyConstructedSafepointRecord &info = records[i];
1987 CallSite &CS = toUpdate[i];
1988 makeStatepointExplicit(DT, CS, P, info);
1989 }
1990 toUpdate.clear(); // prevent accident use of invalid CallSites
1991
1992 // In case if we inserted relocates in a different basic block than the
1993 // original safepoint (this can happen for invokes). We need to be sure that
1994 // original values were not used in any of the phi nodes at the
1995 // beginning of basic block containing them. Because we know that all such
1996 // blocks will have single predecessor we can safely assume that all phi
1997 // nodes have single entry (because of normalizeBBForInvokeSafepoint).
1998 // Just remove them all here.
1999 for (size_t i = 0; i < records.size(); i++) {
Philip Reames0a3240f2015-02-20 21:34:11 +00002000 Instruction *I = records[i].StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002001
2002 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
2003 FoldSingleEntryPHINodes(invoke->getNormalDest());
2004 assert(!isa<PHINode>(invoke->getNormalDest()->begin()));
2005
2006 FoldSingleEntryPHINodes(invoke->getUnwindDest());
2007 assert(!isa<PHINode>(invoke->getUnwindDest()->begin()));
2008 }
2009 }
2010
2011 // Do all the fixups of the original live variables to their relocated selves
Philip Reamesd2b66462015-02-20 22:39:41 +00002012 SmallVector<Value *, 128> live;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002013 for (size_t i = 0; i < records.size(); i++) {
2014 struct PartiallyConstructedSafepointRecord &info = records[i];
2015 // We can't simply save the live set from the original insertion. One of
2016 // the live values might be the result of a call which needs a safepoint.
2017 // That Value* no longer exists and we need to use the new gc_result.
2018 // Thankfully, the liveset is embedded in the statepoint (and updated), so
2019 // we just grab that.
Philip Reames0a3240f2015-02-20 21:34:11 +00002020 Statepoint statepoint(info.StatepointToken);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002021 live.insert(live.end(), statepoint.gc_args_begin(),
2022 statepoint.gc_args_end());
2023 }
2024 unique_unsorted(live);
2025
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002026#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002027 // sanity check
2028 for (auto ptr : live) {
2029 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
2030 }
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002031#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002032
2033 relocationViaAlloca(F, DT, live, records);
2034 return !records.empty();
2035}
2036
2037/// Returns true if this function should be rewritten by this pass. The main
2038/// point of this function is as an extension point for custom logic.
2039static bool shouldRewriteStatepointsIn(Function &F) {
2040 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002041 if (F.hasGC()) {
2042 const std::string StatepointExampleName("statepoint-example");
2043 return StatepointExampleName == F.getGC();
2044 } else
2045 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002046}
2047
2048bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2049 // Nothing to do for declarations.
2050 if (F.isDeclaration() || F.empty())
2051 return false;
2052
2053 // Policy choice says not to rewrite - the most common reason is that we're
2054 // compiling code without a GCStrategy.
2055 if (!shouldRewriteStatepointsIn(F))
2056 return false;
2057
Philip Reames85b36a82015-04-10 22:07:04 +00002058 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2059
2060 // Gather all the statepoints which need rewritten. Be careful to only
2061 // consider those in reachable code since we need to ask dominance queries
2062 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002063 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002064 bool HasUnreachableStatepoint = false;
Philip Reamesd2b66462015-02-20 22:39:41 +00002065 for (Instruction &I : inst_range(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002066 // TODO: only the ones with the flag set!
Philip Reames85b36a82015-04-10 22:07:04 +00002067 if (isStatepoint(I)) {
2068 if (DT.isReachableFromEntry(I.getParent()))
2069 ParsePointNeeded.push_back(CallSite(&I));
2070 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002071 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002072 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002073 }
2074
Philip Reames85b36a82015-04-10 22:07:04 +00002075 bool MadeChange = false;
2076
2077 // Delete any unreachable statepoints so that we don't have unrewritten
2078 // statepoints surviving this pass. This makes testing easier and the
2079 // resulting IR less confusing to human readers. Rather than be fancy, we
2080 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002081 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002082 MadeChange |= removeUnreachableBlocks(F);
2083
Philip Reamesd16a9b12015-02-20 01:06:44 +00002084 // Return early if no work to do.
2085 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002086 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002087
Philip Reames85b36a82015-04-10 22:07:04 +00002088 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2089 // These are created by LCSSA. They have the effect of increasing the size
2090 // of liveness sets for no good reason. It may be harder to do this post
2091 // insertion since relocations and base phis can confuse things.
2092 for (BasicBlock &BB : F)
2093 if (BB.getUniquePredecessor()) {
2094 MadeChange = true;
2095 FoldSingleEntryPHINodes(&BB);
2096 }
2097
2098 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
2099 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002100}