blob: b58a3d6e461a0c9466326a94737b529c99e716e2 [file] [log] [blame]
Jim Cownie5e8470a2013-09-27 10:38:44 +00001/*
2 * kmp_affinity.cpp -- affinity management
Jim Cownie5e8470a2013-09-27 10:38:44 +00003 */
4
5
6//===----------------------------------------------------------------------===//
7//
8// The LLVM Compiler Infrastructure
9//
10// This file is dual licensed under the MIT and the University of Illinois Open
11// Source Licenses. See LICENSE.txt for details.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "kmp.h"
Jonathan Peyton30419822017-05-12 18:01:32 +000017#include "kmp_affinity.h"
Jim Cownie5e8470a2013-09-27 10:38:44 +000018#include "kmp_i18n.h"
19#include "kmp_io.h"
20#include "kmp_str.h"
Jim Cownie4cc4bb42014-10-07 16:25:50 +000021#include "kmp_wrapper_getpid.h"
Jonathan Peyton17078362015-09-10 19:22:07 +000022
23// Store the real or imagined machine hierarchy here
24static hierarchy_info machine_hierarchy;
25
Jonathan Peyton30419822017-05-12 18:01:32 +000026void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27
Jonathan Peyton17078362015-09-10 19:22:07 +000028
29void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
Jonathan Peyton30419822017-05-12 18:01:32 +000030 kmp_uint32 depth;
31 // The test below is true if affinity is available, but set to "none". Need to
32 // init on first use of hierarchical barrier.
33 if (TCR_1(machine_hierarchy.uninitialized))
34 machine_hierarchy.init(NULL, nproc);
Jonathan Peyton17078362015-09-10 19:22:07 +000035
Jonathan Peyton30419822017-05-12 18:01:32 +000036 // Adjust the hierarchy in case num threads exceeds original
37 if (nproc > machine_hierarchy.base_num_threads)
38 machine_hierarchy.resize(nproc);
Jonathan Peyton7dee82e2015-11-09 16:24:53 +000039
Jonathan Peyton30419822017-05-12 18:01:32 +000040 depth = machine_hierarchy.depth;
41 KMP_DEBUG_ASSERT(depth > 0);
Jonathan Peyton17078362015-09-10 19:22:07 +000042
Jonathan Peyton30419822017-05-12 18:01:32 +000043 thr_bar->depth = depth;
44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
Jonathan Peyton17078362015-09-10 19:22:07 +000046}
Jim Cownie5e8470a2013-09-27 10:38:44 +000047
Alp Toker763b9392014-02-28 09:42:41 +000048#if KMP_AFFINITY_SUPPORTED
Jim Cownie5e8470a2013-09-27 10:38:44 +000049
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000050bool KMPAffinity::picked_api = false;
51
Jonathan Peyton30419822017-05-12 18:01:32 +000052void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
53void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
54void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
55void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
56void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
57void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000058
59void KMPAffinity::pick_api() {
Jonathan Peyton30419822017-05-12 18:01:32 +000060 KMPAffinity *affinity_dispatch;
61 if (picked_api)
62 return;
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000063#if KMP_USE_HWLOC
Jonathan Peyton30419822017-05-12 18:01:32 +000064 if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
65 affinity_dispatch = new KMPHwlocAffinity();
66 } else
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000067#endif
Jonathan Peyton30419822017-05-12 18:01:32 +000068 {
69 affinity_dispatch = new KMPNativeAffinity();
70 }
71 __kmp_affinity_dispatch = affinity_dispatch;
72 picked_api = true;
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000073}
74
75void KMPAffinity::destroy_api() {
Jonathan Peyton30419822017-05-12 18:01:32 +000076 if (__kmp_affinity_dispatch != NULL) {
77 delete __kmp_affinity_dispatch;
78 __kmp_affinity_dispatch = NULL;
79 picked_api = false;
80 }
Jonathan Peyton1cdd87a2016-11-14 21:08:35 +000081}
82
Jim Cownie5e8470a2013-09-27 10:38:44 +000083// Print the affinity mask to the character array in a pretty format.
Jonathan Peyton30419822017-05-12 18:01:32 +000084char *__kmp_affinity_print_mask(char *buf, int buf_len,
85 kmp_affin_mask_t *mask) {
86 KMP_ASSERT(buf_len >= 40);
87 char *scan = buf;
88 char *end = buf + buf_len - 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +000089
Jonathan Peyton30419822017-05-12 18:01:32 +000090 // Find first element / check for empty set.
91 size_t i;
92 i = mask->begin();
93 if (i == mask->end()) {
94 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
95 while (*scan != '\0')
96 scan++;
Jim Cownie5e8470a2013-09-27 10:38:44 +000097 KMP_ASSERT(scan <= end);
98 return buf;
Jonathan Peyton30419822017-05-12 18:01:32 +000099 }
100
101 KMP_SNPRINTF(scan, end - scan + 1, "{%ld", (long)i);
102 while (*scan != '\0')
103 scan++;
104 i++;
105 for (; i != mask->end(); i = mask->next(i)) {
106 if (!KMP_CPU_ISSET(i, mask)) {
107 continue;
108 }
109
110 // Check for buffer overflow. A string of the form ",<n>" will have at most
111 // 10 characters, plus we want to leave room to print ",...}" if the set is
112 // too large to print for a total of 15 characters. We already left room for
113 // '\0' in setting end.
114 if (end - scan < 15) {
115 break;
116 }
117 KMP_SNPRINTF(scan, end - scan + 1, ",%-ld", (long)i);
118 while (*scan != '\0')
119 scan++;
120 }
121 if (i != mask->end()) {
122 KMP_SNPRINTF(scan, end - scan + 1, ",...");
123 while (*scan != '\0')
124 scan++;
125 }
126 KMP_SNPRINTF(scan, end - scan + 1, "}");
127 while (*scan != '\0')
128 scan++;
129 KMP_ASSERT(scan <= end);
130 return buf;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000131}
132
Jonathan Peyton30419822017-05-12 18:01:32 +0000133void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
134 KMP_CPU_ZERO(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000135
Jonathan Peyton30419822017-05-12 18:01:32 +0000136#if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000137
Jonathan Peyton30419822017-05-12 18:01:32 +0000138 if (__kmp_num_proc_groups > 1) {
139 int group;
140 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
141 for (group = 0; group < __kmp_num_proc_groups; group++) {
142 int i;
143 int num = __kmp_GetActiveProcessorCount(group);
144 for (i = 0; i < num; i++) {
145 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
146 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000147 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000148 } else
Jim Cownie5e8470a2013-09-27 10:38:44 +0000149
Jonathan Peyton30419822017-05-12 18:01:32 +0000150#endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000151
Jonathan Peyton30419822017-05-12 18:01:32 +0000152 {
153 int proc;
154 for (proc = 0; proc < __kmp_xproc; proc++) {
155 KMP_CPU_SET(proc, mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000156 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000157 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000158}
159
Jim Cownie5e8470a2013-09-27 10:38:44 +0000160// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
161// called to renumber the labels from [0..n] and place them into the child_num
162// vector of the address object. This is done in case the labels used for
Alp Toker8f2d3f02014-02-24 10:40:15 +0000163// the children at one node of the hierarchy differ from those used for
Jim Cownie5e8470a2013-09-27 10:38:44 +0000164// another node at the same level. Example: suppose the machine has 2 nodes
165// with 2 packages each. The first node contains packages 601 and 602, and
166// second node contains packages 603 and 604. If we try to sort the table
167// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
168// because we are paying attention to the labels themselves, not the ordinal
169// child numbers. By using the child numbers in the sort, the result is
170// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
Jonathan Peyton30419822017-05-12 18:01:32 +0000171static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
172 int numAddrs) {
173 KMP_DEBUG_ASSERT(numAddrs > 0);
174 int depth = address2os->first.depth;
175 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
176 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
177 int labCt;
178 for (labCt = 0; labCt < depth; labCt++) {
179 address2os[0].first.childNums[labCt] = counts[labCt] = 0;
180 lastLabel[labCt] = address2os[0].first.labels[labCt];
181 }
182 int i;
183 for (i = 1; i < numAddrs; i++) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000184 for (labCt = 0; labCt < depth; labCt++) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000185 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
186 int labCt2;
187 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
188 counts[labCt2] = 0;
189 lastLabel[labCt2] = address2os[i].first.labels[labCt2];
190 }
191 counts[labCt]++;
192 lastLabel[labCt] = address2os[i].first.labels[labCt];
193 break;
194 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000195 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000196 for (labCt = 0; labCt < depth; labCt++) {
197 address2os[i].first.childNums[labCt] = counts[labCt];
Jim Cownie5e8470a2013-09-27 10:38:44 +0000198 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000199 for (; labCt < (int)Address::maxDepth; labCt++) {
200 address2os[i].first.childNums[labCt] = 0;
201 }
202 }
203 __kmp_free(lastLabel);
204 __kmp_free(counts);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000205}
206
Jim Cownie5e8470a2013-09-27 10:38:44 +0000207// All of the __kmp_affinity_create_*_map() routines should set
208// __kmp_affinity_masks to a vector of affinity mask objects of length
Jonathan Peyton30419822017-05-12 18:01:32 +0000209// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
210// the number of levels in the machine topology tree (zero if
Jim Cownie5e8470a2013-09-27 10:38:44 +0000211// __kmp_affinity_type == affinity_none).
212//
Jonathan Peyton30419822017-05-12 18:01:32 +0000213// All of the __kmp_affinity_create_*_map() routines should set
214// *__kmp_affin_fullMask to the affinity mask for the initialization thread.
215// They need to save and restore the mask, and it could be needed later, so
216// saving it is just an optimization to avoid calling kmp_get_system_affinity()
217// again.
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000218kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000219
220static int nCoresPerPkg, nPackages;
Andrey Churbanovf696c822015-01-27 16:55:43 +0000221static int __kmp_nThreadsPerCore;
222#ifndef KMP_DFLT_NTH_CORES
223static int __kmp_ncores;
224#endif
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000225static int *__kmp_pu_os_idx = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000226
Jim Cownie5e8470a2013-09-27 10:38:44 +0000227// __kmp_affinity_uniform_topology() doesn't work when called from
228// places which support arbitrarily many levels in the machine topology
229// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
230// __kmp_affinity_create_x2apicid_map().
Jonathan Peyton30419822017-05-12 18:01:32 +0000231inline static bool __kmp_affinity_uniform_topology() {
232 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000233}
234
Jim Cownie5e8470a2013-09-27 10:38:44 +0000235// Print out the detailed machine topology map, i.e. the physical locations
236// of each OS proc.
Jonathan Peyton30419822017-05-12 18:01:32 +0000237static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
238 int depth, int pkgLevel,
239 int coreLevel, int threadLevel) {
240 int proc;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000241
Jonathan Peyton30419822017-05-12 18:01:32 +0000242 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
243 for (proc = 0; proc < len; proc++) {
244 int level;
245 kmp_str_buf_t buf;
246 __kmp_str_buf_init(&buf);
247 for (level = 0; level < depth; level++) {
248 if (level == threadLevel) {
249 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
250 } else if (level == coreLevel) {
251 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
252 } else if (level == pkgLevel) {
253 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
254 } else if (level > pkgLevel) {
255 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
256 level - pkgLevel - 1);
257 } else {
258 __kmp_str_buf_print(&buf, "L%d ", level);
259 }
260 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000261 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000262 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
263 buf.str);
264 __kmp_str_buf_free(&buf);
265 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000266}
267
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000268#if KMP_USE_HWLOC
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000269
270// This function removes the topology levels that are radix 1 and don't offer
271// further information about the topology. The most common example is when you
272// have one thread context per core, we don't want the extra thread context
273// level if it offers no unique labels. So they are removed.
274// return value: the new depth of address2os
Jonathan Peyton30419822017-05-12 18:01:32 +0000275static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *address2os,
276 int nActiveThreads, int depth,
277 int *pkgLevel, int *coreLevel,
278 int *threadLevel) {
279 int level;
280 int i;
281 int radix1_detected;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000282
Jonathan Peyton30419822017-05-12 18:01:32 +0000283 for (level = depth - 1; level >= 0; --level) {
284 // Always keep the package level
285 if (level == *pkgLevel)
286 continue;
287 // Detect if this level is radix 1
288 radix1_detected = 1;
289 for (i = 1; i < nActiveThreads; ++i) {
290 if (address2os[0].first.labels[level] !=
291 address2os[i].first.labels[level]) {
292 // There are differing label values for this level so it stays
293 radix1_detected = 0;
294 break;
295 }
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000296 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000297 if (!radix1_detected)
298 continue;
299 // Radix 1 was detected
300 if (level == *threadLevel) {
301 // If only one thread per core, then just decrement
302 // the depth which removes the threadlevel from address2os
303 for (i = 0; i < nActiveThreads; ++i) {
304 address2os[i].first.depth--;
305 }
306 *threadLevel = -1;
307 } else if (level == *coreLevel) {
308 // For core level, we move the thread labels over if they are still
309 // valid (*threadLevel != -1), and also reduce the depth another level
310 for (i = 0; i < nActiveThreads; ++i) {
311 if (*threadLevel != -1) {
312 address2os[i].first.labels[*coreLevel] =
313 address2os[i].first.labels[*threadLevel];
314 }
315 address2os[i].first.depth--;
316 }
317 *coreLevel = -1;
318 }
319 }
320 return address2os[0].first.depth;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000321}
322
Jonathan Peyton30419822017-05-12 18:01:32 +0000323// Returns the number of objects of type 'type' below 'obj' within the topology
324// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
325// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
326// object.
327static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
328 hwloc_obj_type_t type) {
329 int retval = 0;
330 hwloc_obj_t first;
331 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
332 obj->logical_index, type, 0);
333 first != NULL &&
334 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
335 obj;
336 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
337 first)) {
338 ++retval;
339 }
340 return retval;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000341}
342
Jonathan Peyton30419822017-05-12 18:01:32 +0000343static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
344 kmp_i18n_id_t *const msg_id) {
345 *address2os = NULL;
346 *msg_id = kmp_i18n_null;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000347
Jonathan Peyton30419822017-05-12 18:01:32 +0000348 // Save the affinity mask for the current thread.
349 kmp_affin_mask_t *oldMask;
350 KMP_CPU_ALLOC(oldMask);
351 __kmp_get_system_affinity(oldMask, TRUE);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000352
Jonathan Peyton30419822017-05-12 18:01:32 +0000353 int depth = 3;
354 int pkgLevel = 0;
355 int coreLevel = 1;
356 int threadLevel = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000357
Jonathan Peyton30419822017-05-12 18:01:32 +0000358 if (!KMP_AFFINITY_CAPABLE()) {
359 // Hack to try and infer the machine topology using only the data
360 // available from cpuid on the current thread, and __kmp_xproc.
361 KMP_ASSERT(__kmp_affinity_type == affinity_none);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000362
Jonathan Peyton30419822017-05-12 18:01:32 +0000363 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
364 hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PACKAGE, 0),
365 HWLOC_OBJ_CORE);
366 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
367 hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, 0),
368 HWLOC_OBJ_PU);
369 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
370 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000371 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000372 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
373 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
374 if (__kmp_affinity_uniform_topology()) {
375 KMP_INFORM(Uniform, "KMP_AFFINITY");
376 } else {
377 KMP_INFORM(NonUniform, "KMP_AFFINITY");
378 }
379 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
380 __kmp_nThreadsPerCore, __kmp_ncores);
381 }
382 KMP_CPU_FREE(oldMask);
383 return 0;
384 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000385
Jonathan Peyton30419822017-05-12 18:01:32 +0000386 // Allocate the data structure to be returned.
387 AddrUnsPair *retval =
388 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
389 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000390
Jonathan Peyton30419822017-05-12 18:01:32 +0000391 // When affinity is off, this routine will still be called to set
392 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
393 // nCoresPerPkg, & nPackages. Make sure all these vars are set
394 // correctly, and return if affinity is not enabled.
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000395
Jonathan Peyton30419822017-05-12 18:01:32 +0000396 hwloc_obj_t pu;
397 hwloc_obj_t core;
398 hwloc_obj_t socket;
399 int nActiveThreads = 0;
400 int socket_identifier = 0;
401 // re-calculate globals to count only accessible resources
402 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
403 for (socket =
404 hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PACKAGE, 0);
405 socket != NULL;
406 socket = hwloc_get_next_obj_by_type(__kmp_hwloc_topology,
407 HWLOC_OBJ_PACKAGE, socket),
408 socket_identifier++) {
409 int core_identifier = 0;
410 int num_active_cores = 0;
411 for (core = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, socket->type,
412 socket->logical_index,
413 HWLOC_OBJ_CORE, 0);
414 core != NULL &&
415 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, socket->type,
416 core) == socket;
417 core = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE,
418 core),
419 core_identifier++) {
420 int pu_identifier = 0;
421 int num_active_threads = 0;
422 for (pu = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, core->type,
423 core->logical_index, HWLOC_OBJ_PU,
424 0);
425 pu != NULL &&
426 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, core->type,
427 pu) == core;
428 pu = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PU,
429 pu),
430 pu_identifier++) {
431 Address addr(3);
432 if(!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
433 continue; // skip inactive (inaccessible) unit
434 KA_TRACE(20,
435 ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
436 socket->os_index, socket->logical_index, core->os_index,
437 core->logical_index, pu->os_index,pu->logical_index));
438 addr.labels[0] = socket_identifier; // package
439 addr.labels[1] = core_identifier; // core
440 addr.labels[2] = pu_identifier; // pu
441 retval[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
442 __kmp_pu_os_idx[nActiveThreads] =
443 pu->os_index; // keep os index for each active pu
444 nActiveThreads++;
445 ++num_active_threads; // count active threads per core
446 }
447 if (num_active_threads) { // were there any active threads on the core?
448 ++__kmp_ncores; // count total active cores
449 ++num_active_cores; // count active cores per socket
450 if (num_active_threads > __kmp_nThreadsPerCore)
451 __kmp_nThreadsPerCore = num_active_threads; // calc maximum
452 }
453 }
454 if (num_active_cores) { // were there any active cores on the socket?
455 ++nPackages; // count total active packages
456 if (num_active_cores > nCoresPerPkg)
457 nCoresPerPkg = num_active_cores; // calc maximum
458 }
459 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000460
Jonathan Peyton30419822017-05-12 18:01:32 +0000461 // If there's only one thread context to bind to, return now.
462 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
463 KMP_ASSERT(nActiveThreads > 0);
464 if (nActiveThreads == 1) {
465 __kmp_ncores = nPackages = 1;
466 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
467 if (__kmp_affinity_verbose) {
468 char buf[KMP_AFFIN_MASK_PRINT_LEN];
469 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
470
471 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
472 if (__kmp_affinity_respect_mask) {
473 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
474 } else {
475 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
476 }
477 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
478 KMP_INFORM(Uniform, "KMP_AFFINITY");
479 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
480 __kmp_nThreadsPerCore, __kmp_ncores);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000481 }
482
483 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000484 __kmp_free(retval);
485 KMP_CPU_FREE(oldMask);
486 return 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000487 }
488
Jonathan Peyton30419822017-05-12 18:01:32 +0000489 // Form an Address object which only includes the package level.
490 Address addr(1);
491 addr.labels[0] = retval[0].first.labels[pkgLevel];
492 retval[0].first = addr;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000493
494 if (__kmp_affinity_gran_levels < 0) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000495 __kmp_affinity_gran_levels = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000496 }
497
498 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000499 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000500 }
501
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000502 *address2os = retval;
Jonathan Peyton30419822017-05-12 18:01:32 +0000503 KMP_CPU_FREE(oldMask);
504 return 1;
505 }
506
507 // Sort the table by physical Id.
508 qsort(retval, nActiveThreads, sizeof(*retval),
509 __kmp_affinity_cmp_Address_labels);
510
511 // Check to see if the machine topology is uniform
512 unsigned uniform =
513 (nPackages * nCoresPerPkg * __kmp_nThreadsPerCore == nActiveThreads);
514
515 // Print the machine topology summary.
516 if (__kmp_affinity_verbose) {
517 char mask[KMP_AFFIN_MASK_PRINT_LEN];
518 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
519
520 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
521 if (__kmp_affinity_respect_mask) {
522 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
523 } else {
524 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
525 }
526 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
527 if (uniform) {
528 KMP_INFORM(Uniform, "KMP_AFFINITY");
529 } else {
530 KMP_INFORM(NonUniform, "KMP_AFFINITY");
531 }
532
533 kmp_str_buf_t buf;
534 __kmp_str_buf_init(&buf);
535
536 __kmp_str_buf_print(&buf, "%d", nPackages);
537 // for (level = 1; level <= pkgLevel; level++) {
538 // __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
539 // }
540 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
541 __kmp_nThreadsPerCore, __kmp_ncores);
542
543 __kmp_str_buf_free(&buf);
544 }
545
546 if (__kmp_affinity_type == affinity_none) {
547 __kmp_free(retval);
548 KMP_CPU_FREE(oldMask);
549 return 0;
550 }
551
552 // Find any levels with radiix 1, and remove them from the map
553 // (except for the package level).
554 depth = __kmp_affinity_remove_radix_one_levels(
555 retval, nActiveThreads, depth, &pkgLevel, &coreLevel, &threadLevel);
556
557 if (__kmp_affinity_gran_levels < 0) {
558 // Set the granularity level based on what levels are modeled
559 // in the machine topology map.
560 __kmp_affinity_gran_levels = 0;
561 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
562 __kmp_affinity_gran_levels++;
563 }
564 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
565 __kmp_affinity_gran_levels++;
566 }
567 if (__kmp_affinity_gran > affinity_gran_package) {
568 __kmp_affinity_gran_levels++;
569 }
570 }
571
572 if (__kmp_affinity_verbose) {
573 __kmp_affinity_print_topology(retval, nActiveThreads, depth, pkgLevel,
574 coreLevel, threadLevel);
575 }
576
577 KMP_CPU_FREE(oldMask);
578 *address2os = retval;
579 return depth;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000580}
581#endif // KMP_USE_HWLOC
Jim Cownie5e8470a2013-09-27 10:38:44 +0000582
Jim Cownie5e8470a2013-09-27 10:38:44 +0000583// If we don't know how to retrieve the machine's processor topology, or
584// encounter an error in doing so, this routine is called to form a "flat"
585// mapping of os thread id's <-> processor id's.
Jonathan Peyton30419822017-05-12 18:01:32 +0000586static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
587 kmp_i18n_id_t *const msg_id) {
588 *address2os = NULL;
589 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000590
Jonathan Peyton30419822017-05-12 18:01:32 +0000591 // Even if __kmp_affinity_type == affinity_none, this routine might still
592 // called to set __kmp_ncores, as well as
593 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
594 if (!KMP_AFFINITY_CAPABLE()) {
595 KMP_ASSERT(__kmp_affinity_type == affinity_none);
596 __kmp_ncores = nPackages = __kmp_xproc;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000597 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000598 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000599 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
600 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
601 KMP_INFORM(Uniform, "KMP_AFFINITY");
602 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
603 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000604 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000605 return 0;
606 }
607
608 // When affinity is off, this routine will still be called to set
609 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
610 // Make sure all these vars are set correctly, and return now if affinity is
611 // not enabled.
612 __kmp_ncores = nPackages = __kmp_avail_proc;
613 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
614 if (__kmp_affinity_verbose) {
615 char buf[KMP_AFFIN_MASK_PRINT_LEN];
616 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
617 __kmp_affin_fullMask);
618
619 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
620 if (__kmp_affinity_respect_mask) {
621 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
622 } else {
623 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000624 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000625 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
626 KMP_INFORM(Uniform, "KMP_AFFINITY");
627 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
628 __kmp_nThreadsPerCore, __kmp_ncores);
629 }
630 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
631 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
632 if (__kmp_affinity_type == affinity_none) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000633 int avail_ct = 0;
634 int i;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000635 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000636 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
637 continue;
638 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
Jim Cownie5e8470a2013-09-27 10:38:44 +0000639 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000640 return 0;
641 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000642
Jonathan Peyton30419822017-05-12 18:01:32 +0000643 // Contruct the data structure to be returned.
644 *address2os =
645 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
646 int avail_ct = 0;
647 unsigned int i;
648 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
649 // Skip this proc if it is not included in the machine model.
650 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
651 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000652 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000653 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
654 Address addr(1);
655 addr.labels[0] = i;
656 (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
657 }
658 if (__kmp_affinity_verbose) {
659 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
660 }
661
662 if (__kmp_affinity_gran_levels < 0) {
663 // Only the package level is modeled in the machine topology map,
664 // so the #levels of granularity is either 0 or 1.
665 if (__kmp_affinity_gran > affinity_gran_package) {
666 __kmp_affinity_gran_levels = 1;
667 } else {
668 __kmp_affinity_gran_levels = 0;
669 }
670 }
671 return 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000672}
673
Jonathan Peyton30419822017-05-12 18:01:32 +0000674#if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000675
Jonathan Peyton30419822017-05-12 18:01:32 +0000676// If multiple Windows* OS processor groups exist, we can create a 2-level
677// topology map with the groups at level 0 and the individual procs at level 1.
678// This facilitates letting the threads float among all procs in a group,
679// if granularity=group (the default when there are multiple groups).
680static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
681 kmp_i18n_id_t *const msg_id) {
682 *address2os = NULL;
683 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000684
Jonathan Peyton58684992017-05-15 19:05:59 +0000685 // If we aren't affinity capable, then return now.
Jonathan Peyton30419822017-05-12 18:01:32 +0000686 // The flat mapping will be used.
Jonathan Peyton58684992017-05-15 19:05:59 +0000687 if (!KMP_AFFINITY_CAPABLE()) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000688 // FIXME set *msg_id
689 return -1;
690 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000691
Jonathan Peyton30419822017-05-12 18:01:32 +0000692 // Contruct the data structure to be returned.
693 *address2os =
694 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
695 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
696 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
697 int avail_ct = 0;
698 int i;
699 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
700 // Skip this proc if it is not included in the machine model.
701 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
702 continue;
703 }
704 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
705 Address addr(2);
706 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
707 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
708 (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000709
Jonathan Peyton30419822017-05-12 18:01:32 +0000710 if (__kmp_affinity_verbose) {
711 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
712 addr.labels[1]);
713 }
714 }
715
716 if (__kmp_affinity_gran_levels < 0) {
717 if (__kmp_affinity_gran == affinity_gran_group) {
718 __kmp_affinity_gran_levels = 1;
719 } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
720 (__kmp_affinity_gran == affinity_gran_thread)) {
721 __kmp_affinity_gran_levels = 0;
722 } else {
723 const char *gran_str = NULL;
724 if (__kmp_affinity_gran == affinity_gran_core) {
725 gran_str = "core";
726 } else if (__kmp_affinity_gran == affinity_gran_package) {
727 gran_str = "package";
728 } else if (__kmp_affinity_gran == affinity_gran_node) {
729 gran_str = "node";
730 } else {
731 KMP_ASSERT(0);
732 }
733
734 // Warning: can't use affinity granularity \"gran\" with group topology
735 // method, using "thread"
736 __kmp_affinity_gran_levels = 0;
737 }
738 }
739 return 2;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000740}
741
Jonathan Peyton30419822017-05-12 18:01:32 +0000742#endif /* KMP_GROUP_AFFINITY */
743
744#if KMP_ARCH_X86 || KMP_ARCH_X86_64
745
746static int __kmp_cpuid_mask_width(int count) {
747 int r = 0;
748
749 while ((1 << r) < count)
750 ++r;
751 return r;
752}
Jim Cownie5e8470a2013-09-27 10:38:44 +0000753
754class apicThreadInfo {
755public:
Jonathan Peyton30419822017-05-12 18:01:32 +0000756 unsigned osId; // param to __kmp_affinity_bind_thread
757 unsigned apicId; // from cpuid after binding
758 unsigned maxCoresPerPkg; // ""
759 unsigned maxThreadsPerPkg; // ""
760 unsigned pkgId; // inferred from above values
761 unsigned coreId; // ""
762 unsigned threadId; // ""
Jim Cownie5e8470a2013-09-27 10:38:44 +0000763};
764
Jonathan Peyton30419822017-05-12 18:01:32 +0000765static int __kmp_affinity_cmp_apicThreadInfo_os_id(const void *a,
766 const void *b) {
767 const apicThreadInfo *aa = (const apicThreadInfo *)a;
768 const apicThreadInfo *bb = (const apicThreadInfo *)b;
769 if (aa->osId < bb->osId)
770 return -1;
771 if (aa->osId > bb->osId)
772 return 1;
773 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000774}
775
Jonathan Peyton30419822017-05-12 18:01:32 +0000776static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
777 const void *b) {
778 const apicThreadInfo *aa = (const apicThreadInfo *)a;
779 const apicThreadInfo *bb = (const apicThreadInfo *)b;
780 if (aa->pkgId < bb->pkgId)
781 return -1;
782 if (aa->pkgId > bb->pkgId)
783 return 1;
784 if (aa->coreId < bb->coreId)
785 return -1;
786 if (aa->coreId > bb->coreId)
787 return 1;
788 if (aa->threadId < bb->threadId)
789 return -1;
790 if (aa->threadId > bb->threadId)
791 return 1;
792 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000793}
794
Jim Cownie5e8470a2013-09-27 10:38:44 +0000795// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
796// an algorithm which cycles through the available os threads, setting
797// the current thread's affinity mask to that thread, and then retrieves
798// the Apic Id for each thread context using the cpuid instruction.
Jonathan Peyton30419822017-05-12 18:01:32 +0000799static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
800 kmp_i18n_id_t *const msg_id) {
801 kmp_cpuid buf;
802 int rc;
803 *address2os = NULL;
804 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000805
Jonathan Peyton30419822017-05-12 18:01:32 +0000806 // Check if cpuid leaf 4 is supported.
807 __kmp_x86_cpuid(0, 0, &buf);
808 if (buf.eax < 4) {
809 *msg_id = kmp_i18n_str_NoLeaf4Support;
810 return -1;
811 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000812
Jonathan Peyton30419822017-05-12 18:01:32 +0000813 // The algorithm used starts by setting the affinity to each available thread
814 // and retrieving info from the cpuid instruction, so if we are not capable of
815 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
816 // need to do something else - use the defaults that we calculated from
817 // issuing cpuid without binding to each proc.
818 if (!KMP_AFFINITY_CAPABLE()) {
819 // Hack to try and infer the machine topology using only the data
820 // available from cpuid on the current thread, and __kmp_xproc.
821 KMP_ASSERT(__kmp_affinity_type == affinity_none);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000822
Jonathan Peyton30419822017-05-12 18:01:32 +0000823 // Get an upper bound on the number of threads per package using cpuid(1).
824 // On some OS/chps combinations where HT is supported by the chip but is
825 // disabled, this value will be 2 on a single core chip. Usually, it will be
826 // 2 if HT is enabled and 1 if HT is disabled.
827 __kmp_x86_cpuid(1, 0, &buf);
828 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
829 if (maxThreadsPerPkg == 0) {
830 maxThreadsPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000831 }
832
Jonathan Peyton30419822017-05-12 18:01:32 +0000833 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
834 // value.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000835 //
Jonathan Peyton30419822017-05-12 18:01:32 +0000836 // The author of cpu_count.cpp treated this only an upper bound on the
837 // number of cores, but I haven't seen any cases where it was greater than
838 // the actual number of cores, so we will treat it as exact in this block of
839 // code.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000840 //
Jonathan Peyton30419822017-05-12 18:01:32 +0000841 // First, we need to check if cpuid(4) is supported on this chip. To see if
842 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
843 // greater.
844 __kmp_x86_cpuid(0, 0, &buf);
845 if (buf.eax >= 4) {
846 __kmp_x86_cpuid(4, 0, &buf);
847 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
848 } else {
849 nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000850 }
851
Jonathan Peyton30419822017-05-12 18:01:32 +0000852 // There is no way to reliably tell if HT is enabled without issuing the
853 // cpuid instruction from every thread, can correlating the cpuid info, so
854 // if the machine is not affinity capable, we assume that HT is off. We have
855 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
856 // does not support HT.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000857 //
Jonathan Peyton30419822017-05-12 18:01:32 +0000858 // - Older OSes are usually found on machines with older chips, which do not
859 // support HT.
860 // - The performance penalty for mistakenly identifying a machine as HT when
861 // it isn't (which results in blocktime being incorrecly set to 0) is
862 // greater than the penalty when for mistakenly identifying a machine as
863 // being 1 thread/core when it is really HT enabled (which results in
864 // blocktime being incorrectly set to a positive value).
865 __kmp_ncores = __kmp_xproc;
866 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000867 __kmp_nThreadsPerCore = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000868 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +0000869 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
870 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
871 if (__kmp_affinity_uniform_topology()) {
872 KMP_INFORM(Uniform, "KMP_AFFINITY");
873 } else {
874 KMP_INFORM(NonUniform, "KMP_AFFINITY");
875 }
876 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
877 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000878 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000879 return 0;
880 }
881
882 // From here on, we can assume that it is safe to call
883 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
884 // __kmp_affinity_type = affinity_none.
885
886 // Save the affinity mask for the current thread.
887 kmp_affin_mask_t *oldMask;
888 KMP_CPU_ALLOC(oldMask);
889 KMP_ASSERT(oldMask != NULL);
890 __kmp_get_system_affinity(oldMask, TRUE);
891
892 // Run through each of the available contexts, binding the current thread
893 // to it, and obtaining the pertinent information using the cpuid instr.
894 //
895 // The relevant information is:
896 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
897 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
898 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
899 // of this field determines the width of the core# + thread# fields in the
900 // Apic Id. It is also an upper bound on the number of threads per
901 // package, but it has been verified that situations happen were it is not
902 // exact. In particular, on certain OS/chip combinations where Intel(R)
903 // Hyper-Threading Technology is supported by the chip but has been
904 // disabled, the value of this field will be 2 (for a single core chip).
905 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
906 // Technology, the value of this field will be 1 when Intel(R)
907 // Hyper-Threading Technology is disabled and 2 when it is enabled.
908 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
909 // of this field (+1) determines the width of the core# field in the Apic
910 // Id. The comments in "cpucount.cpp" say that this value is an upper
911 // bound, but the IA-32 architecture manual says that it is exactly the
912 // number of cores per package, and I haven't seen any case where it
913 // wasn't.
914 //
915 // From this information, deduce the package Id, core Id, and thread Id,
916 // and set the corresponding fields in the apicThreadInfo struct.
917 unsigned i;
918 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
919 __kmp_avail_proc * sizeof(apicThreadInfo));
920 unsigned nApics = 0;
921 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
922 // Skip this proc if it is not included in the machine model.
923 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
924 continue;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000925 }
Jonathan Peyton30419822017-05-12 18:01:32 +0000926 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
927
928 __kmp_affinity_dispatch->bind_thread(i);
929 threadInfo[nApics].osId = i;
930
931 // The apic id and max threads per pkg come from cpuid(1).
932 __kmp_x86_cpuid(1, 0, &buf);
933 if (((buf.edx >> 9) & 1) == 0) {
934 __kmp_set_system_affinity(oldMask, TRUE);
935 __kmp_free(threadInfo);
936 KMP_CPU_FREE(oldMask);
937 *msg_id = kmp_i18n_str_ApicNotPresent;
938 return -1;
939 }
940 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
941 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
942 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
943 threadInfo[nApics].maxThreadsPerPkg = 1;
944 }
945
946 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
947 // value.
948 //
949 // First, we need to check if cpuid(4) is supported on this chip. To see if
950 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
951 // or greater.
952 __kmp_x86_cpuid(0, 0, &buf);
953 if (buf.eax >= 4) {
954 __kmp_x86_cpuid(4, 0, &buf);
955 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
956 } else {
957 threadInfo[nApics].maxCoresPerPkg = 1;
958 }
959
960 // Infer the pkgId / coreId / threadId using only the info obtained locally.
961 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
962 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
963
964 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
965 int widthT = widthCT - widthC;
966 if (widthT < 0) {
967 // I've never seen this one happen, but I suppose it could, if the cpuid
968 // instruction on a chip was really screwed up. Make sure to restore the
969 // affinity mask before the tail call.
970 __kmp_set_system_affinity(oldMask, TRUE);
971 __kmp_free(threadInfo);
972 KMP_CPU_FREE(oldMask);
973 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
974 return -1;
975 }
976
977 int maskC = (1 << widthC) - 1;
978 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
979
980 int maskT = (1 << widthT) - 1;
981 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
982
983 nApics++;
984 }
985
986 // We've collected all the info we need.
987 // Restore the old affinity mask for this thread.
988 __kmp_set_system_affinity(oldMask, TRUE);
989
990 // If there's only one thread context to bind to, form an Address object
991 // with depth 1 and return immediately (or, if affinity is off, set
992 // address2os to NULL and return).
993 //
994 // If it is configured to omit the package level when there is only a single
995 // package, the logic at the end of this routine won't work if there is only
996 // a single thread - it would try to form an Address object with depth 0.
997 KMP_ASSERT(nApics > 0);
998 if (nApics == 1) {
999 __kmp_ncores = nPackages = 1;
1000 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1001 if (__kmp_affinity_verbose) {
1002 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1003 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1004
1005 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1006 if (__kmp_affinity_respect_mask) {
1007 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1008 } else {
1009 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1010 }
1011 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1012 KMP_INFORM(Uniform, "KMP_AFFINITY");
1013 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1014 __kmp_nThreadsPerCore, __kmp_ncores);
1015 }
1016
Jim Cownie5e8470a2013-09-27 10:38:44 +00001017 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001018 __kmp_free(threadInfo);
1019 KMP_CPU_FREE(oldMask);
1020 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001021 }
1022
Jonathan Peyton30419822017-05-12 18:01:32 +00001023 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1024 Address addr(1);
1025 addr.labels[0] = threadInfo[0].pkgId;
1026 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001027
1028 if (__kmp_affinity_gran_levels < 0) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001029 __kmp_affinity_gran_levels = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001030 }
1031
1032 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001033 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001034 }
1035
1036 __kmp_free(threadInfo);
1037 KMP_CPU_FREE(oldMask);
Jonathan Peyton30419822017-05-12 18:01:32 +00001038 return 1;
1039 }
1040
1041 // Sort the threadInfo table by physical Id.
1042 qsort(threadInfo, nApics, sizeof(*threadInfo),
1043 __kmp_affinity_cmp_apicThreadInfo_phys_id);
1044
1045 // The table is now sorted by pkgId / coreId / threadId, but we really don't
1046 // know the radix of any of the fields. pkgId's may be sparsely assigned among
1047 // the chips on a system. Although coreId's are usually assigned
1048 // [0 .. coresPerPkg-1] and threadId's are usually assigned
1049 // [0..threadsPerCore-1], we don't want to make any such assumptions.
1050 //
1051 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1052 // total # packages) are at this point - we want to determine that now. We
1053 // only have an upper bound on the first two figures.
1054 //
1055 // We also perform a consistency check at this point: the values returned by
1056 // the cpuid instruction for any thread bound to a given package had better
1057 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1058 nPackages = 1;
1059 nCoresPerPkg = 1;
1060 __kmp_nThreadsPerCore = 1;
1061 unsigned nCores = 1;
1062
1063 unsigned pkgCt = 1; // to determine radii
1064 unsigned lastPkgId = threadInfo[0].pkgId;
1065 unsigned coreCt = 1;
1066 unsigned lastCoreId = threadInfo[0].coreId;
1067 unsigned threadCt = 1;
1068 unsigned lastThreadId = threadInfo[0].threadId;
1069
1070 // intra-pkg consist checks
1071 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1072 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1073
1074 for (i = 1; i < nApics; i++) {
1075 if (threadInfo[i].pkgId != lastPkgId) {
1076 nCores++;
1077 pkgCt++;
1078 lastPkgId = threadInfo[i].pkgId;
1079 if ((int)coreCt > nCoresPerPkg)
1080 nCoresPerPkg = coreCt;
1081 coreCt = 1;
1082 lastCoreId = threadInfo[i].coreId;
1083 if ((int)threadCt > __kmp_nThreadsPerCore)
1084 __kmp_nThreadsPerCore = threadCt;
1085 threadCt = 1;
1086 lastThreadId = threadInfo[i].threadId;
1087
1088 // This is a different package, so go on to the next iteration without
1089 // doing any consistency checks. Reset the consistency check vars, though.
1090 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1091 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1092 continue;
1093 }
1094
1095 if (threadInfo[i].coreId != lastCoreId) {
1096 nCores++;
1097 coreCt++;
1098 lastCoreId = threadInfo[i].coreId;
1099 if ((int)threadCt > __kmp_nThreadsPerCore)
1100 __kmp_nThreadsPerCore = threadCt;
1101 threadCt = 1;
1102 lastThreadId = threadInfo[i].threadId;
1103 } else if (threadInfo[i].threadId != lastThreadId) {
1104 threadCt++;
1105 lastThreadId = threadInfo[i].threadId;
1106 } else {
1107 __kmp_free(threadInfo);
1108 KMP_CPU_FREE(oldMask);
1109 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1110 return -1;
1111 }
1112
1113 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1114 // fields agree between all the threads bounds to a given package.
1115 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1116 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1117 __kmp_free(threadInfo);
1118 KMP_CPU_FREE(oldMask);
1119 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1120 return -1;
1121 }
1122 }
1123 nPackages = pkgCt;
1124 if ((int)coreCt > nCoresPerPkg)
1125 nCoresPerPkg = coreCt;
1126 if ((int)threadCt > __kmp_nThreadsPerCore)
1127 __kmp_nThreadsPerCore = threadCt;
1128
1129 // When affinity is off, this routine will still be called to set
1130 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1131 // Make sure all these vars are set correctly, and return now if affinity is
1132 // not enabled.
1133 __kmp_ncores = nCores;
1134 if (__kmp_affinity_verbose) {
1135 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1136 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1137
1138 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1139 if (__kmp_affinity_respect_mask) {
1140 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1141 } else {
1142 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1143 }
1144 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1145 if (__kmp_affinity_uniform_topology()) {
1146 KMP_INFORM(Uniform, "KMP_AFFINITY");
1147 } else {
1148 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1149 }
1150 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1151 __kmp_nThreadsPerCore, __kmp_ncores);
1152 }
1153 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1154 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1155 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1156 for (i = 0; i < nApics; ++i) {
1157 __kmp_pu_os_idx[i] = threadInfo[i].osId;
1158 }
1159 if (__kmp_affinity_type == affinity_none) {
1160 __kmp_free(threadInfo);
1161 KMP_CPU_FREE(oldMask);
1162 return 0;
1163 }
1164
1165 // Now that we've determined the number of packages, the number of cores per
1166 // package, and the number of threads per core, we can construct the data
1167 // structure that is to be returned.
1168 int pkgLevel = 0;
1169 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1170 int threadLevel =
1171 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1172 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1173
1174 KMP_ASSERT(depth > 0);
1175 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1176
1177 for (i = 0; i < nApics; ++i) {
1178 Address addr(depth);
1179 unsigned os = threadInfo[i].osId;
1180 int d = 0;
1181
1182 if (pkgLevel >= 0) {
1183 addr.labels[d++] = threadInfo[i].pkgId;
1184 }
1185 if (coreLevel >= 0) {
1186 addr.labels[d++] = threadInfo[i].coreId;
1187 }
1188 if (threadLevel >= 0) {
1189 addr.labels[d++] = threadInfo[i].threadId;
1190 }
1191 (*address2os)[i] = AddrUnsPair(addr, os);
1192 }
1193
1194 if (__kmp_affinity_gran_levels < 0) {
1195 // Set the granularity level based on what levels are modeled in the machine
1196 // topology map.
1197 __kmp_affinity_gran_levels = 0;
1198 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1199 __kmp_affinity_gran_levels++;
1200 }
1201 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1202 __kmp_affinity_gran_levels++;
1203 }
1204 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1205 __kmp_affinity_gran_levels++;
1206 }
1207 }
1208
1209 if (__kmp_affinity_verbose) {
1210 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1211 coreLevel, threadLevel);
1212 }
1213
1214 __kmp_free(threadInfo);
1215 KMP_CPU_FREE(oldMask);
1216 return depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001217}
1218
Jim Cownie5e8470a2013-09-27 10:38:44 +00001219// Intel(R) microarchitecture code name Nehalem, Dunnington and later
1220// architectures support a newer interface for specifying the x2APIC Ids,
1221// based on cpuid leaf 11.
Jonathan Peyton30419822017-05-12 18:01:32 +00001222static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1223 kmp_i18n_id_t *const msg_id) {
1224 kmp_cpuid buf;
1225 *address2os = NULL;
1226 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001227
Jonathan Peyton30419822017-05-12 18:01:32 +00001228 // Check to see if cpuid leaf 11 is supported.
1229 __kmp_x86_cpuid(0, 0, &buf);
1230 if (buf.eax < 11) {
1231 *msg_id = kmp_i18n_str_NoLeaf11Support;
1232 return -1;
1233 }
1234 __kmp_x86_cpuid(11, 0, &buf);
1235 if (buf.ebx == 0) {
1236 *msg_id = kmp_i18n_str_NoLeaf11Support;
1237 return -1;
1238 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001239
Jonathan Peyton30419822017-05-12 18:01:32 +00001240 // Find the number of levels in the machine topology. While we're at it, get
1241 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1242 // get more accurate values later by explicitly counting them, but get
1243 // reasonable defaults now, in case we return early.
1244 int level;
1245 int threadLevel = -1;
1246 int coreLevel = -1;
1247 int pkgLevel = -1;
1248 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1249
1250 for (level = 0;; level++) {
1251 if (level > 31) {
1252 // FIXME: Hack for DPD200163180
1253 //
1254 // If level is big then something went wrong -> exiting
1255 //
1256 // There could actually be 32 valid levels in the machine topology, but so
1257 // far, the only machine we have seen which does not exit this loop before
1258 // iteration 32 has fubar x2APIC settings.
1259 //
1260 // For now, just reject this case based upon loop trip count.
1261 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1262 return -1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001263 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001264 __kmp_x86_cpuid(11, level, &buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001265 if (buf.ebx == 0) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001266 if (pkgLevel < 0) {
1267 // Will infer nPackages from __kmp_xproc
1268 pkgLevel = level;
1269 level++;
1270 }
1271 break;
1272 }
1273 int kind = (buf.ecx >> 8) & 0xff;
1274 if (kind == 1) {
1275 // SMT level
1276 threadLevel = level;
1277 coreLevel = -1;
1278 pkgLevel = -1;
1279 __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1280 if (__kmp_nThreadsPerCore == 0) {
1281 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001282 return -1;
Jonathan Peyton30419822017-05-12 18:01:32 +00001283 }
1284 } else if (kind == 2) {
1285 // core level
1286 coreLevel = level;
1287 pkgLevel = -1;
1288 nCoresPerPkg = buf.ebx & 0xffff;
1289 if (nCoresPerPkg == 0) {
1290 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1291 return -1;
1292 }
1293 } else {
1294 if (level <= 0) {
1295 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1296 return -1;
1297 }
1298 if (pkgLevel >= 0) {
1299 continue;
1300 }
1301 pkgLevel = level;
1302 nPackages = buf.ebx & 0xffff;
1303 if (nPackages == 0) {
1304 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1305 return -1;
1306 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001307 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001308 }
1309 int depth = level;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001310
Jonathan Peyton30419822017-05-12 18:01:32 +00001311 // In the above loop, "level" was counted from the finest level (usually
1312 // thread) to the coarsest. The caller expects that we will place the labels
1313 // in (*address2os)[].first.labels[] in the inverse order, so we need to
1314 // invert the vars saying which level means what.
1315 if (threadLevel >= 0) {
1316 threadLevel = depth - threadLevel - 1;
1317 }
1318 if (coreLevel >= 0) {
1319 coreLevel = depth - coreLevel - 1;
1320 }
1321 KMP_DEBUG_ASSERT(pkgLevel >= 0);
1322 pkgLevel = depth - pkgLevel - 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001323
Jonathan Peyton30419822017-05-12 18:01:32 +00001324 // The algorithm used starts by setting the affinity to each available thread
1325 // and retrieving info from the cpuid instruction, so if we are not capable of
1326 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1327 // need to do something else - use the defaults that we calculated from
1328 // issuing cpuid without binding to each proc.
1329 if (!KMP_AFFINITY_CAPABLE()) {
1330 // Hack to try and infer the machine topology using only the data
1331 // available from cpuid on the current thread, and __kmp_xproc.
1332 KMP_ASSERT(__kmp_affinity_type == affinity_none);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001333
Jonathan Peyton30419822017-05-12 18:01:32 +00001334 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1335 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001336 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001337 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1338 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1339 if (__kmp_affinity_uniform_topology()) {
1340 KMP_INFORM(Uniform, "KMP_AFFINITY");
1341 } else {
1342 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1343 }
1344 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1345 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001346 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001347 return 0;
1348 }
1349
1350 // From here on, we can assume that it is safe to call
1351 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1352 // __kmp_affinity_type = affinity_none.
1353
1354 // Save the affinity mask for the current thread.
1355 kmp_affin_mask_t *oldMask;
1356 KMP_CPU_ALLOC(oldMask);
1357 __kmp_get_system_affinity(oldMask, TRUE);
1358
1359 // Allocate the data structure to be returned.
1360 AddrUnsPair *retval =
1361 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1362
1363 // Run through each of the available contexts, binding the current thread
1364 // to it, and obtaining the pertinent information using the cpuid instr.
1365 unsigned int proc;
1366 int nApics = 0;
1367 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1368 // Skip this proc if it is not included in the machine model.
1369 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1370 continue;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00001371 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001372 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1373
1374 __kmp_affinity_dispatch->bind_thread(proc);
1375
1376 // Extract labels for each level in the machine topology map from Apic ID.
1377 Address addr(depth);
1378 int prev_shift = 0;
1379
1380 for (level = 0; level < depth; level++) {
1381 __kmp_x86_cpuid(11, level, &buf);
1382 unsigned apicId = buf.edx;
1383 if (buf.ebx == 0) {
1384 if (level != depth - 1) {
1385 KMP_CPU_FREE(oldMask);
1386 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1387 return -1;
1388 }
1389 addr.labels[depth - level - 1] = apicId >> prev_shift;
1390 level++;
1391 break;
1392 }
1393 int shift = buf.eax & 0x1f;
1394 int mask = (1 << shift) - 1;
1395 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1396 prev_shift = shift;
1397 }
1398 if (level != depth) {
1399 KMP_CPU_FREE(oldMask);
1400 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1401 return -1;
1402 }
1403
1404 retval[nApics] = AddrUnsPair(addr, proc);
1405 nApics++;
1406 }
1407
1408 // We've collected all the info we need.
1409 // Restore the old affinity mask for this thread.
1410 __kmp_set_system_affinity(oldMask, TRUE);
1411
1412 // If there's only one thread context to bind to, return now.
1413 KMP_ASSERT(nApics > 0);
1414 if (nApics == 1) {
1415 __kmp_ncores = nPackages = 1;
1416 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1417 if (__kmp_affinity_verbose) {
1418 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1419 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1420
1421 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1422 if (__kmp_affinity_respect_mask) {
1423 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1424 } else {
1425 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1426 }
1427 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1428 KMP_INFORM(Uniform, "KMP_AFFINITY");
1429 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1430 __kmp_nThreadsPerCore, __kmp_ncores);
1431 }
1432
Jim Cownie5e8470a2013-09-27 10:38:44 +00001433 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001434 __kmp_free(retval);
1435 KMP_CPU_FREE(oldMask);
1436 return 0;
1437 }
1438
1439 // Form an Address object which only includes the package level.
1440 Address addr(1);
1441 addr.labels[0] = retval[0].first.labels[pkgLevel];
1442 retval[0].first = addr;
1443
1444 if (__kmp_affinity_gran_levels < 0) {
1445 __kmp_affinity_gran_levels = 0;
1446 }
1447
1448 if (__kmp_affinity_verbose) {
1449 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1450 }
1451
1452 *address2os = retval;
1453 KMP_CPU_FREE(oldMask);
1454 return 1;
1455 }
1456
1457 // Sort the table by physical Id.
1458 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1459
1460 // Find the radix at each of the levels.
1461 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1462 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1463 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1464 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1465 for (level = 0; level < depth; level++) {
1466 totals[level] = 1;
1467 maxCt[level] = 1;
1468 counts[level] = 1;
1469 last[level] = retval[0].first.labels[level];
1470 }
1471
1472 // From here on, the iteration variable "level" runs from the finest level to
1473 // the coarsest, i.e. we iterate forward through
1474 // (*address2os)[].first.labels[] - in the previous loops, we iterated
1475 // backwards.
1476 for (proc = 1; (int)proc < nApics; proc++) {
1477 int level;
1478 for (level = 0; level < depth; level++) {
1479 if (retval[proc].first.labels[level] != last[level]) {
1480 int j;
1481 for (j = level + 1; j < depth; j++) {
1482 totals[j]++;
1483 counts[j] = 1;
1484 // The line below causes printing incorrect topology information in
1485 // case the max value for some level (maxCt[level]) is encountered
1486 // earlier than some less value while going through the array. For
1487 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1488 // maxCt[1] == 2
1489 // whereas it must be 4.
1490 // TODO!!! Check if it can be commented safely
1491 // maxCt[j] = 1;
1492 last[j] = retval[proc].first.labels[j];
1493 }
1494 totals[level]++;
1495 counts[level]++;
1496 if (counts[level] > maxCt[level]) {
1497 maxCt[level] = counts[level];
1498 }
1499 last[level] = retval[proc].first.labels[level];
1500 break;
1501 } else if (level == depth - 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001502 __kmp_free(last);
1503 __kmp_free(maxCt);
1504 __kmp_free(counts);
1505 __kmp_free(totals);
1506 __kmp_free(retval);
1507 KMP_CPU_FREE(oldMask);
Jonathan Peyton30419822017-05-12 18:01:32 +00001508 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1509 return -1;
1510 }
1511 }
1512 }
1513
1514 // When affinity is off, this routine will still be called to set
1515 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1516 // Make sure all these vars are set correctly, and return if affinity is not
1517 // enabled.
1518 if (threadLevel >= 0) {
1519 __kmp_nThreadsPerCore = maxCt[threadLevel];
1520 } else {
1521 __kmp_nThreadsPerCore = 1;
1522 }
1523 nPackages = totals[pkgLevel];
1524
1525 if (coreLevel >= 0) {
1526 __kmp_ncores = totals[coreLevel];
1527 nCoresPerPkg = maxCt[coreLevel];
1528 } else {
1529 __kmp_ncores = nPackages;
1530 nCoresPerPkg = 1;
1531 }
1532
1533 // Check to see if the machine topology is uniform
1534 unsigned prod = maxCt[0];
1535 for (level = 1; level < depth; level++) {
1536 prod *= maxCt[level];
1537 }
1538 bool uniform = (prod == totals[level - 1]);
1539
1540 // Print the machine topology summary.
1541 if (__kmp_affinity_verbose) {
1542 char mask[KMP_AFFIN_MASK_PRINT_LEN];
1543 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1544
1545 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1546 if (__kmp_affinity_respect_mask) {
1547 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1548 } else {
1549 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1550 }
1551 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1552 if (uniform) {
1553 KMP_INFORM(Uniform, "KMP_AFFINITY");
1554 } else {
1555 KMP_INFORM(NonUniform, "KMP_AFFINITY");
Jim Cownie5e8470a2013-09-27 10:38:44 +00001556 }
1557
Jonathan Peyton30419822017-05-12 18:01:32 +00001558 kmp_str_buf_t buf;
1559 __kmp_str_buf_init(&buf);
1560
1561 __kmp_str_buf_print(&buf, "%d", totals[0]);
1562 for (level = 1; level <= pkgLevel; level++) {
1563 __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001564 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001565 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1566 __kmp_nThreadsPerCore, __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001567
Jonathan Peyton30419822017-05-12 18:01:32 +00001568 __kmp_str_buf_free(&buf);
1569 }
1570 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1571 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1572 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1573 for (proc = 0; (int)proc < nApics; ++proc) {
1574 __kmp_pu_os_idx[proc] = retval[proc].second;
1575 }
1576 if (__kmp_affinity_type == affinity_none) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001577 __kmp_free(last);
1578 __kmp_free(maxCt);
1579 __kmp_free(counts);
1580 __kmp_free(totals);
Jonathan Peyton30419822017-05-12 18:01:32 +00001581 __kmp_free(retval);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001582 KMP_CPU_FREE(oldMask);
Jonathan Peyton30419822017-05-12 18:01:32 +00001583 return 0;
1584 }
1585
1586 // Find any levels with radiix 1, and remove them from the map
1587 // (except for the package level).
1588 int new_depth = 0;
1589 for (level = 0; level < depth; level++) {
1590 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1591 continue;
1592 }
1593 new_depth++;
1594 }
1595
1596 // If we are removing any levels, allocate a new vector to return,
1597 // and copy the relevant information to it.
1598 if (new_depth != depth) {
1599 AddrUnsPair *new_retval =
1600 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1601 for (proc = 0; (int)proc < nApics; proc++) {
1602 Address addr(new_depth);
1603 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1604 }
1605 int new_level = 0;
1606 int newPkgLevel = -1;
1607 int newCoreLevel = -1;
1608 int newThreadLevel = -1;
1609 int i;
1610 for (level = 0; level < depth; level++) {
1611 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1612 // Remove this level. Never remove the package level
1613 continue;
1614 }
1615 if (level == pkgLevel) {
1616 newPkgLevel = level;
1617 }
1618 if (level == coreLevel) {
1619 newCoreLevel = level;
1620 }
1621 if (level == threadLevel) {
1622 newThreadLevel = level;
1623 }
1624 for (proc = 0; (int)proc < nApics; proc++) {
1625 new_retval[proc].first.labels[new_level] =
1626 retval[proc].first.labels[level];
1627 }
1628 new_level++;
1629 }
1630
1631 __kmp_free(retval);
1632 retval = new_retval;
1633 depth = new_depth;
1634 pkgLevel = newPkgLevel;
1635 coreLevel = newCoreLevel;
1636 threadLevel = newThreadLevel;
1637 }
1638
1639 if (__kmp_affinity_gran_levels < 0) {
1640 // Set the granularity level based on what levels are modeled
1641 // in the machine topology map.
1642 __kmp_affinity_gran_levels = 0;
1643 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1644 __kmp_affinity_gran_levels++;
1645 }
1646 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1647 __kmp_affinity_gran_levels++;
1648 }
1649 if (__kmp_affinity_gran > affinity_gran_package) {
1650 __kmp_affinity_gran_levels++;
1651 }
1652 }
1653
1654 if (__kmp_affinity_verbose) {
1655 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1656 threadLevel);
1657 }
1658
1659 __kmp_free(last);
1660 __kmp_free(maxCt);
1661 __kmp_free(counts);
1662 __kmp_free(totals);
1663 KMP_CPU_FREE(oldMask);
1664 *address2os = retval;
1665 return depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001666}
1667
Jonathan Peyton30419822017-05-12 18:01:32 +00001668#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
Jim Cownie5e8470a2013-09-27 10:38:44 +00001669
Jonathan Peyton30419822017-05-12 18:01:32 +00001670#define osIdIndex 0
1671#define threadIdIndex 1
1672#define coreIdIndex 2
1673#define pkgIdIndex 3
1674#define nodeIdIndex 4
Jim Cownie5e8470a2013-09-27 10:38:44 +00001675
1676typedef unsigned *ProcCpuInfo;
1677static unsigned maxIndex = pkgIdIndex;
1678
Jonathan Peyton30419822017-05-12 18:01:32 +00001679static int __kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) {
1680 const unsigned *aa = (const unsigned *)a;
1681 const unsigned *bb = (const unsigned *)b;
1682 if (aa[osIdIndex] < bb[osIdIndex])
1683 return -1;
1684 if (aa[osIdIndex] > bb[osIdIndex])
1685 return 1;
1686 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001687};
1688
Jonathan Peyton30419822017-05-12 18:01:32 +00001689static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1690 const void *b) {
1691 unsigned i;
1692 const unsigned *aa = *((const unsigned **)a);
1693 const unsigned *bb = *((const unsigned **)b);
1694 for (i = maxIndex;; i--) {
1695 if (aa[i] < bb[i])
1696 return -1;
1697 if (aa[i] > bb[i])
1698 return 1;
1699 if (i == osIdIndex)
1700 break;
1701 }
1702 return 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001703}
1704
Jim Cownie5e8470a2013-09-27 10:38:44 +00001705// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1706// affinity map.
Jonathan Peyton30419822017-05-12 18:01:32 +00001707static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
1708 int *line,
1709 kmp_i18n_id_t *const msg_id,
1710 FILE *f) {
1711 *address2os = NULL;
1712 *msg_id = kmp_i18n_null;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001713
Jonathan Peyton30419822017-05-12 18:01:32 +00001714 // Scan of the file, and count the number of "processor" (osId) fields,
1715 // and find the highest value of <n> for a node_<n> field.
1716 char buf[256];
1717 unsigned num_records = 0;
1718 while (!feof(f)) {
1719 buf[sizeof(buf) - 1] = 1;
1720 if (!fgets(buf, sizeof(buf), f)) {
1721 // Read errors presumably because of EOF
1722 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001723 }
1724
Jonathan Peyton30419822017-05-12 18:01:32 +00001725 char s1[] = "processor";
1726 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1727 num_records++;
1728 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001729 }
1730
Jonathan Peyton30419822017-05-12 18:01:32 +00001731 // FIXME - this will match "node_<n> <garbage>"
1732 unsigned level;
1733 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
1734 if (nodeIdIndex + level >= maxIndex) {
1735 maxIndex = nodeIdIndex + level;
1736 }
1737 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001738 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001739 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001740
Jonathan Peyton30419822017-05-12 18:01:32 +00001741 // Check for empty file / no valid processor records, or too many. The number
1742 // of records can't exceed the number of valid bits in the affinity mask.
1743 if (num_records == 0) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001744 *line = 0;
Jonathan Peyton30419822017-05-12 18:01:32 +00001745 *msg_id = kmp_i18n_str_NoProcRecords;
1746 return -1;
1747 }
1748 if (num_records > (unsigned)__kmp_xproc) {
1749 *line = 0;
1750 *msg_id = kmp_i18n_str_TooManyProcRecords;
1751 return -1;
1752 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001753
Jonathan Peyton30419822017-05-12 18:01:32 +00001754 // Set the file pointer back to the begginning, so that we can scan the file
1755 // again, this time performing a full parse of the data. Allocate a vector of
1756 // ProcCpuInfo object, where we will place the data. Adding an extra element
1757 // at the end allows us to remove a lot of extra checks for termination
1758 // conditions.
1759 if (fseek(f, 0, SEEK_SET) != 0) {
1760 *line = 0;
1761 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
1762 return -1;
1763 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001764
Jonathan Peyton30419822017-05-12 18:01:32 +00001765 // Allocate the array of records to store the proc info in. The dummy
1766 // element at the end makes the logic in filling them out easier to code.
1767 unsigned **threadInfo =
1768 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
1769 unsigned i;
1770 for (i = 0; i <= num_records; i++) {
1771 threadInfo[i] =
1772 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
1773 }
1774
1775#define CLEANUP_THREAD_INFO \
1776 for (i = 0; i <= num_records; i++) { \
1777 __kmp_free(threadInfo[i]); \
1778 } \
1779 __kmp_free(threadInfo);
1780
1781 // A value of UINT_MAX means that we didn't find the field
1782 unsigned __index;
1783
1784#define INIT_PROC_INFO(p) \
1785 for (__index = 0; __index <= maxIndex; __index++) { \
1786 (p)[__index] = UINT_MAX; \
1787 }
1788
1789 for (i = 0; i <= num_records; i++) {
1790 INIT_PROC_INFO(threadInfo[i]);
1791 }
1792
1793 unsigned num_avail = 0;
1794 *line = 0;
1795 while (!feof(f)) {
1796 // Create an inner scoping level, so that all the goto targets at the end of
1797 // the loop appear in an outer scoping level. This avoids warnings about
1798 // jumping past an initialization to a target in the same block.
1799 {
1800 buf[sizeof(buf) - 1] = 1;
1801 bool long_line = false;
1802 if (!fgets(buf, sizeof(buf), f)) {
1803 // Read errors presumably because of EOF
1804 // If there is valid data in threadInfo[num_avail], then fake
1805 // a blank line in ensure that the last address gets parsed.
1806 bool valid = false;
1807 for (i = 0; i <= maxIndex; i++) {
1808 if (threadInfo[num_avail][i] != UINT_MAX) {
1809 valid = true;
1810 }
1811 }
1812 if (!valid) {
1813 break;
1814 }
1815 buf[0] = 0;
1816 } else if (!buf[sizeof(buf) - 1]) {
1817 // The line is longer than the buffer. Set a flag and don't
1818 // emit an error if we were going to ignore the line, anyway.
1819 long_line = true;
1820
1821#define CHECK_LINE \
1822 if (long_line) { \
1823 CLEANUP_THREAD_INFO; \
1824 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
1825 return -1; \
1826 }
1827 }
1828 (*line)++;
1829
1830 char s1[] = "processor";
1831 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1832 CHECK_LINE;
1833 char *p = strchr(buf + sizeof(s1) - 1, ':');
1834 unsigned val;
1835 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1836 goto no_val;
1837 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
1838 goto dup_field;
1839 threadInfo[num_avail][osIdIndex] = val;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001840#if KMP_OS_LINUX && USE_SYSFS_INFO
Jonathan Peyton30419822017-05-12 18:01:32 +00001841 char path[256];
1842 KMP_SNPRINTF(
1843 path, sizeof(path),
1844 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
1845 threadInfo[num_avail][osIdIndex]);
1846 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
Jim Cownie181b4bb2013-12-23 17:28:57 +00001847
Jonathan Peyton30419822017-05-12 18:01:32 +00001848 KMP_SNPRINTF(path, sizeof(path),
1849 "/sys/devices/system/cpu/cpu%u/topology/core_id",
1850 threadInfo[num_avail][osIdIndex]);
1851 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
1852 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001853#else
Jonathan Peyton30419822017-05-12 18:01:32 +00001854 }
1855 char s2[] = "physical id";
1856 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
1857 CHECK_LINE;
1858 char *p = strchr(buf + sizeof(s2) - 1, ':');
1859 unsigned val;
1860 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1861 goto no_val;
1862 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
1863 goto dup_field;
1864 threadInfo[num_avail][pkgIdIndex] = val;
1865 continue;
1866 }
1867 char s3[] = "core id";
1868 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
1869 CHECK_LINE;
1870 char *p = strchr(buf + sizeof(s3) - 1, ':');
1871 unsigned val;
1872 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1873 goto no_val;
1874 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
1875 goto dup_field;
1876 threadInfo[num_avail][coreIdIndex] = val;
1877 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00001878#endif // KMP_OS_LINUX && USE_SYSFS_INFO
Jonathan Peyton30419822017-05-12 18:01:32 +00001879 }
1880 char s4[] = "thread id";
1881 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
1882 CHECK_LINE;
1883 char *p = strchr(buf + sizeof(s4) - 1, ':');
1884 unsigned val;
1885 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1886 goto no_val;
1887 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
1888 goto dup_field;
1889 threadInfo[num_avail][threadIdIndex] = val;
1890 continue;
1891 }
1892 unsigned level;
1893 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
1894 CHECK_LINE;
1895 char *p = strchr(buf + sizeof(s4) - 1, ':');
1896 unsigned val;
1897 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
1898 goto no_val;
1899 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
1900 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
1901 goto dup_field;
1902 threadInfo[num_avail][nodeIdIndex + level] = val;
1903 continue;
1904 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001905
Jonathan Peyton30419822017-05-12 18:01:32 +00001906 // We didn't recognize the leading token on the line. There are lots of
1907 // leading tokens that we don't recognize - if the line isn't empty, go on
1908 // to the next line.
1909 if ((*buf != 0) && (*buf != '\n')) {
1910 // If the line is longer than the buffer, read characters
1911 // until we find a newline.
1912 if (long_line) {
1913 int ch;
1914 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
1915 ;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001916 }
1917 continue;
Jonathan Peyton30419822017-05-12 18:01:32 +00001918 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001919
Jonathan Peyton30419822017-05-12 18:01:32 +00001920 // A newline has signalled the end of the processor record.
1921 // Check that there aren't too many procs specified.
1922 if ((int)num_avail == __kmp_xproc) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001923 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00001924 *msg_id = kmp_i18n_str_TooManyEntries;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001925 return -1;
Jonathan Peyton30419822017-05-12 18:01:32 +00001926 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001927
Jonathan Peyton30419822017-05-12 18:01:32 +00001928 // Check for missing fields. The osId field must be there, and we
1929 // currently require that the physical id field is specified, also.
1930 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001931 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00001932 *msg_id = kmp_i18n_str_MissingProcField;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001933 return -1;
Jonathan Peyton30419822017-05-12 18:01:32 +00001934 }
1935 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001936 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00001937 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
1938 return -1;
1939 }
1940
1941 // Skip this proc if it is not included in the machine model.
1942 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
1943 __kmp_affin_fullMask)) {
1944 INIT_PROC_INFO(threadInfo[num_avail]);
1945 continue;
1946 }
1947
1948 // We have a successful parse of this proc's info.
1949 // Increment the counter, and prepare for the next proc.
1950 num_avail++;
1951 KMP_ASSERT(num_avail <= num_records);
1952 INIT_PROC_INFO(threadInfo[num_avail]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00001953 }
Jonathan Peyton30419822017-05-12 18:01:32 +00001954 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001955
Jonathan Peyton30419822017-05-12 18:01:32 +00001956 no_val:
1957 CLEANUP_THREAD_INFO;
1958 *msg_id = kmp_i18n_str_MissingValCpuinfo;
1959 return -1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001960
Jonathan Peyton30419822017-05-12 18:01:32 +00001961 dup_field:
1962 CLEANUP_THREAD_INFO;
1963 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
1964 return -1;
1965 }
1966 *line = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001967
Jonathan Peyton30419822017-05-12 18:01:32 +00001968#if KMP_MIC && REDUCE_TEAM_SIZE
1969 unsigned teamSize = 0;
1970#endif // KMP_MIC && REDUCE_TEAM_SIZE
Jim Cownie5e8470a2013-09-27 10:38:44 +00001971
Jonathan Peyton30419822017-05-12 18:01:32 +00001972 // check for num_records == __kmp_xproc ???
Jim Cownie5e8470a2013-09-27 10:38:44 +00001973
Jonathan Peyton30419822017-05-12 18:01:32 +00001974 // If there's only one thread context to bind to, form an Address object with
1975 // depth 1 and return immediately (or, if affinity is off, set address2os to
1976 // NULL and return).
1977 //
1978 // If it is configured to omit the package level when there is only a single
1979 // package, the logic at the end of this routine won't work if there is only a
1980 // single thread - it would try to form an Address object with depth 0.
1981 KMP_ASSERT(num_avail > 0);
1982 KMP_ASSERT(num_avail <= num_records);
1983 if (num_avail == 1) {
1984 __kmp_ncores = 1;
1985 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001986 if (__kmp_affinity_verbose) {
Jonathan Peyton30419822017-05-12 18:01:32 +00001987 if (!KMP_AFFINITY_CAPABLE()) {
1988 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
1989 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1990 KMP_INFORM(Uniform, "KMP_AFFINITY");
1991 } else {
1992 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1993 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
1994 __kmp_affin_fullMask);
1995 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
1996 if (__kmp_affinity_respect_mask) {
1997 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1998 } else {
1999 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002000 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002001 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2002 KMP_INFORM(Uniform, "KMP_AFFINITY");
2003 }
2004 int index;
2005 kmp_str_buf_t buf;
2006 __kmp_str_buf_init(&buf);
2007 __kmp_str_buf_print(&buf, "1");
2008 for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2009 __kmp_str_buf_print(&buf, " x 1");
2010 }
2011 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2012 __kmp_str_buf_free(&buf);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00002013 }
2014
Jim Cownie5e8470a2013-09-27 10:38:44 +00002015 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton30419822017-05-12 18:01:32 +00002016 CLEANUP_THREAD_INFO;
2017 return 0;
2018 }
2019
2020 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2021 Address addr(1);
2022 addr.labels[0] = threadInfo[0][pkgIdIndex];
2023 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2024
2025 if (__kmp_affinity_gran_levels < 0) {
2026 __kmp_affinity_gran_levels = 0;
2027 }
2028
2029 if (__kmp_affinity_verbose) {
2030 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2031 }
2032
2033 CLEANUP_THREAD_INFO;
2034 return 1;
2035 }
2036
2037 // Sort the threadInfo table by physical Id.
2038 qsort(threadInfo, num_avail, sizeof(*threadInfo),
2039 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2040
2041 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2042 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2043 // the chips on a system. Although coreId's are usually assigned
2044 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2045 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2046 //
2047 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2048 // total # packages) are at this point - we want to determine that now. We
2049 // only have an upper bound on the first two figures.
2050 unsigned *counts =
2051 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2052 unsigned *maxCt =
2053 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2054 unsigned *totals =
2055 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2056 unsigned *lastId =
2057 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2058
2059 bool assign_thread_ids = false;
2060 unsigned threadIdCt;
2061 unsigned index;
2062
2063restart_radix_check:
2064 threadIdCt = 0;
2065
2066 // Initialize the counter arrays with data from threadInfo[0].
2067 if (assign_thread_ids) {
2068 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2069 threadInfo[0][threadIdIndex] = threadIdCt++;
2070 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2071 threadIdCt = threadInfo[0][threadIdIndex] + 1;
2072 }
2073 }
2074 for (index = 0; index <= maxIndex; index++) {
2075 counts[index] = 1;
2076 maxCt[index] = 1;
2077 totals[index] = 1;
2078 lastId[index] = threadInfo[0][index];
2079 ;
2080 }
2081
2082 // Run through the rest of the OS procs.
2083 for (i = 1; i < num_avail; i++) {
2084 // Find the most significant index whose id differs from the id for the
2085 // previous OS proc.
2086 for (index = maxIndex; index >= threadIdIndex; index--) {
2087 if (assign_thread_ids && (index == threadIdIndex)) {
2088 // Auto-assign the thread id field if it wasn't specified.
2089 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2090 threadInfo[i][threadIdIndex] = threadIdCt++;
2091 }
2092 // Aparrently the thread id field was specified for some entries and not
2093 // others. Start the thread id counter off at the next higher thread id.
2094 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2095 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2096 }
2097 }
2098 if (threadInfo[i][index] != lastId[index]) {
2099 // Run through all indices which are less significant, and reset the
2100 // counts to 1. At all levels up to and including index, we need to
2101 // increment the totals and record the last id.
2102 unsigned index2;
2103 for (index2 = threadIdIndex; index2 < index; index2++) {
2104 totals[index2]++;
2105 if (counts[index2] > maxCt[index2]) {
2106 maxCt[index2] = counts[index2];
2107 }
2108 counts[index2] = 1;
2109 lastId[index2] = threadInfo[i][index2];
2110 }
2111 counts[index]++;
2112 totals[index]++;
2113 lastId[index] = threadInfo[i][index];
2114
2115 if (assign_thread_ids && (index > threadIdIndex)) {
2116
2117#if KMP_MIC && REDUCE_TEAM_SIZE
2118 // The default team size is the total #threads in the machine
2119 // minus 1 thread for every core that has 3 or more threads.
2120 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2121#endif // KMP_MIC && REDUCE_TEAM_SIZE
2122
2123 // Restart the thread counter, as we are on a new core.
2124 threadIdCt = 0;
2125
2126 // Auto-assign the thread id field if it wasn't specified.
2127 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2128 threadInfo[i][threadIdIndex] = threadIdCt++;
2129 }
2130
2131 // Aparrently the thread id field was specified for some entries and
2132 // not others. Start the thread id counter off at the next higher
2133 // thread id.
2134 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2135 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2136 }
2137 }
2138 break;
2139 }
2140 }
2141 if (index < threadIdIndex) {
2142 // If thread ids were specified, it is an error if they are not unique.
2143 // Also, check that we waven't already restarted the loop (to be safe -
2144 // shouldn't need to).
2145 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002146 __kmp_free(lastId);
2147 __kmp_free(totals);
2148 __kmp_free(maxCt);
2149 __kmp_free(counts);
2150 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00002151 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2152 return -1;
2153 }
2154
2155 // If the thread ids were not specified and we see entries entries that
2156 // are duplicates, start the loop over and assign the thread ids manually.
2157 assign_thread_ids = true;
2158 goto restart_radix_check;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002159 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002160 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002161
Jonathan Peyton30419822017-05-12 18:01:32 +00002162#if KMP_MIC && REDUCE_TEAM_SIZE
2163 // The default team size is the total #threads in the machine
2164 // minus 1 thread for every core that has 3 or more threads.
2165 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2166#endif // KMP_MIC && REDUCE_TEAM_SIZE
2167
2168 for (index = threadIdIndex; index <= maxIndex; index++) {
2169 if (counts[index] > maxCt[index]) {
2170 maxCt[index] = counts[index];
Jim Cownie5e8470a2013-09-27 10:38:44 +00002171 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002172 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002173
Jonathan Peyton30419822017-05-12 18:01:32 +00002174 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2175 nCoresPerPkg = maxCt[coreIdIndex];
2176 nPackages = totals[pkgIdIndex];
2177
2178 // Check to see if the machine topology is uniform
2179 unsigned prod = totals[maxIndex];
2180 for (index = threadIdIndex; index < maxIndex; index++) {
2181 prod *= maxCt[index];
2182 }
2183 bool uniform = (prod == totals[threadIdIndex]);
2184
2185 // When affinity is off, this routine will still be called to set
2186 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2187 // Make sure all these vars are set correctly, and return now if affinity is
2188 // not enabled.
2189 __kmp_ncores = totals[coreIdIndex];
2190
2191 if (__kmp_affinity_verbose) {
2192 if (!KMP_AFFINITY_CAPABLE()) {
2193 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2194 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2195 if (uniform) {
2196 KMP_INFORM(Uniform, "KMP_AFFINITY");
2197 } else {
2198 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2199 }
2200 } else {
2201 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2202 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2203 __kmp_affin_fullMask);
2204 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2205 if (__kmp_affinity_respect_mask) {
2206 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2207 } else {
2208 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2209 }
2210 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2211 if (uniform) {
2212 KMP_INFORM(Uniform, "KMP_AFFINITY");
2213 } else {
2214 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2215 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002216 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002217 kmp_str_buf_t buf;
2218 __kmp_str_buf_init(&buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002219
Jonathan Peyton30419822017-05-12 18:01:32 +00002220 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2221 for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2222 __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002223 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002224 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2225 maxCt[threadIdIndex], __kmp_ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002226
Jonathan Peyton30419822017-05-12 18:01:32 +00002227 __kmp_str_buf_free(&buf);
2228 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002229
Jonathan Peyton30419822017-05-12 18:01:32 +00002230#if KMP_MIC && REDUCE_TEAM_SIZE
2231 // Set the default team size.
2232 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2233 __kmp_dflt_team_nth = teamSize;
2234 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2235 "__kmp_dflt_team_nth = %d\n",
2236 __kmp_dflt_team_nth));
2237 }
2238#endif // KMP_MIC && REDUCE_TEAM_SIZE
Jim Cownie5e8470a2013-09-27 10:38:44 +00002239
Jonathan Peyton30419822017-05-12 18:01:32 +00002240 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2241 KMP_DEBUG_ASSERT(num_avail == __kmp_avail_proc);
2242 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2243 for (i = 0; i < num_avail; ++i) { // fill the os indices
2244 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2245 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002246
Jonathan Peyton30419822017-05-12 18:01:32 +00002247 if (__kmp_affinity_type == affinity_none) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002248 __kmp_free(lastId);
2249 __kmp_free(totals);
2250 __kmp_free(maxCt);
2251 __kmp_free(counts);
2252 CLEANUP_THREAD_INFO;
Jonathan Peyton30419822017-05-12 18:01:32 +00002253 return 0;
2254 }
2255
2256 // Count the number of levels which have more nodes at that level than at the
2257 // parent's level (with there being an implicit root node of the top level).
2258 // This is equivalent to saying that there is at least one node at this level
2259 // which has a sibling. These levels are in the map, and the package level is
2260 // always in the map.
2261 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2262 int level = 0;
2263 for (index = threadIdIndex; index < maxIndex; index++) {
2264 KMP_ASSERT(totals[index] >= totals[index + 1]);
2265 inMap[index] = (totals[index] > totals[index + 1]);
2266 }
2267 inMap[maxIndex] = (totals[maxIndex] > 1);
2268 inMap[pkgIdIndex] = true;
2269
2270 int depth = 0;
2271 for (index = threadIdIndex; index <= maxIndex; index++) {
2272 if (inMap[index]) {
2273 depth++;
2274 }
2275 }
2276 KMP_ASSERT(depth > 0);
2277
2278 // Construct the data structure that is to be returned.
2279 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2280 int pkgLevel = -1;
2281 int coreLevel = -1;
2282 int threadLevel = -1;
2283
2284 for (i = 0; i < num_avail; ++i) {
2285 Address addr(depth);
2286 unsigned os = threadInfo[i][osIdIndex];
2287 int src_index;
2288 int dst_index = 0;
2289
2290 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2291 if (!inMap[src_index]) {
2292 continue;
2293 }
2294 addr.labels[dst_index] = threadInfo[i][src_index];
2295 if (src_index == pkgIdIndex) {
2296 pkgLevel = dst_index;
2297 } else if (src_index == coreIdIndex) {
2298 coreLevel = dst_index;
2299 } else if (src_index == threadIdIndex) {
2300 threadLevel = dst_index;
2301 }
2302 dst_index++;
2303 }
2304 (*address2os)[i] = AddrUnsPair(addr, os);
2305 }
2306
2307 if (__kmp_affinity_gran_levels < 0) {
2308 // Set the granularity level based on what levels are modeled
2309 // in the machine topology map.
2310 unsigned src_index;
2311 __kmp_affinity_gran_levels = 0;
2312 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2313 if (!inMap[src_index]) {
2314 continue;
2315 }
2316 switch (src_index) {
2317 case threadIdIndex:
2318 if (__kmp_affinity_gran > affinity_gran_thread) {
2319 __kmp_affinity_gran_levels++;
2320 }
2321
2322 break;
2323 case coreIdIndex:
2324 if (__kmp_affinity_gran > affinity_gran_core) {
2325 __kmp_affinity_gran_levels++;
2326 }
2327 break;
2328
2329 case pkgIdIndex:
2330 if (__kmp_affinity_gran > affinity_gran_package) {
2331 __kmp_affinity_gran_levels++;
2332 }
2333 break;
2334 }
2335 }
2336 }
2337
2338 if (__kmp_affinity_verbose) {
2339 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2340 coreLevel, threadLevel);
2341 }
2342
2343 __kmp_free(inMap);
2344 __kmp_free(lastId);
2345 __kmp_free(totals);
2346 __kmp_free(maxCt);
2347 __kmp_free(counts);
2348 CLEANUP_THREAD_INFO;
2349 return depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002350}
2351
Jim Cownie5e8470a2013-09-27 10:38:44 +00002352// Create and return a table of affinity masks, indexed by OS thread ID.
2353// This routine handles OR'ing together all the affinity masks of threads
2354// that are sufficiently close, if granularity > fine.
Jonathan Peyton30419822017-05-12 18:01:32 +00002355static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2356 unsigned *numUnique,
2357 AddrUnsPair *address2os,
2358 unsigned numAddrs) {
2359 // First form a table of affinity masks in order of OS thread id.
2360 unsigned depth;
2361 unsigned maxOsId;
2362 unsigned i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002363
Jonathan Peyton30419822017-05-12 18:01:32 +00002364 KMP_ASSERT(numAddrs > 0);
2365 depth = address2os[0].first.depth;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002366
Jonathan Peyton30419822017-05-12 18:01:32 +00002367 maxOsId = 0;
2368 for (i = 0; i < numAddrs; i++) {
2369 unsigned osId = address2os[i].second;
2370 if (osId > maxOsId) {
2371 maxOsId = osId;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002372 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002373 }
2374 kmp_affin_mask_t *osId2Mask;
2375 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00002376
Jonathan Peyton30419822017-05-12 18:01:32 +00002377 // Sort the address2os table according to physical order. Doing so will put
2378 // all threads on the same core/package/node in consecutive locations.
2379 qsort(address2os, numAddrs, sizeof(*address2os),
2380 __kmp_affinity_cmp_Address_labels);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002381
Jonathan Peyton30419822017-05-12 18:01:32 +00002382 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2383 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2384 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2385 }
2386 if (__kmp_affinity_gran_levels >= (int)depth) {
2387 if (__kmp_affinity_verbose ||
2388 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2389 KMP_WARNING(AffThreadsMayMigrate);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002390 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002391 }
2392
2393 // Run through the table, forming the masks for all threads on each core.
2394 // Threads on the same core will have identical "Address" objects, not
2395 // considering the last level, which must be the thread id. All threads on a
2396 // core will appear consecutively.
2397 unsigned unique = 0;
2398 unsigned j = 0; // index of 1st thread on core
2399 unsigned leader = 0;
2400 Address *leaderAddr = &(address2os[0].first);
2401 kmp_affin_mask_t *sum;
2402 KMP_CPU_ALLOC_ON_STACK(sum);
2403 KMP_CPU_ZERO(sum);
2404 KMP_CPU_SET(address2os[0].second, sum);
2405 for (i = 1; i < numAddrs; i++) {
2406 // If this thread is sufficiently close to the leader (within the
2407 // granularity setting), then set the bit for this os thread in the
2408 // affinity mask for this group, and go on to the next thread.
2409 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2410 KMP_CPU_SET(address2os[i].second, sum);
2411 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002412 }
2413
Jonathan Peyton30419822017-05-12 18:01:32 +00002414 // For every thread in this group, copy the mask to the thread's entry in
2415 // the osId2Mask table. Mark the first address as a leader.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002416 for (; j < i; j++) {
Jonathan Peyton30419822017-05-12 18:01:32 +00002417 unsigned osId = address2os[j].second;
2418 KMP_DEBUG_ASSERT(osId <= maxOsId);
2419 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2420 KMP_CPU_COPY(mask, sum);
2421 address2os[j].first.leader = (j == leader);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002422 }
2423 unique++;
2424
Jonathan Peyton30419822017-05-12 18:01:32 +00002425 // Start a new mask.
2426 leader = i;
2427 leaderAddr = &(address2os[i].first);
2428 KMP_CPU_ZERO(sum);
2429 KMP_CPU_SET(address2os[i].second, sum);
2430 }
2431
2432 // For every thread in last group, copy the mask to the thread's
2433 // entry in the osId2Mask table.
2434 for (; j < i; j++) {
2435 unsigned osId = address2os[j].second;
2436 KMP_DEBUG_ASSERT(osId <= maxOsId);
2437 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2438 KMP_CPU_COPY(mask, sum);
2439 address2os[j].first.leader = (j == leader);
2440 }
2441 unique++;
2442 KMP_CPU_FREE_FROM_STACK(sum);
2443
2444 *maxIndex = maxOsId;
2445 *numUnique = unique;
2446 return osId2Mask;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002447}
2448
Jim Cownie5e8470a2013-09-27 10:38:44 +00002449// Stuff for the affinity proclist parsers. It's easier to declare these vars
2450// as file-static than to try and pass them through the calling sequence of
2451// the recursive-descent OMP_PLACES parser.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002452static kmp_affin_mask_t *newMasks;
2453static int numNewMasks;
2454static int nextNewMask;
2455
Jonathan Peyton30419822017-05-12 18:01:32 +00002456#define ADD_MASK(_mask) \
2457 { \
2458 if (nextNewMask >= numNewMasks) { \
2459 int i; \
2460 numNewMasks *= 2; \
2461 kmp_affin_mask_t *temp; \
2462 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2463 for (i = 0; i < numNewMasks / 2; i++) { \
2464 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2465 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2466 KMP_CPU_COPY(dest, src); \
2467 } \
2468 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2469 newMasks = temp; \
2470 } \
2471 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2472 nextNewMask++; \
2473 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002474
Jonathan Peyton30419822017-05-12 18:01:32 +00002475#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2476 { \
2477 if (((_osId) > _maxOsId) || \
2478 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2479 if (__kmp_affinity_verbose || \
2480 (__kmp_affinity_warnings && \
2481 (__kmp_affinity_type != affinity_none))) { \
2482 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2483 } \
2484 } else { \
2485 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2486 } \
2487 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002488
Jim Cownie5e8470a2013-09-27 10:38:44 +00002489// Re-parse the proclist (for the explicit affinity type), and form the list
2490// of affinity newMasks indexed by gtid.
Jonathan Peyton30419822017-05-12 18:01:32 +00002491static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2492 unsigned int *out_numMasks,
2493 const char *proclist,
2494 kmp_affin_mask_t *osId2Mask,
2495 int maxOsId) {
2496 int i;
2497 const char *scan = proclist;
2498 const char *next = proclist;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002499
Jonathan Peyton30419822017-05-12 18:01:32 +00002500 // We use malloc() for the temporary mask vector, so that we can use
2501 // realloc() to extend it.
2502 numNewMasks = 2;
2503 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2504 nextNewMask = 0;
2505 kmp_affin_mask_t *sumMask;
2506 KMP_CPU_ALLOC(sumMask);
2507 int setSize = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002508
Jonathan Peyton30419822017-05-12 18:01:32 +00002509 for (;;) {
2510 int start, end, stride;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002511
Jonathan Peyton30419822017-05-12 18:01:32 +00002512 SKIP_WS(scan);
2513 next = scan;
2514 if (*next == '\0') {
2515 break;
2516 }
2517
2518 if (*next == '{') {
2519 int num;
2520 setSize = 0;
2521 next++; // skip '{'
2522 SKIP_WS(next);
2523 scan = next;
2524
2525 // Read the first integer in the set.
2526 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2527 SKIP_DIGITS(next);
2528 num = __kmp_str_to_int(scan, *next);
2529 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2530
2531 // Copy the mask for that osId to the sum (union) mask.
2532 if ((num > maxOsId) ||
2533 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2534 if (__kmp_affinity_verbose ||
2535 (__kmp_affinity_warnings &&
2536 (__kmp_affinity_type != affinity_none))) {
2537 KMP_WARNING(AffIgnoreInvalidProcID, num);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002538 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002539 KMP_CPU_ZERO(sumMask);
2540 } else {
2541 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2542 setSize = 1;
2543 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002544
Jonathan Peyton30419822017-05-12 18:01:32 +00002545 for (;;) {
2546 // Check for end of set.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002547 SKIP_WS(next);
Jonathan Peyton30419822017-05-12 18:01:32 +00002548 if (*next == '}') {
2549 next++; // skip '}'
2550 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002551 }
2552
Jim Cownie5e8470a2013-09-27 10:38:44 +00002553 // Skip optional comma.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002554 if (*next == ',') {
Jonathan Peyton30419822017-05-12 18:01:32 +00002555 next++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002556 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002557 SKIP_WS(next);
2558
2559 // Read the next integer in the set.
Jim Cownie5e8470a2013-09-27 10:38:44 +00002560 scan = next;
Jonathan Peyton30419822017-05-12 18:01:32 +00002561 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2562
2563 SKIP_DIGITS(next);
2564 num = __kmp_str_to_int(scan, *next);
2565 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2566
2567 // Add the mask for that osId to the sum mask.
2568 if ((num > maxOsId) ||
2569 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2570 if (__kmp_affinity_verbose ||
2571 (__kmp_affinity_warnings &&
2572 (__kmp_affinity_type != affinity_none))) {
2573 KMP_WARNING(AffIgnoreInvalidProcID, num);
2574 }
2575 } else {
2576 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2577 setSize++;
2578 }
2579 }
2580 if (setSize > 0) {
2581 ADD_MASK(sumMask);
2582 }
2583
2584 SKIP_WS(next);
2585 if (*next == ',') {
2586 next++;
2587 }
2588 scan = next;
2589 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002590 }
2591
Jonathan Peyton30419822017-05-12 18:01:32 +00002592 // Read the first integer.
2593 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2594 SKIP_DIGITS(next);
2595 start = __kmp_str_to_int(scan, *next);
2596 KMP_ASSERT2(start >= 0, "bad explicit proc list");
2597 SKIP_WS(next);
2598
2599 // If this isn't a range, then add a mask to the list and go on.
2600 if (*next != '-') {
2601 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2602
2603 // Skip optional comma.
2604 if (*next == ',') {
2605 next++;
2606 }
2607 scan = next;
2608 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002609 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002610
2611 // This is a range. Skip over the '-' and read in the 2nd int.
2612 next++; // skip '-'
2613 SKIP_WS(next);
2614 scan = next;
2615 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2616 SKIP_DIGITS(next);
2617 end = __kmp_str_to_int(scan, *next);
2618 KMP_ASSERT2(end >= 0, "bad explicit proc list");
2619
2620 // Check for a stride parameter
2621 stride = 1;
2622 SKIP_WS(next);
2623 if (*next == ':') {
2624 // A stride is specified. Skip over the ':" and read the 3rd int.
2625 int sign = +1;
2626 next++; // skip ':'
2627 SKIP_WS(next);
2628 scan = next;
2629 if (*next == '-') {
2630 sign = -1;
2631 next++;
2632 SKIP_WS(next);
2633 scan = next;
2634 }
2635 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2636 SKIP_DIGITS(next);
2637 stride = __kmp_str_to_int(scan, *next);
2638 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2639 stride *= sign;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002640 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002641
2642 // Do some range checks.
2643 KMP_ASSERT2(stride != 0, "bad explicit proc list");
2644 if (stride > 0) {
2645 KMP_ASSERT2(start <= end, "bad explicit proc list");
2646 } else {
2647 KMP_ASSERT2(start >= end, "bad explicit proc list");
2648 }
2649 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2650
2651 // Add the mask for each OS proc # to the list.
2652 if (stride > 0) {
2653 do {
2654 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2655 start += stride;
2656 } while (start <= end);
2657 } else {
2658 do {
2659 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2660 start += stride;
2661 } while (start >= end);
2662 }
2663
2664 // Skip optional comma.
2665 SKIP_WS(next);
2666 if (*next == ',') {
2667 next++;
2668 }
2669 scan = next;
2670 }
2671
2672 *out_numMasks = nextNewMask;
2673 if (nextNewMask == 0) {
2674 *out_masks = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002675 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jonathan Peyton30419822017-05-12 18:01:32 +00002676 return;
2677 }
2678 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
2679 for (i = 0; i < nextNewMask; i++) {
2680 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
2681 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
2682 KMP_CPU_COPY(dest, src);
2683 }
2684 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2685 KMP_CPU_FREE(sumMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002686}
2687
Jonathan Peyton30419822017-05-12 18:01:32 +00002688#if OMP_40_ENABLED
Jim Cownie5e8470a2013-09-27 10:38:44 +00002689
2690/*-----------------------------------------------------------------------------
Jim Cownie5e8470a2013-09-27 10:38:44 +00002691Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2692places. Again, Here is the grammar:
2693
2694place_list := place
2695place_list := place , place_list
2696place := num
2697place := place : num
2698place := place : num : signed
2699place := { subplacelist }
2700place := ! place // (lowest priority)
2701subplace_list := subplace
2702subplace_list := subplace , subplace_list
2703subplace := num
2704subplace := num : num
2705subplace := num : num : signed
2706signed := num
2707signed := + signed
2708signed := - signed
Jim Cownie5e8470a2013-09-27 10:38:44 +00002709-----------------------------------------------------------------------------*/
2710
Jonathan Peyton30419822017-05-12 18:01:32 +00002711static void __kmp_process_subplace_list(const char **scan,
2712 kmp_affin_mask_t *osId2Mask,
2713 int maxOsId, kmp_affin_mask_t *tempMask,
2714 int *setSize) {
2715 const char *next;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002716
Jonathan Peyton30419822017-05-12 18:01:32 +00002717 for (;;) {
2718 int start, count, stride, i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002719
Jonathan Peyton30419822017-05-12 18:01:32 +00002720 // Read in the starting proc id
Jim Cownie5e8470a2013-09-27 10:38:44 +00002721 SKIP_WS(*scan);
Jonathan Peyton30419822017-05-12 18:01:32 +00002722 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2723 next = *scan;
2724 SKIP_DIGITS(next);
2725 start = __kmp_str_to_int(*scan, *next);
2726 KMP_ASSERT(start >= 0);
2727 *scan = next;
2728
2729 // valid follow sets are ',' ':' and '}'
2730 SKIP_WS(*scan);
2731 if (**scan == '}' || **scan == ',') {
2732 if ((start > maxOsId) ||
2733 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2734 if (__kmp_affinity_verbose ||
2735 (__kmp_affinity_warnings &&
2736 (__kmp_affinity_type != affinity_none))) {
2737 KMP_WARNING(AffIgnoreInvalidProcID, start);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002738 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002739 } else {
2740 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2741 (*setSize)++;
2742 }
2743 if (**scan == '}') {
2744 break;
2745 }
2746 (*scan)++; // skip ','
2747 continue;
2748 }
2749 KMP_ASSERT2(**scan == ':', "bad explicit places list");
2750 (*scan)++; // skip ':'
2751
2752 // Read count parameter
2753 SKIP_WS(*scan);
2754 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2755 next = *scan;
2756 SKIP_DIGITS(next);
2757 count = __kmp_str_to_int(*scan, *next);
2758 KMP_ASSERT(count >= 0);
2759 *scan = next;
2760
2761 // valid follow sets are ',' ':' and '}'
2762 SKIP_WS(*scan);
2763 if (**scan == '}' || **scan == ',') {
2764 for (i = 0; i < count; i++) {
2765 if ((start > maxOsId) ||
2766 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2767 if (__kmp_affinity_verbose ||
2768 (__kmp_affinity_warnings &&
2769 (__kmp_affinity_type != affinity_none))) {
2770 KMP_WARNING(AffIgnoreInvalidProcID, start);
2771 }
2772 break; // don't proliferate warnings for large count
2773 } else {
2774 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2775 start++;
2776 (*setSize)++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002777 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002778 }
2779 if (**scan == '}') {
2780 break;
2781 }
2782 (*scan)++; // skip ','
2783 continue;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002784 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002785 KMP_ASSERT2(**scan == ':', "bad explicit places list");
2786 (*scan)++; // skip ':'
Jim Cownie5e8470a2013-09-27 10:38:44 +00002787
Jonathan Peyton30419822017-05-12 18:01:32 +00002788 // Read stride parameter
2789 int sign = +1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002790 for (;;) {
Jonathan Peyton30419822017-05-12 18:01:32 +00002791 SKIP_WS(*scan);
2792 if (**scan == '+') {
2793 (*scan)++; // skip '+'
2794 continue;
2795 }
2796 if (**scan == '-') {
2797 sign *= -1;
2798 (*scan)++; // skip '-'
2799 continue;
2800 }
2801 break;
2802 }
2803 SKIP_WS(*scan);
2804 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2805 next = *scan;
2806 SKIP_DIGITS(next);
2807 stride = __kmp_str_to_int(*scan, *next);
2808 KMP_ASSERT(stride >= 0);
2809 *scan = next;
2810 stride *= sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002811
Jonathan Peyton30419822017-05-12 18:01:32 +00002812 // valid follow sets are ',' and '}'
2813 SKIP_WS(*scan);
2814 if (**scan == '}' || **scan == ',') {
2815 for (i = 0; i < count; i++) {
2816 if ((start > maxOsId) ||
2817 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
2818 if (__kmp_affinity_verbose ||
2819 (__kmp_affinity_warnings &&
2820 (__kmp_affinity_type != affinity_none))) {
2821 KMP_WARNING(AffIgnoreInvalidProcID, start);
2822 }
2823 break; // don't proliferate warnings for large count
2824 } else {
2825 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
2826 start += stride;
2827 (*setSize)++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002828 }
Jonathan Peyton30419822017-05-12 18:01:32 +00002829 }
2830 if (**scan == '}') {
2831 break;
2832 }
2833 (*scan)++; // skip ','
2834 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002835 }
2836
Jonathan Peyton30419822017-05-12 18:01:32 +00002837 KMP_ASSERT2(0, "bad explicit places list");
2838 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00002839}
2840
Jonathan Peyton30419822017-05-12 18:01:32 +00002841static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
2842 int maxOsId, kmp_affin_mask_t *tempMask,
2843 int *setSize) {
2844 const char *next;
2845
2846 // valid follow sets are '{' '!' and num
2847 SKIP_WS(*scan);
2848 if (**scan == '{') {
2849 (*scan)++; // skip '{'
2850 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
2851 KMP_ASSERT2(**scan == '}', "bad explicit places list");
2852 (*scan)++; // skip '}'
2853 } else if (**scan == '!') {
2854 (*scan)++; // skip '!'
2855 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
2856 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
2857 } else if ((**scan >= '0') && (**scan <= '9')) {
2858 next = *scan;
2859 SKIP_DIGITS(next);
2860 int num = __kmp_str_to_int(*scan, *next);
2861 KMP_ASSERT(num >= 0);
2862 if ((num > maxOsId) ||
2863 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2864 if (__kmp_affinity_verbose ||
2865 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2866 KMP_WARNING(AffIgnoreInvalidProcID, num);
2867 }
2868 } else {
2869 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
2870 (*setSize)++;
2871 }
2872 *scan = next; // skip num
2873 } else {
2874 KMP_ASSERT2(0, "bad explicit places list");
2875 }
2876}
2877
2878// static void
2879void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
2880 unsigned int *out_numMasks,
2881 const char *placelist,
2882 kmp_affin_mask_t *osId2Mask,
2883 int maxOsId) {
2884 int i, j, count, stride, sign;
2885 const char *scan = placelist;
2886 const char *next = placelist;
2887
2888 numNewMasks = 2;
2889 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2890 nextNewMask = 0;
2891
2892 // tempMask is modified based on the previous or initial
2893 // place to form the current place
2894 // previousMask contains the previous place
2895 kmp_affin_mask_t *tempMask;
2896 kmp_affin_mask_t *previousMask;
2897 KMP_CPU_ALLOC(tempMask);
2898 KMP_CPU_ZERO(tempMask);
2899 KMP_CPU_ALLOC(previousMask);
2900 KMP_CPU_ZERO(previousMask);
2901 int setSize = 0;
2902
2903 for (;;) {
2904 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
2905
2906 // valid follow sets are ',' ':' and EOL
2907 SKIP_WS(scan);
2908 if (*scan == '\0' || *scan == ',') {
2909 if (setSize > 0) {
2910 ADD_MASK(tempMask);
2911 }
2912 KMP_CPU_ZERO(tempMask);
2913 setSize = 0;
2914 if (*scan == '\0') {
2915 break;
2916 }
2917 scan++; // skip ','
2918 continue;
2919 }
2920
2921 KMP_ASSERT2(*scan == ':', "bad explicit places list");
2922 scan++; // skip ':'
2923
2924 // Read count parameter
2925 SKIP_WS(scan);
2926 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
2927 next = scan;
2928 SKIP_DIGITS(next);
2929 count = __kmp_str_to_int(scan, *next);
2930 KMP_ASSERT(count >= 0);
2931 scan = next;
2932
2933 // valid follow sets are ',' ':' and EOL
2934 SKIP_WS(scan);
2935 if (*scan == '\0' || *scan == ',') {
2936 stride = +1;
2937 } else {
2938 KMP_ASSERT2(*scan == ':', "bad explicit places list");
2939 scan++; // skip ':'
2940
2941 // Read stride parameter
2942 sign = +1;
2943 for (;;) {
2944 SKIP_WS(scan);
2945 if (*scan == '+') {
2946 scan++; // skip '+'
2947 continue;
2948 }
2949 if (*scan == '-') {
2950 sign *= -1;
2951 scan++; // skip '-'
2952 continue;
2953 }
2954 break;
2955 }
2956 SKIP_WS(scan);
2957 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
2958 next = scan;
2959 SKIP_DIGITS(next);
2960 stride = __kmp_str_to_int(scan, *next);
2961 KMP_DEBUG_ASSERT(stride >= 0);
2962 scan = next;
2963 stride *= sign;
2964 }
2965
2966 // Add places determined by initial_place : count : stride
2967 for (i = 0; i < count; i++) {
2968 if (setSize == 0) {
2969 break;
2970 }
2971 // Add the current place, then build the next place (tempMask) from that
2972 KMP_CPU_COPY(previousMask, tempMask);
2973 ADD_MASK(previousMask);
2974 KMP_CPU_ZERO(tempMask);
2975 setSize = 0;
2976 KMP_CPU_SET_ITERATE(j, previousMask) {
2977 if (!KMP_CPU_ISSET(j, previousMask)) {
2978 continue;
2979 }
2980 if ((j + stride > maxOsId) || (j + stride < 0) ||
2981 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
2982 (!KMP_CPU_ISSET(j + stride,
2983 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
2984 if ((__kmp_affinity_verbose ||
2985 (__kmp_affinity_warnings &&
2986 (__kmp_affinity_type != affinity_none))) &&
2987 i < count - 1) {
2988 KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
2989 }
2990 continue;
2991 }
2992 KMP_CPU_SET(j + stride, tempMask);
2993 setSize++;
2994 }
2995 }
2996 KMP_CPU_ZERO(tempMask);
2997 setSize = 0;
2998
2999 // valid follow sets are ',' and EOL
3000 SKIP_WS(scan);
3001 if (*scan == '\0') {
3002 break;
3003 }
3004 if (*scan == ',') {
3005 scan++; // skip ','
3006 continue;
3007 }
3008
3009 KMP_ASSERT2(0, "bad explicit places list");
3010 }
3011
3012 *out_numMasks = nextNewMask;
3013 if (nextNewMask == 0) {
3014 *out_masks = NULL;
3015 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3016 return;
3017 }
3018 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3019 KMP_CPU_FREE(tempMask);
3020 KMP_CPU_FREE(previousMask);
3021 for (i = 0; i < nextNewMask; i++) {
3022 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3023 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3024 KMP_CPU_COPY(dest, src);
3025 }
3026 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3027}
3028
3029#endif /* OMP_40_ENABLED */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003030
3031#undef ADD_MASK
3032#undef ADD_MASK_OSID
3033
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003034#if KMP_USE_HWLOC
Jonathan Peyton30419822017-05-12 18:01:32 +00003035static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
3036 hwloc_obj_type_t type,
3037 hwloc_obj_t* f) {
3038 if (!hwloc_compare_types(o->type, type)) {
3039 if (*f == NULL)
3040 *f = o; // output first descendant found
3041 return 1;
3042 }
3043 int sum = 0;
3044 for (unsigned i = 0; i < o->arity; i++)
3045 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
3046 return sum; // will be 0 if no one found (as PU arity is 0)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003047}
3048
Jonathan Peyton30419822017-05-12 18:01:32 +00003049static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
3050 hwloc_obj_t o, unsigned depth,
3051 hwloc_obj_t* f) {
3052 if (o->depth == depth) {
3053 if (*f == NULL)
3054 *f = o; // output first descendant found
3055 return 1;
3056 }
3057 int sum = 0;
3058 for (unsigned i = 0; i < o->arity; i++)
3059 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
3060 return sum; // will be 0 if no one found (as PU arity is 0)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003061}
3062
Jonathan Peyton30419822017-05-12 18:01:32 +00003063static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3064 // skip PUs descendants of the object o
3065 int skipped = 0;
3066 hwloc_obj_t hT = NULL;
3067 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3068 for (int i = 0; i < N; ++i) {
3069 KMP_DEBUG_ASSERT(hT);
3070 unsigned idx = hT->os_index;
3071 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3072 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3073 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3074 ++skipped;
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003075 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003076 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3077 }
3078 return skipped; // count number of skipped units
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003079}
3080
Jonathan Peyton30419822017-05-12 18:01:32 +00003081static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3082 // check if obj has PUs present in fullMask
3083 hwloc_obj_t hT = NULL;
3084 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3085 for (int i = 0; i < N; ++i) {
3086 KMP_DEBUG_ASSERT(hT);
3087 unsigned idx = hT->os_index;
3088 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3089 return 1; // found PU
3090 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3091 }
3092 return 0; // no PUs found
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003093}
3094#endif // KMP_USE_HWLOC
3095
Jonathan Peyton30419822017-05-12 18:01:32 +00003096static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3097 AddrUnsPair *newAddr;
3098 if (__kmp_hws_requested == 0)
3099 goto _exit; // no topology limiting actions requested, exit
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003100#if KMP_USE_HWLOC
Jonathan Peyton30419822017-05-12 18:01:32 +00003101 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3102 // Number of subobjects calculated dynamically, this works fine for
3103 // any non-uniform topology.
3104 // L2 cache objects are determined by depth, other objects - by type.
3105 hwloc_topology_t tp = __kmp_hwloc_topology;
3106 int nS=0, nN=0, nL=0, nC=0, nT=0; // logical index including skipped
3107 int nCr=0, nTr=0; // number of requested units
3108 int nPkg=0, nCo=0, n_new=0, n_old = 0, nCpP=0, nTpC=0; // counters
3109 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3110 int L2depth, idx;
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003111
Jonathan Peyton30419822017-05-12 18:01:32 +00003112 // check support of extensions ----------------------------------
3113 int numa_support = 0, tile_support = 0;
3114 if (__kmp_pu_os_idx)
3115 hT = hwloc_get_pu_obj_by_os_index(tp,
3116 __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3117 else
3118 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3119 if (hT == NULL) { // something's gone wrong
3120 KMP_WARNING(AffHWSubsetUnsupported);
3121 goto _exit;
3122 }
3123 // check NUMA node
3124 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3125 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3126 if (hN != NULL && hN->depth > hS->depth) {
3127 numa_support = 1; // 1 in case socket includes node(s)
3128 } else if (__kmp_hws_node.num > 0) {
3129 // don't support sockets inside NUMA node (no such HW found for testing)
3130 KMP_WARNING(AffHWSubsetUnsupported);
3131 goto _exit;
3132 }
3133 // check L2 cahce, get object by depth because of multiple caches
3134 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3135 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3136 if (hL != NULL && __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3137 &hC) > 1) {
3138 tile_support = 1; // no sense to count L2 if it includes single core
3139 } else if (__kmp_hws_tile.num > 0) {
3140 if (__kmp_hws_core.num == 0) {
3141 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3142 __kmp_hws_tile.num = 0;
3143 } else {
3144 // L2 and core are both requested, but represent same object
3145 KMP_WARNING(AffHWSubsetInvalid);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003146 goto _exit;
3147 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003148 }
3149 // end of check of extensions -----------------------------------
3150
3151 // fill in unset items, validate settings -----------------------
3152 if (__kmp_hws_socket.num == 0)
3153 __kmp_hws_socket.num = nPackages; // use all available sockets
3154 if (__kmp_hws_socket.offset >= nPackages) {
3155 KMP_WARNING(AffHWSubsetManySockets);
3156 goto _exit;
3157 }
3158 if (numa_support) {
3159 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3160 &hN); // num nodes in socket
3161 if (__kmp_hws_node.num == 0)
3162 __kmp_hws_node.num = NN; // use all available nodes
3163 if (__kmp_hws_node.offset >= NN) {
3164 KMP_WARNING(AffHWSubsetManyNodes);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003165 goto _exit;
3166 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003167 if (tile_support) {
3168 // get num tiles in node
3169 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3170 if (__kmp_hws_tile.num == 0) {
3171 __kmp_hws_tile.num = NL + 1;
3172 } // use all available tiles, some node may have more tiles, thus +1
3173 if (__kmp_hws_tile.offset >= NL) {
3174 KMP_WARNING(AffHWSubsetManyTiles);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003175 goto _exit;
3176 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003177 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3178 &hC); // num cores in tile
3179 if (__kmp_hws_core.num == 0)
3180 __kmp_hws_core.num = NC; // use all available cores
3181 if (__kmp_hws_core.offset >= NC) {
3182 KMP_WARNING(AffHWSubsetManyCores);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003183 goto _exit;
Jonathan Peyton30419822017-05-12 18:01:32 +00003184 }
3185 } else { // tile_support
3186 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3187 &hC); // num cores in node
3188 if (__kmp_hws_core.num == 0)
3189 __kmp_hws_core.num = NC; // use all available cores
3190 if (__kmp_hws_core.offset >= NC) {
3191 KMP_WARNING(AffHWSubsetManyCores);
3192 goto _exit;
3193 }
3194 } // tile_support
3195 } else { // numa_support
3196 if (tile_support) {
3197 // get num tiles in socket
3198 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3199 if (__kmp_hws_tile.num == 0)
3200 __kmp_hws_tile.num = NL; // use all available tiles
3201 if (__kmp_hws_tile.offset >= NL) {
3202 KMP_WARNING(AffHWSubsetManyTiles);
3203 goto _exit;
3204 }
3205 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3206 &hC); // num cores in tile
3207 if (__kmp_hws_core.num == 0)
3208 __kmp_hws_core.num = NC; // use all available cores
3209 if (__kmp_hws_core.offset >= NC) {
3210 KMP_WARNING(AffHWSubsetManyCores);
3211 goto _exit;
3212 }
3213 } else { // tile_support
3214 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3215 &hC); // num cores in socket
3216 if (__kmp_hws_core.num == 0)
3217 __kmp_hws_core.num = NC; // use all available cores
3218 if (__kmp_hws_core.offset >= NC) {
3219 KMP_WARNING(AffHWSubsetManyCores);
3220 goto _exit;
3221 }
3222 } // tile_support
3223 }
3224 if (__kmp_hws_proc.num == 0)
3225 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3226 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3227 KMP_WARNING(AffHWSubsetManyProcs);
3228 goto _exit;
3229 }
3230 // end of validation --------------------------------------------
3231
3232 if (pAddr) // pAddr is NULL in case of affinity_none
3233 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3234 __kmp_avail_proc); // max size
3235 // main loop to form HW subset ----------------------------------
3236 hS = NULL;
3237 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3238 for (int s = 0; s < NP; ++s) {
3239 // Check Socket -----------------------------------------------
3240 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3241 if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3242 continue; // skip socket if all PUs are out of fullMask
3243 ++nS; // only count objects those have PUs in affinity mask
3244 if (nS <= __kmp_hws_socket.offset ||
3245 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3246 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3247 continue; // move to next socket
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003248 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003249 nCr = 0; // count number of cores per socket
3250 // socket requested, go down the topology tree
3251 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003252 if (numa_support) {
Jonathan Peyton30419822017-05-12 18:01:32 +00003253 nN = 0;
3254 hN = NULL;
3255 // num nodes in current socket
3256 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3257 &hN);
3258 for (int n = 0; n < NN; ++n) {
3259 // Check NUMA Node ----------------------------------------
3260 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003261 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
Jonathan Peyton30419822017-05-12 18:01:32 +00003262 continue; // skip node if all PUs are out of fullMask
3263 }
3264 ++nN;
3265 if (nN <= __kmp_hws_node.offset ||
3266 nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3267 // skip node as not requested
3268 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3269 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3270 continue; // move to next node
3271 }
3272 // node requested, go down the topology tree
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003273 if (tile_support) {
3274 nL = 0;
3275 hL = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003276 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003277 for (int l = 0; l < NL; ++l) {
3278 // Check L2 (tile) ------------------------------------
3279 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3280 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3281 continue; // skip tile if all PUs are out of fullMask
3282 }
3283 ++nL;
3284 if (nL <= __kmp_hws_tile.offset ||
3285 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3286 // skip tile as not requested
3287 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3288 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3289 continue; // move to next tile
3290 }
3291 // tile requested, go down the topology tree
3292 nC = 0;
3293 hC = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003294 // num cores in current tile
3295 int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3296 HWLOC_OBJ_CORE, &hC);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003297 for (int c = 0; c < NC; ++c) {
3298 // Check Core ---------------------------------------
3299 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3300 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3301 continue; // skip core if all PUs are out of fullMask
3302 }
3303 ++nC;
3304 if (nC <= __kmp_hws_core.offset ||
3305 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3306 // skip node as not requested
3307 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3308 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3309 continue; // move to next node
3310 }
3311 // core requested, go down to PUs
3312 nT = 0;
3313 nTr = 0;
3314 hT = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003315 // num procs in current core
3316 int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3317 HWLOC_OBJ_PU, &hT);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003318 for (int t = 0; t < NT; ++t) {
3319 // Check PU ---------------------------------------
3320 idx = hT->os_index;
3321 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3322 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3323 continue; // skip PU if not in fullMask
3324 }
3325 ++nT;
3326 if (nT <= __kmp_hws_proc.offset ||
3327 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3328 // skip PU
3329 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3330 ++n_old;
3331 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3332 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3333 continue; // move to next node
3334 }
3335 ++nTr;
3336 if (pAddr) // collect requested thread's data
3337 newAddr[n_new] = (*pAddr)[n_old];
3338 ++n_new;
3339 ++n_old;
3340 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3341 } // threads loop
3342 if (nTr > 0) {
3343 ++nCr; // num cores per socket
3344 ++nCo; // total num cores
3345 if (nTr > nTpC)
3346 nTpC = nTr; // calc max threads per core
3347 }
3348 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3349 } // cores loop
3350 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3351 } // tiles loop
3352 } else { // tile_support
3353 // no tiles, check cores
3354 nC = 0;
3355 hC = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003356 // num cores in current node
3357 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3358 &hC);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003359 for (int c = 0; c < NC; ++c) {
Jonathan Peyton30419822017-05-12 18:01:32 +00003360 // Check Core ---------------------------------------
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003361 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3362 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3363 continue; // skip core if all PUs are out of fullMask
3364 }
3365 ++nC;
3366 if (nC <= __kmp_hws_core.offset ||
3367 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3368 // skip node as not requested
3369 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3370 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3371 continue; // move to next node
3372 }
3373 // core requested, go down to PUs
3374 nT = 0;
3375 nTr = 0;
3376 hT = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003377 int NT = __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU,
3378 &hT);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003379 for (int t = 0; t < NT; ++t) {
3380 // Check PU ---------------------------------------
3381 idx = hT->os_index;
3382 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3383 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3384 continue; // skip PU if not in fullMask
3385 }
3386 ++nT;
3387 if (nT <= __kmp_hws_proc.offset ||
3388 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3389 // skip PU
3390 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3391 ++n_old;
3392 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3393 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3394 continue; // move to next node
3395 }
3396 ++nTr;
3397 if (pAddr) // collect requested thread's data
3398 newAddr[n_new] = (*pAddr)[n_old];
3399 ++n_new;
3400 ++n_old;
3401 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3402 } // threads loop
3403 if (nTr > 0) {
3404 ++nCr; // num cores per socket
3405 ++nCo; // total num cores
3406 if (nTr > nTpC)
3407 nTpC = nTr; // calc max threads per core
3408 }
3409 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3410 } // cores loop
3411 } // tiles support
Jonathan Peyton30419822017-05-12 18:01:32 +00003412 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3413 } // nodes loop
3414 } else { // numa_support
3415 // no NUMA support
3416 if (tile_support) {
3417 nL = 0;
3418 hL = NULL;
3419 // num tiles in current socket
3420 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3421 for (int l = 0; l < NL; ++l) {
3422 // Check L2 (tile) ------------------------------------
3423 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3424 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3425 continue; // skip tile if all PUs are out of fullMask
3426 }
3427 ++nL;
3428 if (nL <= __kmp_hws_tile.offset ||
3429 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3430 // skip tile as not requested
3431 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3432 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3433 continue; // move to next tile
3434 }
3435 // tile requested, go down the topology tree
3436 nC = 0;
3437 hC = NULL;
3438 // num cores per tile
3439 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3440 &hC);
3441 for (int c = 0; c < NC; ++c) {
3442 // Check Core ---------------------------------------
3443 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3444 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3445 continue; // skip core if all PUs are out of fullMask
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003446 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003447 ++nC;
3448 if (nC <= __kmp_hws_core.offset ||
3449 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3450 // skip node as not requested
3451 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3452 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3453 continue; // move to next node
3454 }
3455 // core requested, go down to PUs
3456 nT = 0;
3457 nTr = 0;
3458 hT = NULL;
3459 // num procs per core
3460 int NT = __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU,
3461 &hT);
3462 for (int t = 0; t < NT; ++t) {
3463 // Check PU ---------------------------------------
3464 idx = hT->os_index;
3465 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3466 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3467 continue; // skip PU if not in fullMask
3468 }
3469 ++nT;
3470 if (nT <= __kmp_hws_proc.offset ||
3471 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3472 // skip PU
3473 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3474 ++n_old;
3475 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3476 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3477 continue; // move to next node
3478 }
3479 ++nTr;
3480 if (pAddr) // collect requested thread's data
3481 newAddr[n_new] = (*pAddr)[n_old];
3482 ++n_new;
3483 ++n_old;
3484 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3485 } // threads loop
3486 if (nTr > 0) {
3487 ++nCr; // num cores per socket
3488 ++nCo; // total num cores
3489 if (nTr > nTpC)
3490 nTpC = nTr; // calc max threads per core
3491 }
3492 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3493 } // cores loop
3494 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3495 } // tiles loop
3496 } else { // tile_support
3497 // no tiles, check cores
3498 nC = 0;
3499 hC = NULL;
3500 // num cores in socket
3501 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3502 &hC);
3503 for (int c = 0; c < NC; ++c) {
3504 // Check Core -------------------------------------------
3505 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3506 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3507 continue; // skip core if all PUs are out of fullMask
3508 }
3509 ++nC;
3510 if (nC <= __kmp_hws_core.offset ||
3511 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3512 // skip node as not requested
3513 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3514 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3515 continue; // move to next node
3516 }
3517 // core requested, go down to PUs
3518 nT = 0;
3519 nTr = 0;
3520 hT = NULL;
3521 // num procs per core
3522 int NT = __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU,
3523 &hT);
3524 for (int t = 0; t < NT; ++t) {
3525 // Check PU ---------------------------------------
3526 idx = hT->os_index;
3527 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3528 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3529 continue; // skip PU if not in fullMask
3530 }
3531 ++nT;
3532 if (nT <= __kmp_hws_proc.offset ||
3533 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3534 // skip PU
3535 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3536 ++n_old;
3537 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3538 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3539 continue; // move to next node
3540 }
3541 ++nTr;
3542 if (pAddr) // collect requested thread's data
3543 newAddr[n_new] = (*pAddr)[n_old];
3544 ++n_new;
3545 ++n_old;
3546 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3547 } // threads loop
3548 if (nTr > 0) {
3549 ++nCr; // num cores per socket
3550 ++nCo; // total num cores
3551 if (nTr > nTpC)
3552 nTpC = nTr; // calc max threads per core
3553 }
3554 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3555 } // cores loop
3556 } // tiles support
3557 } // numa_support
3558 if (nCr > 0) { // found cores?
3559 ++nPkg; // num sockets
3560 if (nCr > nCpP)
3561 nCpP = nCr; // calc max cores per socket
3562 }
3563 } // sockets loop
3564
3565 // check the subset is valid
3566 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3567 KMP_DEBUG_ASSERT(nPkg > 0);
3568 KMP_DEBUG_ASSERT(nCpP > 0);
3569 KMP_DEBUG_ASSERT(nTpC > 0);
3570 KMP_DEBUG_ASSERT(nCo > 0);
3571 KMP_DEBUG_ASSERT(nPkg <= nPackages);
3572 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3573 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3574 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3575
3576 nPackages = nPkg; // correct num sockets
3577 nCoresPerPkg = nCpP; // correct num cores per socket
3578 __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3579 __kmp_avail_proc = n_new; // correct num procs
3580 __kmp_ncores = nCo; // correct num cores
3581 // hwloc topology method end
3582 } else
3583#endif // KMP_USE_HWLOC
3584 {
3585 int n_old = 0, n_new = 0, proc_num = 0;
3586 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3587 KMP_WARNING(AffHWSubsetNoHWLOC);
3588 goto _exit;
3589 }
3590 if (__kmp_hws_socket.num == 0)
3591 __kmp_hws_socket.num = nPackages; // use all available sockets
3592 if (__kmp_hws_core.num == 0)
3593 __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3594 if (__kmp_hws_proc.num == 0 ||
3595 __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3596 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3597 if ( !__kmp_affinity_uniform_topology() ) {
3598 KMP_WARNING( AffHWSubsetNonUniform );
3599 goto _exit; // don't support non-uniform topology
3600 }
3601 if ( depth > 3 ) {
3602 KMP_WARNING( AffHWSubsetNonThreeLevel );
3603 goto _exit; // don't support not-3-level topology
3604 }
3605 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3606 KMP_WARNING(AffHWSubsetManySockets);
3607 goto _exit;
3608 }
3609 if ( __kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg ) {
3610 KMP_WARNING( AffHWSubsetManyCores );
3611 goto _exit;
3612 }
3613 // Form the requested subset
3614 if (pAddr) // pAddr is NULL in case of affinity_none
3615 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3616 __kmp_hws_socket.num *
3617 __kmp_hws_core.num *
3618 __kmp_hws_proc.num);
3619 for (int i = 0; i < nPackages; ++i) {
3620 if (i < __kmp_hws_socket.offset ||
3621 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3622 // skip not-requested socket
3623 n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3624 if (__kmp_pu_os_idx != NULL) {
3625 // walk through skipped socket
3626 for (int j = 0; j < nCoresPerPkg; ++j) {
3627 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3628 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3629 ++proc_num;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003630 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003631 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003632 }
3633 } else {
3634 // walk through requested socket
3635 for (int j = 0; j < nCoresPerPkg; ++j) {
3636 if (j < __kmp_hws_core.offset ||
3637 j >= __kmp_hws_core.offset + __kmp_hws_core.num)
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003638 { // skip not-requested core
3639 n_old += __kmp_nThreadsPerCore;
3640 if (__kmp_pu_os_idx != NULL) {
3641 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3642 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3643 ++proc_num;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003644 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003645 }
3646 } else {
Jonathan Peyton30419822017-05-12 18:01:32 +00003647 // walk through requested core
3648 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3649 if (k < __kmp_hws_proc.num) {
3650 if (pAddr) // collect requested thread's data
3651 newAddr[n_new] = (*pAddr)[n_old];
3652 n_new++;
3653 } else {
3654 if (__kmp_pu_os_idx != NULL)
3655 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003656 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003657 n_old++;
3658 ++proc_num;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003659 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003660 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003661 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003662 }
Andrey Churbanov4a9a8922017-04-13 17:15:07 +00003663 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003664 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3665 KMP_DEBUG_ASSERT(n_new == __kmp_hws_socket.num * __kmp_hws_core.num *
3666 __kmp_hws_proc.num);
3667 nPackages = __kmp_hws_socket.num; // correct nPackages
3668 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3669 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3670 __kmp_avail_proc = n_new; // correct avail_proc
3671 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3672 } // non-hwloc topology method
3673 if (pAddr) {
3674 __kmp_free( *pAddr );
3675 *pAddr = newAddr; // replace old topology with new one
3676 }
3677 if (__kmp_affinity_verbose) {
3678 char m[KMP_AFFIN_MASK_PRINT_LEN];
3679 __kmp_affinity_print_mask(m,KMP_AFFIN_MASK_PRINT_LEN,__kmp_affin_fullMask);
3680 if (__kmp_affinity_respect_mask) {
3681 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003682 } else {
Jonathan Peyton30419822017-05-12 18:01:32 +00003683 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003684 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003685 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3686 kmp_str_buf_t buf;
3687 __kmp_str_buf_init(&buf);
3688 __kmp_str_buf_print(&buf, "%d", nPackages);
3689 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3690 __kmp_nThreadsPerCore, __kmp_ncores);
3691 __kmp_str_buf_free(&buf);
3692 }
3693 _exit:
3694 if (__kmp_pu_os_idx != NULL) {
3695 __kmp_free(__kmp_pu_os_idx);
3696 __kmp_pu_os_idx = NULL;
3697 }
3698}
3699
3700// This function figures out the deepest level at which there is at least one
3701// cluster/core with more than one processing unit bound to it.
3702static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
3703 int nprocs, int bottom_level) {
3704 int core_level = 0;
3705
3706 for (int i = 0; i < nprocs; i++) {
3707 for (int j = bottom_level; j > 0; j--) {
3708 if (address2os[i].first.labels[j] > 0) {
3709 if (core_level < (j - 1)) {
3710 core_level = j - 1;
3711 }
3712 }
3713 }
3714 }
3715 return core_level;
3716}
3717
3718// This function counts number of clusters/cores at given level.
3719static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
3720 int nprocs, int bottom_level,
3721 int core_level) {
3722 int ncores = 0;
3723 int i, j;
3724
3725 j = bottom_level;
3726 for (i = 0; i < nprocs; i++) {
3727 for (j = bottom_level; j > core_level; j--) {
3728 if ((i + 1) < nprocs) {
3729 if (address2os[i + 1].first.labels[j] > 0) {
3730 break;
3731 }
3732 }
3733 }
3734 if (j == core_level) {
3735 ncores++;
3736 }
3737 }
3738 if (j > core_level) {
3739 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
3740 // core. May occur when called from __kmp_affinity_find_core().
3741 ncores++;
3742 }
3743 return ncores;
3744}
3745
3746// This function finds to which cluster/core given processing unit is bound.
3747static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
3748 int bottom_level, int core_level) {
3749 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
3750 core_level) - 1;
3751}
3752
3753// This function finds maximal number of processing units bound to a
3754// cluster/core at given level.
3755static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
3756 int nprocs, int bottom_level,
3757 int core_level) {
3758 int maxprocpercore = 0;
3759
3760 if (core_level < bottom_level) {
3761 for (int i = 0; i < nprocs; i++) {
3762 int percore = address2os[i].first.labels[core_level + 1] + 1;
3763
3764 if (percore > maxprocpercore) {
3765 maxprocpercore = percore;
3766 }
3767 }
3768 } else {
3769 maxprocpercore = 1;
3770 }
3771 return maxprocpercore;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003772}
Jim Cownie5e8470a2013-09-27 10:38:44 +00003773
3774static AddrUnsPair *address2os = NULL;
Jonathan Peyton30419822017-05-12 18:01:32 +00003775static int *procarr = NULL;
3776static int __kmp_aff_depth = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003777
Jonathan Peyton30419822017-05-12 18:01:32 +00003778#define KMP_EXIT_AFF_NONE \
3779 KMP_ASSERT(__kmp_affinity_type == affinity_none); \
3780 KMP_ASSERT(address2os == NULL); \
3781 __kmp_apply_thread_places(NULL, 0); \
3782 return;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003783
Jonathan Peyton30419822017-05-12 18:01:32 +00003784static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
3785 const Address *aa = (const Address *)&(((AddrUnsPair *)a)->first);
3786 const Address *bb = (const Address *)&(((AddrUnsPair *)b)->first);
3787 unsigned depth = aa->depth;
3788 unsigned i;
3789 KMP_DEBUG_ASSERT(depth == bb->depth);
3790 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
3791 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
3792 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
3793 int j = depth - i - 1;
3794 if (aa->childNums[j] < bb->childNums[j])
3795 return -1;
3796 if (aa->childNums[j] > bb->childNums[j])
3797 return 1;
3798 }
3799 for (; i < depth; i++) {
3800 int j = i - __kmp_affinity_compact;
3801 if (aa->childNums[j] < bb->childNums[j])
3802 return -1;
3803 if (aa->childNums[j] > bb->childNums[j])
3804 return 1;
3805 }
3806 return 0;
Jonathan Peytone6abe522016-09-02 20:54:58 +00003807}
3808
Jonathan Peyton30419822017-05-12 18:01:32 +00003809static void __kmp_aux_affinity_initialize(void) {
3810 if (__kmp_affinity_masks != NULL) {
3811 KMP_ASSERT(__kmp_affin_fullMask != NULL);
3812 return;
3813 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003814
Jonathan Peyton30419822017-05-12 18:01:32 +00003815 // Create the "full" mask - this defines all of the processors that we
3816 // consider to be in the machine model. If respect is set, then it is the
3817 // initialization thread's affinity mask. Otherwise, it is all processors that
3818 // we know about on the machine.
3819 if (__kmp_affin_fullMask == NULL) {
3820 KMP_CPU_ALLOC(__kmp_affin_fullMask);
3821 }
3822 if (KMP_AFFINITY_CAPABLE()) {
3823 if (__kmp_affinity_respect_mask) {
3824 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003825
Jonathan Peyton30419822017-05-12 18:01:32 +00003826 // Count the number of available processors.
3827 unsigned i;
3828 __kmp_avail_proc = 0;
3829 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
3830 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
3831 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003832 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003833 __kmp_avail_proc++;
3834 }
3835 if (__kmp_avail_proc > __kmp_xproc) {
3836 if (__kmp_affinity_verbose ||
3837 (__kmp_affinity_warnings &&
3838 (__kmp_affinity_type != affinity_none))) {
3839 KMP_WARNING(ErrorInitializeAffinity);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003840 }
3841 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003842 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003843 return;
Jonathan Peyton30419822017-05-12 18:01:32 +00003844 }
3845 } else {
3846 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
3847 __kmp_avail_proc = __kmp_xproc;
3848 }
3849 }
3850
3851 int depth = -1;
3852 kmp_i18n_id_t msg_id = kmp_i18n_null;
3853
3854 // For backward compatibility, setting KMP_CPUINFO_FILE =>
3855 // KMP_TOPOLOGY_METHOD=cpuinfo
3856 if ((__kmp_cpuinfo_file != NULL) &&
3857 (__kmp_affinity_top_method == affinity_top_method_all)) {
3858 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3859 }
3860
3861 if (__kmp_affinity_top_method == affinity_top_method_all) {
3862 // In the default code path, errors are not fatal - we just try using
3863 // another method. We only emit a warning message if affinity is on, or the
3864 // verbose flag is set, an the nowarnings flag was not set.
3865 const char *file_name = NULL;
3866 int line = 0;
3867#if KMP_USE_HWLOC
3868 if (depth < 0 &&
3869 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3870 if (__kmp_affinity_verbose) {
3871 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3872 }
3873 if (!__kmp_hwloc_error) {
3874 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3875 if (depth == 0) {
3876 KMP_EXIT_AFF_NONE;
3877 } else if (depth < 0 && __kmp_affinity_verbose) {
3878 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3879 }
3880 } else if (__kmp_affinity_verbose) {
3881 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3882 }
3883 }
3884#endif
3885
3886#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3887
3888 if (depth < 0) {
3889 if (__kmp_affinity_verbose) {
3890 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
3891 }
3892
3893 file_name = NULL;
3894 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3895 if (depth == 0) {
3896 KMP_EXIT_AFF_NONE;
3897 }
3898
3899 if (depth < 0) {
3900 if (__kmp_affinity_verbose) {
3901 if (msg_id != kmp_i18n_null) {
3902 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
3903 __kmp_i18n_catgets(msg_id),
3904 KMP_I18N_STR(DecodingLegacyAPIC));
3905 } else {
3906 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3907 KMP_I18N_STR(DecodingLegacyAPIC));
3908 }
3909 }
3910
3911 file_name = NULL;
3912 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3913 if (depth == 0) {
3914 KMP_EXIT_AFF_NONE;
3915 }
3916 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003917 }
3918
Jonathan Peyton30419822017-05-12 18:01:32 +00003919#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003920
Jonathan Peyton30419822017-05-12 18:01:32 +00003921#if KMP_OS_LINUX
Jim Cownie5e8470a2013-09-27 10:38:44 +00003922
Jonathan Peyton30419822017-05-12 18:01:32 +00003923 if (depth < 0) {
3924 if (__kmp_affinity_verbose) {
3925 if (msg_id != kmp_i18n_null) {
3926 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
3927 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
Jim Cownie5e8470a2013-09-27 10:38:44 +00003928 } else {
Jonathan Peyton30419822017-05-12 18:01:32 +00003929 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
Jim Cownie5e8470a2013-09-27 10:38:44 +00003930 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003931 }
3932
3933 FILE *f = fopen("/proc/cpuinfo", "r");
3934 if (f == NULL) {
3935 msg_id = kmp_i18n_str_CantOpenCpuinfo;
3936 } else {
3937 file_name = "/proc/cpuinfo";
3938 depth =
3939 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3940 fclose(f);
3941 if (depth == 0) {
3942 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003943 }
Jonathan Peyton30419822017-05-12 18:01:32 +00003944 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003945 }
3946
Jonathan Peyton30419822017-05-12 18:01:32 +00003947#endif /* KMP_OS_LINUX */
3948
3949#if KMP_GROUP_AFFINITY
3950
3951 if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
3952 if (__kmp_affinity_verbose) {
3953 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3954 }
3955
3956 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3957 KMP_ASSERT(depth != 0);
3958 }
3959
3960#endif /* KMP_GROUP_AFFINITY */
3961
3962 if (depth < 0) {
3963 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
3964 if (file_name == NULL) {
3965 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
3966 } else if (line == 0) {
3967 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
3968 } else {
3969 KMP_INFORM(UsingFlatOSFileLine, file_name, line,
3970 __kmp_i18n_catgets(msg_id));
3971 }
3972 }
3973 // FIXME - print msg if msg_id = kmp_i18n_null ???
3974
3975 file_name = "";
3976 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3977 if (depth == 0) {
3978 KMP_EXIT_AFF_NONE;
3979 }
3980 KMP_ASSERT(depth > 0);
3981 KMP_ASSERT(address2os != NULL);
3982 }
3983 }
3984
3985// If the user has specified that a paricular topology discovery method is to be
3986// used, then we abort if that method fails. The exception is group affinity,
3987// which might have been implicitly set.
3988
3989#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3990
3991 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
3992 if (__kmp_affinity_verbose) {
3993 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
3994 }
3995
3996 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3997 if (depth == 0) {
3998 KMP_EXIT_AFF_NONE;
3999 }
4000 if (depth < 0) {
4001 KMP_ASSERT(msg_id != kmp_i18n_null);
4002 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4003 }
4004 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4005 if (__kmp_affinity_verbose) {
4006 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4007 }
4008
4009 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4010 if (depth == 0) {
4011 KMP_EXIT_AFF_NONE;
4012 }
4013 if (depth < 0) {
4014 KMP_ASSERT(msg_id != kmp_i18n_null);
4015 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4016 }
4017 }
4018
4019#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4020
4021 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4022 const char *filename;
4023 if (__kmp_cpuinfo_file != NULL) {
4024 filename = __kmp_cpuinfo_file;
4025 } else {
4026 filename = "/proc/cpuinfo";
4027 }
4028
4029 if (__kmp_affinity_verbose) {
4030 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4031 }
4032
4033 FILE *f = fopen(filename, "r");
4034 if (f == NULL) {
4035 int code = errno;
4036 if (__kmp_cpuinfo_file != NULL) {
4037 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantOpenFileForReading, filename),
4038 KMP_ERR(code), KMP_HNT(NameComesFrom_CPUINFO_FILE),
4039 __kmp_msg_null);
4040 } else {
4041 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantOpenFileForReading, filename),
4042 KMP_ERR(code), __kmp_msg_null);
4043 }
4044 }
4045 int line = 0;
4046 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4047 fclose(f);
4048 if (depth < 0) {
4049 KMP_ASSERT(msg_id != kmp_i18n_null);
4050 if (line > 0) {
4051 KMP_FATAL(FileLineMsgExiting, filename, line,
4052 __kmp_i18n_catgets(msg_id));
4053 } else {
4054 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4055 }
4056 }
4057 if (__kmp_affinity_type == affinity_none) {
4058 KMP_ASSERT(depth == 0);
4059 KMP_EXIT_AFF_NONE;
4060 }
4061 }
4062
4063#if KMP_GROUP_AFFINITY
4064
4065 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4066 if (__kmp_affinity_verbose) {
4067 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4068 }
4069
4070 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4071 KMP_ASSERT(depth != 0);
4072 if (depth < 0) {
4073 KMP_ASSERT(msg_id != kmp_i18n_null);
4074 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4075 }
4076 }
4077
4078#endif /* KMP_GROUP_AFFINITY */
4079
4080 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4081 if (__kmp_affinity_verbose) {
4082 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4083 }
4084
4085 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4086 if (depth == 0) {
4087 KMP_EXIT_AFF_NONE;
4088 }
4089 // should not fail
4090 KMP_ASSERT(depth > 0);
4091 KMP_ASSERT(address2os != NULL);
4092 }
4093
4094#if KMP_USE_HWLOC
4095 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4096 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4097 if (__kmp_affinity_verbose) {
4098 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4099 }
4100 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4101 if (depth == 0) {
4102 KMP_EXIT_AFF_NONE;
4103 }
4104 }
4105#endif // KMP_USE_HWLOC
4106
4107 if (address2os == NULL) {
4108 if (KMP_AFFINITY_CAPABLE() &&
4109 (__kmp_affinity_verbose ||
4110 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4111 KMP_WARNING(ErrorInitializeAffinity);
4112 }
4113 __kmp_affinity_type = affinity_none;
4114 KMP_AFFINITY_DISABLE();
4115 return;
4116 }
4117
4118 __kmp_apply_thread_places(&address2os, depth);
4119
4120 // Create the table of masks, indexed by thread Id.
4121 unsigned maxIndex;
4122 unsigned numUnique;
4123 kmp_affin_mask_t *osId2Mask =
4124 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4125 if (__kmp_affinity_gran_levels == 0) {
4126 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4127 }
4128
4129 // Set the childNums vector in all Address objects. This must be done before
4130 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4131 // account the setting of __kmp_affinity_compact.
4132 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4133
4134 switch (__kmp_affinity_type) {
4135
4136 case affinity_explicit:
4137 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4138#if OMP_40_ENABLED
4139 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4140#endif
4141 {
4142 __kmp_affinity_process_proclist(
4143 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4144 __kmp_affinity_proclist, osId2Mask, maxIndex);
4145 }
4146#if OMP_40_ENABLED
4147 else {
4148 __kmp_affinity_process_placelist(
4149 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4150 __kmp_affinity_proclist, osId2Mask, maxIndex);
4151 }
4152#endif
4153 if (__kmp_affinity_num_masks == 0) {
4154 if (__kmp_affinity_verbose ||
4155 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4156 KMP_WARNING(AffNoValidProcID);
4157 }
4158 __kmp_affinity_type = affinity_none;
4159 return;
4160 }
4161 break;
4162
4163 // The other affinity types rely on sorting the Addresses according to some
4164 // permutation of the machine topology tree. Set __kmp_affinity_compact and
4165 // __kmp_affinity_offset appropriately, then jump to a common code fragment
4166 // to do the sort and create the array of affinity masks.
4167
4168 case affinity_logical:
4169 __kmp_affinity_compact = 0;
4170 if (__kmp_affinity_offset) {
4171 __kmp_affinity_offset =
4172 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4173 }
4174 goto sortAddresses;
4175
4176 case affinity_physical:
4177 if (__kmp_nThreadsPerCore > 1) {
4178 __kmp_affinity_compact = 1;
4179 if (__kmp_affinity_compact >= depth) {
4180 __kmp_affinity_compact = 0;
4181 }
4182 } else {
4183 __kmp_affinity_compact = 0;
4184 }
4185 if (__kmp_affinity_offset) {
4186 __kmp_affinity_offset =
4187 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4188 }
4189 goto sortAddresses;
4190
4191 case affinity_scatter:
4192 if (__kmp_affinity_compact >= depth) {
4193 __kmp_affinity_compact = 0;
4194 } else {
4195 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4196 }
4197 goto sortAddresses;
4198
4199 case affinity_compact:
4200 if (__kmp_affinity_compact >= depth) {
4201 __kmp_affinity_compact = depth - 1;
4202 }
4203 goto sortAddresses;
4204
4205 case affinity_balanced:
4206 if (depth <= 1) {
4207 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4208 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4209 }
4210 __kmp_affinity_type = affinity_none;
4211 return;
4212 } else if (__kmp_affinity_uniform_topology()) {
4213 break;
4214 } else { // Non-uniform topology
4215
4216 // Save the depth for further usage
4217 __kmp_aff_depth = depth;
4218
4219 int core_level = __kmp_affinity_find_core_level(
4220 address2os, __kmp_avail_proc, depth - 1);
4221 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4222 depth - 1, core_level);
4223 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4224 address2os, __kmp_avail_proc, depth - 1, core_level);
4225
4226 int nproc = ncores * maxprocpercore;
4227 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4228 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4229 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4230 }
4231 __kmp_affinity_type = affinity_none;
4232 return;
4233 }
4234
4235 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4236 for (int i = 0; i < nproc; i++) {
4237 procarr[i] = -1;
4238 }
4239
4240 int lastcore = -1;
4241 int inlastcore = 0;
4242 for (int i = 0; i < __kmp_avail_proc; i++) {
4243 int proc = address2os[i].second;
4244 int core =
4245 __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4246
4247 if (core == lastcore) {
4248 inlastcore++;
4249 } else {
4250 inlastcore = 0;
4251 }
4252 lastcore = core;
4253
4254 procarr[core * maxprocpercore + inlastcore] = proc;
4255 }
4256
4257 break;
4258 }
4259
4260 sortAddresses:
4261 // Allocate the gtid->affinity mask table.
4262 if (__kmp_affinity_dups) {
4263 __kmp_affinity_num_masks = __kmp_avail_proc;
4264 } else {
4265 __kmp_affinity_num_masks = numUnique;
4266 }
4267
4268#if OMP_40_ENABLED
4269 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4270 (__kmp_affinity_num_places > 0) &&
4271 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4272 __kmp_affinity_num_masks = __kmp_affinity_num_places;
4273 }
4274#endif
4275
4276 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4277
4278 // Sort the address2os table according to the current setting of
4279 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4280 qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4281 __kmp_affinity_cmp_Address_child_num);
4282 {
4283 int i;
4284 unsigned j;
4285 for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4286 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4287 continue;
4288 }
4289 unsigned osId = address2os[i].second;
4290 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4291 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4292 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4293 KMP_CPU_COPY(dest, src);
4294 if (++j >= __kmp_affinity_num_masks) {
4295 break;
4296 }
4297 }
4298 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4299 }
4300 break;
4301
4302 default:
4303 KMP_ASSERT2(0, "Unexpected affinity setting");
4304 }
4305
4306 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4307 machine_hierarchy.init(address2os, __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004308}
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00004309#undef KMP_EXIT_AFF_NONE
Jim Cownie5e8470a2013-09-27 10:38:44 +00004310
Jonathan Peyton30419822017-05-12 18:01:32 +00004311void __kmp_affinity_initialize(void) {
4312 // Much of the code above was written assumming that if a machine was not
4313 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4314 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4315 // There are too many checks for __kmp_affinity_type == affinity_none
4316 // in this code. Instead of trying to change them all, check if
4317 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4318 // affinity_none, call the real initialization routine, then restore
4319 // __kmp_affinity_type to affinity_disabled.
4320 int disabled = (__kmp_affinity_type == affinity_disabled);
4321 if (!KMP_AFFINITY_CAPABLE()) {
4322 KMP_ASSERT(disabled);
4323 }
4324 if (disabled) {
4325 __kmp_affinity_type = affinity_none;
4326 }
4327 __kmp_aux_affinity_initialize();
4328 if (disabled) {
4329 __kmp_affinity_type = affinity_disabled;
4330 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004331}
4332
Jonathan Peyton30419822017-05-12 18:01:32 +00004333void __kmp_affinity_uninitialize(void) {
4334 if (__kmp_affinity_masks != NULL) {
4335 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4336 __kmp_affinity_masks = NULL;
4337 }
4338 if (__kmp_affin_fullMask != NULL) {
4339 KMP_CPU_FREE(__kmp_affin_fullMask);
4340 __kmp_affin_fullMask = NULL;
4341 }
4342 __kmp_affinity_num_masks = 0;
4343 __kmp_affinity_type = affinity_default;
4344#if OMP_40_ENABLED
4345 __kmp_affinity_num_places = 0;
4346#endif
4347 if (__kmp_affinity_proclist != NULL) {
4348 __kmp_free(__kmp_affinity_proclist);
4349 __kmp_affinity_proclist = NULL;
4350 }
4351 if (address2os != NULL) {
4352 __kmp_free(address2os);
4353 address2os = NULL;
4354 }
4355 if (procarr != NULL) {
4356 __kmp_free(procarr);
4357 procarr = NULL;
4358 }
4359#if KMP_USE_HWLOC
4360 if (__kmp_hwloc_topology != NULL) {
4361 hwloc_topology_destroy(__kmp_hwloc_topology);
4362 __kmp_hwloc_topology = NULL;
4363 }
4364#endif
4365 KMPAffinity::destroy_api();
Jim Cownie5e8470a2013-09-27 10:38:44 +00004366}
4367
Jonathan Peyton30419822017-05-12 18:01:32 +00004368void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4369 if (!KMP_AFFINITY_CAPABLE()) {
4370 return;
4371 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004372
Jonathan Peyton30419822017-05-12 18:01:32 +00004373 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4374 if (th->th.th_affin_mask == NULL) {
4375 KMP_CPU_ALLOC(th->th.th_affin_mask);
4376 } else {
4377 KMP_CPU_ZERO(th->th.th_affin_mask);
4378 }
4379
4380 // Copy the thread mask to the kmp_info_t strucuture. If
4381 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4382 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4383 // then the full mask is the same as the mask of the initialization thread.
4384 kmp_affin_mask_t *mask;
4385 int i;
4386
4387#if OMP_40_ENABLED
4388 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4389#endif
4390 {
4391 if ((__kmp_affinity_type == affinity_none) ||
4392 (__kmp_affinity_type == affinity_balanced)) {
4393#if KMP_GROUP_AFFINITY
4394 if (__kmp_num_proc_groups > 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004395 return;
Jonathan Peyton30419822017-05-12 18:01:32 +00004396 }
4397#endif
4398 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4399 i = KMP_PLACE_ALL;
4400 mask = __kmp_affin_fullMask;
4401 } else {
4402 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4403 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4404 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004405 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004406 }
4407#if OMP_40_ENABLED
4408 else {
4409 if ((!isa_root) ||
4410 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4411#if KMP_GROUP_AFFINITY
4412 if (__kmp_num_proc_groups > 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004413 return;
Jonathan Peyton30419822017-05-12 18:01:32 +00004414 }
4415#endif
4416 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4417 i = KMP_PLACE_ALL;
4418 mask = __kmp_affin_fullMask;
4419 } else {
4420 // int i = some hash function or just a counter that doesn't
4421 // always start at 0. Use gtid for now.
4422 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4423 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4424 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004425 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004426 }
4427#endif
Jim Cownie5e8470a2013-09-27 10:38:44 +00004428
Jonathan Peyton30419822017-05-12 18:01:32 +00004429#if OMP_40_ENABLED
4430 th->th.th_current_place = i;
4431 if (isa_root) {
4432 th->th.th_new_place = i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004433 th->th.th_first_place = 0;
4434 th->th.th_last_place = __kmp_affinity_num_masks - 1;
Jonathan Peyton30419822017-05-12 18:01:32 +00004435 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004436
Jonathan Peyton30419822017-05-12 18:01:32 +00004437 if (i == KMP_PLACE_ALL) {
4438 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4439 gtid));
4440 } else {
4441 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4442 gtid, i));
4443 }
4444#else
4445 if (i == -1) {
4446 KA_TRACE(
4447 100,
4448 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
4449 gtid));
4450 } else {
4451 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4452 gtid, i));
4453 }
4454#endif /* OMP_40_ENABLED */
Jim Cownie5e8470a2013-09-27 10:38:44 +00004455
Jonathan Peyton30419822017-05-12 18:01:32 +00004456 KMP_CPU_COPY(th->th.th_affin_mask, mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004457
Jonathan Peyton30419822017-05-12 18:01:32 +00004458 if (__kmp_affinity_verbose) {
4459 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4460 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4461 th->th.th_affin_mask);
4462 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4463 __kmp_gettid(), gtid, buf);
4464 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004465
Jonathan Peyton30419822017-05-12 18:01:32 +00004466#if KMP_OS_WINDOWS
4467 // On Windows* OS, the process affinity mask might have changed. If the user
4468 // didn't request affinity and this call fails, just continue silently.
4469 // See CQ171393.
4470 if (__kmp_affinity_type == affinity_none) {
4471 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4472 } else
Jonathan Peyton7c465a52016-09-12 19:02:53 +00004473#endif
Jonathan Peyton30419822017-05-12 18:01:32 +00004474 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
Jonathan Peyton7c465a52016-09-12 19:02:53 +00004475}
4476
Jonathan Peyton30419822017-05-12 18:01:32 +00004477#if OMP_40_ENABLED
Jim Cownie5e8470a2013-09-27 10:38:44 +00004478
Jonathan Peyton30419822017-05-12 18:01:32 +00004479void __kmp_affinity_set_place(int gtid) {
4480 int retval;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004481
Jonathan Peyton30419822017-05-12 18:01:32 +00004482 if (!KMP_AFFINITY_CAPABLE()) {
4483 return;
4484 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004485
Jonathan Peyton30419822017-05-12 18:01:32 +00004486 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4487
4488 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4489 "place = %d)\n",
4490 gtid, th->th.th_new_place, th->th.th_current_place));
4491
4492 // Check that the new place is within this thread's partition.
4493 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4494 KMP_ASSERT(th->th.th_new_place >= 0);
4495 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4496 if (th->th.th_first_place <= th->th.th_last_place) {
4497 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4498 (th->th.th_new_place <= th->th.th_last_place));
4499 } else {
4500 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4501 (th->th.th_new_place >= th->th.th_last_place));
4502 }
4503
4504 // Copy the thread mask to the kmp_info_t strucuture,
4505 // and set this thread's affinity.
4506 kmp_affin_mask_t *mask =
4507 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4508 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4509 th->th.th_current_place = th->th.th_new_place;
4510
4511 if (__kmp_affinity_verbose) {
4512 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4513 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4514 th->th.th_affin_mask);
4515 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4516 __kmp_gettid(), gtid, buf);
4517 }
4518 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4519}
4520
4521#endif /* OMP_40_ENABLED */
4522
4523int __kmp_aux_set_affinity(void **mask) {
4524 int gtid;
4525 kmp_info_t *th;
4526 int retval;
4527
4528 if (!KMP_AFFINITY_CAPABLE()) {
4529 return -1;
4530 }
4531
4532 gtid = __kmp_entry_gtid();
4533 KA_TRACE(1000, ; {
4534 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4535 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4536 (kmp_affin_mask_t *)(*mask));
4537 __kmp_debug_printf(
4538 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4539 buf);
4540 });
4541
4542 if (__kmp_env_consistency_check) {
4543 if ((mask == NULL) || (*mask == NULL)) {
4544 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4545 } else {
4546 unsigned proc;
4547 int num_procs = 0;
4548
4549 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4550 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4551 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004552 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004553 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4554 continue;
4555 }
4556 num_procs++;
4557 }
4558 if (num_procs == 0) {
4559 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4560 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004561
Jonathan Peyton30419822017-05-12 18:01:32 +00004562#if KMP_GROUP_AFFINITY
4563 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4564 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4565 }
4566#endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00004567 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004568 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004569
Jonathan Peyton30419822017-05-12 18:01:32 +00004570 th = __kmp_threads[gtid];
4571 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4572 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4573 if (retval == 0) {
4574 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4575 }
4576
4577#if OMP_40_ENABLED
4578 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4579 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4580 th->th.th_first_place = 0;
4581 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4582
4583 // Turn off 4.0 affinity for the current tread at this parallel level.
4584 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4585#endif
4586
4587 return retval;
4588}
4589
4590int __kmp_aux_get_affinity(void **mask) {
4591 int gtid;
4592 int retval;
4593 kmp_info_t *th;
4594
4595 if (!KMP_AFFINITY_CAPABLE()) {
4596 return -1;
4597 }
4598
4599 gtid = __kmp_entry_gtid();
4600 th = __kmp_threads[gtid];
4601 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4602
4603 KA_TRACE(1000, ; {
4604 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4605 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4606 th->th.th_affin_mask);
4607 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4608 gtid, buf);
4609 });
4610
4611 if (__kmp_env_consistency_check) {
4612 if ((mask == NULL) || (*mask == NULL)) {
4613 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4614 }
4615 }
4616
4617#if !KMP_OS_WINDOWS
4618
4619 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4620 KA_TRACE(1000, ; {
4621 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4622 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4623 (kmp_affin_mask_t *)(*mask));
4624 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4625 gtid, buf);
4626 });
4627 return retval;
4628
4629#else
4630
4631 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4632 return 0;
4633
4634#endif /* KMP_OS_WINDOWS */
4635}
4636
4637int __kmp_aux_get_affinity_max_proc() {
4638 if (!KMP_AFFINITY_CAPABLE()) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004639 return 0;
Jonathan Peyton30419822017-05-12 18:01:32 +00004640 }
4641#if KMP_GROUP_AFFINITY
4642 if (__kmp_num_proc_groups > 1) {
4643 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4644 }
4645#endif
4646 return __kmp_xproc;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004647}
4648
Jonathan Peyton30419822017-05-12 18:01:32 +00004649int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4650 int retval;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004651
Jonathan Peyton30419822017-05-12 18:01:32 +00004652 if (!KMP_AFFINITY_CAPABLE()) {
4653 return -1;
4654 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004655
Jonathan Peyton30419822017-05-12 18:01:32 +00004656 KA_TRACE(1000, ; {
4657 int gtid = __kmp_entry_gtid();
4658 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4659 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4660 (kmp_affin_mask_t *)(*mask));
4661 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4662 "affinity mask for thread %d = %s\n",
4663 proc, gtid, buf);
4664 });
4665
4666 if (__kmp_env_consistency_check) {
4667 if ((mask == NULL) || (*mask == NULL)) {
4668 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004669 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004670 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004671
Jonathan Peyton30419822017-05-12 18:01:32 +00004672 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4673 return -1;
4674 }
4675 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4676 return -2;
4677 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004678
Jonathan Peyton30419822017-05-12 18:01:32 +00004679 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4680 return 0;
4681}
4682
4683int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4684 int retval;
4685
4686 if (!KMP_AFFINITY_CAPABLE()) {
4687 return -1;
4688 }
4689
4690 KA_TRACE(1000, ; {
4691 int gtid = __kmp_entry_gtid();
4692 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4693 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4694 (kmp_affin_mask_t *)(*mask));
4695 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4696 "affinity mask for thread %d = %s\n",
4697 proc, gtid, buf);
4698 });
4699
4700 if (__kmp_env_consistency_check) {
4701 if ((mask == NULL) || (*mask == NULL)) {
4702 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004703 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004704 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004705
Jonathan Peyton30419822017-05-12 18:01:32 +00004706 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4707 return -1;
4708 }
4709 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4710 return -2;
4711 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004712
Jonathan Peyton30419822017-05-12 18:01:32 +00004713 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4714 return 0;
4715}
4716
4717int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4718 int retval;
4719
4720 if (!KMP_AFFINITY_CAPABLE()) {
4721 return -1;
4722 }
4723
4724 KA_TRACE(1000, ; {
4725 int gtid = __kmp_entry_gtid();
4726 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4727 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4728 (kmp_affin_mask_t *)(*mask));
4729 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4730 "affinity mask for thread %d = %s\n",
4731 proc, gtid, buf);
4732 });
4733
4734 if (__kmp_env_consistency_check) {
4735 if ((mask == NULL) || (*mask == NULL)) {
4736 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4737 }
4738 }
4739
4740 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4741 return -1;
4742 }
4743 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004744 return 0;
Jonathan Peyton30419822017-05-12 18:01:32 +00004745 }
4746
4747 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004748}
4749
Jim Cownie5e8470a2013-09-27 10:38:44 +00004750// Dynamic affinity settings - Affinity balanced
Jonathan Peyton30419822017-05-12 18:01:32 +00004751void __kmp_balanced_affinity(int tid, int nthreads) {
4752 bool fine_gran = true;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004753
Jonathan Peyton30419822017-05-12 18:01:32 +00004754 switch (__kmp_affinity_gran) {
4755 case affinity_gran_fine:
4756 case affinity_gran_thread:
4757 break;
4758 case affinity_gran_core:
4759 if (__kmp_nThreadsPerCore > 1) {
4760 fine_gran = false;
4761 }
4762 break;
4763 case affinity_gran_package:
4764 if (nCoresPerPkg > 1) {
4765 fine_gran = false;
4766 }
4767 break;
4768 default:
4769 fine_gran = false;
4770 }
4771
4772 if (__kmp_affinity_uniform_topology()) {
4773 int coreID;
4774 int threadID;
4775 // Number of hyper threads per core in HT machine
4776 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4777 // Number of cores
4778 int ncores = __kmp_ncores;
4779 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4780 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4781 ncores = nPackages;
4782 }
4783 // How many threads will be bound to each core
4784 int chunk = nthreads / ncores;
4785 // How many cores will have an additional thread bound to it - "big cores"
4786 int big_cores = nthreads % ncores;
4787 // Number of threads on the big cores
4788 int big_nth = (chunk + 1) * big_cores;
4789 if (tid < big_nth) {
4790 coreID = tid / (chunk + 1);
4791 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
4792 } else { // tid >= big_nth
4793 coreID = (tid - big_cores) / chunk;
4794 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004795 }
4796
Jonathan Peyton30419822017-05-12 18:01:32 +00004797 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4798 "Illegal set affinity operation when not capable");
4799
4800 kmp_affin_mask_t *mask;
4801 KMP_CPU_ALLOC_ON_STACK(mask);
4802 KMP_CPU_ZERO(mask);
4803
4804 if (fine_gran) {
4805 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
4806 KMP_CPU_SET(osID, mask);
4807 } else {
4808 for (int i = 0; i < __kmp_nth_per_core; i++) {
4809 int osID;
4810 osID = address2os[coreID * __kmp_nth_per_core + i].second;
4811 KMP_CPU_SET(osID, mask);
4812 }
4813 }
4814 if (__kmp_affinity_verbose) {
4815 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4816 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4817 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4818 __kmp_gettid(), tid, buf);
4819 }
4820 __kmp_set_system_affinity(mask, TRUE);
4821 KMP_CPU_FREE_FROM_STACK(mask);
4822 } else { // Non-uniform topology
4823
4824 kmp_affin_mask_t *mask;
4825 KMP_CPU_ALLOC_ON_STACK(mask);
4826 KMP_CPU_ZERO(mask);
4827
4828 int core_level = __kmp_affinity_find_core_level(
4829 address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
4830 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4831 __kmp_aff_depth - 1, core_level);
4832 int nth_per_core = __kmp_affinity_max_proc_per_core(
4833 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
4834
4835 // For performance gain consider the special case nthreads ==
4836 // __kmp_avail_proc
4837 if (nthreads == __kmp_avail_proc) {
4838 if (fine_gran) {
4839 int osID = address2os[tid].second;
4840 KMP_CPU_SET(osID, mask);
4841 } else {
4842 int core = __kmp_affinity_find_core(address2os, tid,
4843 __kmp_aff_depth - 1, core_level);
4844 for (int i = 0; i < __kmp_avail_proc; i++) {
4845 int osID = address2os[i].second;
4846 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
4847 core_level) == core) {
4848 KMP_CPU_SET(osID, mask);
4849 }
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004850 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004851 }
4852 } else if (nthreads <= ncores) {
4853
4854 int core = 0;
4855 for (int i = 0; i < ncores; i++) {
4856 // Check if this core from procarr[] is in the mask
4857 int in_mask = 0;
4858 for (int j = 0; j < nth_per_core; j++) {
4859 if (procarr[i * nth_per_core + j] != -1) {
4860 in_mask = 1;
4861 break;
4862 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004863 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004864 if (in_mask) {
4865 if (tid == core) {
4866 for (int j = 0; j < nth_per_core; j++) {
4867 int osID = procarr[i * nth_per_core + j];
4868 if (osID != -1) {
4869 KMP_CPU_SET(osID, mask);
4870 // For fine granularity it is enough to set the first available
4871 // osID for this core
4872 if (fine_gran) {
4873 break;
4874 }
4875 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004876 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004877 break;
4878 } else {
4879 core++;
4880 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004881 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004882 }
4883 } else { // nthreads > ncores
4884 // Array to save the number of processors at each core
4885 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
4886 // Array to save the number of cores with "x" available processors;
4887 int *ncores_with_x_procs =
4888 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4889 // Array to save the number of cores with # procs from x to nth_per_core
4890 int *ncores_with_x_to_max_procs =
4891 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4892
4893 for (int i = 0; i <= nth_per_core; i++) {
4894 ncores_with_x_procs[i] = 0;
4895 ncores_with_x_to_max_procs[i] = 0;
4896 }
4897
4898 for (int i = 0; i < ncores; i++) {
4899 int cnt = 0;
4900 for (int j = 0; j < nth_per_core; j++) {
4901 if (procarr[i * nth_per_core + j] != -1) {
4902 cnt++;
4903 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004904 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004905 nproc_at_core[i] = cnt;
4906 ncores_with_x_procs[cnt]++;
4907 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004908
Jonathan Peyton30419822017-05-12 18:01:32 +00004909 for (int i = 0; i <= nth_per_core; i++) {
4910 for (int j = i; j <= nth_per_core; j++) {
4911 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
4912 }
4913 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004914
Jonathan Peyton30419822017-05-12 18:01:32 +00004915 // Max number of processors
4916 int nproc = nth_per_core * ncores;
4917 // An array to keep number of threads per each context
4918 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4919 for (int i = 0; i < nproc; i++) {
4920 newarr[i] = 0;
4921 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004922
Jonathan Peyton30419822017-05-12 18:01:32 +00004923 int nth = nthreads;
4924 int flag = 0;
4925 while (nth > 0) {
4926 for (int j = 1; j <= nth_per_core; j++) {
4927 int cnt = ncores_with_x_to_max_procs[j];
4928 for (int i = 0; i < ncores; i++) {
4929 // Skip the core with 0 processors
4930 if (nproc_at_core[i] == 0) {
4931 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004932 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004933 for (int k = 0; k < nth_per_core; k++) {
4934 if (procarr[i * nth_per_core + k] != -1) {
4935 if (newarr[i * nth_per_core + k] == 0) {
4936 newarr[i * nth_per_core + k] = 1;
4937 cnt--;
4938 nth--;
4939 break;
4940 } else {
4941 if (flag != 0) {
4942 newarr[i * nth_per_core + k]++;
4943 cnt--;
4944 nth--;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004945 break;
Jonathan Peyton30419822017-05-12 18:01:32 +00004946 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004947 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004948 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004949 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004950 if (cnt == 0 || nth == 0) {
4951 break;
4952 }
4953 }
4954 if (nth == 0) {
4955 break;
4956 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004957 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004958 flag = 1;
4959 }
4960 int sum = 0;
4961 for (int i = 0; i < nproc; i++) {
4962 sum += newarr[i];
4963 if (sum > tid) {
4964 if (fine_gran) {
4965 int osID = procarr[i];
4966 KMP_CPU_SET(osID, mask);
4967 } else {
4968 int coreID = i / nth_per_core;
4969 for (int ii = 0; ii < nth_per_core; ii++) {
4970 int osID = procarr[coreID * nth_per_core + ii];
4971 if (osID != -1) {
4972 KMP_CPU_SET(osID, mask);
4973 }
4974 }
4975 }
4976 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004977 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004978 }
4979 __kmp_free(newarr);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004980 }
Jonathan Peyton30419822017-05-12 18:01:32 +00004981
4982 if (__kmp_affinity_verbose) {
4983 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4984 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4985 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4986 __kmp_gettid(), tid, buf);
4987 }
4988 __kmp_set_system_affinity(mask, TRUE);
4989 KMP_CPU_FREE_FROM_STACK(mask);
4990 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004991}
4992
Jonathan Peyton3076fa42016-01-12 17:21:55 +00004993#if KMP_OS_LINUX
4994// We don't need this entry for Windows because
4995// there is GetProcessAffinityMask() api
4996//
4997// The intended usage is indicated by these steps:
4998// 1) The user gets the current affinity mask
4999// 2) Then sets the affinity by calling this function
5000// 3) Error check the return value
5001// 4) Use non-OpenMP parallelization
5002// 5) Reset the affinity to what was stored in step 1)
5003#ifdef __cplusplus
5004extern "C"
5005#endif
Jonathan Peyton30419822017-05-12 18:01:32 +00005006 int
5007 kmp_set_thread_affinity_mask_initial()
Jonathan Peyton3076fa42016-01-12 17:21:55 +00005008// the function returns 0 on success,
5009// -1 if we cannot bind thread
5010// >0 (errno) if an error happened during binding
5011{
Jonathan Peyton30419822017-05-12 18:01:32 +00005012 int gtid = __kmp_get_gtid();
5013 if (gtid < 0) {
5014 // Do not touch non-omp threads
5015 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5016 "non-omp thread, returning\n"));
5017 return -1;
5018 }
5019 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5020 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5021 "affinity not initialized, returning\n"));
5022 return -1;
5023 }
5024 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5025 "set full mask for thread %d\n",
5026 gtid));
5027 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5028 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
Jonathan Peyton3076fa42016-01-12 17:21:55 +00005029}
5030#endif
5031
Alp Toker763b9392014-02-28 09:42:41 +00005032#endif // KMP_AFFINITY_SUPPORTED