blob: 5745f1eab6fd6fe7a67533a6d0d0f688ca472980 [file] [log] [blame]
Jim Cownie5e8470a2013-09-27 10:38:44 +00001/*
2 * kmp_affinity.cpp -- affinity management
Jim Cownie5e8470a2013-09-27 10:38:44 +00003 */
4
5
6//===----------------------------------------------------------------------===//
7//
8// The LLVM Compiler Infrastructure
9//
10// This file is dual licensed under the MIT and the University of Illinois Open
11// Source Licenses. See LICENSE.txt for details.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "kmp.h"
17#include "kmp_i18n.h"
18#include "kmp_io.h"
19#include "kmp_str.h"
Jim Cownie4cc4bb42014-10-07 16:25:50 +000020#include "kmp_wrapper_getpid.h"
Jonathan Peyton17078362015-09-10 19:22:07 +000021#include "kmp_affinity.h"
22
23// Store the real or imagined machine hierarchy here
24static hierarchy_info machine_hierarchy;
25
26void __kmp_cleanup_hierarchy() {
27 machine_hierarchy.fini();
28}
29
30void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
31 kmp_uint32 depth;
32 // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
33 if (TCR_1(machine_hierarchy.uninitialized))
34 machine_hierarchy.init(NULL, nproc);
Jonathan Peyton17078362015-09-10 19:22:07 +000035
Jonathan Peyton7dee82e2015-11-09 16:24:53 +000036 // Adjust the hierarchy in case num threads exceeds original
37 if (nproc > machine_hierarchy.base_num_threads)
38 machine_hierarchy.resize(nproc);
39
Jonathan Peyton17078362015-09-10 19:22:07 +000040 depth = machine_hierarchy.depth;
41 KMP_DEBUG_ASSERT(depth > 0);
Jonathan Peyton17078362015-09-10 19:22:07 +000042
43 thr_bar->depth = depth;
44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46}
Jim Cownie5e8470a2013-09-27 10:38:44 +000047
Alp Toker763b9392014-02-28 09:42:41 +000048#if KMP_AFFINITY_SUPPORTED
Jim Cownie5e8470a2013-09-27 10:38:44 +000049
50//
51// Print the affinity mask to the character array in a pretty format.
52//
Jonathan Peyton01dcf362015-11-30 20:02:59 +000053#if KMP_USE_HWLOC
54char *
55__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
56{
57 int num_chars_to_write, num_chars_written;
58 char* scan;
59 KMP_ASSERT(buf_len >= 40);
60
61 // bufsize of 0 just retrieves the needed buffer size.
62 num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask);
63
64 // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes
65 // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not
66 // take into account the '\0' character.
67 if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) {
68 KMP_SNPRINTF(buf, buf_len, "{<empty>}");
69 } else if(num_chars_to_write < buf_len - 3) {
70 // no problem fitting the mask into buf_len number of characters
71 buf[0] = '{';
72 // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer
73 num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask);
74 buf[num_chars_written+1] = '}';
75 buf[num_chars_written+2] = '\0';
76 } else {
77 // Need to truncate the affinity mask string and add ellipsis.
78 // To do this, we first write out the '{' + str(mask)
79 buf[0] = '{';
Jonathan Peyton1d5487c2016-04-25 21:08:31 +000080 hwloc_bitmap_list_snprintf(buf+1, buf_len-1, (hwloc_bitmap_t)mask);
Jonathan Peyton01dcf362015-11-30 20:02:59 +000081 // then, what we do here is go to the 7th to last character, then go backwards until we are NOT
82 // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't
83 // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get
84 // { 45, 67,...} instead.
85 scan = buf + buf_len - 7;
86 while(*scan >= '0' && *scan <= '9' && scan >= buf)
87 scan--;
88 *(scan+1) = '.';
89 *(scan+2) = '.';
90 *(scan+3) = '.';
91 *(scan+4) = '}';
92 *(scan+5) = '\0';
93 }
94 return buf;
95}
96#else
Jim Cownie5e8470a2013-09-27 10:38:44 +000097char *
98__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
99{
100 KMP_ASSERT(buf_len >= 40);
101 char *scan = buf;
102 char *end = buf + buf_len - 1;
103
104 //
105 // Find first element / check for empty set.
106 //
107 size_t i;
108 for (i = 0; i < KMP_CPU_SETSIZE; i++) {
109 if (KMP_CPU_ISSET(i, mask)) {
110 break;
111 }
112 }
113 if (i == KMP_CPU_SETSIZE) {
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000114 KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000115 while (*scan != '\0') scan++;
116 KMP_ASSERT(scan <= end);
117 return buf;
118 }
119
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000120 KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000121 while (*scan != '\0') scan++;
122 i++;
123 for (; i < KMP_CPU_SETSIZE; i++) {
124 if (! KMP_CPU_ISSET(i, mask)) {
125 continue;
126 }
127
128 //
129 // Check for buffer overflow. A string of the form ",<n>" will have
130 // at most 10 characters, plus we want to leave room to print ",...}"
131 // if the set is too large to print for a total of 15 characters.
132 // We already left room for '\0' in setting end.
133 //
134 if (end - scan < 15) {
135 break;
136 }
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000137 KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000138 while (*scan != '\0') scan++;
139 }
140 if (i < KMP_CPU_SETSIZE) {
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000141 KMP_SNPRINTF(scan, end-scan+1, ",...");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000142 while (*scan != '\0') scan++;
143 }
Jonathan Peyton7edeef12015-09-25 17:23:17 +0000144 KMP_SNPRINTF(scan, end-scan+1, "}");
Jim Cownie5e8470a2013-09-27 10:38:44 +0000145 while (*scan != '\0') scan++;
146 KMP_ASSERT(scan <= end);
147 return buf;
148}
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000149#endif // KMP_USE_HWLOC
Jim Cownie5e8470a2013-09-27 10:38:44 +0000150
151
152void
153__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
154{
155 KMP_CPU_ZERO(mask);
156
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000157# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000158
159 if (__kmp_num_proc_groups > 1) {
160 int group;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000161 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
162 for (group = 0; group < __kmp_num_proc_groups; group++) {
163 int i;
164 int num = __kmp_GetActiveProcessorCount(group);
165 for (i = 0; i < num; i++) {
166 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
167 }
168 }
169 }
170 else
171
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000172# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000173
174 {
175 int proc;
176 for (proc = 0; proc < __kmp_xproc; proc++) {
177 KMP_CPU_SET(proc, mask);
178 }
179 }
180}
181
Jim Cownie5e8470a2013-09-27 10:38:44 +0000182//
183// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
184// called to renumber the labels from [0..n] and place them into the child_num
185// vector of the address object. This is done in case the labels used for
Alp Toker8f2d3f02014-02-24 10:40:15 +0000186// the children at one node of the hierarchy differ from those used for
Jim Cownie5e8470a2013-09-27 10:38:44 +0000187// another node at the same level. Example: suppose the machine has 2 nodes
188// with 2 packages each. The first node contains packages 601 and 602, and
189// second node contains packages 603 and 604. If we try to sort the table
190// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
191// because we are paying attention to the labels themselves, not the ordinal
192// child numbers. By using the child numbers in the sort, the result is
193// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
194//
195static void
196__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
197 int numAddrs)
198{
199 KMP_DEBUG_ASSERT(numAddrs > 0);
200 int depth = address2os->first.depth;
201 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
202 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
203 * sizeof(unsigned));
204 int labCt;
205 for (labCt = 0; labCt < depth; labCt++) {
206 address2os[0].first.childNums[labCt] = counts[labCt] = 0;
207 lastLabel[labCt] = address2os[0].first.labels[labCt];
208 }
209 int i;
210 for (i = 1; i < numAddrs; i++) {
211 for (labCt = 0; labCt < depth; labCt++) {
212 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
213 int labCt2;
214 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
215 counts[labCt2] = 0;
216 lastLabel[labCt2] = address2os[i].first.labels[labCt2];
217 }
218 counts[labCt]++;
219 lastLabel[labCt] = address2os[i].first.labels[labCt];
220 break;
221 }
222 }
223 for (labCt = 0; labCt < depth; labCt++) {
224 address2os[i].first.childNums[labCt] = counts[labCt];
225 }
226 for (; labCt < (int)Address::maxDepth; labCt++) {
227 address2os[i].first.childNums[labCt] = 0;
228 }
229 }
Andrey Churbanovcb28d6e2016-07-08 14:40:20 +0000230 __kmp_free(lastLabel);
231 __kmp_free(counts);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000232}
233
234
235//
236// All of the __kmp_affinity_create_*_map() routines should set
237// __kmp_affinity_masks to a vector of affinity mask objects of length
238// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
239// return the number of levels in the machine topology tree (zero if
240// __kmp_affinity_type == affinity_none).
241//
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000242// All of the __kmp_affinity_create_*_map() routines should set *__kmp_affin_fullMask
Jim Cownie5e8470a2013-09-27 10:38:44 +0000243// to the affinity mask for the initialization thread. They need to save and
244// restore the mask, and it could be needed later, so saving it is just an
245// optimization to avoid calling kmp_get_system_affinity() again.
246//
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000247kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000248
249static int nCoresPerPkg, nPackages;
Andrey Churbanovf696c822015-01-27 16:55:43 +0000250static int __kmp_nThreadsPerCore;
251#ifndef KMP_DFLT_NTH_CORES
252static int __kmp_ncores;
253#endif
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000254static int *__kmp_pu_os_idx = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000255
256//
257// __kmp_affinity_uniform_topology() doesn't work when called from
258// places which support arbitrarily many levels in the machine topology
259// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
260// __kmp_affinity_create_x2apicid_map().
261//
262inline static bool
263__kmp_affinity_uniform_topology()
264{
265 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
266}
267
268
269//
270// Print out the detailed machine topology map, i.e. the physical locations
271// of each OS proc.
272//
273static void
274__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
275 int pkgLevel, int coreLevel, int threadLevel)
276{
277 int proc;
278
279 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
280 for (proc = 0; proc < len; proc++) {
281 int level;
282 kmp_str_buf_t buf;
283 __kmp_str_buf_init(&buf);
284 for (level = 0; level < depth; level++) {
285 if (level == threadLevel) {
286 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
287 }
288 else if (level == coreLevel) {
289 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
290 }
291 else if (level == pkgLevel) {
292 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
293 }
294 else if (level > pkgLevel) {
295 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
296 level - pkgLevel - 1);
297 }
298 else {
299 __kmp_str_buf_print(&buf, "L%d ", level);
300 }
301 __kmp_str_buf_print(&buf, "%d ",
302 address2os[proc].first.labels[level]);
303 }
304 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
305 buf.str);
306 __kmp_str_buf_free(&buf);
307 }
308}
309
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000310#if KMP_USE_HWLOC
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000311
312// This function removes the topology levels that are radix 1 and don't offer
313// further information about the topology. The most common example is when you
314// have one thread context per core, we don't want the extra thread context
315// level if it offers no unique labels. So they are removed.
316// return value: the new depth of address2os
317static int
318__kmp_affinity_remove_radix_one_levels(AddrUnsPair *address2os, int nActiveThreads, int depth, int* pkgLevel, int* coreLevel, int* threadLevel) {
319 int level;
320 int i;
321 int radix1_detected;
322
323 for (level = depth-1; level >= 0; --level) {
324 // Always keep the package level
325 if (level == *pkgLevel)
326 continue;
327 // Detect if this level is radix 1
328 radix1_detected = 1;
329 for (i = 1; i < nActiveThreads; ++i) {
330 if (address2os[0].first.labels[level] != address2os[i].first.labels[level]) {
331 // There are differing label values for this level so it stays
332 radix1_detected = 0;
333 break;
334 }
335 }
336 if (!radix1_detected)
337 continue;
338 // Radix 1 was detected
339 if (level == *threadLevel) {
340 // If only one thread per core, then just decrement
341 // the depth which removes the threadlevel from address2os
342 for (i = 0; i < nActiveThreads; ++i) {
343 address2os[i].first.depth--;
344 }
345 *threadLevel = -1;
346 } else if (level == *coreLevel) {
347 // For core level, we move the thread labels over if they are still
348 // valid (*threadLevel != -1), and also reduce the depth another level
349 for (i = 0; i < nActiveThreads; ++i) {
350 if (*threadLevel != -1) {
351 address2os[i].first.labels[*coreLevel] = address2os[i].first.labels[*threadLevel];
352 }
353 address2os[i].first.depth--;
354 }
355 *coreLevel = -1;
356 }
357 }
358 return address2os[0].first.depth;
359}
360
361// Returns the number of objects of type 'type' below 'obj' within the topology tree structure.
362// e.g., if obj is a HWLOC_OBJ_SOCKET object, and type is HWLOC_OBJ_PU, then
363// this will return the number of PU's under the SOCKET object.
364static int
365__kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, hwloc_obj_type_t type) {
366 int retval = 0;
367 hwloc_obj_t first;
368 for(first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, obj->logical_index, type, 0);
369 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == obj;
370 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, first))
371 {
372 ++retval;
373 }
374 return retval;
375}
376
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000377static int
378__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
379 kmp_i18n_id_t *const msg_id)
380{
381 *address2os = NULL;
382 *msg_id = kmp_i18n_null;
383
384 //
385 // Save the affinity mask for the current thread.
386 //
387 kmp_affin_mask_t *oldMask;
388 KMP_CPU_ALLOC(oldMask);
389 __kmp_get_system_affinity(oldMask, TRUE);
390
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000391 int depth = 3;
392 int pkgLevel = 0;
393 int coreLevel = 1;
394 int threadLevel = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000395
396 if (! KMP_AFFINITY_CAPABLE())
397 {
398 //
399 // Hack to try and infer the machine topology using only the data
400 // available from cpuid on the current thread, and __kmp_xproc.
401 //
402 KMP_ASSERT(__kmp_affinity_type == affinity_none);
403
Jonathan Peytonbf357712016-06-16 20:31:19 +0000404 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, 0), HWLOC_OBJ_CORE);
405 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000406 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
407 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
408 if (__kmp_affinity_verbose) {
409 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
410 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
411 if (__kmp_affinity_uniform_topology()) {
412 KMP_INFORM(Uniform, "KMP_AFFINITY");
413 } else {
414 KMP_INFORM(NonUniform, "KMP_AFFINITY");
415 }
416 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
417 __kmp_nThreadsPerCore, __kmp_ncores);
418 }
Jonathan Peyton72a84982016-06-16 20:14:54 +0000419 KMP_CPU_FREE(oldMask);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000420 return 0;
421 }
422
423 //
424 // Allocate the data structure to be returned.
425 //
426 AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000427 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000428
Jonathan Peytonbf357712016-06-16 20:31:19 +0000429 //
430 // When affinity is off, this routine will still be called to set
431 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
432 // nCoresPerPkg, & nPackages. Make sure all these vars are set
433 // correctly, and return if affinity is not enabled.
434 //
435
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000436 hwloc_obj_t pu;
437 hwloc_obj_t core;
438 hwloc_obj_t socket;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000439 int nActiveThreads = 0;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000440 int socket_identifier = 0;
Jonathan Peytonbf357712016-06-16 20:31:19 +0000441 // re-calculate globals to count only accessible resources
442 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000443 for(socket = hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, 0);
444 socket != NULL;
445 socket = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, socket),
446 socket_identifier++)
447 {
448 int core_identifier = 0;
Jonathan Peytonbf357712016-06-16 20:31:19 +0000449 int num_active_cores = 0;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000450 for(core = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, socket->type, socket->logical_index, HWLOC_OBJ_CORE, 0);
451 core != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, socket->type, core) == socket;
452 core = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, core),
453 core_identifier++)
454 {
455 int pu_identifier = 0;
Jonathan Peytonbf357712016-06-16 20:31:19 +0000456 int num_active_threads = 0;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000457 for(pu = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, core->type, core->logical_index, HWLOC_OBJ_PU, 0);
458 pu != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, core->type, pu) == core;
459 pu = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PU, pu),
460 pu_identifier++)
461 {
462 Address addr(3);
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000463 if(! KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
Jonathan Peytonbf357712016-06-16 20:31:19 +0000464 continue; // skip inactive (inaccessible) unit
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000465 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
466 socket->os_index, socket->logical_index, core->os_index, core->logical_index, pu->os_index,pu->logical_index));
467 addr.labels[0] = socket_identifier; // package
468 addr.labels[1] = core_identifier; // core
469 addr.labels[2] = pu_identifier; // pu
470 retval[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000471 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; // keep os index for each active pu
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000472 nActiveThreads++;
Jonathan Peytonbf357712016-06-16 20:31:19 +0000473 ++num_active_threads; // count active threads per core
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000474 }
Jonathan Peytonbf357712016-06-16 20:31:19 +0000475 if (num_active_threads) { // were there any active threads on the core?
476 ++__kmp_ncores; // count total active cores
477 ++num_active_cores; // count active cores per socket
478 if (num_active_threads > __kmp_nThreadsPerCore)
479 __kmp_nThreadsPerCore = num_active_threads; // calc maximum
480 }
481 }
482 if (num_active_cores) { // were there any active cores on the socket?
483 ++nPackages; // count total active packages
484 if (num_active_cores > nCoresPerPkg)
485 nCoresPerPkg = num_active_cores; // calc maximum
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000486 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000487 }
488
489 //
490 // If there's only one thread context to bind to, return now.
491 //
Jonathan Peytonbf357712016-06-16 20:31:19 +0000492 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000493 KMP_ASSERT(nActiveThreads > 0);
494 if (nActiveThreads == 1) {
495 __kmp_ncores = nPackages = 1;
496 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
497 if (__kmp_affinity_verbose) {
498 char buf[KMP_AFFIN_MASK_PRINT_LEN];
499 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
500
501 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
502 if (__kmp_affinity_respect_mask) {
503 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
504 } else {
505 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
506 }
507 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
508 KMP_INFORM(Uniform, "KMP_AFFINITY");
509 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
510 __kmp_nThreadsPerCore, __kmp_ncores);
511 }
512
513 if (__kmp_affinity_type == affinity_none) {
514 __kmp_free(retval);
515 KMP_CPU_FREE(oldMask);
516 return 0;
517 }
518
519 //
520 // Form an Address object which only includes the package level.
521 //
522 Address addr(1);
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000523 addr.labels[0] = retval[0].first.labels[pkgLevel];
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000524 retval[0].first = addr;
525
526 if (__kmp_affinity_gran_levels < 0) {
527 __kmp_affinity_gran_levels = 0;
528 }
529
530 if (__kmp_affinity_verbose) {
531 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
532 }
533
534 *address2os = retval;
535 KMP_CPU_FREE(oldMask);
536 return 1;
537 }
538
539 //
540 // Sort the table by physical Id.
541 //
542 qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
543
544 //
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000545 // Check to see if the machine topology is uniform
546 //
Jonathan Peytonbf357712016-06-16 20:31:19 +0000547 unsigned uniform = (nPackages * nCoresPerPkg * __kmp_nThreadsPerCore == nActiveThreads);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000548
549 //
550 // Print the machine topology summary.
551 //
552 if (__kmp_affinity_verbose) {
553 char mask[KMP_AFFIN_MASK_PRINT_LEN];
554 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
555
556 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
557 if (__kmp_affinity_respect_mask) {
558 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
559 } else {
560 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
561 }
562 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
563 if (uniform) {
564 KMP_INFORM(Uniform, "KMP_AFFINITY");
565 } else {
566 KMP_INFORM(NonUniform, "KMP_AFFINITY");
567 }
568
569 kmp_str_buf_t buf;
570 __kmp_str_buf_init(&buf);
571
Jonathan Peytonbf357712016-06-16 20:31:19 +0000572 __kmp_str_buf_print(&buf, "%d", nPackages);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000573 //for (level = 1; level <= pkgLevel; level++) {
574 // __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
575 // }
576 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
577 __kmp_nThreadsPerCore, __kmp_ncores);
578
579 __kmp_str_buf_free(&buf);
580 }
581
582 if (__kmp_affinity_type == affinity_none) {
Jonathan Peyton72a84982016-06-16 20:14:54 +0000583 __kmp_free(retval);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000584 KMP_CPU_FREE(oldMask);
585 return 0;
586 }
587
588 //
589 // Find any levels with radiix 1, and remove them from the map
590 // (except for the package level).
591 //
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000592 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, &pkgLevel, &coreLevel, &threadLevel);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000593
594 if (__kmp_affinity_gran_levels < 0) {
595 //
596 // Set the granularity level based on what levels are modeled
597 // in the machine topology map.
598 //
599 __kmp_affinity_gran_levels = 0;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000600 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000601 __kmp_affinity_gran_levels++;
602 }
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000603 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000604 __kmp_affinity_gran_levels++;
605 }
606 if (__kmp_affinity_gran > affinity_gran_package) {
607 __kmp_affinity_gran_levels++;
608 }
609 }
610
611 if (__kmp_affinity_verbose) {
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000612 __kmp_affinity_print_topology(retval, nActiveThreads, depth, pkgLevel,
613 coreLevel, threadLevel);
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000614 }
615
616 KMP_CPU_FREE(oldMask);
617 *address2os = retval;
Jonathan Peyton202a24d2016-06-13 17:30:08 +0000618 return depth;
Jonathan Peyton01dcf362015-11-30 20:02:59 +0000619}
620#endif // KMP_USE_HWLOC
Jim Cownie5e8470a2013-09-27 10:38:44 +0000621
622//
623// If we don't know how to retrieve the machine's processor topology, or
624// encounter an error in doing so, this routine is called to form a "flat"
625// mapping of os thread id's <-> processor id's.
626//
627static int
628__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
629 kmp_i18n_id_t *const msg_id)
630{
631 *address2os = NULL;
632 *msg_id = kmp_i18n_null;
633
634 //
635 // Even if __kmp_affinity_type == affinity_none, this routine might still
Andrey Churbanovf696c822015-01-27 16:55:43 +0000636 // called to set __kmp_ncores, as well as
Jim Cownie5e8470a2013-09-27 10:38:44 +0000637 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
638 //
639 if (! KMP_AFFINITY_CAPABLE()) {
640 KMP_ASSERT(__kmp_affinity_type == affinity_none);
641 __kmp_ncores = nPackages = __kmp_xproc;
642 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000643 if (__kmp_affinity_verbose) {
644 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
645 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
646 KMP_INFORM(Uniform, "KMP_AFFINITY");
647 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
648 __kmp_nThreadsPerCore, __kmp_ncores);
649 }
650 return 0;
651 }
652
653 //
654 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +0000655 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +0000656 // nCoresPerPkg, & nPackages. Make sure all these vars are set
657 // correctly, and return now if affinity is not enabled.
658 //
659 __kmp_ncores = nPackages = __kmp_avail_proc;
660 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000661 if (__kmp_affinity_verbose) {
662 char buf[KMP_AFFIN_MASK_PRINT_LEN];
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000663 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000664
665 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
666 if (__kmp_affinity_respect_mask) {
667 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
668 } else {
669 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
670 }
671 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
672 KMP_INFORM(Uniform, "KMP_AFFINITY");
673 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
674 __kmp_nThreadsPerCore, __kmp_ncores);
675 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000676 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
677 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000678 if (__kmp_affinity_type == affinity_none) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000679 int avail_ct = 0;
680 unsigned int i;
681 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
682 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask))
683 continue;
684 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
685 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000686 return 0;
687 }
688
689 //
690 // Contruct the data structure to be returned.
691 //
692 *address2os = (AddrUnsPair*)
693 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
694 int avail_ct = 0;
695 unsigned int i;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000696 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000697 //
698 // Skip this proc if it is not included in the machine model.
699 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000700 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000701 continue;
702 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000703 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
Jim Cownie5e8470a2013-09-27 10:38:44 +0000704 Address addr(1);
705 addr.labels[0] = i;
706 (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
707 }
708 if (__kmp_affinity_verbose) {
709 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
710 }
711
712 if (__kmp_affinity_gran_levels < 0) {
713 //
714 // Only the package level is modeled in the machine topology map,
715 // so the #levels of granularity is either 0 or 1.
716 //
717 if (__kmp_affinity_gran > affinity_gran_package) {
718 __kmp_affinity_gran_levels = 1;
719 }
720 else {
721 __kmp_affinity_gran_levels = 0;
722 }
723 }
724 return 1;
725}
726
727
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000728# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +0000729
730//
731// If multiple Windows* OS processor groups exist, we can create a 2-level
732// topology map with the groups at level 0 and the individual procs at
733// level 1.
734//
735// This facilitates letting the threads float among all procs in a group,
736// if granularity=group (the default when there are multiple groups).
737//
738static int
739__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
740 kmp_i18n_id_t *const msg_id)
741{
742 *address2os = NULL;
743 *msg_id = kmp_i18n_null;
744
745 //
746 // If we don't have multiple processor groups, return now.
747 // The flat mapping will be used.
748 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000749 if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(__kmp_affin_fullMask) >= 0)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000750 // FIXME set *msg_id
751 return -1;
752 }
753
754 //
755 // Contruct the data structure to be returned.
756 //
757 *address2os = (AddrUnsPair*)
758 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000759 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
760 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +0000761 int avail_ct = 0;
762 int i;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000763 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000764 //
765 // Skip this proc if it is not included in the machine model.
766 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +0000767 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +0000768 continue;
769 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +0000770 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
Jim Cownie5e8470a2013-09-27 10:38:44 +0000771 Address addr(2);
772 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
773 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
774 (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
775
776 if (__kmp_affinity_verbose) {
777 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
778 addr.labels[1]);
779 }
780 }
781
782 if (__kmp_affinity_gran_levels < 0) {
783 if (__kmp_affinity_gran == affinity_gran_group) {
784 __kmp_affinity_gran_levels = 1;
785 }
786 else if ((__kmp_affinity_gran == affinity_gran_fine)
787 || (__kmp_affinity_gran == affinity_gran_thread)) {
788 __kmp_affinity_gran_levels = 0;
789 }
790 else {
791 const char *gran_str = NULL;
792 if (__kmp_affinity_gran == affinity_gran_core) {
793 gran_str = "core";
794 }
795 else if (__kmp_affinity_gran == affinity_gran_package) {
796 gran_str = "package";
797 }
798 else if (__kmp_affinity_gran == affinity_gran_node) {
799 gran_str = "node";
800 }
801 else {
802 KMP_ASSERT(0);
803 }
804
805 // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
806 __kmp_affinity_gran_levels = 0;
807 }
808 }
809 return 2;
810}
811
Andrey Churbanov7daf9802015-01-27 16:52:57 +0000812# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +0000813
814
815# if KMP_ARCH_X86 || KMP_ARCH_X86_64
816
817static int
818__kmp_cpuid_mask_width(int count) {
819 int r = 0;
820
821 while((1<<r) < count)
822 ++r;
823 return r;
824}
825
826
827class apicThreadInfo {
828public:
829 unsigned osId; // param to __kmp_affinity_bind_thread
830 unsigned apicId; // from cpuid after binding
831 unsigned maxCoresPerPkg; // ""
832 unsigned maxThreadsPerPkg; // ""
833 unsigned pkgId; // inferred from above values
834 unsigned coreId; // ""
835 unsigned threadId; // ""
836};
837
838
839static int
840__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
841{
842 const apicThreadInfo *aa = (const apicThreadInfo *)a;
843 const apicThreadInfo *bb = (const apicThreadInfo *)b;
844 if (aa->osId < bb->osId) return -1;
845 if (aa->osId > bb->osId) return 1;
846 return 0;
847}
848
849
850static int
851__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
852{
853 const apicThreadInfo *aa = (const apicThreadInfo *)a;
854 const apicThreadInfo *bb = (const apicThreadInfo *)b;
855 if (aa->pkgId < bb->pkgId) return -1;
856 if (aa->pkgId > bb->pkgId) return 1;
857 if (aa->coreId < bb->coreId) return -1;
858 if (aa->coreId > bb->coreId) return 1;
859 if (aa->threadId < bb->threadId) return -1;
860 if (aa->threadId > bb->threadId) return 1;
861 return 0;
862}
863
864
865//
866// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
867// an algorithm which cycles through the available os threads, setting
868// the current thread's affinity mask to that thread, and then retrieves
869// the Apic Id for each thread context using the cpuid instruction.
870//
871static int
872__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
873 kmp_i18n_id_t *const msg_id)
874{
Andrey Churbanov1c331292015-01-27 17:03:42 +0000875 kmp_cpuid buf;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000876 int rc;
877 *address2os = NULL;
878 *msg_id = kmp_i18n_null;
879
Andrey Churbanov1c331292015-01-27 17:03:42 +0000880 //
881 // Check if cpuid leaf 4 is supported.
882 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000883 __kmp_x86_cpuid(0, 0, &buf);
884 if (buf.eax < 4) {
885 *msg_id = kmp_i18n_str_NoLeaf4Support;
886 return -1;
887 }
Jim Cownie5e8470a2013-09-27 10:38:44 +0000888
889 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000890 // The algorithm used starts by setting the affinity to each available
Andrey Churbanov1c331292015-01-27 17:03:42 +0000891 // thread and retrieving info from the cpuid instruction, so if we are
892 // not capable of calling __kmp_get_system_affinity() and
893 // _kmp_get_system_affinity(), then we need to do something else - use
894 // the defaults that we calculated from issuing cpuid without binding
895 // to each proc.
Jim Cownie5e8470a2013-09-27 10:38:44 +0000896 //
897 if (! KMP_AFFINITY_CAPABLE()) {
898 //
899 // Hack to try and infer the machine topology using only the data
900 // available from cpuid on the current thread, and __kmp_xproc.
901 //
902 KMP_ASSERT(__kmp_affinity_type == affinity_none);
903
904 //
905 // Get an upper bound on the number of threads per package using
906 // cpuid(1).
907 //
908 // On some OS/chps combinations where HT is supported by the chip
909 // but is disabled, this value will be 2 on a single core chip.
910 // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
911 //
Jim Cownie5e8470a2013-09-27 10:38:44 +0000912 __kmp_x86_cpuid(1, 0, &buf);
913 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
914 if (maxThreadsPerPkg == 0) {
915 maxThreadsPerPkg = 1;
916 }
917
918 //
919 // The num cores per pkg comes from cpuid(4).
920 // 1 must be added to the encoded value.
921 //
922 // The author of cpu_count.cpp treated this only an upper bound
923 // on the number of cores, but I haven't seen any cases where it
924 // was greater than the actual number of cores, so we will treat
925 // it as exact in this block of code.
926 //
927 // First, we need to check if cpuid(4) is supported on this chip.
928 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
929 // has the value n or greater.
930 //
931 __kmp_x86_cpuid(0, 0, &buf);
932 if (buf.eax >= 4) {
933 __kmp_x86_cpuid(4, 0, &buf);
934 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
935 }
936 else {
937 nCoresPerPkg = 1;
938 }
939
940 //
941 // There is no way to reliably tell if HT is enabled without issuing
942 // the cpuid instruction from every thread, can correlating the cpuid
943 // info, so if the machine is not affinity capable, we assume that HT
944 // is off. We have seen quite a few machines where maxThreadsPerPkg
945 // is 2, yet the machine does not support HT.
946 //
947 // - Older OSes are usually found on machines with older chips, which
948 // do not support HT.
949 //
950 // - The performance penalty for mistakenly identifying a machine as
951 // HT when it isn't (which results in blocktime being incorrecly set
952 // to 0) is greater than the penalty when for mistakenly identifying
953 // a machine as being 1 thread/core when it is really HT enabled
954 // (which results in blocktime being incorrectly set to a positive
955 // value).
956 //
957 __kmp_ncores = __kmp_xproc;
958 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
959 __kmp_nThreadsPerCore = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +0000960 if (__kmp_affinity_verbose) {
961 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
962 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
963 if (__kmp_affinity_uniform_topology()) {
964 KMP_INFORM(Uniform, "KMP_AFFINITY");
965 } else {
966 KMP_INFORM(NonUniform, "KMP_AFFINITY");
967 }
968 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
969 __kmp_nThreadsPerCore, __kmp_ncores);
970 }
971 return 0;
972 }
973
974 //
975 //
976 // From here on, we can assume that it is safe to call
977 // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
978 // even if __kmp_affinity_type = affinity_none.
979 //
980
981 //
982 // Save the affinity mask for the current thread.
983 //
984 kmp_affin_mask_t *oldMask;
985 KMP_CPU_ALLOC(oldMask);
986 KMP_ASSERT(oldMask != NULL);
987 __kmp_get_system_affinity(oldMask, TRUE);
988
989 //
990 // Run through each of the available contexts, binding the current thread
991 // to it, and obtaining the pertinent information using the cpuid instr.
992 //
993 // The relevant information is:
994 //
995 // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
996 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
997 //
998 // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
999 // value of this field determines the width of the core# + thread#
1000 // fields in the Apic Id. It is also an upper bound on the number
1001 // of threads per package, but it has been verified that situations
1002 // happen were it is not exact. In particular, on certain OS/chip
1003 // combinations where Intel(R) Hyper-Threading Technology is supported
1004 // by the chip but has
1005 // been disabled, the value of this field will be 2 (for a single core
1006 // chip). On other OS/chip combinations supporting
1007 // Intel(R) Hyper-Threading Technology, the value of
1008 // this field will be 1 when Intel(R) Hyper-Threading Technology is
1009 // disabled and 2 when it is enabled.
1010 //
1011 // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
1012 // value of this field (+1) determines the width of the core# field in
1013 // the Apic Id. The comments in "cpucount.cpp" say that this value is
1014 // an upper bound, but the IA-32 architecture manual says that it is
1015 // exactly the number of cores per package, and I haven't seen any
1016 // case where it wasn't.
1017 //
1018 // From this information, deduce the package Id, core Id, and thread Id,
1019 // and set the corresponding fields in the apicThreadInfo struct.
1020 //
1021 unsigned i;
1022 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1023 __kmp_avail_proc * sizeof(apicThreadInfo));
1024 unsigned nApics = 0;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00001025 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001026 //
1027 // Skip this proc if it is not included in the machine model.
1028 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00001029 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001030 continue;
1031 }
1032 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1033
1034 __kmp_affinity_bind_thread(i);
1035 threadInfo[nApics].osId = i;
1036
1037 //
1038 // The apic id and max threads per pkg come from cpuid(1).
1039 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00001040 __kmp_x86_cpuid(1, 0, &buf);
1041 if (! (buf.edx >> 9) & 1) {
1042 __kmp_set_system_affinity(oldMask, TRUE);
1043 __kmp_free(threadInfo);
1044 KMP_CPU_FREE(oldMask);
1045 *msg_id = kmp_i18n_str_ApicNotPresent;
1046 return -1;
1047 }
1048 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1049 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1050 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1051 threadInfo[nApics].maxThreadsPerPkg = 1;
1052 }
1053
1054 //
1055 // Max cores per pkg comes from cpuid(4).
1056 // 1 must be added to the encoded value.
1057 //
1058 // First, we need to check if cpuid(4) is supported on this chip.
1059 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
1060 // has the value n or greater.
1061 //
1062 __kmp_x86_cpuid(0, 0, &buf);
1063 if (buf.eax >= 4) {
1064 __kmp_x86_cpuid(4, 0, &buf);
1065 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1066 }
1067 else {
1068 threadInfo[nApics].maxCoresPerPkg = 1;
1069 }
1070
1071 //
1072 // Infer the pkgId / coreId / threadId using only the info
1073 // obtained locally.
1074 //
1075 int widthCT = __kmp_cpuid_mask_width(
1076 threadInfo[nApics].maxThreadsPerPkg);
1077 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1078
1079 int widthC = __kmp_cpuid_mask_width(
1080 threadInfo[nApics].maxCoresPerPkg);
1081 int widthT = widthCT - widthC;
1082 if (widthT < 0) {
1083 //
1084 // I've never seen this one happen, but I suppose it could, if
1085 // the cpuid instruction on a chip was really screwed up.
1086 // Make sure to restore the affinity mask before the tail call.
1087 //
1088 __kmp_set_system_affinity(oldMask, TRUE);
1089 __kmp_free(threadInfo);
1090 KMP_CPU_FREE(oldMask);
1091 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1092 return -1;
1093 }
1094
1095 int maskC = (1 << widthC) - 1;
1096 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
1097 &maskC;
1098
1099 int maskT = (1 << widthT) - 1;
1100 threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
1101
1102 nApics++;
1103 }
1104
1105 //
1106 // We've collected all the info we need.
1107 // Restore the old affinity mask for this thread.
1108 //
1109 __kmp_set_system_affinity(oldMask, TRUE);
1110
1111 //
1112 // If there's only one thread context to bind to, form an Address object
1113 // with depth 1 and return immediately (or, if affinity is off, set
1114 // address2os to NULL and return).
1115 //
1116 // If it is configured to omit the package level when there is only a
1117 // single package, the logic at the end of this routine won't work if
1118 // there is only a single thread - it would try to form an Address
1119 // object with depth 0.
1120 //
1121 KMP_ASSERT(nApics > 0);
1122 if (nApics == 1) {
1123 __kmp_ncores = nPackages = 1;
1124 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001125 if (__kmp_affinity_verbose) {
1126 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1127 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1128
1129 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1130 if (__kmp_affinity_respect_mask) {
1131 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1132 } else {
1133 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1134 }
1135 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1136 KMP_INFORM(Uniform, "KMP_AFFINITY");
1137 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1138 __kmp_nThreadsPerCore, __kmp_ncores);
1139 }
1140
1141 if (__kmp_affinity_type == affinity_none) {
1142 __kmp_free(threadInfo);
1143 KMP_CPU_FREE(oldMask);
1144 return 0;
1145 }
1146
1147 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
1148 Address addr(1);
1149 addr.labels[0] = threadInfo[0].pkgId;
1150 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1151
1152 if (__kmp_affinity_gran_levels < 0) {
1153 __kmp_affinity_gran_levels = 0;
1154 }
1155
1156 if (__kmp_affinity_verbose) {
1157 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1158 }
1159
1160 __kmp_free(threadInfo);
1161 KMP_CPU_FREE(oldMask);
1162 return 1;
1163 }
1164
1165 //
1166 // Sort the threadInfo table by physical Id.
1167 //
1168 qsort(threadInfo, nApics, sizeof(*threadInfo),
1169 __kmp_affinity_cmp_apicThreadInfo_phys_id);
1170
1171 //
1172 // The table is now sorted by pkgId / coreId / threadId, but we really
1173 // don't know the radix of any of the fields. pkgId's may be sparsely
1174 // assigned among the chips on a system. Although coreId's are usually
1175 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
1176 // [0..threadsPerCore-1], we don't want to make any such assumptions.
1177 //
1178 // For that matter, we don't know what coresPerPkg and threadsPerCore
1179 // (or the total # packages) are at this point - we want to determine
1180 // that now. We only have an upper bound on the first two figures.
1181 //
1182 // We also perform a consistency check at this point: the values returned
1183 // by the cpuid instruction for any thread bound to a given package had
1184 // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1185 //
1186 nPackages = 1;
1187 nCoresPerPkg = 1;
1188 __kmp_nThreadsPerCore = 1;
1189 unsigned nCores = 1;
1190
1191 unsigned pkgCt = 1; // to determine radii
1192 unsigned lastPkgId = threadInfo[0].pkgId;
1193 unsigned coreCt = 1;
1194 unsigned lastCoreId = threadInfo[0].coreId;
1195 unsigned threadCt = 1;
1196 unsigned lastThreadId = threadInfo[0].threadId;
1197
1198 // intra-pkg consist checks
1199 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1200 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1201
1202 for (i = 1; i < nApics; i++) {
1203 if (threadInfo[i].pkgId != lastPkgId) {
1204 nCores++;
1205 pkgCt++;
1206 lastPkgId = threadInfo[i].pkgId;
1207 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
1208 coreCt = 1;
1209 lastCoreId = threadInfo[i].coreId;
1210 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1211 threadCt = 1;
1212 lastThreadId = threadInfo[i].threadId;
1213
1214 //
1215 // This is a different package, so go on to the next iteration
1216 // without doing any consistency checks. Reset the consistency
1217 // check vars, though.
1218 //
1219 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1220 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1221 continue;
1222 }
1223
1224 if (threadInfo[i].coreId != lastCoreId) {
1225 nCores++;
1226 coreCt++;
1227 lastCoreId = threadInfo[i].coreId;
1228 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1229 threadCt = 1;
1230 lastThreadId = threadInfo[i].threadId;
1231 }
1232 else if (threadInfo[i].threadId != lastThreadId) {
1233 threadCt++;
1234 lastThreadId = threadInfo[i].threadId;
1235 }
1236 else {
1237 __kmp_free(threadInfo);
1238 KMP_CPU_FREE(oldMask);
1239 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1240 return -1;
1241 }
1242
1243 //
1244 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1245 // fields agree between all the threads bounds to a given package.
1246 //
1247 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
1248 || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1249 __kmp_free(threadInfo);
1250 KMP_CPU_FREE(oldMask);
1251 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1252 return -1;
1253 }
1254 }
1255 nPackages = pkgCt;
1256 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
1257 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1258
1259 //
1260 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00001261 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00001262 // nCoresPerPkg, & nPackages. Make sure all these vars are set
1263 // correctly, and return now if affinity is not enabled.
1264 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00001265 __kmp_ncores = nCores;
1266 if (__kmp_affinity_verbose) {
1267 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1268 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1269
1270 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1271 if (__kmp_affinity_respect_mask) {
1272 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1273 } else {
1274 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1275 }
1276 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1277 if (__kmp_affinity_uniform_topology()) {
1278 KMP_INFORM(Uniform, "KMP_AFFINITY");
1279 } else {
1280 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1281 }
1282 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1283 __kmp_nThreadsPerCore, __kmp_ncores);
1284
1285 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00001286 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1287 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1288 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1289 for (i = 0; i < nApics; ++i) {
1290 __kmp_pu_os_idx[i] = threadInfo[i].osId;
1291 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001292 if (__kmp_affinity_type == affinity_none) {
1293 __kmp_free(threadInfo);
1294 KMP_CPU_FREE(oldMask);
1295 return 0;
1296 }
1297
1298 //
1299 // Now that we've determined the number of packages, the number of cores
1300 // per package, and the number of threads per core, we can construct the
1301 // data structure that is to be returned.
1302 //
1303 int pkgLevel = 0;
1304 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1305 int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1306 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1307
1308 KMP_ASSERT(depth > 0);
1309 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1310
1311 for (i = 0; i < nApics; ++i) {
1312 Address addr(depth);
1313 unsigned os = threadInfo[i].osId;
1314 int d = 0;
1315
1316 if (pkgLevel >= 0) {
1317 addr.labels[d++] = threadInfo[i].pkgId;
1318 }
1319 if (coreLevel >= 0) {
1320 addr.labels[d++] = threadInfo[i].coreId;
1321 }
1322 if (threadLevel >= 0) {
1323 addr.labels[d++] = threadInfo[i].threadId;
1324 }
1325 (*address2os)[i] = AddrUnsPair(addr, os);
1326 }
1327
1328 if (__kmp_affinity_gran_levels < 0) {
1329 //
1330 // Set the granularity level based on what levels are modeled
1331 // in the machine topology map.
1332 //
1333 __kmp_affinity_gran_levels = 0;
1334 if ((threadLevel >= 0)
1335 && (__kmp_affinity_gran > affinity_gran_thread)) {
1336 __kmp_affinity_gran_levels++;
1337 }
1338 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1339 __kmp_affinity_gran_levels++;
1340 }
1341 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1342 __kmp_affinity_gran_levels++;
1343 }
1344 }
1345
1346 if (__kmp_affinity_verbose) {
1347 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1348 coreLevel, threadLevel);
1349 }
1350
1351 __kmp_free(threadInfo);
1352 KMP_CPU_FREE(oldMask);
1353 return depth;
1354}
1355
1356
1357//
1358// Intel(R) microarchitecture code name Nehalem, Dunnington and later
1359// architectures support a newer interface for specifying the x2APIC Ids,
1360// based on cpuid leaf 11.
1361//
1362static int
1363__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1364 kmp_i18n_id_t *const msg_id)
1365{
1366 kmp_cpuid buf;
1367
1368 *address2os = NULL;
1369 *msg_id = kmp_i18n_null;
1370
1371 //
1372 // Check to see if cpuid leaf 11 is supported.
1373 //
1374 __kmp_x86_cpuid(0, 0, &buf);
1375 if (buf.eax < 11) {
1376 *msg_id = kmp_i18n_str_NoLeaf11Support;
1377 return -1;
1378 }
1379 __kmp_x86_cpuid(11, 0, &buf);
1380 if (buf.ebx == 0) {
1381 *msg_id = kmp_i18n_str_NoLeaf11Support;
1382 return -1;
1383 }
1384
1385 //
1386 // Find the number of levels in the machine topology. While we're at it,
1387 // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
1388 // try to get more accurate values later by explicitly counting them,
1389 // but get reasonable defaults now, in case we return early.
1390 //
1391 int level;
1392 int threadLevel = -1;
1393 int coreLevel = -1;
1394 int pkgLevel = -1;
1395 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1396
1397 for (level = 0;; level++) {
1398 if (level > 31) {
1399 //
1400 // FIXME: Hack for DPD200163180
1401 //
1402 // If level is big then something went wrong -> exiting
1403 //
1404 // There could actually be 32 valid levels in the machine topology,
1405 // but so far, the only machine we have seen which does not exit
1406 // this loop before iteration 32 has fubar x2APIC settings.
1407 //
1408 // For now, just reject this case based upon loop trip count.
1409 //
1410 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1411 return -1;
1412 }
1413 __kmp_x86_cpuid(11, level, &buf);
1414 if (buf.ebx == 0) {
1415 if (pkgLevel < 0) {
1416 //
1417 // Will infer nPackages from __kmp_xproc
1418 //
1419 pkgLevel = level;
1420 level++;
1421 }
1422 break;
1423 }
1424 int kind = (buf.ecx >> 8) & 0xff;
1425 if (kind == 1) {
1426 //
1427 // SMT level
1428 //
1429 threadLevel = level;
1430 coreLevel = -1;
1431 pkgLevel = -1;
1432 __kmp_nThreadsPerCore = buf.ebx & 0xff;
1433 if (__kmp_nThreadsPerCore == 0) {
1434 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1435 return -1;
1436 }
1437 }
1438 else if (kind == 2) {
1439 //
1440 // core level
1441 //
1442 coreLevel = level;
1443 pkgLevel = -1;
1444 nCoresPerPkg = buf.ebx & 0xff;
1445 if (nCoresPerPkg == 0) {
1446 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1447 return -1;
1448 }
1449 }
1450 else {
1451 if (level <= 0) {
1452 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1453 return -1;
1454 }
1455 if (pkgLevel >= 0) {
1456 continue;
1457 }
1458 pkgLevel = level;
1459 nPackages = buf.ebx & 0xff;
1460 if (nPackages == 0) {
1461 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1462 return -1;
1463 }
1464 }
1465 }
1466 int depth = level;
1467
1468 //
1469 // In the above loop, "level" was counted from the finest level (usually
1470 // thread) to the coarsest. The caller expects that we will place the
1471 // labels in (*address2os)[].first.labels[] in the inverse order, so
1472 // we need to invert the vars saying which level means what.
1473 //
1474 if (threadLevel >= 0) {
1475 threadLevel = depth - threadLevel - 1;
1476 }
1477 if (coreLevel >= 0) {
1478 coreLevel = depth - coreLevel - 1;
1479 }
1480 KMP_DEBUG_ASSERT(pkgLevel >= 0);
1481 pkgLevel = depth - pkgLevel - 1;
1482
1483 //
1484 // The algorithm used starts by setting the affinity to each available
Andrey Churbanov1c331292015-01-27 17:03:42 +00001485 // thread and retrieving info from the cpuid instruction, so if we are
1486 // not capable of calling __kmp_get_system_affinity() and
1487 // _kmp_get_system_affinity(), then we need to do something else - use
1488 // the defaults that we calculated from issuing cpuid without binding
1489 // to each proc.
Jim Cownie5e8470a2013-09-27 10:38:44 +00001490 //
1491 if (! KMP_AFFINITY_CAPABLE())
1492 {
1493 //
1494 // Hack to try and infer the machine topology using only the data
1495 // available from cpuid on the current thread, and __kmp_xproc.
1496 //
1497 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1498
1499 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1500 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001501 if (__kmp_affinity_verbose) {
1502 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1503 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1504 if (__kmp_affinity_uniform_topology()) {
1505 KMP_INFORM(Uniform, "KMP_AFFINITY");
1506 } else {
1507 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1508 }
1509 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1510 __kmp_nThreadsPerCore, __kmp_ncores);
1511 }
1512 return 0;
1513 }
1514
1515 //
1516 //
1517 // From here on, we can assume that it is safe to call
1518 // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
1519 // even if __kmp_affinity_type = affinity_none.
1520 //
1521
1522 //
1523 // Save the affinity mask for the current thread.
1524 //
1525 kmp_affin_mask_t *oldMask;
1526 KMP_CPU_ALLOC(oldMask);
1527 __kmp_get_system_affinity(oldMask, TRUE);
1528
1529 //
1530 // Allocate the data structure to be returned.
1531 //
1532 AddrUnsPair *retval = (AddrUnsPair *)
1533 __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1534
1535 //
1536 // Run through each of the available contexts, binding the current thread
1537 // to it, and obtaining the pertinent information using the cpuid instr.
1538 //
1539 unsigned int proc;
1540 int nApics = 0;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00001541 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001542 //
1543 // Skip this proc if it is not included in the machine model.
1544 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00001545 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001546 continue;
1547 }
1548 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1549
1550 __kmp_affinity_bind_thread(proc);
1551
1552 //
1553 // Extrach the labels for each level in the machine topology map
1554 // from the Apic ID.
1555 //
1556 Address addr(depth);
1557 int prev_shift = 0;
1558
1559 for (level = 0; level < depth; level++) {
1560 __kmp_x86_cpuid(11, level, &buf);
1561 unsigned apicId = buf.edx;
1562 if (buf.ebx == 0) {
1563 if (level != depth - 1) {
1564 KMP_CPU_FREE(oldMask);
1565 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1566 return -1;
1567 }
1568 addr.labels[depth - level - 1] = apicId >> prev_shift;
1569 level++;
1570 break;
1571 }
1572 int shift = buf.eax & 0x1f;
1573 int mask = (1 << shift) - 1;
1574 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1575 prev_shift = shift;
1576 }
1577 if (level != depth) {
1578 KMP_CPU_FREE(oldMask);
1579 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1580 return -1;
1581 }
1582
1583 retval[nApics] = AddrUnsPair(addr, proc);
1584 nApics++;
1585 }
1586
1587 //
1588 // We've collected all the info we need.
1589 // Restore the old affinity mask for this thread.
1590 //
1591 __kmp_set_system_affinity(oldMask, TRUE);
1592
1593 //
1594 // If there's only one thread context to bind to, return now.
1595 //
1596 KMP_ASSERT(nApics > 0);
1597 if (nApics == 1) {
1598 __kmp_ncores = nPackages = 1;
1599 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001600 if (__kmp_affinity_verbose) {
1601 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1602 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1603
1604 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1605 if (__kmp_affinity_respect_mask) {
1606 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1607 } else {
1608 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1609 }
1610 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1611 KMP_INFORM(Uniform, "KMP_AFFINITY");
1612 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1613 __kmp_nThreadsPerCore, __kmp_ncores);
1614 }
1615
1616 if (__kmp_affinity_type == affinity_none) {
1617 __kmp_free(retval);
1618 KMP_CPU_FREE(oldMask);
1619 return 0;
1620 }
1621
1622 //
1623 // Form an Address object which only includes the package level.
1624 //
1625 Address addr(1);
1626 addr.labels[0] = retval[0].first.labels[pkgLevel];
1627 retval[0].first = addr;
1628
1629 if (__kmp_affinity_gran_levels < 0) {
1630 __kmp_affinity_gran_levels = 0;
1631 }
1632
1633 if (__kmp_affinity_verbose) {
1634 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1635 }
1636
1637 *address2os = retval;
1638 KMP_CPU_FREE(oldMask);
1639 return 1;
1640 }
1641
1642 //
1643 // Sort the table by physical Id.
1644 //
1645 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1646
1647 //
1648 // Find the radix at each of the levels.
1649 //
1650 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1651 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1652 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1653 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1654 for (level = 0; level < depth; level++) {
1655 totals[level] = 1;
1656 maxCt[level] = 1;
1657 counts[level] = 1;
1658 last[level] = retval[0].first.labels[level];
1659 }
1660
1661 //
1662 // From here on, the iteration variable "level" runs from the finest
1663 // level to the coarsest, i.e. we iterate forward through
1664 // (*address2os)[].first.labels[] - in the previous loops, we iterated
1665 // backwards.
1666 //
1667 for (proc = 1; (int)proc < nApics; proc++) {
1668 int level;
1669 for (level = 0; level < depth; level++) {
1670 if (retval[proc].first.labels[level] != last[level]) {
1671 int j;
1672 for (j = level + 1; j < depth; j++) {
1673 totals[j]++;
1674 counts[j] = 1;
1675 // The line below causes printing incorrect topology information
1676 // in case the max value for some level (maxCt[level]) is encountered earlier than
1677 // some less value while going through the array.
1678 // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
1679 // whereas it must be 4.
1680 // TODO!!! Check if it can be commented safely
1681 //maxCt[j] = 1;
1682 last[j] = retval[proc].first.labels[j];
1683 }
1684 totals[level]++;
1685 counts[level]++;
1686 if (counts[level] > maxCt[level]) {
1687 maxCt[level] = counts[level];
1688 }
1689 last[level] = retval[proc].first.labels[level];
1690 break;
1691 }
1692 else if (level == depth - 1) {
1693 __kmp_free(last);
1694 __kmp_free(maxCt);
1695 __kmp_free(counts);
1696 __kmp_free(totals);
1697 __kmp_free(retval);
1698 KMP_CPU_FREE(oldMask);
1699 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1700 return -1;
1701 }
1702 }
1703 }
1704
1705 //
1706 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00001707 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00001708 // nCoresPerPkg, & nPackages. Make sure all these vars are set
1709 // correctly, and return if affinity is not enabled.
1710 //
1711 if (threadLevel >= 0) {
1712 __kmp_nThreadsPerCore = maxCt[threadLevel];
1713 }
1714 else {
1715 __kmp_nThreadsPerCore = 1;
1716 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001717 nPackages = totals[pkgLevel];
1718
1719 if (coreLevel >= 0) {
1720 __kmp_ncores = totals[coreLevel];
1721 nCoresPerPkg = maxCt[coreLevel];
1722 }
1723 else {
1724 __kmp_ncores = nPackages;
1725 nCoresPerPkg = 1;
1726 }
1727
1728 //
1729 // Check to see if the machine topology is uniform
1730 //
1731 unsigned prod = maxCt[0];
1732 for (level = 1; level < depth; level++) {
1733 prod *= maxCt[level];
1734 }
1735 bool uniform = (prod == totals[level - 1]);
1736
1737 //
1738 // Print the machine topology summary.
1739 //
1740 if (__kmp_affinity_verbose) {
1741 char mask[KMP_AFFIN_MASK_PRINT_LEN];
1742 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1743
1744 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1745 if (__kmp_affinity_respect_mask) {
1746 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1747 } else {
1748 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1749 }
1750 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1751 if (uniform) {
1752 KMP_INFORM(Uniform, "KMP_AFFINITY");
1753 } else {
1754 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1755 }
1756
1757 kmp_str_buf_t buf;
1758 __kmp_str_buf_init(&buf);
1759
1760 __kmp_str_buf_print(&buf, "%d", totals[0]);
1761 for (level = 1; level <= pkgLevel; level++) {
1762 __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1763 }
1764 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1765 __kmp_nThreadsPerCore, __kmp_ncores);
1766
1767 __kmp_str_buf_free(&buf);
1768 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00001769 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1770 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1771 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1772 for (proc = 0; (int)proc < nApics; ++proc) {
1773 __kmp_pu_os_idx[proc] = retval[proc].second;
1774 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00001775 if (__kmp_affinity_type == affinity_none) {
1776 __kmp_free(last);
1777 __kmp_free(maxCt);
1778 __kmp_free(counts);
1779 __kmp_free(totals);
1780 __kmp_free(retval);
1781 KMP_CPU_FREE(oldMask);
1782 return 0;
1783 }
1784
1785 //
1786 // Find any levels with radiix 1, and remove them from the map
1787 // (except for the package level).
1788 //
1789 int new_depth = 0;
1790 for (level = 0; level < depth; level++) {
1791 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1792 continue;
1793 }
1794 new_depth++;
1795 }
1796
1797 //
1798 // If we are removing any levels, allocate a new vector to return,
1799 // and copy the relevant information to it.
1800 //
1801 if (new_depth != depth) {
1802 AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
1803 sizeof(AddrUnsPair) * nApics);
1804 for (proc = 0; (int)proc < nApics; proc++) {
1805 Address addr(new_depth);
1806 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1807 }
1808 int new_level = 0;
Jonathan Peyton62f38402015-08-25 18:44:41 +00001809 int newPkgLevel = -1;
1810 int newCoreLevel = -1;
1811 int newThreadLevel = -1;
1812 int i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001813 for (level = 0; level < depth; level++) {
Jonathan Peyton62f38402015-08-25 18:44:41 +00001814 if ((maxCt[level] == 1)
1815 && (level != pkgLevel)) {
1816 //
1817 // Remove this level. Never remove the package level
1818 //
1819 continue;
1820 }
1821 if (level == pkgLevel) {
1822 newPkgLevel = level;
1823 }
1824 if (level == coreLevel) {
1825 newCoreLevel = level;
1826 }
1827 if (level == threadLevel) {
1828 newThreadLevel = level;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001829 }
1830 for (proc = 0; (int)proc < nApics; proc++) {
1831 new_retval[proc].first.labels[new_level]
1832 = retval[proc].first.labels[level];
1833 }
1834 new_level++;
1835 }
1836
1837 __kmp_free(retval);
1838 retval = new_retval;
1839 depth = new_depth;
Jonathan Peyton62f38402015-08-25 18:44:41 +00001840 pkgLevel = newPkgLevel;
1841 coreLevel = newCoreLevel;
1842 threadLevel = newThreadLevel;
Jim Cownie5e8470a2013-09-27 10:38:44 +00001843 }
1844
1845 if (__kmp_affinity_gran_levels < 0) {
1846 //
1847 // Set the granularity level based on what levels are modeled
1848 // in the machine topology map.
1849 //
1850 __kmp_affinity_gran_levels = 0;
1851 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1852 __kmp_affinity_gran_levels++;
1853 }
1854 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1855 __kmp_affinity_gran_levels++;
1856 }
1857 if (__kmp_affinity_gran > affinity_gran_package) {
1858 __kmp_affinity_gran_levels++;
1859 }
1860 }
1861
1862 if (__kmp_affinity_verbose) {
1863 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
1864 coreLevel, threadLevel);
1865 }
1866
1867 __kmp_free(last);
1868 __kmp_free(maxCt);
1869 __kmp_free(counts);
1870 __kmp_free(totals);
1871 KMP_CPU_FREE(oldMask);
1872 *address2os = retval;
1873 return depth;
1874}
1875
1876
1877# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1878
1879
1880#define osIdIndex 0
1881#define threadIdIndex 1
1882#define coreIdIndex 2
1883#define pkgIdIndex 3
1884#define nodeIdIndex 4
1885
1886typedef unsigned *ProcCpuInfo;
1887static unsigned maxIndex = pkgIdIndex;
1888
1889
1890static int
1891__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
1892{
1893 const unsigned *aa = (const unsigned *)a;
1894 const unsigned *bb = (const unsigned *)b;
1895 if (aa[osIdIndex] < bb[osIdIndex]) return -1;
1896 if (aa[osIdIndex] > bb[osIdIndex]) return 1;
1897 return 0;
1898};
1899
1900
1901static int
1902__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
1903{
1904 unsigned i;
1905 const unsigned *aa = *((const unsigned **)a);
1906 const unsigned *bb = *((const unsigned **)b);
1907 for (i = maxIndex; ; i--) {
1908 if (aa[i] < bb[i]) return -1;
1909 if (aa[i] > bb[i]) return 1;
1910 if (i == osIdIndex) break;
1911 }
1912 return 0;
1913}
1914
1915
1916//
1917// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1918// affinity map.
1919//
1920static int
1921__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
1922 kmp_i18n_id_t *const msg_id, FILE *f)
1923{
1924 *address2os = NULL;
1925 *msg_id = kmp_i18n_null;
1926
1927 //
1928 // Scan of the file, and count the number of "processor" (osId) fields,
Alp Toker8f2d3f02014-02-24 10:40:15 +00001929 // and find the highest value of <n> for a node_<n> field.
Jim Cownie5e8470a2013-09-27 10:38:44 +00001930 //
1931 char buf[256];
1932 unsigned num_records = 0;
1933 while (! feof(f)) {
1934 buf[sizeof(buf) - 1] = 1;
1935 if (! fgets(buf, sizeof(buf), f)) {
1936 //
1937 // Read errors presumably because of EOF
1938 //
1939 break;
1940 }
1941
1942 char s1[] = "processor";
1943 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1944 num_records++;
1945 continue;
1946 }
1947
1948 //
1949 // FIXME - this will match "node_<n> <garbage>"
1950 //
1951 unsigned level;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00001952 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00001953 if (nodeIdIndex + level >= maxIndex) {
1954 maxIndex = nodeIdIndex + level;
1955 }
1956 continue;
1957 }
1958 }
1959
1960 //
1961 // Check for empty file / no valid processor records, or too many.
1962 // The number of records can't exceed the number of valid bits in the
1963 // affinity mask.
1964 //
1965 if (num_records == 0) {
1966 *line = 0;
1967 *msg_id = kmp_i18n_str_NoProcRecords;
1968 return -1;
1969 }
1970 if (num_records > (unsigned)__kmp_xproc) {
1971 *line = 0;
1972 *msg_id = kmp_i18n_str_TooManyProcRecords;
1973 return -1;
1974 }
1975
1976 //
1977 // Set the file pointer back to the begginning, so that we can scan the
1978 // file again, this time performing a full parse of the data.
1979 // Allocate a vector of ProcCpuInfo object, where we will place the data.
1980 // Adding an extra element at the end allows us to remove a lot of extra
1981 // checks for termination conditions.
1982 //
1983 if (fseek(f, 0, SEEK_SET) != 0) {
1984 *line = 0;
1985 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
1986 return -1;
1987 }
1988
1989 //
1990 // Allocate the array of records to store the proc info in. The dummy
1991 // element at the end makes the logic in filling them out easier to code.
1992 //
1993 unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
1994 * sizeof(unsigned *));
1995 unsigned i;
1996 for (i = 0; i <= num_records; i++) {
1997 threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
1998 * sizeof(unsigned));
1999 }
2000
2001#define CLEANUP_THREAD_INFO \
2002 for (i = 0; i <= num_records; i++) { \
2003 __kmp_free(threadInfo[i]); \
2004 } \
2005 __kmp_free(threadInfo);
2006
2007 //
2008 // A value of UINT_MAX means that we didn't find the field
2009 //
2010 unsigned __index;
2011
2012#define INIT_PROC_INFO(p) \
2013 for (__index = 0; __index <= maxIndex; __index++) { \
2014 (p)[__index] = UINT_MAX; \
2015 }
2016
2017 for (i = 0; i <= num_records; i++) {
2018 INIT_PROC_INFO(threadInfo[i]);
2019 }
2020
2021 unsigned num_avail = 0;
2022 *line = 0;
2023 while (! feof(f)) {
2024 //
2025 // Create an inner scoping level, so that all the goto targets at the
2026 // end of the loop appear in an outer scoping level. This avoids
2027 // warnings about jumping past an initialization to a target in the
2028 // same block.
2029 //
2030 {
2031 buf[sizeof(buf) - 1] = 1;
2032 bool long_line = false;
2033 if (! fgets(buf, sizeof(buf), f)) {
2034 //
2035 // Read errors presumably because of EOF
2036 //
2037 // If there is valid data in threadInfo[num_avail], then fake
2038 // a blank line in ensure that the last address gets parsed.
2039 //
2040 bool valid = false;
2041 for (i = 0; i <= maxIndex; i++) {
2042 if (threadInfo[num_avail][i] != UINT_MAX) {
2043 valid = true;
2044 }
2045 }
2046 if (! valid) {
2047 break;
2048 }
2049 buf[0] = 0;
2050 } else if (!buf[sizeof(buf) - 1]) {
2051 //
2052 // The line is longer than the buffer. Set a flag and don't
2053 // emit an error if we were going to ignore the line, anyway.
2054 //
2055 long_line = true;
2056
2057#define CHECK_LINE \
2058 if (long_line) { \
2059 CLEANUP_THREAD_INFO; \
2060 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2061 return -1; \
2062 }
2063 }
2064 (*line)++;
2065
2066 char s1[] = "processor";
2067 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2068 CHECK_LINE;
2069 char *p = strchr(buf + sizeof(s1) - 1, ':');
2070 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002071 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002072 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
2073 threadInfo[num_avail][osIdIndex] = val;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002074#if KMP_OS_LINUX && USE_SYSFS_INFO
2075 char path[256];
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002076 KMP_SNPRINTF(path, sizeof(path),
Jim Cownie181b4bb2013-12-23 17:28:57 +00002077 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2078 threadInfo[num_avail][osIdIndex]);
2079 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2080
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002081 KMP_SNPRINTF(path, sizeof(path),
Jim Cownie181b4bb2013-12-23 17:28:57 +00002082 "/sys/devices/system/cpu/cpu%u/topology/core_id",
2083 threadInfo[num_avail][osIdIndex]);
2084 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002085 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002086#else
Jim Cownie5e8470a2013-09-27 10:38:44 +00002087 }
2088 char s2[] = "physical id";
2089 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2090 CHECK_LINE;
2091 char *p = strchr(buf + sizeof(s2) - 1, ':');
2092 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002093 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002094 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
2095 threadInfo[num_avail][pkgIdIndex] = val;
2096 continue;
2097 }
2098 char s3[] = "core id";
2099 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2100 CHECK_LINE;
2101 char *p = strchr(buf + sizeof(s3) - 1, ':');
2102 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002103 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002104 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
2105 threadInfo[num_avail][coreIdIndex] = val;
2106 continue;
Jim Cownie181b4bb2013-12-23 17:28:57 +00002107#endif // KMP_OS_LINUX && USE_SYSFS_INFO
Jim Cownie5e8470a2013-09-27 10:38:44 +00002108 }
2109 char s4[] = "thread id";
2110 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2111 CHECK_LINE;
2112 char *p = strchr(buf + sizeof(s4) - 1, ':');
2113 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002114 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002115 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
2116 threadInfo[num_avail][threadIdIndex] = val;
2117 continue;
2118 }
2119 unsigned level;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002120 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002121 CHECK_LINE;
2122 char *p = strchr(buf + sizeof(s4) - 1, ':');
2123 unsigned val;
Andrey Churbanov74bf17b2015-04-02 13:27:08 +00002124 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002125 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2126 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
2127 threadInfo[num_avail][nodeIdIndex + level] = val;
2128 continue;
2129 }
2130
2131 //
2132 // We didn't recognize the leading token on the line.
2133 // There are lots of leading tokens that we don't recognize -
2134 // if the line isn't empty, go on to the next line.
2135 //
2136 if ((*buf != 0) && (*buf != '\n')) {
2137 //
2138 // If the line is longer than the buffer, read characters
2139 // until we find a newline.
2140 //
2141 if (long_line) {
2142 int ch;
2143 while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
2144 }
2145 continue;
2146 }
2147
2148 //
2149 // A newline has signalled the end of the processor record.
2150 // Check that there aren't too many procs specified.
2151 //
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002152 if ((int)num_avail == __kmp_xproc) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002153 CLEANUP_THREAD_INFO;
2154 *msg_id = kmp_i18n_str_TooManyEntries;
2155 return -1;
2156 }
2157
2158 //
2159 // Check for missing fields. The osId field must be there, and we
2160 // currently require that the physical id field is specified, also.
2161 //
2162 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2163 CLEANUP_THREAD_INFO;
2164 *msg_id = kmp_i18n_str_MissingProcField;
2165 return -1;
2166 }
2167 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2168 CLEANUP_THREAD_INFO;
2169 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2170 return -1;
2171 }
2172
2173 //
2174 // Skip this proc if it is not included in the machine model.
2175 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00002176 if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00002177 INIT_PROC_INFO(threadInfo[num_avail]);
2178 continue;
2179 }
2180
2181 //
2182 // We have a successful parse of this proc's info.
2183 // Increment the counter, and prepare for the next proc.
2184 //
2185 num_avail++;
2186 KMP_ASSERT(num_avail <= num_records);
2187 INIT_PROC_INFO(threadInfo[num_avail]);
2188 }
2189 continue;
2190
2191 no_val:
2192 CLEANUP_THREAD_INFO;
2193 *msg_id = kmp_i18n_str_MissingValCpuinfo;
2194 return -1;
2195
2196 dup_field:
2197 CLEANUP_THREAD_INFO;
2198 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2199 return -1;
2200 }
2201 *line = 0;
2202
2203# if KMP_MIC && REDUCE_TEAM_SIZE
2204 unsigned teamSize = 0;
2205# endif // KMP_MIC && REDUCE_TEAM_SIZE
2206
2207 // check for num_records == __kmp_xproc ???
2208
2209 //
2210 // If there's only one thread context to bind to, form an Address object
2211 // with depth 1 and return immediately (or, if affinity is off, set
2212 // address2os to NULL and return).
2213 //
2214 // If it is configured to omit the package level when there is only a
2215 // single package, the logic at the end of this routine won't work if
2216 // there is only a single thread - it would try to form an Address
2217 // object with depth 0.
2218 //
2219 KMP_ASSERT(num_avail > 0);
2220 KMP_ASSERT(num_avail <= num_records);
2221 if (num_avail == 1) {
2222 __kmp_ncores = 1;
2223 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002224 if (__kmp_affinity_verbose) {
2225 if (! KMP_AFFINITY_CAPABLE()) {
2226 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2227 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2228 KMP_INFORM(Uniform, "KMP_AFFINITY");
2229 }
2230 else {
2231 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2232 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00002233 __kmp_affin_fullMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002234 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2235 if (__kmp_affinity_respect_mask) {
2236 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2237 } else {
2238 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2239 }
2240 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2241 KMP_INFORM(Uniform, "KMP_AFFINITY");
2242 }
2243 int index;
2244 kmp_str_buf_t buf;
2245 __kmp_str_buf_init(&buf);
2246 __kmp_str_buf_print(&buf, "1");
2247 for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2248 __kmp_str_buf_print(&buf, " x 1");
2249 }
2250 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2251 __kmp_str_buf_free(&buf);
2252 }
2253
2254 if (__kmp_affinity_type == affinity_none) {
2255 CLEANUP_THREAD_INFO;
2256 return 0;
2257 }
2258
2259 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
2260 Address addr(1);
2261 addr.labels[0] = threadInfo[0][pkgIdIndex];
2262 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2263
2264 if (__kmp_affinity_gran_levels < 0) {
2265 __kmp_affinity_gran_levels = 0;
2266 }
2267
2268 if (__kmp_affinity_verbose) {
2269 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2270 }
2271
2272 CLEANUP_THREAD_INFO;
2273 return 1;
2274 }
2275
2276 //
2277 // Sort the threadInfo table by physical Id.
2278 //
2279 qsort(threadInfo, num_avail, sizeof(*threadInfo),
2280 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2281
2282 //
2283 // The table is now sorted by pkgId / coreId / threadId, but we really
2284 // don't know the radix of any of the fields. pkgId's may be sparsely
2285 // assigned among the chips on a system. Although coreId's are usually
2286 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
2287 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2288 //
2289 // For that matter, we don't know what coresPerPkg and threadsPerCore
2290 // (or the total # packages) are at this point - we want to determine
2291 // that now. We only have an upper bound on the first two figures.
2292 //
2293 unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
2294 * sizeof(unsigned));
2295 unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
2296 * sizeof(unsigned));
2297 unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
2298 * sizeof(unsigned));
2299 unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
2300 * sizeof(unsigned));
2301
2302 bool assign_thread_ids = false;
2303 unsigned threadIdCt;
2304 unsigned index;
2305
2306 restart_radix_check:
2307 threadIdCt = 0;
2308
2309 //
2310 // Initialize the counter arrays with data from threadInfo[0].
2311 //
2312 if (assign_thread_ids) {
2313 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2314 threadInfo[0][threadIdIndex] = threadIdCt++;
2315 }
2316 else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2317 threadIdCt = threadInfo[0][threadIdIndex] + 1;
2318 }
2319 }
2320 for (index = 0; index <= maxIndex; index++) {
2321 counts[index] = 1;
2322 maxCt[index] = 1;
2323 totals[index] = 1;
2324 lastId[index] = threadInfo[0][index];;
2325 }
2326
2327 //
2328 // Run through the rest of the OS procs.
2329 //
2330 for (i = 1; i < num_avail; i++) {
2331 //
2332 // Find the most significant index whose id differs
2333 // from the id for the previous OS proc.
2334 //
2335 for (index = maxIndex; index >= threadIdIndex; index--) {
2336 if (assign_thread_ids && (index == threadIdIndex)) {
2337 //
2338 // Auto-assign the thread id field if it wasn't specified.
2339 //
2340 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2341 threadInfo[i][threadIdIndex] = threadIdCt++;
2342 }
2343
2344 //
2345 // Aparrently the thread id field was specified for some
2346 // entries and not others. Start the thread id counter
2347 // off at the next higher thread id.
2348 //
2349 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2350 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2351 }
2352 }
2353 if (threadInfo[i][index] != lastId[index]) {
2354 //
2355 // Run through all indices which are less significant,
2356 // and reset the counts to 1.
2357 //
2358 // At all levels up to and including index, we need to
2359 // increment the totals and record the last id.
2360 //
2361 unsigned index2;
2362 for (index2 = threadIdIndex; index2 < index; index2++) {
2363 totals[index2]++;
2364 if (counts[index2] > maxCt[index2]) {
2365 maxCt[index2] = counts[index2];
2366 }
2367 counts[index2] = 1;
2368 lastId[index2] = threadInfo[i][index2];
2369 }
2370 counts[index]++;
2371 totals[index]++;
2372 lastId[index] = threadInfo[i][index];
2373
2374 if (assign_thread_ids && (index > threadIdIndex)) {
2375
2376# if KMP_MIC && REDUCE_TEAM_SIZE
2377 //
2378 // The default team size is the total #threads in the machine
2379 // minus 1 thread for every core that has 3 or more threads.
2380 //
2381 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2382# endif // KMP_MIC && REDUCE_TEAM_SIZE
2383
2384 //
2385 // Restart the thread counter, as we are on a new core.
2386 //
2387 threadIdCt = 0;
2388
2389 //
2390 // Auto-assign the thread id field if it wasn't specified.
2391 //
2392 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2393 threadInfo[i][threadIdIndex] = threadIdCt++;
2394 }
2395
2396 //
2397 // Aparrently the thread id field was specified for some
2398 // entries and not others. Start the thread id counter
2399 // off at the next higher thread id.
2400 //
2401 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2402 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2403 }
2404 }
2405 break;
2406 }
2407 }
2408 if (index < threadIdIndex) {
2409 //
2410 // If thread ids were specified, it is an error if they are not
2411 // unique. Also, check that we waven't already restarted the
2412 // loop (to be safe - shouldn't need to).
2413 //
2414 if ((threadInfo[i][threadIdIndex] != UINT_MAX)
2415 || assign_thread_ids) {
2416 __kmp_free(lastId);
2417 __kmp_free(totals);
2418 __kmp_free(maxCt);
2419 __kmp_free(counts);
2420 CLEANUP_THREAD_INFO;
2421 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2422 return -1;
2423 }
2424
2425 //
2426 // If the thread ids were not specified and we see entries
2427 // entries that are duplicates, start the loop over and
2428 // assign the thread ids manually.
2429 //
2430 assign_thread_ids = true;
2431 goto restart_radix_check;
2432 }
2433 }
2434
2435# if KMP_MIC && REDUCE_TEAM_SIZE
2436 //
2437 // The default team size is the total #threads in the machine
2438 // minus 1 thread for every core that has 3 or more threads.
2439 //
2440 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2441# endif // KMP_MIC && REDUCE_TEAM_SIZE
2442
2443 for (index = threadIdIndex; index <= maxIndex; index++) {
2444 if (counts[index] > maxCt[index]) {
2445 maxCt[index] = counts[index];
2446 }
2447 }
2448
2449 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2450 nCoresPerPkg = maxCt[coreIdIndex];
2451 nPackages = totals[pkgIdIndex];
2452
2453 //
2454 // Check to see if the machine topology is uniform
2455 //
2456 unsigned prod = totals[maxIndex];
2457 for (index = threadIdIndex; index < maxIndex; index++) {
2458 prod *= maxCt[index];
2459 }
2460 bool uniform = (prod == totals[threadIdIndex]);
2461
2462 //
2463 // When affinity is off, this routine will still be called to set
Andrey Churbanovf696c822015-01-27 16:55:43 +00002464 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
Jim Cownie5e8470a2013-09-27 10:38:44 +00002465 // nCoresPerPkg, & nPackages. Make sure all these vars are set
2466 // correctly, and return now if affinity is not enabled.
2467 //
Jim Cownie5e8470a2013-09-27 10:38:44 +00002468 __kmp_ncores = totals[coreIdIndex];
2469
2470 if (__kmp_affinity_verbose) {
2471 if (! KMP_AFFINITY_CAPABLE()) {
2472 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2473 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2474 if (uniform) {
2475 KMP_INFORM(Uniform, "KMP_AFFINITY");
2476 } else {
2477 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2478 }
2479 }
2480 else {
2481 char buf[KMP_AFFIN_MASK_PRINT_LEN];
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00002482 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002483 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2484 if (__kmp_affinity_respect_mask) {
2485 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2486 } else {
2487 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2488 }
2489 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2490 if (uniform) {
2491 KMP_INFORM(Uniform, "KMP_AFFINITY");
2492 } else {
2493 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2494 }
2495 }
2496 kmp_str_buf_t buf;
2497 __kmp_str_buf_init(&buf);
2498
2499 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2500 for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2501 __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2502 }
2503 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2504 maxCt[threadIdIndex], __kmp_ncores);
2505
2506 __kmp_str_buf_free(&buf);
2507 }
2508
2509# if KMP_MIC && REDUCE_TEAM_SIZE
2510 //
2511 // Set the default team size.
2512 //
2513 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2514 __kmp_dflt_team_nth = teamSize;
2515 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
2516 __kmp_dflt_team_nth));
2517 }
2518# endif // KMP_MIC && REDUCE_TEAM_SIZE
2519
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00002520 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2521 KMP_DEBUG_ASSERT(num_avail == __kmp_avail_proc);
2522 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2523 for (i = 0; i < num_avail; ++i) { // fill the os indices
2524 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2525 }
2526
Jim Cownie5e8470a2013-09-27 10:38:44 +00002527 if (__kmp_affinity_type == affinity_none) {
2528 __kmp_free(lastId);
2529 __kmp_free(totals);
2530 __kmp_free(maxCt);
2531 __kmp_free(counts);
2532 CLEANUP_THREAD_INFO;
2533 return 0;
2534 }
2535
2536 //
2537 // Count the number of levels which have more nodes at that level than
2538 // at the parent's level (with there being an implicit root node of
2539 // the top level). This is equivalent to saying that there is at least
2540 // one node at this level which has a sibling. These levels are in the
2541 // map, and the package level is always in the map.
2542 //
2543 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2544 int level = 0;
2545 for (index = threadIdIndex; index < maxIndex; index++) {
2546 KMP_ASSERT(totals[index] >= totals[index + 1]);
2547 inMap[index] = (totals[index] > totals[index + 1]);
2548 }
2549 inMap[maxIndex] = (totals[maxIndex] > 1);
2550 inMap[pkgIdIndex] = true;
2551
2552 int depth = 0;
2553 for (index = threadIdIndex; index <= maxIndex; index++) {
2554 if (inMap[index]) {
2555 depth++;
2556 }
2557 }
2558 KMP_ASSERT(depth > 0);
2559
2560 //
2561 // Construct the data structure that is to be returned.
2562 //
2563 *address2os = (AddrUnsPair*)
2564 __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2565 int pkgLevel = -1;
2566 int coreLevel = -1;
2567 int threadLevel = -1;
2568
2569 for (i = 0; i < num_avail; ++i) {
2570 Address addr(depth);
2571 unsigned os = threadInfo[i][osIdIndex];
2572 int src_index;
2573 int dst_index = 0;
2574
2575 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2576 if (! inMap[src_index]) {
2577 continue;
2578 }
2579 addr.labels[dst_index] = threadInfo[i][src_index];
2580 if (src_index == pkgIdIndex) {
2581 pkgLevel = dst_index;
2582 }
2583 else if (src_index == coreIdIndex) {
2584 coreLevel = dst_index;
2585 }
2586 else if (src_index == threadIdIndex) {
2587 threadLevel = dst_index;
2588 }
2589 dst_index++;
2590 }
2591 (*address2os)[i] = AddrUnsPair(addr, os);
2592 }
2593
2594 if (__kmp_affinity_gran_levels < 0) {
2595 //
2596 // Set the granularity level based on what levels are modeled
2597 // in the machine topology map.
2598 //
2599 unsigned src_index;
2600 __kmp_affinity_gran_levels = 0;
2601 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2602 if (! inMap[src_index]) {
2603 continue;
2604 }
2605 switch (src_index) {
2606 case threadIdIndex:
2607 if (__kmp_affinity_gran > affinity_gran_thread) {
2608 __kmp_affinity_gran_levels++;
2609 }
2610
2611 break;
2612 case coreIdIndex:
2613 if (__kmp_affinity_gran > affinity_gran_core) {
2614 __kmp_affinity_gran_levels++;
2615 }
2616 break;
2617
2618 case pkgIdIndex:
2619 if (__kmp_affinity_gran > affinity_gran_package) {
2620 __kmp_affinity_gran_levels++;
2621 }
2622 break;
2623 }
2624 }
2625 }
2626
2627 if (__kmp_affinity_verbose) {
2628 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2629 coreLevel, threadLevel);
2630 }
2631
2632 __kmp_free(inMap);
2633 __kmp_free(lastId);
2634 __kmp_free(totals);
2635 __kmp_free(maxCt);
2636 __kmp_free(counts);
2637 CLEANUP_THREAD_INFO;
2638 return depth;
2639}
2640
2641
2642//
2643// Create and return a table of affinity masks, indexed by OS thread ID.
2644// This routine handles OR'ing together all the affinity masks of threads
2645// that are sufficiently close, if granularity > fine.
2646//
2647static kmp_affin_mask_t *
2648__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
2649 AddrUnsPair *address2os, unsigned numAddrs)
2650{
2651 //
2652 // First form a table of affinity masks in order of OS thread id.
2653 //
2654 unsigned depth;
2655 unsigned maxOsId;
2656 unsigned i;
2657
2658 KMP_ASSERT(numAddrs > 0);
2659 depth = address2os[0].first.depth;
2660
2661 maxOsId = 0;
2662 for (i = 0; i < numAddrs; i++) {
2663 unsigned osId = address2os[i].second;
2664 if (osId > maxOsId) {
2665 maxOsId = osId;
2666 }
2667 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002668 kmp_affin_mask_t *osId2Mask;
2669 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00002670
2671 //
2672 // Sort the address2os table according to physical order. Doing so
2673 // will put all threads on the same core/package/node in consecutive
2674 // locations.
2675 //
2676 qsort(address2os, numAddrs, sizeof(*address2os),
2677 __kmp_affinity_cmp_Address_labels);
2678
2679 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2680 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2681 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2682 }
2683 if (__kmp_affinity_gran_levels >= (int)depth) {
2684 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2685 && (__kmp_affinity_type != affinity_none))) {
2686 KMP_WARNING(AffThreadsMayMigrate);
2687 }
2688 }
2689
2690 //
2691 // Run through the table, forming the masks for all threads on each
2692 // core. Threads on the same core will have identical "Address"
2693 // objects, not considering the last level, which must be the thread
2694 // id. All threads on a core will appear consecutively.
2695 //
2696 unsigned unique = 0;
2697 unsigned j = 0; // index of 1st thread on core
2698 unsigned leader = 0;
2699 Address *leaderAddr = &(address2os[0].first);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002700 kmp_affin_mask_t *sum;
2701 KMP_CPU_ALLOC_ON_STACK(sum);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002702 KMP_CPU_ZERO(sum);
2703 KMP_CPU_SET(address2os[0].second, sum);
2704 for (i = 1; i < numAddrs; i++) {
2705 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00002706 // If this thread is sufficiently close to the leader (within the
Jim Cownie5e8470a2013-09-27 10:38:44 +00002707 // granularity setting), then set the bit for this os thread in the
2708 // affinity mask for this group, and go on to the next thread.
2709 //
2710 if (leaderAddr->isClose(address2os[i].first,
2711 __kmp_affinity_gran_levels)) {
2712 KMP_CPU_SET(address2os[i].second, sum);
2713 continue;
2714 }
2715
2716 //
2717 // For every thread in this group, copy the mask to the thread's
2718 // entry in the osId2Mask table. Mark the first address as a
2719 // leader.
2720 //
2721 for (; j < i; j++) {
2722 unsigned osId = address2os[j].second;
2723 KMP_DEBUG_ASSERT(osId <= maxOsId);
2724 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2725 KMP_CPU_COPY(mask, sum);
2726 address2os[j].first.leader = (j == leader);
2727 }
2728 unique++;
2729
2730 //
2731 // Start a new mask.
2732 //
2733 leader = i;
2734 leaderAddr = &(address2os[i].first);
2735 KMP_CPU_ZERO(sum);
2736 KMP_CPU_SET(address2os[i].second, sum);
2737 }
2738
2739 //
2740 // For every thread in last group, copy the mask to the thread's
2741 // entry in the osId2Mask table.
2742 //
2743 for (; j < i; j++) {
2744 unsigned osId = address2os[j].second;
2745 KMP_DEBUG_ASSERT(osId <= maxOsId);
2746 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2747 KMP_CPU_COPY(mask, sum);
2748 address2os[j].first.leader = (j == leader);
2749 }
2750 unique++;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002751 KMP_CPU_FREE_FROM_STACK(sum);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002752
2753 *maxIndex = maxOsId;
2754 *numUnique = unique;
2755 return osId2Mask;
2756}
2757
2758
2759//
2760// Stuff for the affinity proclist parsers. It's easier to declare these vars
2761// as file-static than to try and pass them through the calling sequence of
2762// the recursive-descent OMP_PLACES parser.
2763//
2764static kmp_affin_mask_t *newMasks;
2765static int numNewMasks;
2766static int nextNewMask;
2767
2768#define ADD_MASK(_mask) \
2769 { \
2770 if (nextNewMask >= numNewMasks) { \
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002771 int i; \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002772 numNewMasks *= 2; \
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002773 kmp_affin_mask_t* temp; \
2774 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2775 for(i=0;i<numNewMasks/2;i++) { \
2776 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \
2777 kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \
2778 KMP_CPU_COPY(dest, src); \
2779 } \
2780 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \
2781 newMasks = temp; \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002782 } \
2783 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2784 nextNewMask++; \
2785 }
2786
2787#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
2788 { \
2789 if (((_osId) > _maxOsId) || \
Jim Cownie4cc4bb42014-10-07 16:25:50 +00002790 (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
Jim Cownie5e8470a2013-09-27 10:38:44 +00002791 if (__kmp_affinity_verbose || (__kmp_affinity_warnings \
2792 && (__kmp_affinity_type != affinity_none))) { \
2793 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2794 } \
2795 } \
2796 else { \
2797 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2798 } \
2799 }
2800
2801
2802//
2803// Re-parse the proclist (for the explicit affinity type), and form the list
2804// of affinity newMasks indexed by gtid.
2805//
2806static void
2807__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2808 unsigned int *out_numMasks, const char *proclist,
2809 kmp_affin_mask_t *osId2Mask, int maxOsId)
2810{
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002811 int i;
Jim Cownie5e8470a2013-09-27 10:38:44 +00002812 const char *scan = proclist;
2813 const char *next = proclist;
2814
2815 //
2816 // We use malloc() for the temporary mask vector,
2817 // so that we can use realloc() to extend it.
2818 //
2819 numNewMasks = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002820 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002821 nextNewMask = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00002822 kmp_affin_mask_t *sumMask;
2823 KMP_CPU_ALLOC(sumMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00002824 int setSize = 0;
2825
2826 for (;;) {
2827 int start, end, stride;
2828
2829 SKIP_WS(scan);
2830 next = scan;
2831 if (*next == '\0') {
2832 break;
2833 }
2834
2835 if (*next == '{') {
2836 int num;
2837 setSize = 0;
2838 next++; // skip '{'
2839 SKIP_WS(next);
2840 scan = next;
2841
2842 //
2843 // Read the first integer in the set.
2844 //
2845 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2846 "bad proclist");
2847 SKIP_DIGITS(next);
2848 num = __kmp_str_to_int(scan, *next);
2849 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2850
2851 //
2852 // Copy the mask for that osId to the sum (union) mask.
2853 //
2854 if ((num > maxOsId) ||
2855 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2856 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2857 && (__kmp_affinity_type != affinity_none))) {
2858 KMP_WARNING(AffIgnoreInvalidProcID, num);
2859 }
2860 KMP_CPU_ZERO(sumMask);
2861 }
2862 else {
2863 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2864 setSize = 1;
2865 }
2866
2867 for (;;) {
2868 //
2869 // Check for end of set.
2870 //
2871 SKIP_WS(next);
2872 if (*next == '}') {
2873 next++; // skip '}'
2874 break;
2875 }
2876
2877 //
2878 // Skip optional comma.
2879 //
2880 if (*next == ',') {
2881 next++;
2882 }
2883 SKIP_WS(next);
2884
2885 //
2886 // Read the next integer in the set.
2887 //
2888 scan = next;
2889 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2890 "bad explicit proc list");
2891
2892 SKIP_DIGITS(next);
2893 num = __kmp_str_to_int(scan, *next);
2894 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2895
2896 //
2897 // Add the mask for that osId to the sum mask.
2898 //
2899 if ((num > maxOsId) ||
2900 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2901 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2902 && (__kmp_affinity_type != affinity_none))) {
2903 KMP_WARNING(AffIgnoreInvalidProcID, num);
2904 }
2905 }
2906 else {
2907 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2908 setSize++;
2909 }
2910 }
2911 if (setSize > 0) {
2912 ADD_MASK(sumMask);
2913 }
2914
2915 SKIP_WS(next);
2916 if (*next == ',') {
2917 next++;
2918 }
2919 scan = next;
2920 continue;
2921 }
2922
2923 //
2924 // Read the first integer.
2925 //
2926 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2927 SKIP_DIGITS(next);
2928 start = __kmp_str_to_int(scan, *next);
2929 KMP_ASSERT2(start >= 0, "bad explicit proc list");
2930 SKIP_WS(next);
2931
2932 //
2933 // If this isn't a range, then add a mask to the list and go on.
2934 //
2935 if (*next != '-') {
2936 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2937
2938 //
2939 // Skip optional comma.
2940 //
2941 if (*next == ',') {
2942 next++;
2943 }
2944 scan = next;
2945 continue;
2946 }
2947
2948 //
2949 // This is a range. Skip over the '-' and read in the 2nd int.
2950 //
2951 next++; // skip '-'
2952 SKIP_WS(next);
2953 scan = next;
2954 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2955 SKIP_DIGITS(next);
2956 end = __kmp_str_to_int(scan, *next);
2957 KMP_ASSERT2(end >= 0, "bad explicit proc list");
2958
2959 //
2960 // Check for a stride parameter
2961 //
2962 stride = 1;
2963 SKIP_WS(next);
2964 if (*next == ':') {
2965 //
2966 // A stride is specified. Skip over the ':" and read the 3rd int.
2967 //
2968 int sign = +1;
2969 next++; // skip ':'
2970 SKIP_WS(next);
2971 scan = next;
2972 if (*next == '-') {
2973 sign = -1;
2974 next++;
2975 SKIP_WS(next);
2976 scan = next;
2977 }
2978 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2979 "bad explicit proc list");
2980 SKIP_DIGITS(next);
2981 stride = __kmp_str_to_int(scan, *next);
2982 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2983 stride *= sign;
2984 }
2985
2986 //
2987 // Do some range checks.
2988 //
2989 KMP_ASSERT2(stride != 0, "bad explicit proc list");
2990 if (stride > 0) {
2991 KMP_ASSERT2(start <= end, "bad explicit proc list");
2992 }
2993 else {
2994 KMP_ASSERT2(start >= end, "bad explicit proc list");
2995 }
2996 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2997
2998 //
2999 // Add the mask for each OS proc # to the list.
3000 //
3001 if (stride > 0) {
3002 do {
3003 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3004 start += stride;
3005 } while (start <= end);
3006 }
3007 else {
3008 do {
3009 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3010 start += stride;
3011 } while (start >= end);
3012 }
3013
3014 //
3015 // Skip optional comma.
3016 //
3017 SKIP_WS(next);
3018 if (*next == ',') {
3019 next++;
3020 }
3021 scan = next;
3022 }
3023
3024 *out_numMasks = nextNewMask;
3025 if (nextNewMask == 0) {
3026 *out_masks = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003027 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003028 return;
3029 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003030 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3031 for(i = 0; i < nextNewMask; i++) {
3032 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
3033 kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
3034 KMP_CPU_COPY(dest, src);
3035 }
3036 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3037 KMP_CPU_FREE(sumMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003038}
3039
3040
3041# if OMP_40_ENABLED
3042
3043/*-----------------------------------------------------------------------------
3044
3045Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3046places. Again, Here is the grammar:
3047
3048place_list := place
3049place_list := place , place_list
3050place := num
3051place := place : num
3052place := place : num : signed
3053place := { subplacelist }
3054place := ! place // (lowest priority)
3055subplace_list := subplace
3056subplace_list := subplace , subplace_list
3057subplace := num
3058subplace := num : num
3059subplace := num : num : signed
3060signed := num
3061signed := + signed
3062signed := - signed
3063
3064-----------------------------------------------------------------------------*/
3065
3066static void
3067__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
3068 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
3069{
3070 const char *next;
3071
3072 for (;;) {
3073 int start, count, stride, i;
3074
3075 //
3076 // Read in the starting proc id
3077 //
3078 SKIP_WS(*scan);
3079 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3080 "bad explicit places list");
3081 next = *scan;
3082 SKIP_DIGITS(next);
3083 start = __kmp_str_to_int(*scan, *next);
3084 KMP_ASSERT(start >= 0);
3085 *scan = next;
3086
3087 //
3088 // valid follow sets are ',' ':' and '}'
3089 //
3090 SKIP_WS(*scan);
3091 if (**scan == '}' || **scan == ',') {
3092 if ((start > maxOsId) ||
3093 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3094 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3095 && (__kmp_affinity_type != affinity_none))) {
3096 KMP_WARNING(AffIgnoreInvalidProcID, start);
3097 }
3098 }
3099 else {
3100 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3101 (*setSize)++;
3102 }
3103 if (**scan == '}') {
3104 break;
3105 }
3106 (*scan)++; // skip ','
3107 continue;
3108 }
3109 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3110 (*scan)++; // skip ':'
3111
3112 //
3113 // Read count parameter
3114 //
3115 SKIP_WS(*scan);
3116 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3117 "bad explicit places list");
3118 next = *scan;
3119 SKIP_DIGITS(next);
3120 count = __kmp_str_to_int(*scan, *next);
3121 KMP_ASSERT(count >= 0);
3122 *scan = next;
3123
3124 //
3125 // valid follow sets are ',' ':' and '}'
3126 //
3127 SKIP_WS(*scan);
3128 if (**scan == '}' || **scan == ',') {
3129 for (i = 0; i < count; i++) {
3130 if ((start > maxOsId) ||
3131 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3132 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3133 && (__kmp_affinity_type != affinity_none))) {
3134 KMP_WARNING(AffIgnoreInvalidProcID, start);
3135 }
3136 break; // don't proliferate warnings for large count
3137 }
3138 else {
3139 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3140 start++;
3141 (*setSize)++;
3142 }
3143 }
3144 if (**scan == '}') {
3145 break;
3146 }
3147 (*scan)++; // skip ','
3148 continue;
3149 }
3150 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3151 (*scan)++; // skip ':'
3152
3153 //
3154 // Read stride parameter
3155 //
3156 int sign = +1;
3157 for (;;) {
3158 SKIP_WS(*scan);
3159 if (**scan == '+') {
3160 (*scan)++; // skip '+'
3161 continue;
3162 }
3163 if (**scan == '-') {
3164 sign *= -1;
3165 (*scan)++; // skip '-'
3166 continue;
3167 }
3168 break;
3169 }
3170 SKIP_WS(*scan);
3171 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3172 "bad explicit places list");
3173 next = *scan;
3174 SKIP_DIGITS(next);
3175 stride = __kmp_str_to_int(*scan, *next);
3176 KMP_ASSERT(stride >= 0);
3177 *scan = next;
3178 stride *= sign;
3179
3180 //
3181 // valid follow sets are ',' and '}'
3182 //
3183 SKIP_WS(*scan);
3184 if (**scan == '}' || **scan == ',') {
3185 for (i = 0; i < count; i++) {
3186 if ((start > maxOsId) ||
3187 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3188 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3189 && (__kmp_affinity_type != affinity_none))) {
3190 KMP_WARNING(AffIgnoreInvalidProcID, start);
3191 }
3192 break; // don't proliferate warnings for large count
3193 }
3194 else {
3195 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3196 start += stride;
3197 (*setSize)++;
3198 }
3199 }
3200 if (**scan == '}') {
3201 break;
3202 }
3203 (*scan)++; // skip ','
3204 continue;
3205 }
3206
3207 KMP_ASSERT2(0, "bad explicit places list");
3208 }
3209}
3210
3211
3212static void
3213__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3214 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
3215{
3216 const char *next;
3217
3218 //
3219 // valid follow sets are '{' '!' and num
3220 //
3221 SKIP_WS(*scan);
3222 if (**scan == '{') {
3223 (*scan)++; // skip '{'
3224 __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
3225 setSize);
3226 KMP_ASSERT2(**scan == '}', "bad explicit places list");
3227 (*scan)++; // skip '}'
3228 }
3229 else if (**scan == '!') {
Jonathan Peyton6778c732015-10-19 19:43:01 +00003230 (*scan)++; // skip '!'
Jim Cownie5e8470a2013-09-27 10:38:44 +00003231 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003232 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003233 }
3234 else if ((**scan >= '0') && (**scan <= '9')) {
3235 next = *scan;
3236 SKIP_DIGITS(next);
3237 int num = __kmp_str_to_int(*scan, *next);
3238 KMP_ASSERT(num >= 0);
3239 if ((num > maxOsId) ||
3240 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3241 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3242 && (__kmp_affinity_type != affinity_none))) {
3243 KMP_WARNING(AffIgnoreInvalidProcID, num);
3244 }
3245 }
3246 else {
3247 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3248 (*setSize)++;
3249 }
3250 *scan = next; // skip num
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003251 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003252 else {
3253 KMP_ASSERT2(0, "bad explicit places list");
3254 }
3255}
3256
3257
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003258//static void
3259void
Jim Cownie5e8470a2013-09-27 10:38:44 +00003260__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3261 unsigned int *out_numMasks, const char *placelist,
3262 kmp_affin_mask_t *osId2Mask, int maxOsId)
3263{
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003264 int i,j,count,stride,sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003265 const char *scan = placelist;
3266 const char *next = placelist;
3267
3268 numNewMasks = 2;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003269 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003270 nextNewMask = 0;
3271
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003272 // tempMask is modified based on the previous or initial
3273 // place to form the current place
3274 // previousMask contains the previous place
3275 kmp_affin_mask_t *tempMask;
3276 kmp_affin_mask_t *previousMask;
3277 KMP_CPU_ALLOC(tempMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003278 KMP_CPU_ZERO(tempMask);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003279 KMP_CPU_ALLOC(previousMask);
3280 KMP_CPU_ZERO(previousMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003281 int setSize = 0;
3282
3283 for (;;) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003284 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3285
3286 //
3287 // valid follow sets are ',' ':' and EOL
3288 //
3289 SKIP_WS(scan);
3290 if (*scan == '\0' || *scan == ',') {
3291 if (setSize > 0) {
3292 ADD_MASK(tempMask);
3293 }
3294 KMP_CPU_ZERO(tempMask);
3295 setSize = 0;
3296 if (*scan == '\0') {
3297 break;
3298 }
3299 scan++; // skip ','
3300 continue;
3301 }
3302
3303 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3304 scan++; // skip ':'
3305
3306 //
3307 // Read count parameter
3308 //
3309 SKIP_WS(scan);
3310 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
3311 "bad explicit places list");
3312 next = scan;
3313 SKIP_DIGITS(next);
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003314 count = __kmp_str_to_int(scan, *next);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003315 KMP_ASSERT(count >= 0);
3316 scan = next;
3317
3318 //
3319 // valid follow sets are ',' ':' and EOL
3320 //
3321 SKIP_WS(scan);
3322 if (*scan == '\0' || *scan == ',') {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003323 stride = +1;
3324 }
3325 else {
3326 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3327 scan++; // skip ':'
Jim Cownie5e8470a2013-09-27 10:38:44 +00003328
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003329 //
3330 // Read stride parameter
3331 //
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003332 sign = +1;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003333 for (;;) {
3334 SKIP_WS(scan);
3335 if (*scan == '+') {
3336 scan++; // skip '+'
3337 continue;
3338 }
3339 if (*scan == '-') {
3340 sign *= -1;
3341 scan++; // skip '-'
3342 continue;
3343 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003344 break;
3345 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003346 SKIP_WS(scan);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003347 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
3348 "bad explicit places list");
3349 next = scan;
3350 SKIP_DIGITS(next);
3351 stride = __kmp_str_to_int(scan, *next);
3352 KMP_DEBUG_ASSERT(stride >= 0);
3353 scan = next;
3354 stride *= sign;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003355 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003356
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003357 // Add places determined by initial_place : count : stride
3358 for (i = 0; i < count; i++) {
3359 if (setSize == 0) {
3360 break;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003361 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003362 // Add the current place, then build the next place (tempMask) from that
3363 KMP_CPU_COPY(previousMask, tempMask);
3364 ADD_MASK(previousMask);
3365 KMP_CPU_ZERO(tempMask);
3366 setSize = 0;
3367 KMP_CPU_SET_ITERATE(j, previousMask) {
3368 if (! KMP_CPU_ISSET(j, previousMask)) {
3369 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003370 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003371 if ((j+stride > maxOsId) || (j+stride < 0) ||
3372 (! KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003373 (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) {
3374 if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
3375 && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
3376 KMP_WARNING(AffIgnoreInvalidProcID, j+stride);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003377 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003378 continue;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003379 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003380 KMP_CPU_SET(j+stride, tempMask);
3381 setSize++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003382 }
3383 }
3384 KMP_CPU_ZERO(tempMask);
3385 setSize = 0;
3386
3387 //
3388 // valid follow sets are ',' and EOL
3389 //
3390 SKIP_WS(scan);
3391 if (*scan == '\0') {
3392 break;
3393 }
3394 if (*scan == ',') {
3395 scan++; // skip ','
3396 continue;
3397 }
3398
3399 KMP_ASSERT2(0, "bad explicit places list");
3400 }
3401
3402 *out_numMasks = nextNewMask;
3403 if (nextNewMask == 0) {
3404 *out_masks = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003405 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003406 return;
3407 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003408 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3409 KMP_CPU_FREE(tempMask);
3410 KMP_CPU_FREE(previousMask);
3411 for(i = 0; i < nextNewMask; i++) {
3412 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
3413 kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
3414 KMP_CPU_COPY(dest, src);
3415 }
3416 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003417}
3418
3419# endif /* OMP_40_ENABLED */
3420
3421#undef ADD_MASK
3422#undef ADD_MASK_OSID
3423
Jim Cownie5e8470a2013-09-27 10:38:44 +00003424static void
3425__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
3426{
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003427 int i, j, k, n_old = 0, n_new = 0, proc_num = 0;
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003428 if (__kmp_place_num_sockets == 0 &&
3429 __kmp_place_num_cores == 0 &&
3430 __kmp_place_num_threads_per_core == 0 )
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003431 goto _exit; // no topology limiting actions requested, exit
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003432 if (__kmp_place_num_sockets == 0)
3433 __kmp_place_num_sockets = nPackages; // use all available sockets
3434 if (__kmp_place_num_cores == 0)
Jim Cownie5e8470a2013-09-27 10:38:44 +00003435 __kmp_place_num_cores = nCoresPerPkg; // use all available cores
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003436 if (__kmp_place_num_threads_per_core == 0 ||
3437 __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore)
3438 __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
3439
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003440 if ( !__kmp_affinity_uniform_topology() ) {
Jonathan Peytonb9d28fb2016-06-16 18:53:48 +00003441 KMP_WARNING( AffHWSubsetNonUniform );
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003442 goto _exit; // don't support non-uniform topology
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003443 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003444 if ( depth > 3 ) {
Jonathan Peytonb9d28fb2016-06-16 18:53:48 +00003445 KMP_WARNING( AffHWSubsetNonThreeLevel );
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003446 goto _exit; // don't support not-3-level topology
Jim Cownie5e8470a2013-09-27 10:38:44 +00003447 }
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003448 if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) {
Jonathan Peytonb9d28fb2016-06-16 18:53:48 +00003449 KMP_WARNING(AffHWSubsetManySockets);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003450 goto _exit;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003451 }
Andrey Churbanov12875572015-03-10 09:00:36 +00003452 if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
Jonathan Peytonb9d28fb2016-06-16 18:53:48 +00003453 KMP_WARNING( AffHWSubsetManyCores );
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003454 goto _exit;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003455 }
3456
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003457 AddrUnsPair *newAddr;
3458 if (pAddr) // pAddr is NULL in case of affinity_none
3459 newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
3460 __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003461
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003462 for (i = 0; i < nPackages; ++i) {
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003463 if (i < __kmp_place_socket_offset ||
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003464 i >= __kmp_place_socket_offset + __kmp_place_num_sockets) {
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003465 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003466 if (__kmp_pu_os_idx != NULL) {
3467 for (j = 0; j < nCoresPerPkg; ++j) { // walk through skipped socket
3468 for (k = 0; k < __kmp_nThreadsPerCore; ++k) {
3469 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3470 ++proc_num;
3471 }
3472 }
3473 }
3474 } else {
3475 for (j = 0; j < nCoresPerPkg; ++j) { // walk through requested socket
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003476 if (j < __kmp_place_core_offset ||
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003477 j >= __kmp_place_core_offset + __kmp_place_num_cores) {
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003478 n_old += __kmp_nThreadsPerCore; // skip not-requested core
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003479 if (__kmp_pu_os_idx != NULL) {
3480 for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through skipped core
3481 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3482 ++proc_num;
3483 }
3484 }
3485 } else {
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003486 for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core
3487 if (k < __kmp_place_num_threads_per_core) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003488 if (pAddr)
3489 newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003490 n_new++;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003491 } else {
3492 if (__kmp_pu_os_idx != NULL)
3493 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003494 }
3495 n_old++;
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003496 ++proc_num;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003497 }
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003498 }
3499 }
3500 }
3501 }
Jonathan Peytondd4aa9b2015-10-08 17:55:54 +00003502 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3503 KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores *
3504 __kmp_place_num_threads_per_core);
3505
3506 nPackages = __kmp_place_num_sockets; // correct nPackages
Jim Cownie5e8470a2013-09-27 10:38:44 +00003507 nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg
3508 __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
3509 __kmp_avail_proc = n_new; // correct avail_proc
3510 __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores
3511
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003512 if (pAddr) {
3513 __kmp_free( *pAddr );
3514 *pAddr = newAddr; // replace old topology with new one
3515 }
3516_exit:
3517 if (__kmp_pu_os_idx != NULL) {
3518 __kmp_free(__kmp_pu_os_idx);
3519 __kmp_pu_os_idx = NULL;
3520 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003521}
3522
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00003523//
3524// This function figures out the deepest level at which there is at least one cluster/core
3525// with more than one processing unit bound to it.
3526//
3527static int
3528__kmp_affinity_find_core_level(const AddrUnsPair *address2os, int nprocs, int bottom_level)
3529{
3530 int core_level = 0;
3531
3532 for( int i = 0; i < nprocs; i++ ) {
3533 for( int j = bottom_level; j > 0; j-- ) {
3534 if( address2os[i].first.labels[j] > 0 ) {
3535 if( core_level < ( j - 1 ) ) {
3536 core_level = j - 1;
3537 }
3538 }
3539 }
3540 }
3541 return core_level;
3542}
3543
3544//
3545// This function counts number of clusters/cores at given level.
3546//
3547static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, int nprocs, int bottom_level, int core_level)
3548{
3549 int ncores = 0;
3550 int i, j;
3551
3552 j = bottom_level;
3553 for( i = 0; i < nprocs; i++ ) {
3554 for ( j = bottom_level; j > core_level; j-- ) {
3555 if( ( i + 1 ) < nprocs ) {
3556 if( address2os[i + 1].first.labels[j] > 0 ) {
3557 break;
3558 }
3559 }
3560 }
3561 if( j == core_level ) {
3562 ncores++;
3563 }
3564 }
3565 if( j > core_level ) {
3566 //
3567 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one core.
3568 // May occur when called from __kmp_affinity_find_core().
3569 //
3570 ncores++;
3571 }
3572 return ncores;
3573}
3574
3575//
3576// This function finds to which cluster/core given processing unit is bound.
3577//
3578static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, int bottom_level, int core_level)
3579{
3580 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, core_level) - 1;
3581}
3582
3583//
3584// This function finds maximal number of processing units bound to a cluster/core at given level.
3585//
3586static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, int nprocs, int bottom_level, int core_level)
3587{
3588 int maxprocpercore = 0;
3589
3590 if( core_level < bottom_level ) {
3591 for( int i = 0; i < nprocs; i++ ) {
3592 int percore = address2os[i].first.labels[core_level + 1] + 1;
3593
3594 if( percore > maxprocpercore ) {
3595 maxprocpercore = percore;
3596 }
3597 }
3598 } else {
3599 maxprocpercore = 1;
3600 }
3601 return maxprocpercore;
3602}
Jim Cownie5e8470a2013-09-27 10:38:44 +00003603
3604static AddrUnsPair *address2os = NULL;
3605static int * procarr = NULL;
3606static int __kmp_aff_depth = 0;
3607
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003608#define KMP_EXIT_AFF_NONE \
3609 KMP_ASSERT(__kmp_affinity_type == affinity_none); \
3610 KMP_ASSERT(address2os == NULL); \
3611 __kmp_apply_thread_places(NULL, 0); \
3612 return;
3613
Jim Cownie5e8470a2013-09-27 10:38:44 +00003614static void
3615__kmp_aux_affinity_initialize(void)
3616{
3617 if (__kmp_affinity_masks != NULL) {
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003618 KMP_ASSERT(__kmp_affin_fullMask != NULL);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003619 return;
3620 }
3621
3622 //
3623 // Create the "full" mask - this defines all of the processors that we
3624 // consider to be in the machine model. If respect is set, then it is
3625 // the initialization thread's affinity mask. Otherwise, it is all
3626 // processors that we know about on the machine.
3627 //
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003628 if (__kmp_affin_fullMask == NULL) {
3629 KMP_CPU_ALLOC(__kmp_affin_fullMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003630 }
3631 if (KMP_AFFINITY_CAPABLE()) {
3632 if (__kmp_affinity_respect_mask) {
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003633 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003634
3635 //
3636 // Count the number of available processors.
3637 //
3638 unsigned i;
3639 __kmp_avail_proc = 0;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003640 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
3641 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003642 continue;
3643 }
3644 __kmp_avail_proc++;
3645 }
3646 if (__kmp_avail_proc > __kmp_xproc) {
3647 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3648 && (__kmp_affinity_type != affinity_none))) {
3649 KMP_WARNING(ErrorInitializeAffinity);
3650 }
3651 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003652 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003653 return;
3654 }
3655 }
3656 else {
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00003657 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003658 __kmp_avail_proc = __kmp_xproc;
3659 }
3660 }
3661
3662 int depth = -1;
3663 kmp_i18n_id_t msg_id = kmp_i18n_null;
3664
3665 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00003666 // For backward compatibility, setting KMP_CPUINFO_FILE =>
Jim Cownie5e8470a2013-09-27 10:38:44 +00003667 // KMP_TOPOLOGY_METHOD=cpuinfo
3668 //
3669 if ((__kmp_cpuinfo_file != NULL) &&
3670 (__kmp_affinity_top_method == affinity_top_method_all)) {
3671 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3672 }
3673
3674 if (__kmp_affinity_top_method == affinity_top_method_all) {
3675 //
3676 // In the default code path, errors are not fatal - we just try using
3677 // another method. We only emit a warning message if affinity is on,
3678 // or the verbose flag is set, an the nowarnings flag was not set.
3679 //
3680 const char *file_name = NULL;
3681 int line = 0;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003682# if KMP_USE_HWLOC
3683 if (depth < 0) {
3684 if (__kmp_affinity_verbose) {
3685 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3686 }
3687 if(!__kmp_hwloc_error) {
3688 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3689 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003690 KMP_EXIT_AFF_NONE;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003691 } else if(depth < 0 && __kmp_affinity_verbose) {
3692 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3693 }
3694 } else if(__kmp_affinity_verbose) {
3695 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3696 }
3697 }
3698# endif
Jim Cownie5e8470a2013-09-27 10:38:44 +00003699
3700# if KMP_ARCH_X86 || KMP_ARCH_X86_64
3701
Jim Cownie5e8470a2013-09-27 10:38:44 +00003702 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003703 if (__kmp_affinity_verbose) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003704 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003705 }
3706
3707 file_name = NULL;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003708 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003709 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003710 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003711 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003712
3713 if (depth < 0) {
3714 if (__kmp_affinity_verbose) {
3715 if (msg_id != kmp_i18n_null) {
3716 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
3717 KMP_I18N_STR(DecodingLegacyAPIC));
3718 }
3719 else {
3720 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
3721 }
3722 }
3723
3724 file_name = NULL;
3725 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3726 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003727 KMP_EXIT_AFF_NONE;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003728 }
3729 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003730 }
3731
3732# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3733
3734# if KMP_OS_LINUX
3735
3736 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003737 if (__kmp_affinity_verbose) {
3738 if (msg_id != kmp_i18n_null) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003739 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
3740 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003741 else {
3742 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
3743 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003744 }
3745
3746 FILE *f = fopen("/proc/cpuinfo", "r");
3747 if (f == NULL) {
3748 msg_id = kmp_i18n_str_CantOpenCpuinfo;
3749 }
3750 else {
3751 file_name = "/proc/cpuinfo";
3752 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3753 fclose(f);
3754 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003755 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003756 }
3757 }
3758 }
3759
3760# endif /* KMP_OS_LINUX */
3761
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003762# if KMP_GROUP_AFFINITY
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003763
3764 if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
3765 if (__kmp_affinity_verbose) {
3766 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3767 }
3768
3769 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3770 KMP_ASSERT(depth != 0);
3771 }
3772
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003773# endif /* KMP_GROUP_AFFINITY */
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003774
Jim Cownie5e8470a2013-09-27 10:38:44 +00003775 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003776 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00003777 if (file_name == NULL) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003778 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003779 }
3780 else if (line == 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003781 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003782 }
3783 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003784 KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003785 }
3786 }
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003787 // FIXME - print msg if msg_id = kmp_i18n_null ???
Jim Cownie5e8470a2013-09-27 10:38:44 +00003788
3789 file_name = "";
3790 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3791 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003792 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003793 }
3794 KMP_ASSERT(depth > 0);
3795 KMP_ASSERT(address2os != NULL);
3796 }
3797 }
3798
3799 //
3800 // If the user has specified that a paricular topology discovery method
3801 // is to be used, then we abort if that method fails. The exception is
3802 // group affinity, which might have been implicitly set.
3803 //
3804
3805# if KMP_ARCH_X86 || KMP_ARCH_X86_64
3806
3807 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
3808 if (__kmp_affinity_verbose) {
3809 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3810 KMP_I18N_STR(Decodingx2APIC));
3811 }
3812
3813 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3814 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003815 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003816 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003817 if (depth < 0) {
3818 KMP_ASSERT(msg_id != kmp_i18n_null);
3819 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3820 }
3821 }
3822 else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
3823 if (__kmp_affinity_verbose) {
3824 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3825 KMP_I18N_STR(DecodingLegacyAPIC));
3826 }
3827
3828 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3829 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003830 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003831 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00003832 if (depth < 0) {
3833 KMP_ASSERT(msg_id != kmp_i18n_null);
3834 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3835 }
3836 }
3837
3838# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3839
3840 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
3841 const char *filename;
3842 if (__kmp_cpuinfo_file != NULL) {
3843 filename = __kmp_cpuinfo_file;
3844 }
3845 else {
3846 filename = "/proc/cpuinfo";
3847 }
3848
3849 if (__kmp_affinity_verbose) {
3850 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
3851 }
3852
3853 FILE *f = fopen(filename, "r");
3854 if (f == NULL) {
3855 int code = errno;
3856 if (__kmp_cpuinfo_file != NULL) {
3857 __kmp_msg(
3858 kmp_ms_fatal,
3859 KMP_MSG(CantOpenFileForReading, filename),
3860 KMP_ERR(code),
3861 KMP_HNT(NameComesFrom_CPUINFO_FILE),
3862 __kmp_msg_null
3863 );
3864 }
3865 else {
3866 __kmp_msg(
3867 kmp_ms_fatal,
3868 KMP_MSG(CantOpenFileForReading, filename),
3869 KMP_ERR(code),
3870 __kmp_msg_null
3871 );
3872 }
3873 }
3874 int line = 0;
3875 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3876 fclose(f);
3877 if (depth < 0) {
3878 KMP_ASSERT(msg_id != kmp_i18n_null);
3879 if (line > 0) {
3880 KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
3881 }
3882 else {
3883 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
3884 }
3885 }
3886 if (__kmp_affinity_type == affinity_none) {
3887 KMP_ASSERT(depth == 0);
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003888 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003889 }
3890 }
3891
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003892# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00003893
3894 else if (__kmp_affinity_top_method == affinity_top_method_group) {
3895 if (__kmp_affinity_verbose) {
3896 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3897 }
3898
3899 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3900 KMP_ASSERT(depth != 0);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003901 if (depth < 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003902 KMP_ASSERT(msg_id != kmp_i18n_null);
3903 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
Jim Cownie5e8470a2013-09-27 10:38:44 +00003904 }
3905 }
3906
Andrey Churbanov7daf9802015-01-27 16:52:57 +00003907# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00003908
3909 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
3910 if (__kmp_affinity_verbose) {
3911 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
3912 }
3913
3914 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3915 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003916 KMP_EXIT_AFF_NONE;
Jim Cownie5e8470a2013-09-27 10:38:44 +00003917 }
3918 // should not fail
3919 KMP_ASSERT(depth > 0);
3920 KMP_ASSERT(address2os != NULL);
3921 }
3922
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003923# if KMP_USE_HWLOC
3924 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
3925 if (__kmp_affinity_verbose) {
3926 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3927 }
3928 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3929 if (depth == 0) {
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00003930 KMP_EXIT_AFF_NONE;
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003931 }
Jonathan Peyton01dcf362015-11-30 20:02:59 +00003932 }
3933# endif // KMP_USE_HWLOC
3934
Jim Cownie5e8470a2013-09-27 10:38:44 +00003935 if (address2os == NULL) {
3936 if (KMP_AFFINITY_CAPABLE()
3937 && (__kmp_affinity_verbose || (__kmp_affinity_warnings
3938 && (__kmp_affinity_type != affinity_none)))) {
3939 KMP_WARNING(ErrorInitializeAffinity);
3940 }
3941 __kmp_affinity_type = affinity_none;
Andrey Churbanov1f037e42015-03-10 09:15:26 +00003942 KMP_AFFINITY_DISABLE();
Jim Cownie5e8470a2013-09-27 10:38:44 +00003943 return;
3944 }
3945
Jim Cownie5e8470a2013-09-27 10:38:44 +00003946 __kmp_apply_thread_places(&address2os, depth);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003947
3948 //
3949 // Create the table of masks, indexed by thread Id.
3950 //
3951 unsigned maxIndex;
3952 unsigned numUnique;
3953 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
3954 address2os, __kmp_avail_proc);
3955 if (__kmp_affinity_gran_levels == 0) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00003956 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00003957 }
3958
3959 //
3960 // Set the childNums vector in all Address objects. This must be done
3961 // before we can sort using __kmp_affinity_cmp_Address_child_num(),
3962 // which takes into account the setting of __kmp_affinity_compact.
3963 //
3964 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
3965
3966 switch (__kmp_affinity_type) {
3967
3968 case affinity_explicit:
3969 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
3970# if OMP_40_ENABLED
3971 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
3972# endif
3973 {
3974 __kmp_affinity_process_proclist(&__kmp_affinity_masks,
3975 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3976 maxIndex);
3977 }
3978# if OMP_40_ENABLED
3979 else {
3980 __kmp_affinity_process_placelist(&__kmp_affinity_masks,
3981 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3982 maxIndex);
3983 }
3984# endif
3985 if (__kmp_affinity_num_masks == 0) {
3986 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3987 && (__kmp_affinity_type != affinity_none))) {
3988 KMP_WARNING(AffNoValidProcID);
3989 }
3990 __kmp_affinity_type = affinity_none;
3991 return;
3992 }
3993 break;
3994
3995 //
3996 // The other affinity types rely on sorting the Addresses according
3997 // to some permutation of the machine topology tree. Set
3998 // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
3999 // then jump to a common code fragment to do the sort and create
4000 // the array of affinity masks.
4001 //
4002
4003 case affinity_logical:
4004 __kmp_affinity_compact = 0;
4005 if (__kmp_affinity_offset) {
4006 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
4007 % __kmp_avail_proc;
4008 }
4009 goto sortAddresses;
4010
4011 case affinity_physical:
4012 if (__kmp_nThreadsPerCore > 1) {
4013 __kmp_affinity_compact = 1;
4014 if (__kmp_affinity_compact >= depth) {
4015 __kmp_affinity_compact = 0;
4016 }
4017 } else {
4018 __kmp_affinity_compact = 0;
4019 }
4020 if (__kmp_affinity_offset) {
4021 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
4022 % __kmp_avail_proc;
4023 }
4024 goto sortAddresses;
4025
4026 case affinity_scatter:
4027 if (__kmp_affinity_compact >= depth) {
4028 __kmp_affinity_compact = 0;
4029 }
4030 else {
4031 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4032 }
4033 goto sortAddresses;
4034
4035 case affinity_compact:
4036 if (__kmp_affinity_compact >= depth) {
4037 __kmp_affinity_compact = depth - 1;
4038 }
4039 goto sortAddresses;
4040
Jim Cownie5e8470a2013-09-27 10:38:44 +00004041 case affinity_balanced:
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004042 if( depth <= 1 ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004043 if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
4044 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
4045 }
4046 __kmp_affinity_type = affinity_none;
4047 return;
4048 } else if( __kmp_affinity_uniform_topology() ) {
4049 break;
4050 } else { // Non-uniform topology
4051
4052 // Save the depth for further usage
4053 __kmp_aff_depth = depth;
4054
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004055 int core_level = __kmp_affinity_find_core_level(address2os, __kmp_avail_proc, depth - 1);
4056 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, depth - 1, core_level);
4057 int maxprocpercore = __kmp_affinity_max_proc_per_core(address2os, __kmp_avail_proc, depth - 1, core_level);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004058
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004059 int nproc = ncores * maxprocpercore;
4060 if( ( nproc < 2 ) || ( nproc < __kmp_avail_proc ) ) {
4061 if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
4062 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
4063 }
4064 __kmp_affinity_type = affinity_none;
4065 return;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004066 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004067
4068 procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
4069 for( int i = 0; i < nproc; i++ ) {
4070 procarr[ i ] = -1;
4071 }
4072
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004073 int lastcore = -1;
4074 int inlastcore = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004075 for( int i = 0; i < __kmp_avail_proc; i++ ) {
4076 int proc = address2os[ i ].second;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004077 int core = __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004078
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004079 if ( core == lastcore ) {
4080 inlastcore++;
4081 } else {
4082 inlastcore = 0;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004083 }
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004084 lastcore = core;
4085
4086 procarr[ core * maxprocpercore + inlastcore ] = proc;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004087 }
4088
4089 break;
4090 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004091
4092 sortAddresses:
4093 //
4094 // Allocate the gtid->affinity mask table.
4095 //
4096 if (__kmp_affinity_dups) {
4097 __kmp_affinity_num_masks = __kmp_avail_proc;
4098 }
4099 else {
4100 __kmp_affinity_num_masks = numUnique;
4101 }
4102
4103# if OMP_40_ENABLED
4104 if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
4105 && ( __kmp_affinity_num_places > 0 )
4106 && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
4107 __kmp_affinity_num_masks = __kmp_affinity_num_places;
4108 }
4109# endif
4110
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004111 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004112
4113 //
4114 // Sort the address2os table according to the current setting of
4115 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4116 //
4117 qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4118 __kmp_affinity_cmp_Address_child_num);
4119 {
4120 int i;
4121 unsigned j;
4122 for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4123 if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
4124 continue;
4125 }
4126 unsigned osId = address2os[i].second;
4127 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4128 kmp_affin_mask_t *dest
4129 = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4130 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4131 KMP_CPU_COPY(dest, src);
4132 if (++j >= __kmp_affinity_num_masks) {
4133 break;
4134 }
4135 }
4136 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4137 }
4138 break;
4139
4140 default:
4141 KMP_ASSERT2(0, "Unexpected affinity setting");
4142 }
4143
4144 __kmp_free(osId2Mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004145 machine_hierarchy.init(address2os, __kmp_avail_proc);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004146}
Jonathan Peytonfd7cc422016-06-21 15:54:38 +00004147#undef KMP_EXIT_AFF_NONE
Jim Cownie5e8470a2013-09-27 10:38:44 +00004148
4149
4150void
4151__kmp_affinity_initialize(void)
4152{
4153 //
4154 // Much of the code above was written assumming that if a machine was not
4155 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4156 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4157 //
4158 // There are too many checks for __kmp_affinity_type == affinity_none
4159 // in this code. Instead of trying to change them all, check if
4160 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4161 // affinity_none, call the real initialization routine, then restore
4162 // __kmp_affinity_type to affinity_disabled.
4163 //
4164 int disabled = (__kmp_affinity_type == affinity_disabled);
4165 if (! KMP_AFFINITY_CAPABLE()) {
4166 KMP_ASSERT(disabled);
4167 }
4168 if (disabled) {
4169 __kmp_affinity_type = affinity_none;
4170 }
4171 __kmp_aux_affinity_initialize();
4172 if (disabled) {
4173 __kmp_affinity_type = affinity_disabled;
4174 }
4175}
4176
4177
4178void
4179__kmp_affinity_uninitialize(void)
4180{
4181 if (__kmp_affinity_masks != NULL) {
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004182 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004183 __kmp_affinity_masks = NULL;
4184 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004185 if (__kmp_affin_fullMask != NULL) {
4186 KMP_CPU_FREE(__kmp_affin_fullMask);
4187 __kmp_affin_fullMask = NULL;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004188 }
4189 __kmp_affinity_num_masks = 0;
4190# if OMP_40_ENABLED
4191 __kmp_affinity_num_places = 0;
4192# endif
4193 if (__kmp_affinity_proclist != NULL) {
4194 __kmp_free(__kmp_affinity_proclist);
4195 __kmp_affinity_proclist = NULL;
4196 }
4197 if( address2os != NULL ) {
4198 __kmp_free( address2os );
4199 address2os = NULL;
4200 }
4201 if( procarr != NULL ) {
4202 __kmp_free( procarr );
4203 procarr = NULL;
4204 }
Jonathan Peyton202a24d2016-06-13 17:30:08 +00004205# if KMP_USE_HWLOC
4206 if (__kmp_hwloc_topology != NULL) {
4207 hwloc_topology_destroy(__kmp_hwloc_topology);
4208 __kmp_hwloc_topology = NULL;
4209 }
4210# endif
Jim Cownie5e8470a2013-09-27 10:38:44 +00004211}
4212
4213
4214void
4215__kmp_affinity_set_init_mask(int gtid, int isa_root)
4216{
4217 if (! KMP_AFFINITY_CAPABLE()) {
4218 return;
4219 }
4220
4221 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4222 if (th->th.th_affin_mask == NULL) {
4223 KMP_CPU_ALLOC(th->th.th_affin_mask);
4224 }
4225 else {
4226 KMP_CPU_ZERO(th->th.th_affin_mask);
4227 }
4228
4229 //
4230 // Copy the thread mask to the kmp_info_t strucuture.
4231 // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
4232 // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
4233 // is set, then the full mask is the same as the mask of the initialization
4234 // thread.
4235 //
4236 kmp_affin_mask_t *mask;
4237 int i;
4238
4239# if OMP_40_ENABLED
4240 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4241# endif
4242 {
Andrey Churbanovf28f6132015-01-13 14:54:00 +00004243 if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced)
Jim Cownie5e8470a2013-09-27 10:38:44 +00004244 ) {
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004245# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00004246 if (__kmp_num_proc_groups > 1) {
4247 return;
4248 }
4249# endif
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004250 KMP_ASSERT(__kmp_affin_fullMask != NULL);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004251 i = KMP_PLACE_ALL;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004252 mask = __kmp_affin_fullMask;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004253 }
4254 else {
4255 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
4256 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4257 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4258 }
4259 }
4260# if OMP_40_ENABLED
4261 else {
4262 if ((! isa_root)
4263 || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004264# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00004265 if (__kmp_num_proc_groups > 1) {
4266 return;
4267 }
4268# endif
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004269 KMP_ASSERT(__kmp_affin_fullMask != NULL);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004270 i = KMP_PLACE_ALL;
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004271 mask = __kmp_affin_fullMask;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004272 }
4273 else {
4274 //
4275 // int i = some hash function or just a counter that doesn't
4276 // always start at 0. Use gtid for now.
4277 //
4278 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
4279 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4280 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4281 }
4282 }
4283# endif
4284
4285# if OMP_40_ENABLED
4286 th->th.th_current_place = i;
4287 if (isa_root) {
4288 th->th.th_new_place = i;
4289 th->th.th_first_place = 0;
4290 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4291 }
4292
4293 if (i == KMP_PLACE_ALL) {
4294 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4295 gtid));
4296 }
4297 else {
4298 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4299 gtid, i));
4300 }
4301# else
4302 if (i == -1) {
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004303 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
Jim Cownie5e8470a2013-09-27 10:38:44 +00004304 gtid));
4305 }
4306 else {
4307 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4308 gtid, i));
4309 }
4310# endif /* OMP_40_ENABLED */
4311
4312 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4313
4314 if (__kmp_affinity_verbose) {
4315 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4316 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4317 th->th.th_affin_mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004318 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid,
4319 buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004320 }
4321
4322# if KMP_OS_WINDOWS
4323 //
4324 // On Windows* OS, the process affinity mask might have changed.
4325 // If the user didn't request affinity and this call fails,
4326 // just continue silently. See CQ171393.
4327 //
4328 if ( __kmp_affinity_type == affinity_none ) {
4329 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4330 }
4331 else
4332# endif
4333 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4334}
4335
4336
4337# if OMP_40_ENABLED
4338
4339void
4340__kmp_affinity_set_place(int gtid)
4341{
4342 int retval;
4343
4344 if (! KMP_AFFINITY_CAPABLE()) {
4345 return;
4346 }
4347
4348 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4349
4350 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
4351 gtid, th->th.th_new_place, th->th.th_current_place));
4352
4353 //
Alp Toker8f2d3f02014-02-24 10:40:15 +00004354 // Check that the new place is within this thread's partition.
Jim Cownie5e8470a2013-09-27 10:38:44 +00004355 //
4356 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004357 KMP_ASSERT(th->th.th_new_place >= 0);
4358 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004359 if (th->th.th_first_place <= th->th.th_last_place) {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004360 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place)
Jim Cownie5e8470a2013-09-27 10:38:44 +00004361 && (th->th.th_new_place <= th->th.th_last_place));
4362 }
4363 else {
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004364 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place)
Jim Cownie5e8470a2013-09-27 10:38:44 +00004365 || (th->th.th_new_place >= th->th.th_last_place));
4366 }
4367
4368 //
4369 // Copy the thread mask to the kmp_info_t strucuture,
4370 // and set this thread's affinity.
4371 //
4372 kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
4373 th->th.th_new_place);
4374 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4375 th->th.th_current_place = th->th.th_new_place;
4376
4377 if (__kmp_affinity_verbose) {
4378 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4379 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4380 th->th.th_affin_mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004381 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4382 gtid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004383 }
4384 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4385}
4386
4387# endif /* OMP_40_ENABLED */
4388
4389
4390int
4391__kmp_aux_set_affinity(void **mask)
4392{
4393 int gtid;
4394 kmp_info_t *th;
4395 int retval;
4396
4397 if (! KMP_AFFINITY_CAPABLE()) {
4398 return -1;
4399 }
4400
4401 gtid = __kmp_entry_gtid();
4402 KA_TRACE(1000, ;{
4403 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4404 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4405 (kmp_affin_mask_t *)(*mask));
4406 __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4407 gtid, buf);
4408 });
4409
4410 if (__kmp_env_consistency_check) {
4411 if ((mask == NULL) || (*mask == NULL)) {
4412 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4413 }
4414 else {
4415 unsigned proc;
4416 int num_procs = 0;
4417
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004418 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) {
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004419 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4420 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4421 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004422 if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4423 continue;
4424 }
4425 num_procs++;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004426 }
4427 if (num_procs == 0) {
4428 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4429 }
4430
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004431# if KMP_GROUP_AFFINITY
Jim Cownie5e8470a2013-09-27 10:38:44 +00004432 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4433 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4434 }
Andrey Churbanov7daf9802015-01-27 16:52:57 +00004435# endif /* KMP_GROUP_AFFINITY */
Jim Cownie5e8470a2013-09-27 10:38:44 +00004436
4437 }
4438 }
4439
4440 th = __kmp_threads[gtid];
4441 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4442 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4443 if (retval == 0) {
4444 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4445 }
4446
4447# if OMP_40_ENABLED
4448 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4449 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4450 th->th.th_first_place = 0;
4451 th->th.th_last_place = __kmp_affinity_num_masks - 1;
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004452
4453 //
4454 // Turn off 4.0 affinity for the current tread at this parallel level.
4455 //
4456 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004457# endif
4458
4459 return retval;
4460}
4461
4462
4463int
4464__kmp_aux_get_affinity(void **mask)
4465{
4466 int gtid;
4467 int retval;
4468 kmp_info_t *th;
4469
4470 if (! KMP_AFFINITY_CAPABLE()) {
4471 return -1;
4472 }
4473
4474 gtid = __kmp_entry_gtid();
4475 th = __kmp_threads[gtid];
4476 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4477
4478 KA_TRACE(1000, ;{
4479 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4480 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4481 th->th.th_affin_mask);
4482 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
4483 });
4484
4485 if (__kmp_env_consistency_check) {
4486 if ((mask == NULL) || (*mask == NULL)) {
4487 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4488 }
4489 }
4490
4491# if !KMP_OS_WINDOWS
4492
4493 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4494 KA_TRACE(1000, ;{
4495 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4496 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4497 (kmp_affin_mask_t *)(*mask));
4498 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
4499 });
4500 return retval;
4501
4502# else
4503
4504 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4505 return 0;
4506
4507# endif /* KMP_OS_WINDOWS */
4508
4509}
4510
Jim Cownie5e8470a2013-09-27 10:38:44 +00004511int
4512__kmp_aux_set_affinity_mask_proc(int proc, void **mask)
4513{
4514 int retval;
4515
4516 if (! KMP_AFFINITY_CAPABLE()) {
4517 return -1;
4518 }
4519
4520 KA_TRACE(1000, ;{
4521 int gtid = __kmp_entry_gtid();
4522 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4523 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4524 (kmp_affin_mask_t *)(*mask));
4525 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
4526 proc, gtid, buf);
4527 });
4528
4529 if (__kmp_env_consistency_check) {
4530 if ((mask == NULL) || (*mask == NULL)) {
4531 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4532 }
4533 }
4534
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004535 if ((proc < 0)
4536# if !KMP_USE_HWLOC
4537 || ((unsigned)proc >= KMP_CPU_SETSIZE)
4538# endif
4539 ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004540 return -1;
4541 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004542 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004543 return -2;
4544 }
4545
4546 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4547 return 0;
4548}
4549
4550
4551int
4552__kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
4553{
4554 int retval;
4555
4556 if (! KMP_AFFINITY_CAPABLE()) {
4557 return -1;
4558 }
4559
4560 KA_TRACE(1000, ;{
4561 int gtid = __kmp_entry_gtid();
4562 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4563 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4564 (kmp_affin_mask_t *)(*mask));
4565 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
4566 proc, gtid, buf);
4567 });
4568
4569 if (__kmp_env_consistency_check) {
4570 if ((mask == NULL) || (*mask == NULL)) {
4571 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4572 }
4573 }
4574
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004575 if ((proc < 0)
4576# if !KMP_USE_HWLOC
4577 || ((unsigned)proc >= KMP_CPU_SETSIZE)
4578# endif
4579 ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004580 return -1;
4581 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004582 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004583 return -2;
4584 }
4585
4586 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4587 return 0;
4588}
4589
4590
4591int
4592__kmp_aux_get_affinity_mask_proc(int proc, void **mask)
4593{
4594 int retval;
4595
4596 if (! KMP_AFFINITY_CAPABLE()) {
4597 return -1;
4598 }
4599
4600 KA_TRACE(1000, ;{
4601 int gtid = __kmp_entry_gtid();
4602 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4603 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4604 (kmp_affin_mask_t *)(*mask));
4605 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
4606 proc, gtid, buf);
4607 });
4608
4609 if (__kmp_env_consistency_check) {
4610 if ((mask == NULL) || (*mask == NULL)) {
Andrey Churbanov4b2f17a2015-01-29 15:49:22 +00004611 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
Jim Cownie5e8470a2013-09-27 10:38:44 +00004612 }
4613 }
4614
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004615 if ((proc < 0)
4616# if !KMP_USE_HWLOC
4617 || ((unsigned)proc >= KMP_CPU_SETSIZE)
4618# endif
4619 ) {
4620 return -1;
Jim Cownie5e8470a2013-09-27 10:38:44 +00004621 }
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004622 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004623 return 0;
4624 }
4625
4626 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4627}
4628
Jim Cownie5e8470a2013-09-27 10:38:44 +00004629
4630// Dynamic affinity settings - Affinity balanced
4631void __kmp_balanced_affinity( int tid, int nthreads )
4632{
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004633 bool fine_gran = true;
4634
4635 switch (__kmp_affinity_gran) {
4636 case affinity_gran_fine:
4637 case affinity_gran_thread:
4638 break;
4639 case affinity_gran_core:
4640 if( __kmp_nThreadsPerCore > 1) {
4641 fine_gran = false;
4642 }
4643 break;
4644 case affinity_gran_package:
4645 if( nCoresPerPkg > 1) {
4646 fine_gran = false;
4647 }
4648 break;
4649 default:
4650 fine_gran = false;
4651 }
4652
Jim Cownie5e8470a2013-09-27 10:38:44 +00004653 if( __kmp_affinity_uniform_topology() ) {
4654 int coreID;
4655 int threadID;
4656 // Number of hyper threads per core in HT machine
4657 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4658 // Number of cores
4659 int ncores = __kmp_ncores;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004660 if( ( nPackages > 1 ) && ( __kmp_nth_per_core <= 1 ) ) {
4661 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4662 ncores = nPackages;
4663 }
Jim Cownie5e8470a2013-09-27 10:38:44 +00004664 // How many threads will be bound to each core
4665 int chunk = nthreads / ncores;
4666 // How many cores will have an additional thread bound to it - "big cores"
4667 int big_cores = nthreads % ncores;
4668 // Number of threads on the big cores
4669 int big_nth = ( chunk + 1 ) * big_cores;
4670 if( tid < big_nth ) {
4671 coreID = tid / (chunk + 1 );
4672 threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
4673 } else { //tid >= big_nth
4674 coreID = ( tid - big_cores ) / chunk;
4675 threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
4676 }
4677
4678 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4679 "Illegal set affinity operation when not capable");
4680
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004681 kmp_affin_mask_t *mask;
4682 KMP_CPU_ALLOC_ON_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004683 KMP_CPU_ZERO(mask);
4684
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004685 if( fine_gran ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004686 int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
4687 KMP_CPU_SET( osID, mask);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004688 } else {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004689 for( int i = 0; i < __kmp_nth_per_core; i++ ) {
4690 int osID;
4691 osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
4692 KMP_CPU_SET( osID, mask);
4693 }
4694 }
4695 if (__kmp_affinity_verbose) {
4696 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4697 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004698 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4699 tid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004700 }
4701 __kmp_set_system_affinity( mask, TRUE );
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004702 KMP_CPU_FREE_FROM_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004703 } else { // Non-uniform topology
4704
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004705 kmp_affin_mask_t *mask;
4706 KMP_CPU_ALLOC_ON_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004707 KMP_CPU_ZERO(mask);
4708
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004709 int core_level = __kmp_affinity_find_core_level(address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
4710 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
4711 int nth_per_core = __kmp_affinity_max_proc_per_core(address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004712
4713 // For performance gain consider the special case nthreads == __kmp_avail_proc
4714 if( nthreads == __kmp_avail_proc ) {
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004715 if( fine_gran ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004716 int osID = address2os[ tid ].second;
4717 KMP_CPU_SET( osID, mask);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004718 } else {
4719 int core = __kmp_affinity_find_core(address2os, tid, __kmp_aff_depth - 1, core_level);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004720 for( int i = 0; i < __kmp_avail_proc; i++ ) {
4721 int osID = address2os[ i ].second;
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004722 if( __kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, core_level) == core ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004723 KMP_CPU_SET( osID, mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004724 }
4725 }
4726 }
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004727 } else if( nthreads <= ncores ) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004728
4729 int core = 0;
4730 for( int i = 0; i < ncores; i++ ) {
4731 // Check if this core from procarr[] is in the mask
4732 int in_mask = 0;
4733 for( int j = 0; j < nth_per_core; j++ ) {
4734 if( procarr[ i * nth_per_core + j ] != - 1 ) {
4735 in_mask = 1;
4736 break;
4737 }
4738 }
4739 if( in_mask ) {
4740 if( tid == core ) {
4741 for( int j = 0; j < nth_per_core; j++ ) {
4742 int osID = procarr[ i * nth_per_core + j ];
4743 if( osID != -1 ) {
4744 KMP_CPU_SET( osID, mask );
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004745 // For fine granularity it is enough to set the first available osID for this core
4746 if( fine_gran) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004747 break;
4748 }
4749 }
4750 }
4751 break;
4752 } else {
4753 core++;
4754 }
4755 }
4756 }
4757
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004758 } else { // nthreads > ncores
Jim Cownie5e8470a2013-09-27 10:38:44 +00004759
4760 // Array to save the number of processors at each core
Jonathan Peyton7be075332015-06-22 15:53:50 +00004761 int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004762 // Array to save the number of cores with "x" available processors;
Jonathan Peyton7be075332015-06-22 15:53:50 +00004763 int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004764 // Array to save the number of cores with # procs from x to nth_per_core
Jonathan Peyton7be075332015-06-22 15:53:50 +00004765 int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
Jim Cownie5e8470a2013-09-27 10:38:44 +00004766
4767 for( int i = 0; i <= nth_per_core; i++ ) {
4768 ncores_with_x_procs[ i ] = 0;
4769 ncores_with_x_to_max_procs[ i ] = 0;
4770 }
4771
4772 for( int i = 0; i < ncores; i++ ) {
4773 int cnt = 0;
4774 for( int j = 0; j < nth_per_core; j++ ) {
4775 if( procarr[ i * nth_per_core + j ] != -1 ) {
4776 cnt++;
4777 }
4778 }
4779 nproc_at_core[ i ] = cnt;
4780 ncores_with_x_procs[ cnt ]++;
4781 }
4782
4783 for( int i = 0; i <= nth_per_core; i++ ) {
4784 for( int j = i; j <= nth_per_core; j++ ) {
4785 ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
4786 }
4787 }
4788
4789 // Max number of processors
4790 int nproc = nth_per_core * ncores;
4791 // An array to keep number of threads per each context
4792 int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
4793 for( int i = 0; i < nproc; i++ ) {
4794 newarr[ i ] = 0;
4795 }
4796
4797 int nth = nthreads;
4798 int flag = 0;
4799 while( nth > 0 ) {
4800 for( int j = 1; j <= nth_per_core; j++ ) {
4801 int cnt = ncores_with_x_to_max_procs[ j ];
4802 for( int i = 0; i < ncores; i++ ) {
4803 // Skip the core with 0 processors
4804 if( nproc_at_core[ i ] == 0 ) {
4805 continue;
4806 }
4807 for( int k = 0; k < nth_per_core; k++ ) {
4808 if( procarr[ i * nth_per_core + k ] != -1 ) {
4809 if( newarr[ i * nth_per_core + k ] == 0 ) {
4810 newarr[ i * nth_per_core + k ] = 1;
4811 cnt--;
4812 nth--;
4813 break;
4814 } else {
4815 if( flag != 0 ) {
4816 newarr[ i * nth_per_core + k ] ++;
4817 cnt--;
4818 nth--;
4819 break;
4820 }
4821 }
4822 }
4823 }
4824 if( cnt == 0 || nth == 0 ) {
4825 break;
4826 }
4827 }
4828 if( nth == 0 ) {
4829 break;
4830 }
4831 }
4832 flag = 1;
4833 }
4834 int sum = 0;
4835 for( int i = 0; i < nproc; i++ ) {
4836 sum += newarr[ i ];
4837 if( sum > tid ) {
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004838 if( fine_gran) {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004839 int osID = procarr[ i ];
4840 KMP_CPU_SET( osID, mask);
Paul Osmialowskiecbe2ea2016-07-29 20:55:03 +00004841 } else {
Jim Cownie5e8470a2013-09-27 10:38:44 +00004842 int coreID = i / nth_per_core;
4843 for( int ii = 0; ii < nth_per_core; ii++ ) {
4844 int osID = procarr[ coreID * nth_per_core + ii ];
4845 if( osID != -1 ) {
4846 KMP_CPU_SET( osID, mask);
4847 }
4848 }
4849 }
4850 break;
4851 }
4852 }
4853 __kmp_free( newarr );
4854 }
4855
4856 if (__kmp_affinity_verbose) {
4857 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4858 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
Jim Cownie4cc4bb42014-10-07 16:25:50 +00004859 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4860 tid, buf);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004861 }
4862 __kmp_set_system_affinity( mask, TRUE );
Jonathan Peyton01dcf362015-11-30 20:02:59 +00004863 KMP_CPU_FREE_FROM_STACK(mask);
Jim Cownie5e8470a2013-09-27 10:38:44 +00004864 }
4865}
4866
Jonathan Peyton3076fa42016-01-12 17:21:55 +00004867#if KMP_OS_LINUX
4868// We don't need this entry for Windows because
4869// there is GetProcessAffinityMask() api
4870//
4871// The intended usage is indicated by these steps:
4872// 1) The user gets the current affinity mask
4873// 2) Then sets the affinity by calling this function
4874// 3) Error check the return value
4875// 4) Use non-OpenMP parallelization
4876// 5) Reset the affinity to what was stored in step 1)
4877#ifdef __cplusplus
4878extern "C"
4879#endif
4880int
4881kmp_set_thread_affinity_mask_initial()
4882// the function returns 0 on success,
4883// -1 if we cannot bind thread
4884// >0 (errno) if an error happened during binding
4885{
4886 int gtid = __kmp_get_gtid();
4887 if (gtid < 0) {
4888 // Do not touch non-omp threads
4889 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4890 "non-omp thread, returning\n"));
4891 return -1;
4892 }
4893 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
4894 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4895 "affinity not initialized, returning\n"));
4896 return -1;
4897 }
4898 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4899 "set full mask for thread %d\n", gtid));
Jonathan Peytonc5304aa2016-06-13 21:28:03 +00004900 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
4901 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
Jonathan Peyton3076fa42016-01-12 17:21:55 +00004902}
4903#endif
4904
Alp Toker763b9392014-02-28 09:42:41 +00004905#endif // KMP_AFFINITY_SUPPORTED