Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1 | //===--- HexagonLoopIdiomRecognition.cpp ----------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #define DEBUG_TYPE "hexagon-lir" |
| 11 | |
| 12 | #include "llvm/ADT/SetVector.h" |
| 13 | #include "llvm/ADT/SmallSet.h" |
| 14 | #include "llvm/Analysis/AliasAnalysis.h" |
| 15 | #include "llvm/Analysis/InstructionSimplify.h" |
| 16 | #include "llvm/Analysis/LoopPass.h" |
| 17 | #include "llvm/Analysis/ScalarEvolution.h" |
| 18 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 19 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 21 | #include "llvm/Analysis/ValueTracking.h" |
| 22 | #include "llvm/IR/DataLayout.h" |
| 23 | #include "llvm/IR/Dominators.h" |
| 24 | #include "llvm/IR/IRBuilder.h" |
| 25 | #include "llvm/IR/PatternMatch.h" |
| 26 | #include "llvm/Transforms/Scalar.h" |
| 27 | #include "llvm/Transforms/Utils/Local.h" |
| 28 | #include "llvm/Support/Debug.h" |
| 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | |
| 31 | #include <algorithm> |
| 32 | #include <array> |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom", |
| 37 | cl::Hidden, cl::init(false), |
| 38 | cl::desc("Disable generation of memcpy in loop idiom recognition")); |
| 39 | |
| 40 | static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom", |
| 41 | cl::Hidden, cl::init(false), |
| 42 | cl::desc("Disable generation of memmove in loop idiom recognition")); |
| 43 | |
| 44 | static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold", |
| 45 | cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime " |
| 46 | "check guarding the memmove.")); |
| 47 | |
| 48 | static cl::opt<unsigned> CompileTimeMemSizeThreshold( |
| 49 | "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64), |
| 50 | cl::desc("Threshold (in bytes) to perform the transformation, if the " |
| 51 | "runtime loop count (mem transfer size) is known at compile-time.")); |
| 52 | |
| 53 | static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom", |
| 54 | cl::Hidden, cl::init(true), |
| 55 | cl::desc("Only enable generating memmove in non-nested loops")); |
| 56 | |
| 57 | cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy", |
| 58 | cl::Hidden, cl::init(false), |
| 59 | cl::desc("Enable Hexagon-specific memcpy for volatile destination.")); |
| 60 | |
| 61 | static const char *HexagonVolatileMemcpyName |
| 62 | = "hexagon_memcpy_forward_vp4cp4n2"; |
| 63 | |
| 64 | |
| 65 | namespace llvm { |
| 66 | void initializeHexagonLoopIdiomRecognizePass(PassRegistry&); |
| 67 | Pass *createHexagonLoopIdiomPass(); |
| 68 | } |
| 69 | |
| 70 | namespace { |
| 71 | class HexagonLoopIdiomRecognize : public LoopPass { |
| 72 | public: |
| 73 | static char ID; |
| 74 | explicit HexagonLoopIdiomRecognize() : LoopPass(ID) { |
| 75 | initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); |
| 76 | } |
| 77 | StringRef getPassName() const override { |
| 78 | return "Recognize Hexagon-specific loop idioms"; |
| 79 | } |
| 80 | |
| 81 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 82 | AU.addRequired<LoopInfoWrapperPass>(); |
| 83 | AU.addRequiredID(LoopSimplifyID); |
| 84 | AU.addRequiredID(LCSSAID); |
| 85 | AU.addRequired<AAResultsWrapperPass>(); |
| 86 | AU.addPreserved<AAResultsWrapperPass>(); |
| 87 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 88 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 89 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 90 | AU.addPreserved<TargetLibraryInfoWrapperPass>(); |
| 91 | } |
| 92 | |
| 93 | bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| 94 | |
| 95 | private: |
| 96 | unsigned getStoreSizeInBytes(StoreInst *SI); |
| 97 | int getSCEVStride(const SCEVAddRecExpr *StoreEv); |
| 98 | bool isLegalStore(Loop *CurLoop, StoreInst *SI); |
| 99 | void collectStores(Loop *CurLoop, BasicBlock *BB, |
| 100 | SmallVectorImpl<StoreInst*> &Stores); |
| 101 | bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount); |
| 102 | bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const; |
| 103 | bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, |
| 104 | SmallVectorImpl<BasicBlock*> &ExitBlocks); |
| 105 | bool runOnCountableLoop(Loop *L); |
| 106 | |
| 107 | AliasAnalysis *AA; |
| 108 | const DataLayout *DL; |
| 109 | DominatorTree *DT; |
| 110 | LoopInfo *LF; |
| 111 | const TargetLibraryInfo *TLI; |
| 112 | ScalarEvolution *SE; |
| 113 | bool HasMemcpy, HasMemmove; |
| 114 | }; |
| 115 | } |
| 116 | |
| 117 | char HexagonLoopIdiomRecognize::ID = 0; |
| 118 | |
| 119 | INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", |
| 120 | "Recognize Hexagon-specific loop idioms", false, false) |
| 121 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 122 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| 123 | INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) |
| 124 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 125 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 126 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 127 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 128 | INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", |
| 129 | "Recognize Hexagon-specific loop idioms", false, false) |
| 130 | |
| 131 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 132 | namespace { |
| 133 | struct Simplifier { |
| 134 | typedef std::function<Value* (Instruction*, LLVMContext&)> Rule; |
| 135 | |
| 136 | void addRule(const Rule &R) { Rules.push_back(R); } |
| 137 | |
| 138 | private: |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 139 | struct WorkListType { |
| 140 | WorkListType() = default; |
| 141 | |
| 142 | void push_back(Value* V) { |
| 143 | // Do not push back duplicates. |
| 144 | if (!S.count(V)) { Q.push_back(V); S.insert(V); } |
| 145 | } |
| 146 | Value *pop_front_val() { |
| 147 | Value *V = Q.front(); Q.pop_front(); S.erase(V); |
| 148 | return V; |
| 149 | } |
| 150 | bool empty() const { return Q.empty(); } |
| 151 | |
| 152 | private: |
| 153 | std::deque<Value*> Q; |
| 154 | std::set<Value*> S; |
| 155 | }; |
| 156 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 157 | typedef std::set<Value*> ValueSetType; |
| 158 | std::vector<Rule> Rules; |
| 159 | |
| 160 | public: |
| 161 | struct Context { |
| 162 | typedef DenseMap<Value*,Value*> ValueMapType; |
| 163 | |
| 164 | Value *Root; |
| 165 | ValueSetType Used; // The set of all cloned values used by Root. |
| 166 | ValueSetType Clones; // The set of all cloned values. |
| 167 | LLVMContext &Ctx; |
| 168 | |
| 169 | Context(Instruction *Exp) |
| 170 | : Ctx(Exp->getParent()->getParent()->getContext()) { |
| 171 | initialize(Exp); |
| 172 | } |
| 173 | ~Context() { cleanup(); } |
| 174 | void print(raw_ostream &OS, const Value *V) const; |
| 175 | |
| 176 | Value *materialize(BasicBlock *B, BasicBlock::iterator At); |
| 177 | |
| 178 | private: |
| 179 | void initialize(Instruction *Exp); |
| 180 | void cleanup(); |
| 181 | |
| 182 | template <typename FuncT> void traverse(Value *V, FuncT F); |
| 183 | void record(Value *V); |
| 184 | void use(Value *V); |
| 185 | void unuse(Value *V); |
| 186 | |
| 187 | bool equal(const Instruction *I, const Instruction *J) const; |
| 188 | Value *find(Value *Tree, Value *Sub) const; |
| 189 | Value *subst(Value *Tree, Value *OldV, Value *NewV); |
| 190 | void replace(Value *OldV, Value *NewV); |
| 191 | void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At); |
| 192 | |
| 193 | friend struct Simplifier; |
| 194 | }; |
| 195 | |
| 196 | Value *simplify(Context &C); |
| 197 | }; |
| 198 | |
| 199 | struct PE { |
| 200 | PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {} |
| 201 | const Simplifier::Context &C; |
| 202 | const Value *V; |
| 203 | }; |
| 204 | |
| 205 | raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED; |
| 206 | raw_ostream &operator<< (raw_ostream &OS, const PE &P) { |
| 207 | P.C.print(OS, P.V ? P.V : P.C.Root); |
| 208 | return OS; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | |
| 213 | template <typename FuncT> |
| 214 | void Simplifier::Context::traverse(Value *V, FuncT F) { |
| 215 | WorkListType Q; |
| 216 | Q.push_back(V); |
| 217 | |
| 218 | while (!Q.empty()) { |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 219 | Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 220 | if (!U || U->getParent()) |
| 221 | continue; |
| 222 | if (!F(U)) |
| 223 | continue; |
| 224 | for (Value *Op : U->operands()) |
| 225 | Q.push_back(Op); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | |
| 230 | void Simplifier::Context::print(raw_ostream &OS, const Value *V) const { |
| 231 | const auto *U = dyn_cast<const Instruction>(V); |
| 232 | if (!U) { |
| 233 | OS << V << '(' << *V << ')'; |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | if (U->getParent()) { |
| 238 | OS << U << '('; |
| 239 | U->printAsOperand(OS, true); |
| 240 | OS << ')'; |
| 241 | return; |
| 242 | } |
| 243 | |
| 244 | unsigned N = U->getNumOperands(); |
| 245 | if (N != 0) |
| 246 | OS << U << '('; |
| 247 | OS << U->getOpcodeName(); |
| 248 | for (const Value *Op : U->operands()) { |
| 249 | OS << ' '; |
| 250 | print(OS, Op); |
| 251 | } |
| 252 | if (N != 0) |
| 253 | OS << ')'; |
| 254 | } |
| 255 | |
| 256 | |
| 257 | void Simplifier::Context::initialize(Instruction *Exp) { |
| 258 | // Perform a deep clone of the expression, set Root to the root |
| 259 | // of the clone, and build a map from the cloned values to the |
| 260 | // original ones. |
| 261 | ValueMapType M; |
| 262 | BasicBlock *Block = Exp->getParent(); |
| 263 | WorkListType Q; |
| 264 | Q.push_back(Exp); |
| 265 | |
| 266 | while (!Q.empty()) { |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 267 | Value *V = Q.pop_front_val(); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 268 | if (M.find(V) != M.end()) |
| 269 | continue; |
| 270 | if (Instruction *U = dyn_cast<Instruction>(V)) { |
| 271 | if (isa<PHINode>(U) || U->getParent() != Block) |
| 272 | continue; |
| 273 | for (Value *Op : U->operands()) |
| 274 | Q.push_back(Op); |
| 275 | M.insert({U, U->clone()}); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | for (std::pair<Value*,Value*> P : M) { |
| 280 | Instruction *U = cast<Instruction>(P.second); |
| 281 | for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { |
| 282 | auto F = M.find(U->getOperand(i)); |
| 283 | if (F != M.end()) |
| 284 | U->setOperand(i, F->second); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | auto R = M.find(Exp); |
| 289 | assert(R != M.end()); |
| 290 | Root = R->second; |
| 291 | |
| 292 | record(Root); |
| 293 | use(Root); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | void Simplifier::Context::record(Value *V) { |
| 298 | auto Record = [this](Instruction *U) -> bool { |
| 299 | Clones.insert(U); |
| 300 | return true; |
| 301 | }; |
| 302 | traverse(V, Record); |
| 303 | } |
| 304 | |
| 305 | |
| 306 | void Simplifier::Context::use(Value *V) { |
| 307 | auto Use = [this](Instruction *U) -> bool { |
| 308 | Used.insert(U); |
| 309 | return true; |
| 310 | }; |
| 311 | traverse(V, Use); |
| 312 | } |
| 313 | |
| 314 | |
| 315 | void Simplifier::Context::unuse(Value *V) { |
| 316 | if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr) |
| 317 | return; |
| 318 | |
| 319 | auto Unuse = [this](Instruction *U) -> bool { |
| 320 | if (!U->use_empty()) |
| 321 | return false; |
| 322 | Used.erase(U); |
| 323 | return true; |
| 324 | }; |
| 325 | traverse(V, Unuse); |
| 326 | } |
| 327 | |
| 328 | |
| 329 | Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) { |
| 330 | if (Tree == OldV) |
| 331 | return NewV; |
| 332 | if (OldV == NewV) |
| 333 | return Tree; |
| 334 | |
| 335 | WorkListType Q; |
| 336 | Q.push_back(Tree); |
| 337 | while (!Q.empty()) { |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 338 | Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 339 | // If U is not an instruction, or it's not a clone, skip it. |
| 340 | if (!U || U->getParent()) |
| 341 | continue; |
| 342 | for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { |
| 343 | Value *Op = U->getOperand(i); |
| 344 | if (Op == OldV) { |
| 345 | U->setOperand(i, NewV); |
| 346 | unuse(OldV); |
| 347 | } else { |
| 348 | Q.push_back(Op); |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | return Tree; |
| 353 | } |
| 354 | |
| 355 | |
| 356 | void Simplifier::Context::replace(Value *OldV, Value *NewV) { |
| 357 | if (Root == OldV) { |
| 358 | Root = NewV; |
| 359 | use(Root); |
| 360 | return; |
| 361 | } |
| 362 | |
| 363 | // NewV may be a complex tree that has just been created by one of the |
| 364 | // transformation rules. We need to make sure that it is commoned with |
| 365 | // the existing Root to the maximum extent possible. |
| 366 | // Identify all subtrees of NewV (including NewV itself) that have |
| 367 | // equivalent counterparts in Root, and replace those subtrees with |
| 368 | // these counterparts. |
| 369 | WorkListType Q; |
| 370 | Q.push_back(NewV); |
| 371 | while (!Q.empty()) { |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 372 | Value *V = Q.pop_front_val(); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 373 | Instruction *U = dyn_cast<Instruction>(V); |
| 374 | if (!U || U->getParent()) |
| 375 | continue; |
| 376 | if (Value *DupV = find(Root, V)) { |
| 377 | if (DupV != V) |
| 378 | NewV = subst(NewV, V, DupV); |
| 379 | } else { |
| 380 | for (Value *Op : U->operands()) |
| 381 | Q.push_back(Op); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | // Now, simply replace OldV with NewV in Root. |
| 386 | Root = subst(Root, OldV, NewV); |
| 387 | use(Root); |
| 388 | } |
| 389 | |
| 390 | |
| 391 | void Simplifier::Context::cleanup() { |
| 392 | for (Value *V : Clones) { |
| 393 | Instruction *U = cast<Instruction>(V); |
| 394 | if (!U->getParent()) |
| 395 | U->dropAllReferences(); |
| 396 | } |
| 397 | |
| 398 | for (Value *V : Clones) { |
| 399 | Instruction *U = cast<Instruction>(V); |
| 400 | if (!U->getParent()) |
| 401 | delete U; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | |
| 406 | bool Simplifier::Context::equal(const Instruction *I, |
| 407 | const Instruction *J) const { |
| 408 | if (I == J) |
| 409 | return true; |
| 410 | if (!I->isSameOperationAs(J)) |
| 411 | return false; |
| 412 | if (isa<PHINode>(I)) |
| 413 | return I->isIdenticalTo(J); |
| 414 | |
| 415 | for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) { |
| 416 | Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i); |
| 417 | if (OpI == OpJ) |
| 418 | continue; |
| 419 | auto *InI = dyn_cast<const Instruction>(OpI); |
| 420 | auto *InJ = dyn_cast<const Instruction>(OpJ); |
| 421 | if (InI && InJ) { |
| 422 | if (!equal(InI, InJ)) |
| 423 | return false; |
| 424 | } else if (InI != InJ || !InI) |
| 425 | return false; |
| 426 | } |
| 427 | return true; |
| 428 | } |
| 429 | |
| 430 | |
| 431 | Value *Simplifier::Context::find(Value *Tree, Value *Sub) const { |
| 432 | Instruction *SubI = dyn_cast<Instruction>(Sub); |
| 433 | WorkListType Q; |
| 434 | Q.push_back(Tree); |
| 435 | |
| 436 | while (!Q.empty()) { |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 437 | Value *V = Q.pop_front_val(); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 438 | if (V == Sub) |
| 439 | return V; |
| 440 | Instruction *U = dyn_cast<Instruction>(V); |
| 441 | if (!U || U->getParent()) |
| 442 | continue; |
| 443 | if (SubI && equal(SubI, U)) |
| 444 | return U; |
| 445 | assert(!isa<PHINode>(U)); |
| 446 | for (Value *Op : U->operands()) |
| 447 | Q.push_back(Op); |
| 448 | } |
| 449 | return nullptr; |
| 450 | } |
| 451 | |
| 452 | |
| 453 | void Simplifier::Context::link(Instruction *I, BasicBlock *B, |
| 454 | BasicBlock::iterator At) { |
| 455 | if (I->getParent()) |
| 456 | return; |
| 457 | |
| 458 | for (Value *Op : I->operands()) { |
| 459 | if (Instruction *OpI = dyn_cast<Instruction>(Op)) |
| 460 | link(OpI, B, At); |
| 461 | } |
| 462 | |
| 463 | B->getInstList().insert(At, I); |
| 464 | } |
| 465 | |
| 466 | |
| 467 | Value *Simplifier::Context::materialize(BasicBlock *B, |
| 468 | BasicBlock::iterator At) { |
| 469 | if (Instruction *RootI = dyn_cast<Instruction>(Root)) |
| 470 | link(RootI, B, At); |
| 471 | return Root; |
| 472 | } |
| 473 | |
| 474 | |
| 475 | Value *Simplifier::simplify(Context &C) { |
| 476 | WorkListType Q; |
| 477 | Q.push_back(C.Root); |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 478 | unsigned Count = 0; |
| 479 | const unsigned Limit = 100000; |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 480 | |
| 481 | while (!Q.empty()) { |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 482 | if (Count++ >= Limit) |
| 483 | break; |
| 484 | Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 485 | if (!U || U->getParent() || !C.Used.count(U)) |
| 486 | continue; |
| 487 | bool Changed = false; |
| 488 | for (Rule &R : Rules) { |
| 489 | Value *W = R(U, C.Ctx); |
| 490 | if (!W) |
| 491 | continue; |
| 492 | Changed = true; |
| 493 | C.record(W); |
| 494 | C.replace(U, W); |
| 495 | Q.push_back(C.Root); |
| 496 | break; |
| 497 | } |
| 498 | if (!Changed) { |
| 499 | for (Value *Op : U->operands()) |
| 500 | Q.push_back(Op); |
| 501 | } |
| 502 | } |
Krzysztof Parzyszek | 10fbac0 | 2017-03-23 23:01:22 +0000 | [diff] [blame] | 503 | assert(Count < Limit && "Infinite loop in HLIR/simplify?"); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 504 | return C.Root; |
| 505 | } |
| 506 | |
| 507 | |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 508 | //===----------------------------------------------------------------------===// |
| 509 | // |
| 510 | // Implementation of PolynomialMultiplyRecognize |
| 511 | // |
| 512 | //===----------------------------------------------------------------------===// |
| 513 | |
| 514 | namespace { |
| 515 | class PolynomialMultiplyRecognize { |
| 516 | public: |
| 517 | explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl, |
| 518 | const DominatorTree &dt, const TargetLibraryInfo &tli, |
| 519 | ScalarEvolution &se) |
| 520 | : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {} |
| 521 | |
| 522 | bool recognize(); |
| 523 | private: |
| 524 | typedef SetVector<Value*> ValueSeq; |
| 525 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 526 | IntegerType *getPmpyType() const { |
| 527 | LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext(); |
| 528 | return IntegerType::get(Ctx, 32); |
| 529 | } |
| 530 | bool isPromotableTo(Value *V, IntegerType *Ty); |
| 531 | void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB); |
| 532 | bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB); |
| 533 | |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 534 | Value *getCountIV(BasicBlock *BB); |
| 535 | bool findCycle(Value *Out, Value *In, ValueSeq &Cycle); |
| 536 | void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, |
| 537 | ValueSeq &Late); |
| 538 | bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late); |
| 539 | bool commutesWithShift(Instruction *I); |
| 540 | bool highBitsAreZero(Value *V, unsigned IterCount); |
| 541 | bool keepsHighBitsZero(Value *V, unsigned IterCount); |
| 542 | bool isOperandShifted(Instruction *I, Value *Op); |
| 543 | bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, |
| 544 | unsigned IterCount); |
| 545 | void cleanupLoopBody(BasicBlock *LoopB); |
| 546 | |
| 547 | struct ParsedValues { |
| 548 | ParsedValues() : M(nullptr), P(nullptr), Q(nullptr), R(nullptr), |
| 549 | X(nullptr), Res(nullptr), IterCount(0), Left(false), Inv(false) {} |
| 550 | Value *M, *P, *Q, *R, *X; |
| 551 | Instruction *Res; |
| 552 | unsigned IterCount; |
| 553 | bool Left, Inv; |
| 554 | }; |
| 555 | |
| 556 | bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV); |
| 557 | bool matchRightShift(SelectInst *SelI, ParsedValues &PV); |
| 558 | bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB, |
| 559 | Value *CIV, ParsedValues &PV, bool PreScan); |
| 560 | unsigned getInverseMxN(unsigned QP); |
| 561 | Value *generate(BasicBlock::iterator At, ParsedValues &PV); |
| 562 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 563 | void setupSimplifier(); |
| 564 | |
| 565 | Simplifier Simp; |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 566 | Loop *CurLoop; |
| 567 | const DataLayout &DL; |
| 568 | const DominatorTree &DT; |
| 569 | const TargetLibraryInfo &TLI; |
| 570 | ScalarEvolution &SE; |
| 571 | }; |
| 572 | } |
| 573 | |
| 574 | |
| 575 | Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) { |
| 576 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| 577 | if (std::distance(PI, PE) != 2) |
| 578 | return nullptr; |
| 579 | BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI; |
| 580 | |
| 581 | for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { |
| 582 | auto *PN = cast<PHINode>(I); |
| 583 | Value *InitV = PN->getIncomingValueForBlock(PB); |
| 584 | if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero()) |
| 585 | continue; |
| 586 | Value *IterV = PN->getIncomingValueForBlock(BB); |
| 587 | if (!isa<BinaryOperator>(IterV)) |
| 588 | continue; |
| 589 | auto *BO = dyn_cast<BinaryOperator>(IterV); |
| 590 | if (BO->getOpcode() != Instruction::Add) |
| 591 | continue; |
| 592 | Value *IncV = nullptr; |
| 593 | if (BO->getOperand(0) == PN) |
| 594 | IncV = BO->getOperand(1); |
| 595 | else if (BO->getOperand(1) == PN) |
| 596 | IncV = BO->getOperand(0); |
| 597 | if (IncV == nullptr) |
| 598 | continue; |
| 599 | |
| 600 | if (auto *T = dyn_cast<ConstantInt>(IncV)) |
| 601 | if (T->getZExtValue() == 1) |
| 602 | return PN; |
| 603 | } |
| 604 | return nullptr; |
| 605 | } |
| 606 | |
| 607 | |
| 608 | static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) { |
| 609 | for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) { |
| 610 | Use &TheUse = UI.getUse(); |
| 611 | ++UI; |
| 612 | if (auto *II = dyn_cast<Instruction>(TheUse.getUser())) |
| 613 | if (BB == II->getParent()) |
| 614 | II->replaceUsesOfWith(I, J); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | |
| 619 | bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI, |
| 620 | Value *CIV, ParsedValues &PV) { |
| 621 | // Match the following: |
| 622 | // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R |
| 623 | // select (X & (1 << i)) == 0 ? R : R ^ (Q << i) |
| 624 | // The condition may also check for equality with the masked value, i.e |
| 625 | // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R |
| 626 | // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i); |
| 627 | |
| 628 | Value *CondV = SelI->getCondition(); |
| 629 | Value *TrueV = SelI->getTrueValue(); |
| 630 | Value *FalseV = SelI->getFalseValue(); |
| 631 | |
| 632 | using namespace PatternMatch; |
| 633 | |
| 634 | CmpInst::Predicate P; |
| 635 | Value *A = nullptr, *B = nullptr, *C = nullptr; |
| 636 | |
| 637 | if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) && |
| 638 | !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B))))) |
| 639 | return false; |
| 640 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 641 | return false; |
| 642 | // Matched: select (A & B) == C ? ... : ... |
| 643 | // select (A & B) != C ? ... : ... |
| 644 | |
| 645 | Value *X = nullptr, *Sh1 = nullptr; |
| 646 | // Check (A & B) for (X & (1 << i)): |
| 647 | if (match(A, m_Shl(m_One(), m_Specific(CIV)))) { |
| 648 | Sh1 = A; |
| 649 | X = B; |
| 650 | } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) { |
| 651 | Sh1 = B; |
| 652 | X = A; |
| 653 | } else { |
| 654 | // TODO: Could also check for an induction variable containing single |
| 655 | // bit shifted left by 1 in each iteration. |
| 656 | return false; |
| 657 | } |
| 658 | |
| 659 | bool TrueIfZero; |
| 660 | |
| 661 | // Check C against the possible values for comparison: 0 and (1 << i): |
| 662 | if (match(C, m_Zero())) |
| 663 | TrueIfZero = (P == CmpInst::ICMP_EQ); |
| 664 | else if (C == Sh1) |
| 665 | TrueIfZero = (P == CmpInst::ICMP_NE); |
| 666 | else |
| 667 | return false; |
| 668 | |
| 669 | // So far, matched: |
| 670 | // select (X & (1 << i)) ? ... : ... |
| 671 | // including variations of the check against zero/non-zero value. |
| 672 | |
| 673 | Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr; |
| 674 | if (TrueIfZero) { |
| 675 | ShouldSameV = TrueV; |
| 676 | ShouldXoredV = FalseV; |
| 677 | } else { |
| 678 | ShouldSameV = FalseV; |
| 679 | ShouldXoredV = TrueV; |
| 680 | } |
| 681 | |
| 682 | Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr; |
| 683 | Value *T = nullptr; |
| 684 | if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) { |
| 685 | // Matched: select +++ ? ... : Y ^ Z |
| 686 | // select +++ ? Y ^ Z : ... |
| 687 | // where +++ denotes previously checked matches. |
| 688 | if (ShouldSameV == Y) |
| 689 | T = Z; |
| 690 | else if (ShouldSameV == Z) |
| 691 | T = Y; |
| 692 | else |
| 693 | return false; |
| 694 | R = ShouldSameV; |
| 695 | // Matched: select +++ ? R : R ^ T |
| 696 | // select +++ ? R ^ T : R |
| 697 | // depending on TrueIfZero. |
| 698 | |
| 699 | } else if (match(ShouldSameV, m_Zero())) { |
| 700 | // Matched: select +++ ? 0 : ... |
| 701 | // select +++ ? ... : 0 |
| 702 | if (!SelI->hasOneUse()) |
| 703 | return false; |
| 704 | T = ShouldXoredV; |
| 705 | // Matched: select +++ ? 0 : T |
| 706 | // select +++ ? T : 0 |
| 707 | |
| 708 | Value *U = *SelI->user_begin(); |
| 709 | if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) && |
| 710 | !match(U, m_Xor(m_Value(R), m_Specific(SelI)))) |
| 711 | return false; |
| 712 | // Matched: xor (select +++ ? 0 : T), R |
| 713 | // xor (select +++ ? T : 0), R |
| 714 | } else |
| 715 | return false; |
| 716 | |
| 717 | // The xor input value T is isolated into its own match so that it could |
| 718 | // be checked against an induction variable containing a shifted bit |
| 719 | // (todo). |
| 720 | // For now, check against (Q << i). |
| 721 | if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) && |
| 722 | !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV))))) |
| 723 | return false; |
| 724 | // Matched: select +++ ? R : R ^ (Q << i) |
| 725 | // select +++ ? R ^ (Q << i) : R |
| 726 | |
| 727 | PV.X = X; |
| 728 | PV.Q = Q; |
| 729 | PV.R = R; |
| 730 | PV.Left = true; |
| 731 | return true; |
| 732 | } |
| 733 | |
| 734 | |
| 735 | bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI, |
| 736 | ParsedValues &PV) { |
| 737 | // Match the following: |
| 738 | // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1) |
| 739 | // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q |
| 740 | // The condition may also check for equality with the masked value, i.e |
| 741 | // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1) |
| 742 | // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q |
| 743 | |
| 744 | Value *CondV = SelI->getCondition(); |
| 745 | Value *TrueV = SelI->getTrueValue(); |
| 746 | Value *FalseV = SelI->getFalseValue(); |
| 747 | |
| 748 | using namespace PatternMatch; |
| 749 | |
| 750 | Value *C = nullptr; |
| 751 | CmpInst::Predicate P; |
| 752 | bool TrueIfZero; |
| 753 | |
| 754 | if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) || |
| 755 | match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) { |
| 756 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 757 | return false; |
| 758 | // Matched: select C == 0 ? ... : ... |
| 759 | // select C != 0 ? ... : ... |
| 760 | TrueIfZero = (P == CmpInst::ICMP_EQ); |
| 761 | } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) || |
| 762 | match(CondV, m_ICmp(P, m_One(), m_Value(C)))) { |
| 763 | if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) |
| 764 | return false; |
| 765 | // Matched: select C == 1 ? ... : ... |
| 766 | // select C != 1 ? ... : ... |
| 767 | TrueIfZero = (P == CmpInst::ICMP_NE); |
| 768 | } else |
| 769 | return false; |
| 770 | |
| 771 | Value *X = nullptr; |
| 772 | if (!match(C, m_And(m_Value(X), m_One())) && |
| 773 | !match(C, m_And(m_One(), m_Value(X)))) |
| 774 | return false; |
| 775 | // Matched: select (X & 1) == +++ ? ... : ... |
| 776 | // select (X & 1) != +++ ? ... : ... |
| 777 | |
| 778 | Value *R = nullptr, *Q = nullptr; |
| 779 | if (TrueIfZero) { |
| 780 | // The select's condition is true if the tested bit is 0. |
| 781 | // TrueV must be the shift, FalseV must be the xor. |
| 782 | if (!match(TrueV, m_LShr(m_Value(R), m_One()))) |
| 783 | return false; |
| 784 | // Matched: select +++ ? (R >> 1) : ... |
| 785 | if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) && |
| 786 | !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV)))) |
| 787 | return false; |
| 788 | // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q |
| 789 | // with commuting ^. |
| 790 | } else { |
| 791 | // The select's condition is true if the tested bit is 1. |
| 792 | // TrueV must be the xor, FalseV must be the shift. |
| 793 | if (!match(FalseV, m_LShr(m_Value(R), m_One()))) |
| 794 | return false; |
| 795 | // Matched: select +++ ? ... : (R >> 1) |
| 796 | if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) && |
| 797 | !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV)))) |
| 798 | return false; |
| 799 | // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1) |
| 800 | // with commuting ^. |
| 801 | } |
| 802 | |
| 803 | PV.X = X; |
| 804 | PV.Q = Q; |
| 805 | PV.R = R; |
| 806 | PV.Left = false; |
| 807 | return true; |
| 808 | } |
| 809 | |
| 810 | |
| 811 | bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI, |
| 812 | BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, |
| 813 | bool PreScan) { |
| 814 | using namespace PatternMatch; |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 815 | // The basic pattern for R = P.Q is: |
| 816 | // for i = 0..31 |
| 817 | // R = phi (0, R') |
| 818 | // if (P & (1 << i)) ; test-bit(P, i) |
| 819 | // R' = R ^ (Q << i) |
| 820 | // |
| 821 | // Similarly, the basic pattern for R = (P/Q).Q - P |
| 822 | // for i = 0..31 |
| 823 | // R = phi(P, R') |
| 824 | // if (R & (1 << i)) |
| 825 | // R' = R ^ (Q << i) |
| 826 | |
| 827 | // There exist idioms, where instead of Q being shifted left, P is shifted |
| 828 | // right. This produces a result that is shifted right by 32 bits (the |
| 829 | // non-shifted result is 64-bit). |
| 830 | // |
| 831 | // For R = P.Q, this would be: |
| 832 | // for i = 0..31 |
| 833 | // R = phi (0, R') |
| 834 | // if ((P >> i) & 1) |
| 835 | // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must |
| 836 | // else ; be shifted by 1, not i. |
| 837 | // R' = R >> 1 |
| 838 | // |
| 839 | // And for the inverse: |
| 840 | // for i = 0..31 |
| 841 | // R = phi (P, R') |
| 842 | // if (R & 1) |
| 843 | // R' = (R >> 1) ^ Q |
| 844 | // else |
| 845 | // R' = R >> 1 |
| 846 | |
| 847 | // The left-shifting idioms share the same pattern: |
| 848 | // select (X & (1 << i)) ? R ^ (Q << i) : R |
| 849 | // Similarly for right-shifting idioms: |
| 850 | // select (X & 1) ? (R >> 1) ^ Q |
| 851 | |
| 852 | if (matchLeftShift(SelI, CIV, PV)) { |
| 853 | // If this is a pre-scan, getting this far is sufficient. |
| 854 | if (PreScan) |
| 855 | return true; |
| 856 | |
| 857 | // Need to make sure that the SelI goes back into R. |
| 858 | auto *RPhi = dyn_cast<PHINode>(PV.R); |
| 859 | if (!RPhi) |
| 860 | return false; |
| 861 | if (SelI != RPhi->getIncomingValueForBlock(LoopB)) |
| 862 | return false; |
| 863 | PV.Res = SelI; |
| 864 | |
| 865 | // If X is loop invariant, it must be the input polynomial, and the |
| 866 | // idiom is the basic polynomial multiply. |
| 867 | if (CurLoop->isLoopInvariant(PV.X)) { |
| 868 | PV.P = PV.X; |
| 869 | PV.Inv = false; |
| 870 | } else { |
| 871 | // X is not loop invariant. If X == R, this is the inverse pmpy. |
| 872 | // Otherwise, check for an xor with an invariant value. If the |
| 873 | // variable argument to the xor is R, then this is still a valid |
| 874 | // inverse pmpy. |
| 875 | PV.Inv = true; |
| 876 | if (PV.X != PV.R) { |
| 877 | Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr; |
| 878 | if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2)))) |
| 879 | return false; |
| 880 | auto *I1 = dyn_cast<Instruction>(X1); |
| 881 | auto *I2 = dyn_cast<Instruction>(X2); |
| 882 | if (!I1 || I1->getParent() != LoopB) { |
| 883 | Var = X2; |
| 884 | Inv = X1; |
| 885 | } else if (!I2 || I2->getParent() != LoopB) { |
| 886 | Var = X1; |
| 887 | Inv = X2; |
| 888 | } else |
| 889 | return false; |
| 890 | if (Var != PV.R) |
| 891 | return false; |
| 892 | PV.M = Inv; |
| 893 | } |
| 894 | // The input polynomial P still needs to be determined. It will be |
| 895 | // the entry value of R. |
| 896 | Value *EntryP = RPhi->getIncomingValueForBlock(PrehB); |
| 897 | PV.P = EntryP; |
| 898 | } |
| 899 | |
| 900 | return true; |
| 901 | } |
| 902 | |
| 903 | if (matchRightShift(SelI, PV)) { |
| 904 | // If this is an inverse pattern, the Q polynomial must be known at |
| 905 | // compile time. |
| 906 | if (PV.Inv && !isa<ConstantInt>(PV.Q)) |
| 907 | return false; |
| 908 | if (PreScan) |
| 909 | return true; |
| 910 | // There is no exact matching of right-shift pmpy. |
| 911 | return false; |
| 912 | } |
| 913 | |
| 914 | return false; |
| 915 | } |
| 916 | |
| 917 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 918 | bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val, |
| 919 | IntegerType *DestTy) { |
| 920 | IntegerType *T = dyn_cast<IntegerType>(Val->getType()); |
| 921 | if (!T || T->getBitWidth() > DestTy->getBitWidth()) |
| 922 | return false; |
| 923 | if (T->getBitWidth() == DestTy->getBitWidth()) |
| 924 | return true; |
| 925 | // Non-instructions are promotable. The reason why an instruction may not |
| 926 | // be promotable is that it may produce a different result if its operands |
| 927 | // and the result are promoted, for example, it may produce more non-zero |
| 928 | // bits. While it would still be possible to represent the proper result |
| 929 | // in a wider type, it may require adding additional instructions (which |
| 930 | // we don't want to do). |
| 931 | Instruction *In = dyn_cast<Instruction>(Val); |
| 932 | if (!In) |
| 933 | return true; |
| 934 | // The bitwidth of the source type is smaller than the destination. |
| 935 | // Check if the individual operation can be promoted. |
| 936 | switch (In->getOpcode()) { |
| 937 | case Instruction::PHI: |
| 938 | case Instruction::ZExt: |
| 939 | case Instruction::And: |
| 940 | case Instruction::Or: |
| 941 | case Instruction::Xor: |
| 942 | case Instruction::LShr: // Shift right is ok. |
| 943 | case Instruction::Select: |
| 944 | return true; |
| 945 | case Instruction::ICmp: |
| 946 | if (CmpInst *CI = cast<CmpInst>(In)) |
| 947 | return CI->isEquality() || CI->isUnsigned(); |
| 948 | llvm_unreachable("Cast failed unexpectedly"); |
| 949 | case Instruction::Add: |
| 950 | return In->hasNoSignedWrap() && In->hasNoUnsignedWrap(); |
| 951 | } |
| 952 | return false; |
| 953 | } |
| 954 | |
| 955 | |
| 956 | void PolynomialMultiplyRecognize::promoteTo(Instruction *In, |
| 957 | IntegerType *DestTy, BasicBlock *LoopB) { |
| 958 | // Leave boolean values alone. |
| 959 | if (!In->getType()->isIntegerTy(1)) |
| 960 | In->mutateType(DestTy); |
| 961 | unsigned DestBW = DestTy->getBitWidth(); |
| 962 | |
| 963 | // Handle PHIs. |
| 964 | if (PHINode *P = dyn_cast<PHINode>(In)) { |
| 965 | unsigned N = P->getNumIncomingValues(); |
| 966 | for (unsigned i = 0; i != N; ++i) { |
| 967 | BasicBlock *InB = P->getIncomingBlock(i); |
| 968 | if (InB == LoopB) |
| 969 | continue; |
| 970 | Value *InV = P->getIncomingValue(i); |
| 971 | IntegerType *Ty = cast<IntegerType>(InV->getType()); |
| 972 | // Do not promote values in PHI nodes of type i1. |
| 973 | if (Ty != P->getType()) { |
| 974 | // If the value type does not match the PHI type, the PHI type |
| 975 | // must have been promoted. |
| 976 | assert(Ty->getBitWidth() < DestBW); |
| 977 | InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy); |
| 978 | P->setIncomingValue(i, InV); |
| 979 | } |
| 980 | } |
| 981 | } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) { |
| 982 | Value *Op = Z->getOperand(0); |
| 983 | if (Op->getType() == Z->getType()) |
| 984 | Z->replaceAllUsesWith(Op); |
| 985 | Z->eraseFromParent(); |
| 986 | return; |
| 987 | } |
| 988 | |
| 989 | // Promote immediates. |
| 990 | for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) { |
| 991 | if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i))) |
| 992 | if (CI->getType()->getBitWidth() < DestBW) |
| 993 | In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue())); |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | |
| 998 | bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB, |
| 999 | BasicBlock *ExitB) { |
| 1000 | assert(LoopB); |
| 1001 | // Skip loops where the exit block has more than one predecessor. The values |
| 1002 | // coming from the loop block will be promoted to another type, and so the |
| 1003 | // values coming into the exit block from other predecessors would also have |
| 1004 | // to be promoted. |
| 1005 | if (!ExitB || (ExitB->getSinglePredecessor() != LoopB)) |
| 1006 | return false; |
| 1007 | IntegerType *DestTy = getPmpyType(); |
| 1008 | // Check if the exit values have types that are no wider than the type |
| 1009 | // that we want to promote to. |
| 1010 | unsigned DestBW = DestTy->getBitWidth(); |
| 1011 | for (Instruction &In : *ExitB) { |
| 1012 | PHINode *P = dyn_cast<PHINode>(&In); |
| 1013 | if (!P) |
| 1014 | break; |
| 1015 | if (P->getNumIncomingValues() != 1) |
| 1016 | return false; |
| 1017 | assert(P->getIncomingBlock(0) == LoopB); |
| 1018 | IntegerType *T = dyn_cast<IntegerType>(P->getType()); |
| 1019 | if (!T || T->getBitWidth() > DestBW) |
| 1020 | return false; |
| 1021 | } |
| 1022 | |
| 1023 | // Check all instructions in the loop. |
| 1024 | for (Instruction &In : *LoopB) |
| 1025 | if (!In.isTerminator() && !isPromotableTo(&In, DestTy)) |
| 1026 | return false; |
| 1027 | |
| 1028 | // Perform the promotion. |
| 1029 | std::vector<Instruction*> LoopIns; |
| 1030 | std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns), |
| 1031 | [](Instruction &In) { return &In; }); |
| 1032 | for (Instruction *In : LoopIns) |
| 1033 | promoteTo(In, DestTy, LoopB); |
| 1034 | |
| 1035 | // Fix up the PHI nodes in the exit block. |
| 1036 | Instruction *EndI = ExitB->getFirstNonPHI(); |
| 1037 | BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end(); |
| 1038 | for (auto I = ExitB->begin(); I != End; ++I) { |
| 1039 | PHINode *P = dyn_cast<PHINode>(I); |
| 1040 | if (!P) |
| 1041 | break; |
| 1042 | Type *Ty0 = P->getIncomingValue(0)->getType(); |
| 1043 | Type *PTy = P->getType(); |
| 1044 | if (PTy != Ty0) { |
| 1045 | assert(Ty0 == DestTy); |
| 1046 | // In order to create the trunc, P must have the promoted type. |
| 1047 | P->mutateType(Ty0); |
| 1048 | Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy); |
| 1049 | // In order for the RAUW to work, the types of P and T must match. |
| 1050 | P->mutateType(PTy); |
| 1051 | P->replaceAllUsesWith(T); |
| 1052 | // Final update of the P's type. |
| 1053 | P->mutateType(Ty0); |
| 1054 | cast<Instruction>(T)->setOperand(0, P); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | return true; |
| 1059 | } |
| 1060 | |
| 1061 | |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1062 | bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In, |
| 1063 | ValueSeq &Cycle) { |
| 1064 | // Out = ..., In, ... |
| 1065 | if (Out == In) |
| 1066 | return true; |
| 1067 | |
| 1068 | auto *BB = cast<Instruction>(Out)->getParent(); |
| 1069 | bool HadPhi = false; |
| 1070 | |
| 1071 | for (auto U : Out->users()) { |
| 1072 | auto *I = dyn_cast<Instruction>(&*U); |
| 1073 | if (I == nullptr || I->getParent() != BB) |
| 1074 | continue; |
| 1075 | // Make sure that there are no multi-iteration cycles, e.g. |
| 1076 | // p1 = phi(p2) |
| 1077 | // p2 = phi(p1) |
| 1078 | // The cycle p1->p2->p1 would span two loop iterations. |
| 1079 | // Check that there is only one phi in the cycle. |
| 1080 | bool IsPhi = isa<PHINode>(I); |
| 1081 | if (IsPhi && HadPhi) |
| 1082 | return false; |
| 1083 | HadPhi |= IsPhi; |
| 1084 | if (Cycle.count(I)) |
| 1085 | return false; |
| 1086 | Cycle.insert(I); |
| 1087 | if (findCycle(I, In, Cycle)) |
| 1088 | break; |
| 1089 | Cycle.remove(I); |
| 1090 | } |
| 1091 | return !Cycle.empty(); |
| 1092 | } |
| 1093 | |
| 1094 | |
| 1095 | void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI, |
| 1096 | ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) { |
| 1097 | // All the values in the cycle that are between the phi node and the |
| 1098 | // divider instruction will be classified as "early", all other values |
| 1099 | // will be "late". |
| 1100 | |
| 1101 | bool IsE = true; |
| 1102 | unsigned I, N = Cycle.size(); |
| 1103 | for (I = 0; I < N; ++I) { |
| 1104 | Value *V = Cycle[I]; |
| 1105 | if (DivI == V) |
| 1106 | IsE = false; |
| 1107 | else if (!isa<PHINode>(V)) |
| 1108 | continue; |
| 1109 | // Stop if found either. |
| 1110 | break; |
| 1111 | } |
| 1112 | // "I" is the index of either DivI or the phi node, whichever was first. |
| 1113 | // "E" is "false" or "true" respectively. |
| 1114 | ValueSeq &First = !IsE ? Early : Late; |
| 1115 | for (unsigned J = 0; J < I; ++J) |
| 1116 | First.insert(Cycle[J]); |
| 1117 | |
| 1118 | ValueSeq &Second = IsE ? Early : Late; |
| 1119 | Second.insert(Cycle[I]); |
| 1120 | for (++I; I < N; ++I) { |
| 1121 | Value *V = Cycle[I]; |
| 1122 | if (DivI == V || isa<PHINode>(V)) |
| 1123 | break; |
| 1124 | Second.insert(V); |
| 1125 | } |
| 1126 | |
| 1127 | for (; I < N; ++I) |
| 1128 | First.insert(Cycle[I]); |
| 1129 | } |
| 1130 | |
| 1131 | |
| 1132 | bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI, |
| 1133 | ValueSeq &Early, ValueSeq &Late) { |
| 1134 | // Select is an exception, since the condition value does not have to be |
| 1135 | // classified in the same way as the true/false values. The true/false |
| 1136 | // values do have to be both early or both late. |
| 1137 | if (UseI->getOpcode() == Instruction::Select) { |
| 1138 | Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2); |
| 1139 | if (Early.count(TV) || Early.count(FV)) { |
| 1140 | if (Late.count(TV) || Late.count(FV)) |
| 1141 | return false; |
| 1142 | Early.insert(UseI); |
| 1143 | } else if (Late.count(TV) || Late.count(FV)) { |
| 1144 | if (Early.count(TV) || Early.count(FV)) |
| 1145 | return false; |
| 1146 | Late.insert(UseI); |
| 1147 | } |
| 1148 | return true; |
| 1149 | } |
| 1150 | |
| 1151 | // Not sure what would be the example of this, but the code below relies |
| 1152 | // on having at least one operand. |
| 1153 | if (UseI->getNumOperands() == 0) |
| 1154 | return true; |
| 1155 | |
| 1156 | bool AE = true, AL = true; |
| 1157 | for (auto &I : UseI->operands()) { |
| 1158 | if (Early.count(&*I)) |
| 1159 | AL = false; |
| 1160 | else if (Late.count(&*I)) |
| 1161 | AE = false; |
| 1162 | } |
| 1163 | // If the operands appear "all early" and "all late" at the same time, |
| 1164 | // then it means that none of them are actually classified as either. |
| 1165 | // This is harmless. |
| 1166 | if (AE && AL) |
| 1167 | return true; |
| 1168 | // Conversely, if they are neither "all early" nor "all late", then |
| 1169 | // we have a mixture of early and late operands that is not a known |
| 1170 | // exception. |
| 1171 | if (!AE && !AL) |
| 1172 | return false; |
| 1173 | |
| 1174 | // Check that we have covered the two special cases. |
| 1175 | assert(AE != AL); |
| 1176 | |
| 1177 | if (AE) |
| 1178 | Early.insert(UseI); |
| 1179 | else |
| 1180 | Late.insert(UseI); |
| 1181 | return true; |
| 1182 | } |
| 1183 | |
| 1184 | |
| 1185 | bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) { |
| 1186 | switch (I->getOpcode()) { |
| 1187 | case Instruction::And: |
| 1188 | case Instruction::Or: |
| 1189 | case Instruction::Xor: |
| 1190 | case Instruction::LShr: |
| 1191 | case Instruction::Shl: |
| 1192 | case Instruction::Select: |
| 1193 | case Instruction::ICmp: |
| 1194 | case Instruction::PHI: |
| 1195 | break; |
| 1196 | default: |
| 1197 | return false; |
| 1198 | } |
| 1199 | return true; |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V, |
| 1204 | unsigned IterCount) { |
| 1205 | auto *T = dyn_cast<IntegerType>(V->getType()); |
| 1206 | if (!T) |
| 1207 | return false; |
| 1208 | |
| 1209 | unsigned BW = T->getBitWidth(); |
| 1210 | APInt K0(BW, 0), K1(BW, 0); |
| 1211 | computeKnownBits(V, K0, K1, DL); |
| 1212 | return K0.countLeadingOnes() >= IterCount; |
| 1213 | } |
| 1214 | |
| 1215 | |
| 1216 | bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V, |
| 1217 | unsigned IterCount) { |
| 1218 | // Assume that all inputs to the value have the high bits zero. |
| 1219 | // Check if the value itself preserves the zeros in the high bits. |
| 1220 | if (auto *C = dyn_cast<ConstantInt>(V)) |
| 1221 | return C->getValue().countLeadingZeros() >= IterCount; |
| 1222 | |
| 1223 | if (auto *I = dyn_cast<Instruction>(V)) { |
| 1224 | switch (I->getOpcode()) { |
| 1225 | case Instruction::And: |
| 1226 | case Instruction::Or: |
| 1227 | case Instruction::Xor: |
| 1228 | case Instruction::LShr: |
| 1229 | case Instruction::Select: |
| 1230 | case Instruction::ICmp: |
| 1231 | case Instruction::PHI: |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1232 | case Instruction::ZExt: |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1233 | return true; |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | return false; |
| 1238 | } |
| 1239 | |
| 1240 | |
| 1241 | bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) { |
| 1242 | unsigned Opc = I->getOpcode(); |
| 1243 | if (Opc == Instruction::Shl || Opc == Instruction::LShr) |
| 1244 | return Op != I->getOperand(1); |
| 1245 | return true; |
| 1246 | } |
| 1247 | |
| 1248 | |
| 1249 | bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB, |
| 1250 | BasicBlock *ExitB, unsigned IterCount) { |
| 1251 | Value *CIV = getCountIV(LoopB); |
| 1252 | if (CIV == nullptr) |
| 1253 | return false; |
| 1254 | auto *CIVTy = dyn_cast<IntegerType>(CIV->getType()); |
| 1255 | if (CIVTy == nullptr) |
| 1256 | return false; |
| 1257 | |
| 1258 | ValueSeq RShifts; |
| 1259 | ValueSeq Early, Late, Cycled; |
| 1260 | |
| 1261 | // Find all value cycles that contain logical right shifts by 1. |
| 1262 | for (Instruction &I : *LoopB) { |
| 1263 | using namespace PatternMatch; |
| 1264 | Value *V = nullptr; |
| 1265 | if (!match(&I, m_LShr(m_Value(V), m_One()))) |
| 1266 | continue; |
| 1267 | ValueSeq C; |
| 1268 | if (!findCycle(&I, V, C)) |
| 1269 | continue; |
| 1270 | |
| 1271 | // Found a cycle. |
| 1272 | C.insert(&I); |
| 1273 | classifyCycle(&I, C, Early, Late); |
| 1274 | Cycled.insert(C.begin(), C.end()); |
| 1275 | RShifts.insert(&I); |
| 1276 | } |
| 1277 | |
| 1278 | // Find the set of all values affected by the shift cycles, i.e. all |
| 1279 | // cycled values, and (recursively) all their users. |
| 1280 | ValueSeq Users(Cycled.begin(), Cycled.end()); |
| 1281 | for (unsigned i = 0; i < Users.size(); ++i) { |
| 1282 | Value *V = Users[i]; |
| 1283 | if (!isa<IntegerType>(V->getType())) |
| 1284 | return false; |
| 1285 | auto *R = cast<Instruction>(V); |
| 1286 | // If the instruction does not commute with shifts, the loop cannot |
| 1287 | // be unshifted. |
| 1288 | if (!commutesWithShift(R)) |
| 1289 | return false; |
| 1290 | for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) { |
| 1291 | auto *T = cast<Instruction>(*I); |
| 1292 | // Skip users from outside of the loop. They will be handled later. |
| 1293 | // Also, skip the right-shifts and phi nodes, since they mix early |
| 1294 | // and late values. |
| 1295 | if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T)) |
| 1296 | continue; |
| 1297 | |
| 1298 | Users.insert(T); |
| 1299 | if (!classifyInst(T, Early, Late)) |
| 1300 | return false; |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | if (Users.size() == 0) |
| 1305 | return false; |
| 1306 | |
| 1307 | // Verify that high bits remain zero. |
| 1308 | ValueSeq Internal(Users.begin(), Users.end()); |
| 1309 | ValueSeq Inputs; |
| 1310 | for (unsigned i = 0; i < Internal.size(); ++i) { |
| 1311 | auto *R = dyn_cast<Instruction>(Internal[i]); |
| 1312 | if (!R) |
| 1313 | continue; |
| 1314 | for (Value *Op : R->operands()) { |
| 1315 | auto *T = dyn_cast<Instruction>(Op); |
| 1316 | if (T && T->getParent() != LoopB) |
| 1317 | Inputs.insert(Op); |
| 1318 | else |
| 1319 | Internal.insert(Op); |
| 1320 | } |
| 1321 | } |
| 1322 | for (Value *V : Inputs) |
| 1323 | if (!highBitsAreZero(V, IterCount)) |
| 1324 | return false; |
| 1325 | for (Value *V : Internal) |
| 1326 | if (!keepsHighBitsZero(V, IterCount)) |
| 1327 | return false; |
| 1328 | |
| 1329 | // Finally, the work can be done. Unshift each user. |
| 1330 | IRBuilder<> IRB(LoopB); |
| 1331 | std::map<Value*,Value*> ShiftMap; |
| 1332 | typedef std::map<std::pair<Value*,Type*>,Value*> CastMapType; |
| 1333 | CastMapType CastMap; |
| 1334 | |
| 1335 | auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V, |
| 1336 | IntegerType *Ty) -> Value* { |
| 1337 | auto H = CM.find(std::make_pair(V, Ty)); |
| 1338 | if (H != CM.end()) |
| 1339 | return H->second; |
| 1340 | Value *CV = IRB.CreateIntCast(V, Ty, false); |
| 1341 | CM.insert(std::make_pair(std::make_pair(V, Ty), CV)); |
| 1342 | return CV; |
| 1343 | }; |
| 1344 | |
| 1345 | for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) { |
| 1346 | if (isa<PHINode>(I) || !Users.count(&*I)) |
| 1347 | continue; |
| 1348 | using namespace PatternMatch; |
| 1349 | // Match lshr x, 1. |
| 1350 | Value *V = nullptr; |
| 1351 | if (match(&*I, m_LShr(m_Value(V), m_One()))) { |
| 1352 | replaceAllUsesOfWithIn(&*I, V, LoopB); |
| 1353 | continue; |
| 1354 | } |
| 1355 | // For each non-cycled operand, replace it with the corresponding |
| 1356 | // value shifted left. |
| 1357 | for (auto &J : I->operands()) { |
| 1358 | Value *Op = J.get(); |
| 1359 | if (!isOperandShifted(&*I, Op)) |
| 1360 | continue; |
| 1361 | if (Users.count(Op)) |
| 1362 | continue; |
| 1363 | // Skip shifting zeros. |
| 1364 | if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) |
| 1365 | continue; |
| 1366 | // Check if we have already generated a shift for this value. |
| 1367 | auto F = ShiftMap.find(Op); |
| 1368 | Value *W = (F != ShiftMap.end()) ? F->second : nullptr; |
| 1369 | if (W == nullptr) { |
| 1370 | IRB.SetInsertPoint(&*I); |
| 1371 | // First, the shift amount will be CIV or CIV+1, depending on |
| 1372 | // whether the value is early or late. Instead of creating CIV+1, |
| 1373 | // do a single shift of the value. |
| 1374 | Value *ShAmt = CIV, *ShVal = Op; |
| 1375 | auto *VTy = cast<IntegerType>(ShVal->getType()); |
| 1376 | auto *ATy = cast<IntegerType>(ShAmt->getType()); |
| 1377 | if (Late.count(&*I)) |
| 1378 | ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1)); |
| 1379 | // Second, the types of the shifted value and the shift amount |
| 1380 | // must match. |
| 1381 | if (VTy != ATy) { |
| 1382 | if (VTy->getBitWidth() < ATy->getBitWidth()) |
| 1383 | ShVal = upcast(CastMap, IRB, ShVal, ATy); |
| 1384 | else |
| 1385 | ShAmt = upcast(CastMap, IRB, ShAmt, VTy); |
| 1386 | } |
| 1387 | // Ready to generate the shift and memoize it. |
| 1388 | W = IRB.CreateShl(ShVal, ShAmt); |
| 1389 | ShiftMap.insert(std::make_pair(Op, W)); |
| 1390 | } |
| 1391 | I->replaceUsesOfWith(Op, W); |
| 1392 | } |
| 1393 | } |
| 1394 | |
| 1395 | // Update the users outside of the loop to account for having left |
| 1396 | // shifts. They would normally be shifted right in the loop, so shift |
| 1397 | // them right after the loop exit. |
| 1398 | // Take advantage of the loop-closed SSA form, which has all the post- |
| 1399 | // loop values in phi nodes. |
| 1400 | IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt()); |
| 1401 | for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) { |
| 1402 | if (!isa<PHINode>(P)) |
| 1403 | break; |
| 1404 | auto *PN = cast<PHINode>(P); |
| 1405 | Value *U = PN->getIncomingValueForBlock(LoopB); |
| 1406 | if (!Users.count(U)) |
| 1407 | continue; |
| 1408 | Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount)); |
| 1409 | PN->replaceAllUsesWith(S); |
| 1410 | // The above RAUW will create |
| 1411 | // S = lshr S, IterCount |
| 1412 | // so we need to fix it back into |
| 1413 | // S = lshr PN, IterCount |
| 1414 | cast<User>(S)->replaceUsesOfWith(S, PN); |
| 1415 | } |
| 1416 | |
| 1417 | return true; |
| 1418 | } |
| 1419 | |
| 1420 | |
| 1421 | void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) { |
| 1422 | for (auto &I : *LoopB) |
| 1423 | if (Value *SV = SimplifyInstruction(&I, DL, &TLI, &DT)) |
| 1424 | I.replaceAllUsesWith(SV); |
| 1425 | |
| 1426 | for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) { |
| 1427 | N = std::next(I); |
| 1428 | RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI); |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | |
| 1433 | unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) { |
| 1434 | // Arrays of coefficients of Q and the inverse, C. |
| 1435 | // Q[i] = coefficient at x^i. |
| 1436 | std::array<char,32> Q, C; |
| 1437 | |
| 1438 | for (unsigned i = 0; i < 32; ++i) { |
| 1439 | Q[i] = QP & 1; |
| 1440 | QP >>= 1; |
| 1441 | } |
| 1442 | assert(Q[0] == 1); |
| 1443 | |
| 1444 | // Find C, such that |
| 1445 | // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1 |
| 1446 | // |
| 1447 | // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the |
| 1448 | // operations * and + are & and ^ respectively. |
| 1449 | // |
| 1450 | // Find C[i] recursively, by comparing i-th coefficient in the product |
| 1451 | // with 0 (or 1 for i=0). |
| 1452 | // |
| 1453 | // C[0] = 1, since C[0] = Q[0], and Q[0] = 1. |
| 1454 | C[0] = 1; |
| 1455 | for (unsigned i = 1; i < 32; ++i) { |
| 1456 | // Solve for C[i] in: |
| 1457 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0 |
| 1458 | // This is equivalent to |
| 1459 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0 |
| 1460 | // which is |
| 1461 | // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i] |
| 1462 | unsigned T = 0; |
| 1463 | for (unsigned j = 0; j < i; ++j) |
| 1464 | T = T ^ (C[j] & Q[i-j]); |
| 1465 | C[i] = T; |
| 1466 | } |
| 1467 | |
| 1468 | unsigned QV = 0; |
| 1469 | for (unsigned i = 0; i < 32; ++i) |
| 1470 | if (C[i]) |
| 1471 | QV |= (1 << i); |
| 1472 | |
| 1473 | return QV; |
| 1474 | } |
| 1475 | |
| 1476 | |
| 1477 | Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At, |
| 1478 | ParsedValues &PV) { |
| 1479 | IRBuilder<> B(&*At); |
| 1480 | Module *M = At->getParent()->getParent()->getParent(); |
| 1481 | Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw); |
| 1482 | |
| 1483 | Value *P = PV.P, *Q = PV.Q, *P0 = P; |
| 1484 | unsigned IC = PV.IterCount; |
| 1485 | |
| 1486 | if (PV.M != nullptr) |
| 1487 | P0 = P = B.CreateXor(P, PV.M); |
| 1488 | |
| 1489 | // Create a bit mask to clear the high bits beyond IterCount. |
| 1490 | auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC)); |
| 1491 | |
| 1492 | if (PV.IterCount != 32) |
| 1493 | P = B.CreateAnd(P, BMI); |
| 1494 | |
| 1495 | if (PV.Inv) { |
| 1496 | auto *QI = dyn_cast<ConstantInt>(PV.Q); |
| 1497 | assert(QI && QI->getBitWidth() <= 32); |
| 1498 | |
| 1499 | // Again, clearing bits beyond IterCount. |
| 1500 | unsigned M = (1 << PV.IterCount) - 1; |
| 1501 | unsigned Tmp = (QI->getZExtValue() | 1) & M; |
| 1502 | unsigned QV = getInverseMxN(Tmp) & M; |
| 1503 | auto *QVI = ConstantInt::get(QI->getType(), QV); |
| 1504 | P = B.CreateCall(PMF, {P, QVI}); |
| 1505 | P = B.CreateTrunc(P, QI->getType()); |
| 1506 | if (IC != 32) |
| 1507 | P = B.CreateAnd(P, BMI); |
| 1508 | } |
| 1509 | |
| 1510 | Value *R = B.CreateCall(PMF, {P, Q}); |
| 1511 | |
| 1512 | if (PV.M != nullptr) |
| 1513 | R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false)); |
| 1514 | |
| 1515 | return R; |
| 1516 | } |
| 1517 | |
| 1518 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1519 | void PolynomialMultiplyRecognize::setupSimplifier() { |
| 1520 | Simp.addRule( |
| 1521 | // Sink zext past bitwise operations. |
| 1522 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1523 | if (I->getOpcode() != Instruction::ZExt) |
| 1524 | return nullptr; |
| 1525 | Instruction *T = dyn_cast<Instruction>(I->getOperand(0)); |
| 1526 | if (!T) |
| 1527 | return nullptr; |
| 1528 | switch (T->getOpcode()) { |
| 1529 | case Instruction::And: |
| 1530 | case Instruction::Or: |
| 1531 | case Instruction::Xor: |
| 1532 | break; |
| 1533 | default: |
| 1534 | return nullptr; |
| 1535 | } |
| 1536 | IRBuilder<> B(Ctx); |
| 1537 | return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(), |
| 1538 | B.CreateZExt(T->getOperand(0), I->getType()), |
| 1539 | B.CreateZExt(T->getOperand(1), I->getType())); |
| 1540 | }); |
| 1541 | Simp.addRule( |
| 1542 | // (xor (and x a) (and y a)) -> (and (xor x y) a) |
| 1543 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1544 | if (I->getOpcode() != Instruction::Xor) |
| 1545 | return nullptr; |
| 1546 | Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0)); |
| 1547 | Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1)); |
| 1548 | if (!And0 || !And1) |
| 1549 | return nullptr; |
| 1550 | if (And0->getOpcode() != Instruction::And || |
| 1551 | And1->getOpcode() != Instruction::And) |
| 1552 | return nullptr; |
| 1553 | if (And0->getOperand(1) != And1->getOperand(1)) |
| 1554 | return nullptr; |
| 1555 | IRBuilder<> B(Ctx); |
| 1556 | return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)), |
| 1557 | And0->getOperand(1)); |
| 1558 | }); |
| 1559 | Simp.addRule( |
| 1560 | // (Op (select c x y) z) -> (select c (Op x z) (Op y z)) |
| 1561 | // (Op x (select c y z)) -> (select c (Op x y) (Op x z)) |
| 1562 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1563 | BinaryOperator *BO = dyn_cast<BinaryOperator>(I); |
| 1564 | if (!BO) |
| 1565 | return nullptr; |
| 1566 | Instruction::BinaryOps Op = BO->getOpcode(); |
| 1567 | if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) { |
| 1568 | IRBuilder<> B(Ctx); |
| 1569 | Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue(); |
| 1570 | Value *Z = BO->getOperand(1); |
| 1571 | return B.CreateSelect(Sel->getCondition(), |
| 1572 | B.CreateBinOp(Op, X, Z), |
| 1573 | B.CreateBinOp(Op, Y, Z)); |
| 1574 | } |
| 1575 | if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) { |
| 1576 | IRBuilder<> B(Ctx); |
| 1577 | Value *X = BO->getOperand(0); |
| 1578 | Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue(); |
| 1579 | return B.CreateSelect(Sel->getCondition(), |
| 1580 | B.CreateBinOp(Op, X, Y), |
| 1581 | B.CreateBinOp(Op, X, Z)); |
| 1582 | } |
| 1583 | return nullptr; |
| 1584 | }); |
| 1585 | Simp.addRule( |
| 1586 | // (select c (select c x y) z) -> (select c x z) |
| 1587 | // (select c x (select c y z)) -> (select c x z) |
| 1588 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1589 | SelectInst *Sel = dyn_cast<SelectInst>(I); |
| 1590 | if (!Sel) |
| 1591 | return nullptr; |
| 1592 | IRBuilder<> B(Ctx); |
| 1593 | Value *C = Sel->getCondition(); |
| 1594 | if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) { |
| 1595 | if (Sel0->getCondition() == C) |
| 1596 | return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue()); |
| 1597 | } |
| 1598 | if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) { |
| 1599 | if (Sel1->getCondition() == C) |
| 1600 | return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue()); |
| 1601 | } |
| 1602 | return nullptr; |
| 1603 | }); |
| 1604 | Simp.addRule( |
| 1605 | // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0) |
| 1606 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1607 | if (I->getOpcode() != Instruction::Or) |
| 1608 | return nullptr; |
| 1609 | Instruction *LShr = dyn_cast<Instruction>(I->getOperand(0)); |
| 1610 | if (!LShr || LShr->getOpcode() != Instruction::LShr) |
| 1611 | return nullptr; |
| 1612 | ConstantInt *One = dyn_cast<ConstantInt>(LShr->getOperand(1)); |
| 1613 | if (!One || One->getZExtValue() != 1) |
| 1614 | return nullptr; |
| 1615 | ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1)); |
| 1616 | if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit()) |
| 1617 | return nullptr; |
| 1618 | return IRBuilder<>(Ctx).CreateXor(LShr, Msb); |
| 1619 | }); |
| 1620 | Simp.addRule( |
| 1621 | // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c)) |
| 1622 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1623 | if (I->getOpcode() != Instruction::LShr) |
| 1624 | return nullptr; |
| 1625 | BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0)); |
| 1626 | if (!BitOp) |
| 1627 | return nullptr; |
| 1628 | switch (BitOp->getOpcode()) { |
| 1629 | case Instruction::And: |
| 1630 | case Instruction::Or: |
| 1631 | case Instruction::Xor: |
| 1632 | break; |
| 1633 | default: |
| 1634 | return nullptr; |
| 1635 | } |
| 1636 | IRBuilder<> B(Ctx); |
| 1637 | Value *S = I->getOperand(1); |
| 1638 | return B.CreateBinOp(BitOp->getOpcode(), |
| 1639 | B.CreateLShr(BitOp->getOperand(0), S), |
| 1640 | B.CreateLShr(BitOp->getOperand(1), S)); |
| 1641 | }); |
| 1642 | Simp.addRule( |
| 1643 | // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b)) |
| 1644 | [](Instruction *I, LLVMContext &Ctx) -> Value* { |
| 1645 | auto IsBitOp = [](unsigned Op) -> bool { |
| 1646 | switch (Op) { |
| 1647 | case Instruction::And: |
| 1648 | case Instruction::Or: |
| 1649 | case Instruction::Xor: |
| 1650 | return true; |
| 1651 | } |
| 1652 | return false; |
| 1653 | }; |
| 1654 | BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I); |
| 1655 | if (!BitOp1 || !IsBitOp(BitOp1->getOpcode())) |
| 1656 | return nullptr; |
| 1657 | BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0)); |
| 1658 | if (!BitOp2 || !IsBitOp(BitOp2->getOpcode())) |
| 1659 | return nullptr; |
| 1660 | ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1)); |
| 1661 | ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1)); |
| 1662 | if (!CA || !CB) |
| 1663 | return nullptr; |
| 1664 | IRBuilder<> B(Ctx); |
| 1665 | Value *X = BitOp2->getOperand(0); |
| 1666 | return B.CreateBinOp(BitOp2->getOpcode(), X, |
| 1667 | B.CreateBinOp(BitOp1->getOpcode(), CA, CB)); |
| 1668 | }); |
| 1669 | } |
| 1670 | |
| 1671 | |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1672 | bool PolynomialMultiplyRecognize::recognize() { |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1673 | DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n" |
| 1674 | << *CurLoop << '\n'); |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1675 | // Restrictions: |
| 1676 | // - The loop must consist of a single block. |
| 1677 | // - The iteration count must be known at compile-time. |
| 1678 | // - The loop must have an induction variable starting from 0, and |
| 1679 | // incremented in each iteration of the loop. |
| 1680 | BasicBlock *LoopB = CurLoop->getHeader(); |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1681 | DEBUG(dbgs() << "Loop header:\n" << *LoopB); |
| 1682 | |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1683 | if (LoopB != CurLoop->getLoopLatch()) |
| 1684 | return false; |
| 1685 | BasicBlock *ExitB = CurLoop->getExitBlock(); |
| 1686 | if (ExitB == nullptr) |
| 1687 | return false; |
| 1688 | BasicBlock *EntryB = CurLoop->getLoopPreheader(); |
| 1689 | if (EntryB == nullptr) |
| 1690 | return false; |
| 1691 | |
| 1692 | unsigned IterCount = 0; |
| 1693 | const SCEV *CT = SE.getBackedgeTakenCount(CurLoop); |
| 1694 | if (isa<SCEVCouldNotCompute>(CT)) |
| 1695 | return false; |
| 1696 | if (auto *CV = dyn_cast<SCEVConstant>(CT)) |
| 1697 | IterCount = CV->getValue()->getZExtValue() + 1; |
| 1698 | |
| 1699 | Value *CIV = getCountIV(LoopB); |
| 1700 | ParsedValues PV; |
| 1701 | PV.IterCount = IterCount; |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1702 | DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n'); |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1703 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1704 | setupSimplifier(); |
| 1705 | |
| 1706 | // Perform a preliminary scan of select instructions to see if any of them |
| 1707 | // looks like a generator of the polynomial multiply steps. Assume that a |
| 1708 | // loop can only contain a single transformable operation, so stop the |
| 1709 | // traversal after the first reasonable candidate was found. |
| 1710 | // XXX: Currently this approach can modify the loop before being 100% sure |
| 1711 | // that the transformation can be carried out. |
| 1712 | bool FoundPreScan = false; |
| 1713 | for (Instruction &In : *LoopB) { |
| 1714 | SelectInst *SI = dyn_cast<SelectInst>(&In); |
| 1715 | if (!SI) |
| 1716 | continue; |
| 1717 | |
| 1718 | Simplifier::Context C(SI); |
| 1719 | Value *T = Simp.simplify(C); |
| 1720 | SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI; |
| 1721 | DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n'); |
| 1722 | if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) { |
| 1723 | FoundPreScan = true; |
| 1724 | if (SelI != SI) { |
| 1725 | Value *NewSel = C.materialize(LoopB, SI->getIterator()); |
| 1726 | SI->replaceAllUsesWith(NewSel); |
| 1727 | RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); |
| 1728 | } |
| 1729 | break; |
| 1730 | } |
| 1731 | } |
| 1732 | |
| 1733 | if (!FoundPreScan) { |
| 1734 | DEBUG(dbgs() << "Have not found candidates for pmpy\n"); |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1735 | return false; |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1736 | } |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1737 | |
| 1738 | if (!PV.Left) { |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1739 | // The right shift version actually only returns the higher bits of |
| 1740 | // the result (each iteration discards the LSB). If we want to convert it |
| 1741 | // to a left-shifting loop, the working data type must be at least as |
| 1742 | // wide as the target's pmpy instruction. |
| 1743 | if (!promoteTypes(LoopB, ExitB)) |
| 1744 | return false; |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1745 | convertShiftsToLeft(LoopB, ExitB, IterCount); |
| 1746 | cleanupLoopBody(LoopB); |
| 1747 | } |
| 1748 | |
Krzysztof Parzyszek | d033d1f | 2017-03-21 17:09:27 +0000 | [diff] [blame] | 1749 | // Scan the loop again, find the generating select instruction. |
| 1750 | bool FoundScan = false; |
| 1751 | for (Instruction &In : *LoopB) { |
| 1752 | SelectInst *SelI = dyn_cast<SelectInst>(&In); |
| 1753 | if (!SelI) |
| 1754 | continue; |
| 1755 | DEBUG(dbgs() << "scanSelect: " << *SelI << '\n'); |
| 1756 | FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false); |
| 1757 | if (FoundScan) |
| 1758 | break; |
| 1759 | } |
| 1760 | assert(FoundScan); |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1761 | |
| 1762 | DEBUG({ |
| 1763 | StringRef PP = (PV.M ? "(P+M)" : "P"); |
| 1764 | if (!PV.Inv) |
| 1765 | dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n"; |
| 1766 | else |
| 1767 | dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + " |
| 1768 | << PP << "\n"; |
| 1769 | dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n"; |
| 1770 | if (PV.M) |
| 1771 | dbgs() << " M:" << *PV.M << "\n"; |
| 1772 | dbgs() << " Q:" << *PV.Q << "\n"; |
| 1773 | dbgs() << " Iteration count:" << PV.IterCount << "\n"; |
| 1774 | }); |
| 1775 | |
| 1776 | BasicBlock::iterator At(EntryB->getTerminator()); |
| 1777 | Value *PM = generate(At, PV); |
| 1778 | if (PM == nullptr) |
| 1779 | return false; |
| 1780 | |
| 1781 | if (PM->getType() != PV.Res->getType()) |
| 1782 | PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false); |
| 1783 | |
| 1784 | PV.Res->replaceAllUsesWith(PM); |
| 1785 | PV.Res->eraseFromParent(); |
| 1786 | return true; |
| 1787 | } |
| 1788 | |
| 1789 | |
| 1790 | unsigned HexagonLoopIdiomRecognize::getStoreSizeInBytes(StoreInst *SI) { |
| 1791 | uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); |
| 1792 | assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) && |
| 1793 | "Don't overflow unsigned."); |
| 1794 | return (unsigned)SizeInBits >> 3; |
| 1795 | } |
| 1796 | |
| 1797 | |
| 1798 | int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) { |
| 1799 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) |
| 1800 | return SC->getAPInt().getSExtValue(); |
| 1801 | return 0; |
| 1802 | } |
| 1803 | |
| 1804 | |
| 1805 | bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) { |
Krzysztof Parzyszek | 35ce5da | 2017-01-27 20:40:14 +0000 | [diff] [blame] | 1806 | // Allow volatile stores if HexagonVolatileMemcpy is enabled. |
| 1807 | if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple()) |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1808 | return false; |
| 1809 | |
| 1810 | Value *StoredVal = SI->getValueOperand(); |
| 1811 | Value *StorePtr = SI->getPointerOperand(); |
| 1812 | |
| 1813 | // Reject stores that are so large that they overflow an unsigned. |
| 1814 | uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); |
| 1815 | if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) |
| 1816 | return false; |
| 1817 | |
| 1818 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1819 | // loop, which indicates a strided store. If we have something else, it's a |
| 1820 | // random store we can't handle. |
| 1821 | auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| 1822 | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| 1823 | return false; |
| 1824 | |
| 1825 | // Check to see if the stride matches the size of the store. If so, then we |
| 1826 | // know that every byte is touched in the loop. |
| 1827 | int Stride = getSCEVStride(StoreEv); |
| 1828 | if (Stride == 0) |
| 1829 | return false; |
| 1830 | unsigned StoreSize = getStoreSizeInBytes(SI); |
| 1831 | if (StoreSize != unsigned(std::abs(Stride))) |
| 1832 | return false; |
| 1833 | |
| 1834 | // The store must be feeding a non-volatile load. |
| 1835 | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); |
| 1836 | if (!LI || !LI->isSimple()) |
| 1837 | return false; |
| 1838 | |
| 1839 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1840 | // loop, which indicates a strided load. If we have something else, it's a |
| 1841 | // random load we can't handle. |
| 1842 | Value *LoadPtr = LI->getPointerOperand(); |
| 1843 | auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); |
| 1844 | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) |
| 1845 | return false; |
| 1846 | |
| 1847 | // The store and load must share the same stride. |
| 1848 | if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) |
| 1849 | return false; |
| 1850 | |
| 1851 | // Success. This store can be converted into a memcpy. |
| 1852 | return true; |
| 1853 | } |
| 1854 | |
| 1855 | |
| 1856 | /// mayLoopAccessLocation - Return true if the specified loop might access the |
| 1857 | /// specified pointer location, which is a loop-strided access. The 'Access' |
| 1858 | /// argument specifies what the verboten forms of access are (read or write). |
| 1859 | static bool |
| 1860 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
| 1861 | const SCEV *BECount, unsigned StoreSize, |
| 1862 | AliasAnalysis &AA, |
| 1863 | SmallPtrSetImpl<Instruction *> &Ignored) { |
| 1864 | // Get the location that may be stored across the loop. Since the access |
| 1865 | // is strided positively through memory, we say that the modified location |
| 1866 | // starts at the pointer and has infinite size. |
| 1867 | uint64_t AccessSize = MemoryLocation::UnknownSize; |
| 1868 | |
| 1869 | // If the loop iterates a fixed number of times, we can refine the access |
| 1870 | // size to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| 1871 | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| 1872 | AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; |
| 1873 | |
| 1874 | // TODO: For this to be really effective, we have to dive into the pointer |
| 1875 | // operand in the store. Store to &A[i] of 100 will always return may alias |
| 1876 | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| 1877 | // which will then no-alias a store to &A[100]. |
| 1878 | MemoryLocation StoreLoc(Ptr, AccessSize); |
| 1879 | |
| 1880 | for (auto *B : L->blocks()) |
| 1881 | for (auto &I : *B) |
| 1882 | if (Ignored.count(&I) == 0 && (AA.getModRefInfo(&I, StoreLoc) & Access)) |
| 1883 | return true; |
| 1884 | |
| 1885 | return false; |
| 1886 | } |
| 1887 | |
| 1888 | |
| 1889 | void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB, |
| 1890 | SmallVectorImpl<StoreInst*> &Stores) { |
| 1891 | Stores.clear(); |
| 1892 | for (Instruction &I : *BB) |
| 1893 | if (StoreInst *SI = dyn_cast<StoreInst>(&I)) |
| 1894 | if (isLegalStore(CurLoop, SI)) |
| 1895 | Stores.push_back(SI); |
| 1896 | } |
| 1897 | |
| 1898 | |
| 1899 | bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop, |
| 1900 | StoreInst *SI, const SCEV *BECount) { |
Michael Kuperstein | e18aad3 | 2017-01-31 22:48:45 +0000 | [diff] [blame] | 1901 | assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) && |
| 1902 | "Expected only non-volatile stores, or Hexagon-specific memcpy" |
| 1903 | "to volatile destination."); |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 1904 | |
| 1905 | Value *StorePtr = SI->getPointerOperand(); |
| 1906 | auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| 1907 | unsigned Stride = getSCEVStride(StoreEv); |
| 1908 | unsigned StoreSize = getStoreSizeInBytes(SI); |
| 1909 | if (Stride != StoreSize) |
| 1910 | return false; |
| 1911 | |
| 1912 | // See if the pointer expression is an AddRec like {base,+,1} on the current |
| 1913 | // loop, which indicates a strided load. If we have something else, it's a |
| 1914 | // random load we can't handle. |
| 1915 | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); |
| 1916 | auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); |
| 1917 | |
| 1918 | // The trip count of the loop and the base pointer of the addrec SCEV is |
| 1919 | // guaranteed to be loop invariant, which means that it should dominate the |
| 1920 | // header. This allows us to insert code for it in the preheader. |
| 1921 | BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| 1922 | Instruction *ExpPt = Preheader->getTerminator(); |
| 1923 | IRBuilder<> Builder(ExpPt); |
| 1924 | SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom"); |
| 1925 | |
| 1926 | Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace()); |
| 1927 | |
| 1928 | // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| 1929 | // this into a memcpy/memmove in the loop preheader now if we want. However, |
| 1930 | // this would be unsafe to do if there is anything else in the loop that may |
| 1931 | // read or write the memory region we're storing to. For memcpy, this |
| 1932 | // includes the load that feeds the stores. Check for an alias by generating |
| 1933 | // the base address and checking everything. |
| 1934 | Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(), |
| 1935 | Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt); |
| 1936 | Value *LoadBasePtr = nullptr; |
| 1937 | |
| 1938 | bool Overlap = false; |
| 1939 | bool DestVolatile = SI->isVolatile(); |
| 1940 | Type *BECountTy = BECount->getType(); |
| 1941 | |
| 1942 | if (DestVolatile) { |
| 1943 | // The trip count must fit in i32, since it is the type of the "num_words" |
| 1944 | // argument to hexagon_memcpy_forward_vp4cp4n2. |
| 1945 | if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) { |
| 1946 | CleanupAndExit: |
| 1947 | // If we generated new code for the base pointer, clean up. |
| 1948 | Expander.clear(); |
| 1949 | if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) { |
| 1950 | RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); |
| 1951 | StoreBasePtr = nullptr; |
| 1952 | } |
| 1953 | if (LoadBasePtr) { |
| 1954 | RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); |
| 1955 | LoadBasePtr = nullptr; |
| 1956 | } |
| 1957 | return false; |
| 1958 | } |
| 1959 | } |
| 1960 | |
| 1961 | SmallPtrSet<Instruction*, 2> Ignore1; |
| 1962 | Ignore1.insert(SI); |
| 1963 | if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, |
| 1964 | StoreSize, *AA, Ignore1)) { |
| 1965 | // Check if the load is the offending instruction. |
| 1966 | Ignore1.insert(LI); |
| 1967 | if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, |
| 1968 | StoreSize, *AA, Ignore1)) { |
| 1969 | // Still bad. Nothing we can do. |
| 1970 | goto CleanupAndExit; |
| 1971 | } |
| 1972 | // It worked with the load ignored. |
| 1973 | Overlap = true; |
| 1974 | } |
| 1975 | |
| 1976 | if (!Overlap) { |
| 1977 | if (DisableMemcpyIdiom || !HasMemcpy) |
| 1978 | goto CleanupAndExit; |
| 1979 | } else { |
| 1980 | // Don't generate memmove if this function will be inlined. This is |
| 1981 | // because the caller will undergo this transformation after inlining. |
| 1982 | Function *Func = CurLoop->getHeader()->getParent(); |
| 1983 | if (Func->hasFnAttribute(Attribute::AlwaysInline)) |
| 1984 | goto CleanupAndExit; |
| 1985 | |
| 1986 | // In case of a memmove, the call to memmove will be executed instead |
| 1987 | // of the loop, so we need to make sure that there is nothing else in |
| 1988 | // the loop than the load, store and instructions that these two depend |
| 1989 | // on. |
| 1990 | SmallVector<Instruction*,2> Insts; |
| 1991 | Insts.push_back(SI); |
| 1992 | Insts.push_back(LI); |
| 1993 | if (!coverLoop(CurLoop, Insts)) |
| 1994 | goto CleanupAndExit; |
| 1995 | |
| 1996 | if (DisableMemmoveIdiom || !HasMemmove) |
| 1997 | goto CleanupAndExit; |
| 1998 | bool IsNested = CurLoop->getParentLoop() != 0; |
| 1999 | if (IsNested && OnlyNonNestedMemmove) |
| 2000 | goto CleanupAndExit; |
| 2001 | } |
| 2002 | |
| 2003 | // For a memcpy, we have to make sure that the input array is not being |
| 2004 | // mutated by the loop. |
| 2005 | LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(), |
| 2006 | Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt); |
| 2007 | |
| 2008 | SmallPtrSet<Instruction*, 2> Ignore2; |
| 2009 | Ignore2.insert(SI); |
| 2010 | if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize, |
| 2011 | *AA, Ignore2)) |
| 2012 | goto CleanupAndExit; |
| 2013 | |
| 2014 | // Check the stride. |
| 2015 | bool StridePos = getSCEVStride(LoadEv) >= 0; |
| 2016 | |
| 2017 | // Currently, the volatile memcpy only emulates traversing memory forward. |
| 2018 | if (!StridePos && DestVolatile) |
| 2019 | goto CleanupAndExit; |
| 2020 | |
| 2021 | bool RuntimeCheck = (Overlap || DestVolatile); |
| 2022 | |
| 2023 | BasicBlock *ExitB; |
| 2024 | if (RuntimeCheck) { |
| 2025 | // The runtime check needs a single exit block. |
| 2026 | SmallVector<BasicBlock*, 8> ExitBlocks; |
| 2027 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
| 2028 | if (ExitBlocks.size() != 1) |
| 2029 | goto CleanupAndExit; |
| 2030 | ExitB = ExitBlocks[0]; |
| 2031 | } |
| 2032 | |
| 2033 | // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| 2034 | // pointer size if it isn't already. |
| 2035 | LLVMContext &Ctx = SI->getContext(); |
| 2036 | BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); |
| 2037 | unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment()); |
| 2038 | DebugLoc DLoc = SI->getDebugLoc(); |
| 2039 | |
| 2040 | const SCEV *NumBytesS = |
| 2041 | SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); |
| 2042 | if (StoreSize != 1) |
| 2043 | NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), |
| 2044 | SCEV::FlagNUW); |
| 2045 | Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt); |
| 2046 | if (Instruction *In = dyn_cast<Instruction>(NumBytes)) |
| 2047 | if (Value *Simp = SimplifyInstruction(In, *DL, TLI, DT)) |
| 2048 | NumBytes = Simp; |
| 2049 | |
| 2050 | CallInst *NewCall; |
| 2051 | |
| 2052 | if (RuntimeCheck) { |
| 2053 | unsigned Threshold = RuntimeMemSizeThreshold; |
| 2054 | if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) { |
| 2055 | uint64_t C = CI->getZExtValue(); |
| 2056 | if (Threshold != 0 && C < Threshold) |
| 2057 | goto CleanupAndExit; |
| 2058 | if (C < CompileTimeMemSizeThreshold) |
| 2059 | goto CleanupAndExit; |
| 2060 | } |
| 2061 | |
| 2062 | BasicBlock *Header = CurLoop->getHeader(); |
| 2063 | Function *Func = Header->getParent(); |
| 2064 | Loop *ParentL = LF->getLoopFor(Preheader); |
| 2065 | StringRef HeaderName = Header->getName(); |
| 2066 | |
| 2067 | // Create a new (empty) preheader, and update the PHI nodes in the |
| 2068 | // header to use the new preheader. |
| 2069 | BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph", |
| 2070 | Func, Header); |
| 2071 | if (ParentL) |
| 2072 | ParentL->addBasicBlockToLoop(NewPreheader, *LF); |
| 2073 | IRBuilder<>(NewPreheader).CreateBr(Header); |
| 2074 | for (auto &In : *Header) { |
| 2075 | PHINode *PN = dyn_cast<PHINode>(&In); |
| 2076 | if (!PN) |
| 2077 | break; |
| 2078 | int bx = PN->getBasicBlockIndex(Preheader); |
| 2079 | if (bx >= 0) |
| 2080 | PN->setIncomingBlock(bx, NewPreheader); |
| 2081 | } |
| 2082 | DT->addNewBlock(NewPreheader, Preheader); |
| 2083 | DT->changeImmediateDominator(Header, NewPreheader); |
| 2084 | |
| 2085 | // Check for safe conditions to execute memmove. |
| 2086 | // If stride is positive, copying things from higher to lower addresses |
| 2087 | // is equivalent to memmove. For negative stride, it's the other way |
| 2088 | // around. Copying forward in memory with positive stride may not be |
| 2089 | // same as memmove since we may be copying values that we just stored |
| 2090 | // in some previous iteration. |
| 2091 | Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy); |
| 2092 | Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy); |
| 2093 | Value *LowA = StridePos ? SA : LA; |
| 2094 | Value *HighA = StridePos ? LA : SA; |
| 2095 | Value *CmpA = Builder.CreateICmpULT(LowA, HighA); |
| 2096 | Value *Cond = CmpA; |
| 2097 | |
| 2098 | // Check for distance between pointers. |
| 2099 | Value *Dist = Builder.CreateSub(HighA, LowA); |
| 2100 | Value *CmpD = Builder.CreateICmpSLT(NumBytes, Dist); |
| 2101 | Value *CmpEither = Builder.CreateOr(Cond, CmpD); |
| 2102 | Cond = CmpEither; |
| 2103 | |
| 2104 | if (Threshold != 0) { |
| 2105 | Type *Ty = NumBytes->getType(); |
| 2106 | Value *Thr = ConstantInt::get(Ty, Threshold); |
| 2107 | Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes); |
| 2108 | Value *CmpBoth = Builder.CreateAnd(Cond, CmpB); |
| 2109 | Cond = CmpBoth; |
| 2110 | } |
| 2111 | BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli", |
| 2112 | Func, NewPreheader); |
| 2113 | if (ParentL) |
| 2114 | ParentL->addBasicBlockToLoop(MemmoveB, *LF); |
| 2115 | Instruction *OldT = Preheader->getTerminator(); |
| 2116 | Builder.CreateCondBr(Cond, MemmoveB, NewPreheader); |
| 2117 | OldT->eraseFromParent(); |
| 2118 | Preheader->setName(Preheader->getName()+".old"); |
| 2119 | DT->addNewBlock(MemmoveB, Preheader); |
| 2120 | // Find the new immediate dominator of the exit block. |
| 2121 | BasicBlock *ExitD = Preheader; |
| 2122 | for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) { |
| 2123 | BasicBlock *PB = *PI; |
| 2124 | ExitD = DT->findNearestCommonDominator(ExitD, PB); |
| 2125 | if (!ExitD) |
| 2126 | break; |
| 2127 | } |
| 2128 | // If the prior immediate dominator of ExitB was dominated by the |
| 2129 | // old preheader, then the old preheader becomes the new immediate |
| 2130 | // dominator. Otherwise don't change anything (because the newly |
| 2131 | // added blocks are dominated by the old preheader). |
| 2132 | if (ExitD && DT->dominates(Preheader, ExitD)) { |
| 2133 | DomTreeNode *BN = DT->getNode(ExitB); |
| 2134 | DomTreeNode *DN = DT->getNode(ExitD); |
| 2135 | BN->setIDom(DN); |
| 2136 | } |
| 2137 | |
| 2138 | // Add a call to memmove to the conditional block. |
| 2139 | IRBuilder<> CondBuilder(MemmoveB); |
| 2140 | CondBuilder.CreateBr(ExitB); |
| 2141 | CondBuilder.SetInsertPoint(MemmoveB->getTerminator()); |
| 2142 | |
| 2143 | if (DestVolatile) { |
| 2144 | Type *Int32Ty = Type::getInt32Ty(Ctx); |
| 2145 | Type *Int32PtrTy = Type::getInt32PtrTy(Ctx); |
| 2146 | Type *VoidTy = Type::getVoidTy(Ctx); |
| 2147 | Module *M = Func->getParent(); |
| 2148 | Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy, |
Serge Guelton | 59a2d7b | 2017-04-11 15:01:18 +0000 | [diff] [blame^] | 2149 | Int32PtrTy, Int32PtrTy, Int32Ty); |
Krzysztof Parzyszek | c8b9438 | 2017-01-26 21:41:10 +0000 | [diff] [blame] | 2150 | Function *Fn = cast<Function>(CF); |
| 2151 | Fn->setLinkage(Function::ExternalLinkage); |
| 2152 | |
| 2153 | const SCEV *OneS = SE->getConstant(Int32Ty, 1); |
| 2154 | const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty); |
| 2155 | const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW); |
| 2156 | Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty, |
| 2157 | MemmoveB->getTerminator()); |
| 2158 | if (Instruction *In = dyn_cast<Instruction>(NumWords)) |
| 2159 | if (Value *Simp = SimplifyInstruction(In, *DL, TLI, DT)) |
| 2160 | NumWords = Simp; |
| 2161 | |
| 2162 | Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy) |
| 2163 | ? StoreBasePtr |
| 2164 | : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy); |
| 2165 | Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy) |
| 2166 | ? LoadBasePtr |
| 2167 | : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy); |
| 2168 | NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords}); |
| 2169 | } else { |
| 2170 | NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr, |
| 2171 | NumBytes, Alignment); |
| 2172 | } |
| 2173 | } else { |
| 2174 | NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, |
| 2175 | NumBytes, Alignment); |
| 2176 | // Okay, the memcpy has been formed. Zap the original store and |
| 2177 | // anything that feeds into it. |
| 2178 | RecursivelyDeleteTriviallyDeadInstructions(SI, TLI); |
| 2179 | } |
| 2180 | |
| 2181 | NewCall->setDebugLoc(DLoc); |
| 2182 | |
| 2183 | DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ") |
| 2184 | << *NewCall << "\n" |
| 2185 | << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" |
| 2186 | << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); |
| 2187 | |
| 2188 | return true; |
| 2189 | } |
| 2190 | |
| 2191 | |
| 2192 | // \brief Check if the instructions in Insts, together with their dependencies |
| 2193 | // cover the loop in the sense that the loop could be safely eliminated once |
| 2194 | // the instructions in Insts are removed. |
| 2195 | bool HexagonLoopIdiomRecognize::coverLoop(Loop *L, |
| 2196 | SmallVectorImpl<Instruction*> &Insts) const { |
| 2197 | SmallSet<BasicBlock*,8> LoopBlocks; |
| 2198 | for (auto *B : L->blocks()) |
| 2199 | LoopBlocks.insert(B); |
| 2200 | |
| 2201 | SetVector<Instruction*> Worklist(Insts.begin(), Insts.end()); |
| 2202 | |
| 2203 | // Collect all instructions from the loop that the instructions in Insts |
| 2204 | // depend on (plus their dependencies, etc.). These instructions will |
| 2205 | // constitute the expression trees that feed those in Insts, but the trees |
| 2206 | // will be limited only to instructions contained in the loop. |
| 2207 | for (unsigned i = 0; i < Worklist.size(); ++i) { |
| 2208 | Instruction *In = Worklist[i]; |
| 2209 | for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) { |
| 2210 | Instruction *OpI = dyn_cast<Instruction>(I); |
| 2211 | if (!OpI) |
| 2212 | continue; |
| 2213 | BasicBlock *PB = OpI->getParent(); |
| 2214 | if (!LoopBlocks.count(PB)) |
| 2215 | continue; |
| 2216 | Worklist.insert(OpI); |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | // Scan all instructions in the loop, if any of them have a user outside |
| 2221 | // of the loop, or outside of the expressions collected above, then either |
| 2222 | // the loop has a side-effect visible outside of it, or there are |
| 2223 | // instructions in it that are not involved in the original set Insts. |
| 2224 | for (auto *B : L->blocks()) { |
| 2225 | for (auto &In : *B) { |
| 2226 | if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In)) |
| 2227 | continue; |
| 2228 | if (!Worklist.count(&In) && In.mayHaveSideEffects()) |
| 2229 | return false; |
| 2230 | for (const auto &K : In.users()) { |
| 2231 | Instruction *UseI = dyn_cast<Instruction>(K); |
| 2232 | if (!UseI) |
| 2233 | continue; |
| 2234 | BasicBlock *UseB = UseI->getParent(); |
| 2235 | if (LF->getLoopFor(UseB) != L) |
| 2236 | return false; |
| 2237 | } |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | return true; |
| 2242 | } |
| 2243 | |
| 2244 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| 2245 | /// with the specified backedge count. This block is known to be in the current |
| 2246 | /// loop and not in any subloops. |
| 2247 | bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, |
| 2248 | const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) { |
| 2249 | // We can only promote stores in this block if they are unconditionally |
| 2250 | // executed in the loop. For a block to be unconditionally executed, it has |
| 2251 | // to dominate all the exit blocks of the loop. Verify this now. |
| 2252 | auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool { |
| 2253 | return DT->dominates(BB, EB); |
| 2254 | }; |
| 2255 | if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB)) |
| 2256 | return false; |
| 2257 | |
| 2258 | bool MadeChange = false; |
| 2259 | // Look for store instructions, which may be optimized to memset/memcpy. |
| 2260 | SmallVector<StoreInst*,8> Stores; |
| 2261 | collectStores(CurLoop, BB, Stores); |
| 2262 | |
| 2263 | // Optimize the store into a memcpy, if it feeds an similarly strided load. |
| 2264 | for (auto &SI : Stores) |
| 2265 | MadeChange |= processCopyingStore(CurLoop, SI, BECount); |
| 2266 | |
| 2267 | return MadeChange; |
| 2268 | } |
| 2269 | |
| 2270 | |
| 2271 | bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) { |
| 2272 | PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE); |
| 2273 | if (PMR.recognize()) |
| 2274 | return true; |
| 2275 | |
| 2276 | if (!HasMemcpy && !HasMemmove) |
| 2277 | return false; |
| 2278 | |
| 2279 | const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| 2280 | assert(!isa<SCEVCouldNotCompute>(BECount) && |
| 2281 | "runOnCountableLoop() called on a loop without a predictable" |
| 2282 | "backedge-taken count"); |
| 2283 | |
| 2284 | SmallVector<BasicBlock *, 8> ExitBlocks; |
| 2285 | L->getUniqueExitBlocks(ExitBlocks); |
| 2286 | |
| 2287 | bool Changed = false; |
| 2288 | |
| 2289 | // Scan all the blocks in the loop that are not in subloops. |
| 2290 | for (auto *BB : L->getBlocks()) { |
| 2291 | // Ignore blocks in subloops. |
| 2292 | if (LF->getLoopFor(BB) != L) |
| 2293 | continue; |
| 2294 | Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks); |
| 2295 | } |
| 2296 | |
| 2297 | return Changed; |
| 2298 | } |
| 2299 | |
| 2300 | |
| 2301 | bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { |
| 2302 | const Module &M = *L->getHeader()->getParent()->getParent(); |
| 2303 | if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon) |
| 2304 | return false; |
| 2305 | |
| 2306 | if (skipLoop(L)) |
| 2307 | return false; |
| 2308 | |
| 2309 | // If the loop could not be converted to canonical form, it must have an |
| 2310 | // indirectbr in it, just give up. |
| 2311 | if (!L->getLoopPreheader()) |
| 2312 | return false; |
| 2313 | |
| 2314 | // Disable loop idiom recognition if the function's name is a common idiom. |
| 2315 | StringRef Name = L->getHeader()->getParent()->getName(); |
| 2316 | if (Name == "memset" || Name == "memcpy" || Name == "memmove") |
| 2317 | return false; |
| 2318 | |
| 2319 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 2320 | DL = &L->getHeader()->getModule()->getDataLayout(); |
| 2321 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 2322 | LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 2323 | TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| 2324 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 2325 | |
| 2326 | HasMemcpy = TLI->has(LibFunc_memcpy); |
| 2327 | HasMemmove = TLI->has(LibFunc_memmove); |
| 2328 | |
| 2329 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| 2330 | return runOnCountableLoop(L); |
| 2331 | return false; |
| 2332 | } |
| 2333 | |
| 2334 | |
| 2335 | Pass *llvm::createHexagonLoopIdiomPass() { |
| 2336 | return new HexagonLoopIdiomRecognize(); |
| 2337 | } |
| 2338 | |