blob: b1917b6469e889b1206dbebcab400310aacbd21a [file] [log] [blame]
Nick Kledzikf60a9272012-12-12 20:46:15 +00001=====================
2YAML I/O
3=====================
4
5.. contents::
6 :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language. The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of
14yaml is just "scalars", "mappings", and "sequences". A scalar is any number
15or string. The pound/hash symbol (#) begins a comment line. A mapping is
16a set of key-value pairs where the key ends with a colon. For example:
17
18.. code-block:: yaml
19
20 # a mapping
21 name: Tom
22 hat-size: 7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29 # a sequence
30 - x86
31 - x86_64
32 - PowerPC
33
34You can combine mappings and sequences by indenting. For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39 # a sequence of mappings with one key's value being a sequence
40 - name: Tom
41 cpus:
42 - x86
43 - x86_64
44 - name: Bob
45 cpus:
46 - x86
47 - name: Dan
48 cpus:
49 - PowerPC
50 - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets. The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60 # a sequence of mappings with one key's value being a flow sequence
61 - name: Tom
62 cpus: [ x86, x86_64 ]
63 - name: Bob
64 cpus: [ x86 ]
65 - name: Dan
66 cpus: [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML. The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable. Often the fields are not in the order that
82a human would find readable. Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables. The same considerations need to
87go into the design of your YAML encoding. But, you may not want to change
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +000088your existing native data structures. Therefore, when writing out YAML
Nick Kledzikf60a9272012-12-12 20:46:15 +000089there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design. YAML I/O defines some
93abstract base templates. You specialize those templates on your data types.
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +000094For instance, if you have an enumerated type FooBar you could specialize
Nick Kledzikf60a9272012-12-12 20:46:15 +000095ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99 using llvm::yaml::ScalarEnumerationTraits;
100 using llvm::yaml::IO;
101
102 template <>
103 struct ScalarEnumerationTraits<FooBar> {
104 static void enumeration(IO &io, FooBar &value) {
105 ...
106 }
107 };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
Daniel Dunbarbf2e7b52013-05-20 22:39:48 +0000112values and the YAML string representation is only in one place.
Nick Kledzikf60a9272012-12-12 20:46:15 +0000113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000116llvm::yaml::MappingTraits.
Nick Kledzikf60a9272012-12-12 20:46:15 +0000117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple. For example:
119
120.. code-block:: c++
121
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000122 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000123 using llvm::yaml::IO;
124
125 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000126 struct MappingTraits<Person> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000127 static void mapping(IO &io, Person &info) {
128 io.mapRequired("name", info.name);
129 io.mapOptional("hat-size", info.hatSize);
130 }
131 };
132
133
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000134A YAML sequence is automatically inferred if you data type has begin()/end()
Nick Kledzikf60a9272012-12-12 20:46:15 +0000135iterators and a push_back() method. Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143 using llvm::yaml::Output;
144
145 Person tom;
146 tom.name = "Tom";
147 tom.hatSize = 8;
148 Person dan;
149 dan.name = "Dan";
150 dan.hatSize = 7;
151 std::vector<Person> persons;
152 persons.push_back(tom);
153 persons.push_back(dan);
154
155 Output yout(llvm::outs());
156 yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162 - name: Tom
163 hat-size: 8
164 - name: Dan
165 hat-size: 7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171 using llvm::yaml::Input;
172
173 typedef std::vector<Person> PersonList;
174 std::vector<PersonList> docs;
175
176 Input yin(document.getBuffer());
177 yin >> docs;
178
179 if ( yin.error() )
180 return;
181
182 // Process read document
183 for ( PersonList &pl : docs ) {
184 for ( Person &person : pl ) {
185 cout << "name=" << person.name;
186 }
187 }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file. That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations). YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204 - name: Tom
205 shoe-size: 12
206 - name: Dan
207 hat-size: 7
208
209Has a key (shoe-size) that is not defined in the schema. YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214 YAML:2:2: error: unknown key 'shoe-size'
215 shoe-size: 12
216 ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
John Thompson48e018a2013-11-19 17:28:21 +0000237* std::string
Nick Kledzikf60a9272012-12-12 20:46:15 +0000238* int64_t
239* int32_t
240* int16_t
241* int8_t
242* uint64_t
243* uint32_t
244* uint16_t
245* uint8_t
246
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000247That is, you can use those types in fields of MappingTraits or as element type
Nick Kledzikf60a9272012-12-12 20:46:15 +0000248in sequence. When reading, YAML I/O will validate that the string found
249is convertible to that type and error out if not.
250
251
252Unique types
253------------
254Given that YAML I/O is trait based, the selection of how to convert your data
255to YAML is based on the type of your data. But in C++ type matching, typedefs
256do not generate unique type names. That means if you have two typedefs of
257unsigned int, to YAML I/O both types look exactly like unsigned int. To
258facilitate make unique type names, YAML I/O provides a macro which is used
259like a typedef on built-in types, but expands to create a class with conversion
260operators to and from the base type. For example:
261
262.. code-block:: c++
263
264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
265 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
266
267This generates two classes MyFooFlags and MyBarFlags which you can use in your
268native data structures instead of uint32_t. They are implicitly
269converted to and from uint32_t. The point of creating these unique types
270is that you can now specify traits on them to get different YAML conversions.
271
272Hex types
273---------
274An example use of a unique type is that YAML I/O provides fixed sized unsigned
275integers that are written with YAML I/O as hexadecimal instead of the decimal
276format used by the built-in integer types:
277
278* Hex64
279* Hex32
280* Hex16
281* Hex8
282
283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
284be that when YAML I/O writes out that type it will be formatted in hexadecimal.
285
286
287ScalarEnumerationTraits
288-----------------------
289YAML I/O supports translating between in-memory enumerations and a set of string
290values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
291on your enumeration type and define a enumeration() method.
292For instance, suppose you had an enumeration of CPUs and a struct with it as
293a field:
294
295.. code-block:: c++
296
297 enum CPUs {
298 cpu_x86_64 = 5,
299 cpu_x86 = 7,
300 cpu_PowerPC = 8
301 };
302
303 struct Info {
304 CPUs cpu;
305 uint32_t flags;
306 };
307
308To support reading and writing of this enumeration, you can define a
309ScalarEnumerationTraits specialization on CPUs, which can then be used
310as a field type:
311
312.. code-block:: c++
313
314 using llvm::yaml::ScalarEnumerationTraits;
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000315 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000316 using llvm::yaml::IO;
317
318 template <>
319 struct ScalarEnumerationTraits<CPUs> {
320 static void enumeration(IO &io, CPUs &value) {
321 io.enumCase(value, "x86_64", cpu_x86_64);
322 io.enumCase(value, "x86", cpu_x86);
323 io.enumCase(value, "PowerPC", cpu_PowerPC);
324 }
325 };
326
327 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000328 struct MappingTraits<Info> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000329 static void mapping(IO &io, Info &info) {
330 io.mapRequired("cpu", info.cpu);
331 io.mapOptional("flags", info.flags, 0);
332 }
333 };
334
335When reading YAML, if the string found does not match any of the the strings
336specified by enumCase() methods, an error is automatically generated.
337When writing YAML, if the value being written does not match any of the values
338specified by the enumCase() methods, a runtime assertion is triggered.
339
340
341BitValue
342--------
343Another common data structure in C++ is a field where each bit has a unique
344meaning. This is often used in a "flags" field. YAML I/O has support for
345converting such fields to a flow sequence. For instance suppose you
346had the following bit flags defined:
347
348.. code-block:: c++
349
350 enum {
351 flagsPointy = 1
352 flagsHollow = 2
353 flagsFlat = 4
354 flagsRound = 8
355 };
356
Sean Silva0d65a762013-06-04 23:36:41 +0000357 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
Nick Kledzikf60a9272012-12-12 20:46:15 +0000358
359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
360on MyFlags and provide the bit values and their names.
361
362.. code-block:: c++
363
364 using llvm::yaml::ScalarBitSetTraits;
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000365 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000366 using llvm::yaml::IO;
367
368 template <>
369 struct ScalarBitSetTraits<MyFlags> {
370 static void bitset(IO &io, MyFlags &value) {
371 io.bitSetCase(value, "hollow", flagHollow);
372 io.bitSetCase(value, "flat", flagFlat);
373 io.bitSetCase(value, "round", flagRound);
374 io.bitSetCase(value, "pointy", flagPointy);
375 }
376 };
377
378 struct Info {
379 StringRef name;
380 MyFlags flags;
381 };
382
383 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000384 struct MappingTraits<Info> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000385 static void mapping(IO &io, Info& info) {
386 io.mapRequired("name", info.name);
387 io.mapRequired("flags", info.flags);
388 }
389 };
390
391With the above, YAML I/O (when writing) will test mask each value in the
392bitset trait against the flags field, and each that matches will
393cause the corresponding string to be added to the flow sequence. The opposite
394is done when reading and any unknown string values will result in a error. With
395the above schema, a same valid YAML document is:
396
397.. code-block:: yaml
398
399 name: Tom
400 flags: [ pointy, flat ]
401
402
403Custom Scalar
404-------------
405Sometimes for readability a scalar needs to be formatted in a custom way. For
406instance your internal data structure may use a integer for time (seconds since
407some epoch), but in YAML it would be much nicer to express that integer in
408some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support
409custom formatting and parsing of scalar types by specializing ScalarTraits<> on
410your data type. When writing, YAML I/O will provide the native type and
411your specialization must create a temporary llvm::StringRef. When reading,
Daniel Dunbar06b9f9e2013-08-16 23:30:19 +0000412YAML I/O will provide an llvm::StringRef of scalar and your specialization
Nick Kledzikf60a9272012-12-12 20:46:15 +0000413must convert that to your native data type. An outline of a custom scalar type
414looks like:
415
416.. code-block:: c++
417
418 using llvm::yaml::ScalarTraits;
419 using llvm::yaml::IO;
420
421 template <>
422 struct ScalarTraits<MyCustomType> {
423 static void output(const T &value, llvm::raw_ostream &out) {
424 out << value; // do custom formatting here
425 }
426 static StringRef input(StringRef scalar, T &value) {
427 // do custom parsing here. Return the empty string on success,
428 // or an error message on failure.
429 return StringRef();
430 }
431 };
432
433
434Mappings
435========
436
437To be translated to or from a YAML mapping for your type T you must specialize
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000438llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
Nick Kledzikf60a9272012-12-12 20:46:15 +0000439method. If your native data structures use pointers to a class everywhere,
440you can specialize on the class pointer. Examples:
441
442.. code-block:: c++
443
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000444 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000445 using llvm::yaml::IO;
446
447 // Example of struct Foo which is used by value
448 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000449 struct MappingTraits<Foo> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000450 static void mapping(IO &io, Foo &foo) {
451 io.mapOptional("size", foo.size);
452 ...
453 }
454 };
455
456 // Example of struct Bar which is natively always a pointer
457 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000458 struct MappingTraits<Bar*> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000459 static void mapping(IO &io, Bar *&bar) {
460 io.mapOptional("size", bar->size);
461 ...
462 }
463 };
464
465
466No Normalization
467----------------
468
469The mapping() method is responsible, if needed, for normalizing and
470denormalizing. In a simple case where the native data structure requires no
471normalization, the mapping method just uses mapOptional() or mapRequired() to
472bind the struct's fields to YAML key names. For example:
473
474.. code-block:: c++
475
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000476 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000477 using llvm::yaml::IO;
478
479 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000480 struct MappingTraits<Person> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000481 static void mapping(IO &io, Person &info) {
482 io.mapRequired("name", info.name);
483 io.mapOptional("hat-size", info.hatSize);
484 }
485 };
486
487
488Normalization
489----------------
490
491When [de]normalization is required, the mapping() method needs a way to access
492normalized values as fields. To help with this, there is
493a template MappingNormalization<> which you can then use to automatically
494do the normalization and denormalization. The template is used to create
495a local variable in your mapping() method which contains the normalized keys.
496
497Suppose you have native data type
498Polar which specifies a position in polar coordinates (distance, angle):
499
500.. code-block:: c++
501
502 struct Polar {
503 float distance;
504 float angle;
505 };
506
507but you've decided the normalized YAML for should be in x,y coordinates. That
508is, you want the yaml to look like:
509
510.. code-block:: yaml
511
512 x: 10.3
513 y: -4.7
514
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000515You can support this by defining a MappingTraits that normalizes the polar
Nick Kledzikf60a9272012-12-12 20:46:15 +0000516coordinates to x,y coordinates when writing YAML and denormalizes x,y
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000517coordinates into polar when reading YAML.
Nick Kledzikf60a9272012-12-12 20:46:15 +0000518
519.. code-block:: c++
520
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000521 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000522 using llvm::yaml::IO;
523
524 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000525 struct MappingTraits<Polar> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000526
527 class NormalizedPolar {
528 public:
529 NormalizedPolar(IO &io)
530 : x(0.0), y(0.0) {
531 }
532 NormalizedPolar(IO &, Polar &polar)
533 : x(polar.distance * cos(polar.angle)),
534 y(polar.distance * sin(polar.angle)) {
535 }
536 Polar denormalize(IO &) {
Daniel Dunbarbf2e7b52013-05-20 22:39:48 +0000537 return Polar(sqrt(x*x+y*y), arctan(x,y));
Nick Kledzikf60a9272012-12-12 20:46:15 +0000538 }
539
540 float x;
541 float y;
542 };
543
544 static void mapping(IO &io, Polar &polar) {
545 MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
546
547 io.mapRequired("x", keys->x);
548 io.mapRequired("y", keys->y);
549 }
550 };
551
552When writing YAML, the local variable "keys" will be a stack allocated
Rui Ueyama0ad114c2013-09-11 05:22:01 +0000553instance of NormalizedPolar, constructed from the supplied polar object which
Nick Kledzikf60a9272012-12-12 20:46:15 +0000554initializes it x and y fields. The mapRequired() methods then write out the x
555and y values as key/value pairs.
556
557When reading YAML, the local variable "keys" will be a stack allocated instance
558of NormalizedPolar, constructed by the empty constructor. The mapRequired
559methods will find the matching key in the YAML document and fill in the x and y
560fields of the NormalizedPolar object keys. At the end of the mapping() method
561when the local keys variable goes out of scope, the denormalize() method will
562automatically be called to convert the read values back to polar coordinates,
563and then assigned back to the second parameter to mapping().
564
565In some cases, the normalized class may be a subclass of the native type and
566could be returned by the denormalize() method, except that the temporary
567normalized instance is stack allocated. In these cases, the utility template
568MappingNormalizationHeap<> can be used instead. It just like
569MappingNormalization<> except that it heap allocates the normalized object
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000570when reading YAML. It never destroys the normalized object. The denormalize()
Nick Kledzikf60a9272012-12-12 20:46:15 +0000571method can this return "this".
572
573
574Default values
575--------------
576Within a mapping() method, calls to io.mapRequired() mean that that key is
577required to exist when parsing YAML documents, otherwise YAML I/O will issue an
578error.
579
580On the other hand, keys registered with io.mapOptional() are allowed to not
581exist in the YAML document being read. So what value is put in the field
582for those optional keys?
583There are two steps to how those optional fields are filled in. First, the
584second parameter to the mapping() method is a reference to a native class. That
585native class must have a default constructor. Whatever value the default
586constructor initially sets for an optional field will be that field's value.
587Second, the mapOptional() method has an optional third parameter. If provided
588it is the value that mapOptional() should set that field to if the YAML document
589does not have that key.
590
591There is one important difference between those two ways (default constructor
592and third parameter to mapOptional). When YAML I/O generates a YAML document,
593if the mapOptional() third parameter is used, if the actual value being written
594is the same as (using ==) the default value, then that key/value is not written.
595
596
597Order of Keys
598--------------
599
600When writing out a YAML document, the keys are written in the order that the
601calls to mapRequired()/mapOptional() are made in the mapping() method. This
602gives you a chance to write the fields in an order that a human reader of
603the YAML document would find natural. This may be different that the order
604of the fields in the native class.
605
606When reading in a YAML document, the keys in the document can be in any order,
607but they are processed in the order that the calls to mapRequired()/mapOptional()
608are made in the mapping() method. That enables some interesting
609functionality. For instance, if the first field bound is the cpu and the second
610field bound is flags, and the flags are cpu specific, you can programmatically
611switch how the flags are converted to and from YAML based on the cpu.
612This works for both reading and writing. For example:
613
614.. code-block:: c++
615
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000616 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000617 using llvm::yaml::IO;
618
619 struct Info {
620 CPUs cpu;
621 uint32_t flags;
622 };
623
624 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000625 struct MappingTraits<Info> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000626 static void mapping(IO &io, Info &info) {
627 io.mapRequired("cpu", info.cpu);
628 // flags must come after cpu for this to work when reading yaml
629 if ( info.cpu == cpu_x86_64 )
630 io.mapRequired("flags", *(My86_64Flags*)info.flags);
631 else
632 io.mapRequired("flags", *(My86Flags*)info.flags);
633 }
634 };
635
636
Nick Kledzik1e6033c2013-11-14 00:59:59 +0000637Tags
638----
639
640The YAML syntax supports tags as a way to specify the type of a node before
641it is parsed. This allows dynamic types of nodes. But the YAML I/O model uses
642static typing, so there are limits to how you can use tags with the YAML I/O
643model. Recently, we added support to YAML I/O for checking/setting the optional
Alp Toker171b0c32013-12-20 00:33:39 +0000644tag on a map. Using this functionality it is even possbile to support different
Nick Kledzik1e6033c2013-11-14 00:59:59 +0000645mappings, as long as they are convertable.
646
647To check a tag, inside your mapping() method you can use io.mapTag() to specify
648what the tag should be. This will also add that tag when writing yaml.
649
Nick Kledzik7cd45f22013-11-21 00:28:07 +0000650Validation
651----------
652
653Sometimes in a yaml map, each key/value pair is valid, but the combination is
654not. This is similar to something having no syntax errors, but still having
655semantic errors. To support semantic level checking, YAML I/O allows
656an optional ``validate()`` method in a MappingTraits template specialization.
657
658When parsing yaml, the ``validate()`` method is call *after* all key/values in
659the map have been processed. Any error message returned by the ``validate()``
660method during input will be printed just a like a syntax error would be printed.
661When writing yaml, the ``validate()`` method is called *before* the yaml
662key/values are written. Any error during output will trigger an ``assert()``
663because it is a programming error to have invalid struct values.
664
665
666.. code-block:: c++
667
668 using llvm::yaml::MappingTraits;
669 using llvm::yaml::IO;
670
671 struct Stuff {
672 ...
673 };
674
675 template <>
676 struct MappingTraits<Stuff> {
677 static void mapping(IO &io, Stuff &stuff) {
678 ...
679 }
680 static StringRef validate(IO &io, Stuff &stuff) {
681 // Look at all fields in 'stuff' and if there
682 // are any bad values return a string describing
683 // the error. Otherwise return an empty string.
684 return StringRef();
685 }
686 };
687
Nick Kledzik1e6033c2013-11-14 00:59:59 +0000688
Nick Kledzikf60a9272012-12-12 20:46:15 +0000689Sequence
690========
691
692To be translated to or from a YAML sequence for your type T you must specialize
693llvm::yaml::SequenceTraits on T and implement two methods:
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000694``size_t size(IO &io, T&)`` and
695``T::value_type& element(IO &io, T&, size_t indx)``. For example:
Nick Kledzikf60a9272012-12-12 20:46:15 +0000696
697.. code-block:: c++
698
699 template <>
700 struct SequenceTraits<MySeq> {
701 static size_t size(IO &io, MySeq &list) { ... }
Rui Ueyama539b1df2013-09-12 01:43:21 +0000702 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
Nick Kledzikf60a9272012-12-12 20:46:15 +0000703 };
704
705The size() method returns how many elements are currently in your sequence.
706The element() method returns a reference to the i'th element in the sequence.
707When parsing YAML, the element() method may be called with an index one bigger
708than the current size. Your element() method should allocate space for one
709more element (using default constructor if element is a C++ object) and returns
710a reference to that new allocated space.
711
712
713Flow Sequence
714-------------
715A YAML "flow sequence" is a sequence that when written to YAML it uses the
716inline notation (e.g [ foo, bar ] ). To specify that a sequence type should
717be written in YAML as a flow sequence, your SequenceTraits specialization should
718add "static const bool flow = true;". For instance:
719
720.. code-block:: c++
721
722 template <>
723 struct SequenceTraits<MyList> {
724 static size_t size(IO &io, MyList &list) { ... }
Rui Ueyama539b1df2013-09-12 01:43:21 +0000725 static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
Nick Kledzikf60a9272012-12-12 20:46:15 +0000726
727 // The existence of this member causes YAML I/O to use a flow sequence
728 static const bool flow = true;
729 };
730
731With the above, if you used MyList as the data type in your native data
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000732structures, then then when converted to YAML, a flow sequence of integers
Nick Kledzikf60a9272012-12-12 20:46:15 +0000733will be used (e.g. [ 10, -3, 4 ]).
734
735
736Utility Macros
737--------------
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000738Since a common source of sequences is std::vector<>, YAML I/O provides macros:
Nick Kledzikf60a9272012-12-12 20:46:15 +0000739LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
740can be used to easily specify SequenceTraits<> on a std::vector type. YAML
741I/O does not partial specialize SequenceTraits on std::vector<> because that
742would force all vectors to be sequences. An example use of the macros:
743
744.. code-block:: c++
745
746 std::vector<MyType1>;
747 std::vector<MyType2>;
748 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
749 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
750
751
752
753Document List
754=============
755
756YAML allows you to define multiple "documents" in a single YAML file. Each
757new document starts with a left aligned "---" token. The end of all documents
758is denoted with a left aligned "..." token. Many users of YAML will never
759have need for multiple documents. The top level node in their YAML schema
760will be a mapping or sequence. For those cases, the following is not needed.
761But for cases where you do want multiple documents, you can specify a
762trait for you document list type. The trait has the same methods as
763SequenceTraits but is named DocumentListTraits. For example:
764
765.. code-block:: c++
766
767 template <>
768 struct DocumentListTraits<MyDocList> {
769 static size_t size(IO &io, MyDocList &list) { ... }
770 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
771 };
772
773
774User Context Data
775=================
776When an llvm::yaml::Input or llvm::yaml::Output object is created their
777constructors take an optional "context" parameter. This is a pointer to
778whatever state information you might need.
779
780For instance, in a previous example we showed how the conversion type for a
781flags field could be determined at runtime based on the value of another field
782in the mapping. But what if an inner mapping needs to know some field value
783of an outer mapping? That is where the "context" parameter comes in. You
784can set values in the context in the outer map's mapping() method and
785retrieve those values in the inner map's mapping() method.
786
787The context value is just a void*. All your traits which use the context
788and operate on your native data types, need to agree what the context value
789actually is. It could be a pointer to an object or struct which your various
790traits use to shared context sensitive information.
791
792
793Output
794======
795
796The llvm::yaml::Output class is used to generate a YAML document from your
797in-memory data structures, using traits defined on your data types.
798To instantiate an Output object you need an llvm::raw_ostream, and optionally
799a context pointer:
800
801.. code-block:: c++
802
803 class Output : public IO {
804 public:
805 Output(llvm::raw_ostream &, void *context=NULL);
806
807Once you have an Output object, you can use the C++ stream operator on it
808to write your native data as YAML. One thing to recall is that a YAML file
809can contain multiple "documents". If the top level data structure you are
810streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
811are generating one document and wraps the mapping output
812with "``---``" and trailing "``...``".
813
814.. code-block:: c++
815
816 using llvm::yaml::Output;
817
818 void dumpMyMapDoc(const MyMapType &info) {
819 Output yout(llvm::outs());
820 yout << info;
821 }
822
823The above could produce output like:
824
825.. code-block:: yaml
826
827 ---
828 name: Tom
829 hat-size: 7
830 ...
831
832On the other hand, if the top level data structure you are streaming as YAML
833has a DocumentListTraits specialization, then Output walks through each element
834of your DocumentList and generates a "---" before the start of each element
835and ends with a "...".
836
837.. code-block:: c++
838
839 using llvm::yaml::Output;
840
841 void dumpMyMapDoc(const MyDocListType &docList) {
842 Output yout(llvm::outs());
843 yout << docList;
844 }
845
846The above could produce output like:
847
848.. code-block:: yaml
849
850 ---
851 name: Tom
852 hat-size: 7
853 ---
854 name: Tom
855 shoe-size: 11
856 ...
857
858Input
859=====
860
861The llvm::yaml::Input class is used to parse YAML document(s) into your native
862data structures. To instantiate an Input
863object you need a StringRef to the entire YAML file, and optionally a context
864pointer:
865
866.. code-block:: c++
867
868 class Input : public IO {
869 public:
870 Input(StringRef inputContent, void *context=NULL);
871
872Once you have an Input object, you can use the C++ stream operator to read
873the document(s). If you expect there might be multiple YAML documents in
874one file, you'll need to specialize DocumentListTraits on a list of your
875document type and stream in that document list type. Otherwise you can
876just stream in the document type. Also, you can check if there was
877any syntax errors in the YAML be calling the error() method on the Input
878object. For example:
879
880.. code-block:: c++
881
882 // Reading a single document
883 using llvm::yaml::Input;
884
885 Input yin(mb.getBuffer());
886
887 // Parse the YAML file
888 MyDocType theDoc;
889 yin >> theDoc;
890
891 // Check for error
892 if ( yin.error() )
893 return;
894
895
896.. code-block:: c++
897
898 // Reading multiple documents in one file
899 using llvm::yaml::Input;
900
901 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
902
903 Input yin(mb.getBuffer());
904
905 // Parse the YAML file
906 std::vector<MyDocType> theDocList;
907 yin >> theDocList;
908
909 // Check for error
910 if ( yin.error() )
911 return;
912
913