blob: f208bb72e2e7f0338a37b940e11587901919cec9 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Hal Finkel60db0582014-09-07 18:57:58 +000016#include "llvm/Analysis/AssumptionTracker.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
42/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
43/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
68 AssumptionTracker *AT;
69 const Instruction *CxtI;
70 const DominatorTree *DT;
71
72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr,
73 const DominatorTree *DT = nullptr)
74 : AT(AT), CxtI(CxtI), DT(DT) {}
75
76 Query(const Query &Q, const Value *NewExcl)
77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) {
78 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
83// Given the provided Value and, potentially, a context instruction, returned
84// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
105 AssumptionTracker *AT, const Instruction *CxtI,
106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
108 Query(AT, safeCxtI(V, CxtI), DT));
109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
117 AssumptionTracker *AT, const Instruction *CxtI,
118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
120 Query(AT, safeCxtI(V, CxtI), DT));
121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
127 AssumptionTracker *AT,
128 const Instruction *CxtI,
129 const DominatorTree *DT) {
130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
131 Query(AT, safeCxtI(V, CxtI), DT));
132}
133
134static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
135 const Query &Q);
136
137bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
138 AssumptionTracker *AT, const Instruction *CxtI,
139 const DominatorTree *DT) {
140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
141}
142
143static bool MaskedValueIsZero(Value *V, const APInt &Mask,
144 const DataLayout *TD, unsigned Depth,
145 const Query &Q);
146
147bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
148 const DataLayout *TD, unsigned Depth,
149 AssumptionTracker *AT, const Instruction *CxtI,
150 const DominatorTree *DT) {
151 return ::MaskedValueIsZero(V, Mask, TD, Depth,
152 Query(AT, safeCxtI(V, CxtI), DT));
153}
154
155static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
156 unsigned Depth, const Query &Q);
157
158unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
159 unsigned Depth, AssumptionTracker *AT,
160 const Instruction *CxtI,
161 const DominatorTree *DT) {
162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
163}
164
Jay Foada0653a32014-05-14 21:14:37 +0000165static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
166 APInt &KnownZero, APInt &KnownOne,
167 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000168 const DataLayout *TD, unsigned Depth,
169 const Query &Q) {
170 if (!Add) {
171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
172 // We know that the top bits of C-X are clear if X contains less bits
173 // than C (i.e. no wrap-around can happen). For example, 20-X is
174 // positive if we can prove that X is >= 0 and < 16.
175 if (!CLHS->getValue().isNegative()) {
176 unsigned BitWidth = KnownZero.getBitWidth();
177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
178 // NLZ can't be BitWidth with no sign bit
179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
181
182 // If all of the MaskV bits are known to be zero, then we know the
183 // output top bits are zero, because we now know that the output is
184 // from [0-C].
185 if ((KnownZero2 & MaskV) == MaskV) {
186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
187 // Top bits known zero.
188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
189 }
190 }
191 }
192 }
193
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000194 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000195
David Majnemer97ddca32014-08-22 00:40:43 +0000196 // If an initial sequence of bits in the result is not needed, the
197 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000201
David Majnemer97ddca32014-08-22 00:40:43 +0000202 // Carry in a 1 for a subtract, rather than a 0.
203 APInt CarryIn(BitWidth, 0);
204 if (!Add) {
205 // Sum = LHS + ~RHS + 1
206 std::swap(KnownZero2, KnownOne2);
207 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000208 }
209
David Majnemer97ddca32014-08-22 00:40:43 +0000210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
212
213 // Compute known bits of the carry.
214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
216
217 // Compute set of known bits (where all three relevant bits are known).
218 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
219 APInt RHSKnown = KnownZero2 | KnownOne2;
220 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
221 APInt Known = LHSKnown & RHSKnown & CarryKnown;
222
223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
224 "known bits of sum differ");
225
226 // Compute known bits of the result.
227 KnownZero = ~PossibleSumOne & Known;
228 KnownOne = PossibleSumOne & Known;
229
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000231 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000232 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000233 // Adding two non-negative numbers, or subtracting a negative number from
234 // a non-negative one, can't wrap into negative.
235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
236 KnownZero |= APInt::getSignBit(BitWidth);
237 // Adding two negative numbers, or subtracting a non-negative number from
238 // a negative one, can't wrap into non-negative.
239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
240 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000241 }
242 }
243}
244
Jay Foada0653a32014-05-14 21:14:37 +0000245static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
246 APInt &KnownZero, APInt &KnownOne,
247 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000248 const DataLayout *TD, unsigned Depth,
249 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000250 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000253
254 bool isKnownNegative = false;
255 bool isKnownNonNegative = false;
256 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000258 if (Op0 == Op1) {
259 // The product of a number with itself is non-negative.
260 isKnownNonNegative = true;
261 } else {
262 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
264 bool isKnownNegativeOp1 = KnownOne.isNegative();
265 bool isKnownNegativeOp0 = KnownOne2.isNegative();
266 // The product of two numbers with the same sign is non-negative.
267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
269 // The product of a negative number and a non-negative number is either
270 // negative or zero.
271 if (!isKnownNonNegative)
272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000275 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000276 }
277 }
278
279 // If low bits are zero in either operand, output low known-0 bits.
280 // Also compute a conserative estimate for high known-0 bits.
281 // More trickiness is possible, but this is sufficient for the
282 // interesting case of alignment computation.
283 KnownOne.clearAllBits();
284 unsigned TrailZ = KnownZero.countTrailingOnes() +
285 KnownZero2.countTrailingOnes();
286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
287 KnownZero2.countLeadingOnes(),
288 BitWidth) - BitWidth;
289
290 TrailZ = std::min(TrailZ, BitWidth);
291 LeadZ = std::min(LeadZ, BitWidth);
292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
293 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000294
295 // Only make use of no-wrap flags if we failed to compute the sign bit
296 // directly. This matters if the multiplication always overflows, in
297 // which case we prefer to follow the result of the direct computation,
298 // though as the program is invoking undefined behaviour we can choose
299 // whatever we like here.
300 if (isKnownNonNegative && !KnownOne.isNegative())
301 KnownZero.setBit(BitWidth - 1);
302 else if (isKnownNegative && !KnownZero.isNegative())
303 KnownOne.setBit(BitWidth - 1);
304}
305
Jingyue Wu37fcb592014-06-19 16:50:16 +0000306void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
307 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000309 unsigned NumRanges = Ranges.getNumOperands() / 2;
310 assert(NumRanges >= 1);
311
312 // Use the high end of the ranges to find leading zeros.
313 unsigned MinLeadingZeros = BitWidth;
314 for (unsigned i = 0; i < NumRanges; ++i) {
315 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
316 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
317 ConstantRange Range(Lower->getValue(), Upper->getValue());
318 if (Range.isWrappedSet())
319 MinLeadingZeros = 0; // -1 has no zeros
320 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
321 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
322 }
323
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000324 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000325}
Jay Foad5a29c362014-05-15 12:12:55 +0000326
Hal Finkel60db0582014-09-07 18:57:58 +0000327static bool isEphemeralValueOf(Instruction *I, const Value *E) {
328 SmallVector<const Value *, 16> WorkSet(1, I);
329 SmallPtrSet<const Value *, 32> Visited;
330 SmallPtrSet<const Value *, 16> EphValues;
331
332 while (!WorkSet.empty()) {
333 const Value *V = WorkSet.pop_back_val();
334 if (!Visited.insert(V))
335 continue;
336
337 // If all uses of this value are ephemeral, then so is this value.
338 bool FoundNEUse = false;
339 for (const User *I : V->users())
340 if (!EphValues.count(I)) {
341 FoundNEUse = true;
342 break;
343 }
344
345 if (!FoundNEUse) {
346 if (V == E)
347 return true;
348
349 EphValues.insert(V);
350 if (const User *U = dyn_cast<User>(V))
351 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
352 J != JE; ++J) {
353 if (isSafeToSpeculativelyExecute(*J))
354 WorkSet.push_back(*J);
355 }
356 }
357 }
358
359 return false;
360}
361
362// Is this an intrinsic that cannot be speculated but also cannot trap?
363static bool isAssumeLikeIntrinsic(const Instruction *I) {
364 if (const CallInst *CI = dyn_cast<CallInst>(I))
365 if (Function *F = CI->getCalledFunction())
366 switch (F->getIntrinsicID()) {
367 default: break;
368 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
369 case Intrinsic::assume:
370 case Intrinsic::dbg_declare:
371 case Intrinsic::dbg_value:
372 case Intrinsic::invariant_start:
373 case Intrinsic::invariant_end:
374 case Intrinsic::lifetime_start:
375 case Intrinsic::lifetime_end:
376 case Intrinsic::objectsize:
377 case Intrinsic::ptr_annotation:
378 case Intrinsic::var_annotation:
379 return true;
380 }
381
382 return false;
383}
384
385static bool isValidAssumeForContext(Value *V, const Query &Q,
386 const DataLayout *DL) {
387 Instruction *Inv = cast<Instruction>(V);
388
389 // There are two restrictions on the use of an assume:
390 // 1. The assume must dominate the context (or the control flow must
391 // reach the assume whenever it reaches the context).
392 // 2. The context must not be in the assume's set of ephemeral values
393 // (otherwise we will use the assume to prove that the condition
394 // feeding the assume is trivially true, thus causing the removal of
395 // the assume).
396
397 if (Q.DT) {
398 if (Q.DT->dominates(Inv, Q.CxtI)) {
399 return true;
400 } else if (Inv->getParent() == Q.CxtI->getParent()) {
401 // The context comes first, but they're both in the same block. Make sure
402 // there is nothing in between that might interrupt the control flow.
403 for (BasicBlock::const_iterator I =
404 std::next(BasicBlock::const_iterator(Q.CxtI)),
405 IE(Inv); I != IE; ++I)
406 if (!isSafeToSpeculativelyExecute(I, DL) &&
407 !isAssumeLikeIntrinsic(I))
408 return false;
409
410 return !isEphemeralValueOf(Inv, Q.CxtI);
411 }
412
413 return false;
414 }
415
416 // When we don't have a DT, we do a limited search...
417 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
418 return true;
419 } else if (Inv->getParent() == Q.CxtI->getParent()) {
420 // Search forward from the assume until we reach the context (or the end
421 // of the block); the common case is that the assume will come first.
422 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
423 IE = Inv->getParent()->end(); I != IE; ++I)
424 if (I == Q.CxtI)
425 return true;
426
427 // The context must come first...
428 for (BasicBlock::const_iterator I =
429 std::next(BasicBlock::const_iterator(Q.CxtI)),
430 IE(Inv); I != IE; ++I)
431 if (!isSafeToSpeculativelyExecute(I, DL) &&
432 !isAssumeLikeIntrinsic(I))
433 return false;
434
435 return !isEphemeralValueOf(Inv, Q.CxtI);
436 }
437
438 return false;
439}
440
441bool llvm::isValidAssumeForContext(const Instruction *I,
442 const Instruction *CxtI,
443 const DataLayout *DL,
444 const DominatorTree *DT) {
445 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
446 Query(nullptr, CxtI, DT), DL);
447}
448
449template<typename LHS, typename RHS>
450inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
451 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
452m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
453 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
454}
455
456template<typename LHS, typename RHS>
457inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
458 BinaryOp_match<RHS, LHS, Instruction::And>>
459m_c_And(const LHS &L, const RHS &R) {
460 return m_CombineOr(m_And(L, R), m_And(R, L));
461}
462
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000463template<typename LHS, typename RHS>
464inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
465 BinaryOp_match<RHS, LHS, Instruction::Or>>
466m_c_Or(const LHS &L, const RHS &R) {
467 return m_CombineOr(m_Or(L, R), m_Or(R, L));
468}
469
470template<typename LHS, typename RHS>
471inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
472 BinaryOp_match<RHS, LHS, Instruction::Xor>>
473m_c_Xor(const LHS &L, const RHS &R) {
474 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
475}
476
Hal Finkel60db0582014-09-07 18:57:58 +0000477static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
478 APInt &KnownOne,
479 const DataLayout *DL,
480 unsigned Depth, const Query &Q) {
481 // Use of assumptions is context-sensitive. If we don't have a context, we
482 // cannot use them!
483 if (!Q.AT || !Q.CxtI)
484 return;
485
486 unsigned BitWidth = KnownZero.getBitWidth();
487
488 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent());
489 for (auto &CI : Q.AT->assumptions(F)) {
490 CallInst *I = CI;
491 if (Q.ExclInvs.count(I))
492 continue;
493
494 if (match(I, m_Intrinsic<Intrinsic::assume>(m_Specific(V))) &&
495 isValidAssumeForContext(I, Q, DL)) {
496 assert(BitWidth == 1 && "assume operand is not i1?");
497 KnownZero.clearAllBits();
498 KnownOne.setAllBits();
499 return;
500 }
501
502 Value *A, *B;
503 auto m_V = m_CombineOr(m_Specific(V),
504 m_CombineOr(m_PtrToInt(m_Specific(V)),
505 m_BitCast(m_Specific(V))));
506
507 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000508 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000509 // assume(v = a)
510 if (match(I, m_Intrinsic<Intrinsic::assume>(
511 m_c_ICmp(Pred, m_V, m_Value(A)))) &&
512 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
513 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
514 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
515 KnownZero |= RHSKnownZero;
516 KnownOne |= RHSKnownOne;
517 // assume(v & b = a)
518 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
519 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A)))) &&
520 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
521 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
522 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
523 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
524 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
525
526 // For those bits in the mask that are known to be one, we can propagate
527 // known bits from the RHS to V.
528 KnownZero |= RHSKnownZero & MaskKnownOne;
529 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000530 // assume(~(v & b) = a)
531 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
532 m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
533 m_Value(A)))) &&
534 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
535 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
536 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
537 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
538 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
539
540 // For those bits in the mask that are known to be one, we can propagate
541 // inverted known bits from the RHS to V.
542 KnownZero |= RHSKnownOne & MaskKnownOne;
543 KnownOne |= RHSKnownZero & MaskKnownOne;
544 // assume(v | b = a)
545 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
546 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A)))) &&
547 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
548 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
549 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
550 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
551 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
552
553 // For those bits in B that are known to be zero, we can propagate known
554 // bits from the RHS to V.
555 KnownZero |= RHSKnownZero & BKnownZero;
556 KnownOne |= RHSKnownOne & BKnownZero;
557 // assume(~(v | b) = a)
558 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
559 m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
560 m_Value(A)))) &&
561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
564 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
565 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
566
567 // For those bits in B that are known to be zero, we can propagate
568 // inverted known bits from the RHS to V.
569 KnownZero |= RHSKnownOne & BKnownZero;
570 KnownOne |= RHSKnownZero & BKnownZero;
571 // assume(v ^ b = a)
572 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
573 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A)))) &&
574 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
575 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
576 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
577 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
578 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
579
580 // For those bits in B that are known to be zero, we can propagate known
581 // bits from the RHS to V. For those bits in B that are known to be one,
582 // we can propagate inverted known bits from the RHS to V.
583 KnownZero |= RHSKnownZero & BKnownZero;
584 KnownOne |= RHSKnownOne & BKnownZero;
585 KnownZero |= RHSKnownOne & BKnownOne;
586 KnownOne |= RHSKnownZero & BKnownOne;
587 // assume(~(v ^ b) = a)
588 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
589 m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
590 m_Value(A)))) &&
591 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
592 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
593 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
594 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
595 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
596
597 // For those bits in B that are known to be zero, we can propagate
598 // inverted known bits from the RHS to V. For those bits in B that are
599 // known to be one, we can propagate known bits from the RHS to V.
600 KnownZero |= RHSKnownOne & BKnownZero;
601 KnownOne |= RHSKnownZero & BKnownZero;
602 KnownZero |= RHSKnownZero & BKnownOne;
603 KnownOne |= RHSKnownOne & BKnownOne;
604 // assume(v << c = a)
605 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
606 m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
607 m_Value(A)))) &&
608 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
609 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
610 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
611 // For those bits in RHS that are known, we can propagate them to known
612 // bits in V shifted to the right by C.
613 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
614 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
615 // assume(~(v << c) = a)
616 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
617 m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
618 m_Value(A)))) &&
619 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
622 // For those bits in RHS that are known, we can propagate them inverted
623 // to known bits in V shifted to the right by C.
624 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
625 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
626 // assume(v >> c = a)
627 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
628 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
629 m_AShr(m_V,
630 m_ConstantInt(C))),
631 m_Value(A)))) &&
632 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
635 // For those bits in RHS that are known, we can propagate them to known
636 // bits in V shifted to the right by C.
637 KnownZero |= RHSKnownZero << C->getZExtValue();
638 KnownOne |= RHSKnownOne << C->getZExtValue();
639 // assume(~(v >> c) = a)
640 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
641 m_c_ICmp(Pred, m_Not(m_CombineOr(
642 m_LShr(m_V, m_ConstantInt(C)),
643 m_AShr(m_V, m_ConstantInt(C)))),
644 m_Value(A)))) &&
645 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
646 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
647 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
648 // For those bits in RHS that are known, we can propagate them inverted
649 // to known bits in V shifted to the right by C.
650 KnownZero |= RHSKnownOne << C->getZExtValue();
651 KnownOne |= RHSKnownZero << C->getZExtValue();
652 // assume(v >=_s c) where c is non-negative
653 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
654 m_ICmp(Pred, m_V, m_Value(A)))) &&
655 Pred == ICmpInst::ICMP_SGE &&
656 isValidAssumeForContext(I, Q, DL)) {
657 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
658 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
659
660 if (RHSKnownZero.isNegative()) {
661 // We know that the sign bit is zero.
662 KnownZero |= APInt::getSignBit(BitWidth);
663 }
664 // assume(v >_s c) where c is at least -1.
665 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
666 m_ICmp(Pred, m_V, m_Value(A)))) &&
667 Pred == ICmpInst::ICMP_SGT &&
668 isValidAssumeForContext(I, Q, DL)) {
669 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
670 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
671
672 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
673 // We know that the sign bit is zero.
674 KnownZero |= APInt::getSignBit(BitWidth);
675 }
676 // assume(v <=_s c) where c is negative
677 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
678 m_ICmp(Pred, m_V, m_Value(A)))) &&
679 Pred == ICmpInst::ICMP_SLE &&
680 isValidAssumeForContext(I, Q, DL)) {
681 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
682 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
683
684 if (RHSKnownOne.isNegative()) {
685 // We know that the sign bit is one.
686 KnownOne |= APInt::getSignBit(BitWidth);
687 }
688 // assume(v <_s c) where c is non-positive
689 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
690 m_ICmp(Pred, m_V, m_Value(A)))) &&
691 Pred == ICmpInst::ICMP_SLT &&
692 isValidAssumeForContext(I, Q, DL)) {
693 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
694 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
695
696 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
697 // We know that the sign bit is one.
698 KnownOne |= APInt::getSignBit(BitWidth);
699 }
700 // assume(v <=_u c)
701 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
702 m_ICmp(Pred, m_V, m_Value(A)))) &&
703 Pred == ICmpInst::ICMP_ULE &&
704 isValidAssumeForContext(I, Q, DL)) {
705 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
706 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
707
708 // Whatever high bits in c are zero are known to be zero.
709 KnownZero |=
710 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
711 // assume(v <_u c)
712 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
713 m_ICmp(Pred, m_V, m_Value(A)))) &&
714 Pred == ICmpInst::ICMP_ULT &&
715 isValidAssumeForContext(I, Q, DL)) {
716 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
717 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
718
719 // Whatever high bits in c are zero are known to be zero (if c is a power
720 // of 2, then one more).
721 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
722 KnownZero |=
723 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
724 else
725 KnownZero |=
726 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000727 }
728 }
729}
730
Jay Foada0653a32014-05-14 21:14:37 +0000731/// Determine which bits of V are known to be either zero or one and return
732/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000733///
Chris Lattner965c7692008-06-02 01:18:21 +0000734/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
735/// we cannot optimize based on the assumption that it is zero without changing
736/// it to be an explicit zero. If we don't change it to zero, other code could
737/// optimized based on the contradictory assumption that it is non-zero.
738/// Because instcombine aggressively folds operations with undef args anyway,
739/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000740///
741/// This function is defined on values with integer type, values with pointer
742/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000743/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000744/// same width as the vector element, and the bit is set only if it is true
745/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000746void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
747 const DataLayout *TD, unsigned Depth,
748 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000749 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000750 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000751 unsigned BitWidth = KnownZero.getBitWidth();
752
Nadav Rotem3924cb02011-12-05 06:29:09 +0000753 assert((V->getType()->isIntOrIntVectorTy() ||
754 V->getType()->getScalarType()->isPointerTy()) &&
755 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000756 assert((!TD ||
757 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000758 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000759 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000760 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000761 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000762 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000763
764 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
765 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000766 KnownOne = CI->getValue();
767 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000768 return;
769 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000770 // Null and aggregate-zero are all-zeros.
771 if (isa<ConstantPointerNull>(V) ||
772 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000773 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000774 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000775 return;
776 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000777 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000778 // each element. There is no real need to handle ConstantVector here, because
779 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000780 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
781 // We know that CDS must be a vector of integers. Take the intersection of
782 // each element.
783 KnownZero.setAllBits(); KnownOne.setAllBits();
784 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000785 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000786 Elt = CDS->getElementAsInteger(i);
787 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000788 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000789 }
790 return;
791 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000792
Chris Lattner965c7692008-06-02 01:18:21 +0000793 // The address of an aligned GlobalValue has trailing zeros.
794 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
795 unsigned Align = GV->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000796 if (Align == 0 && TD) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000797 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
798 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000799 if (ObjectType->isSized()) {
800 // If the object is defined in the current Module, we'll be giving
801 // it the preferred alignment. Otherwise, we have to assume that it
802 // may only have the minimum ABI alignment.
803 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
804 Align = TD->getPreferredAlignment(GVar);
805 else
806 Align = TD->getABITypeAlignment(ObjectType);
807 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000808 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000809 }
Chris Lattner965c7692008-06-02 01:18:21 +0000810 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000811 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000812 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000813 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000814 KnownZero.clearAllBits();
815 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000816 return;
817 }
Dan Gohman94262db2009-09-15 16:14:44 +0000818 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
819 // the bits of its aliasee.
820 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
821 if (GA->mayBeOverridden()) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000822 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman94262db2009-09-15 16:14:44 +0000823 } else {
Hal Finkel60db0582014-09-07 18:57:58 +0000824 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q);
Dan Gohman94262db2009-09-15 16:14:44 +0000825 }
826 return;
827 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000828
Chris Lattner83791ce2011-05-23 00:03:39 +0000829 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000830 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000831
Hal Finkelccc70902014-07-22 16:58:55 +0000832 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000833 // An sret parameter has at least the ABI alignment of the return type.
834 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
835 if (EltTy->isSized())
836 Align = TD->getABITypeAlignment(EltTy);
837 }
838
839 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000840 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Hal Finkel60db0582014-09-07 18:57:58 +0000841
842 // Don't give up yet... there might be an assumption that provides more
843 // information...
844 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000845 return;
846 }
Chris Lattner965c7692008-06-02 01:18:21 +0000847
Chris Lattner83791ce2011-05-23 00:03:39 +0000848 // Start out not knowing anything.
849 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000850
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000851 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +0000852 return; // Limit search depth.
853
Hal Finkel60db0582014-09-07 18:57:58 +0000854 // Check whether a nearby assume intrinsic can determine some known bits.
855 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
856
Dan Gohman80ca01c2009-07-17 20:47:02 +0000857 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000858 if (!I) return;
859
860 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000861 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000862 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000863 case Instruction::Load:
864 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000865 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000866 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000867 case Instruction::And: {
868 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000869 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
870 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000871
Chris Lattner965c7692008-06-02 01:18:21 +0000872 // Output known-1 bits are only known if set in both the LHS & RHS.
873 KnownOne &= KnownOne2;
874 // Output known-0 are known to be clear if zero in either the LHS | RHS.
875 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000876 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000877 }
878 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000879 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
880 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000881
Chris Lattner965c7692008-06-02 01:18:21 +0000882 // Output known-0 bits are only known if clear in both the LHS & RHS.
883 KnownZero &= KnownZero2;
884 // Output known-1 are known to be set if set in either the LHS | RHS.
885 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000886 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000887 }
888 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000889 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
890 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000891
Chris Lattner965c7692008-06-02 01:18:21 +0000892 // Output known-0 bits are known if clear or set in both the LHS & RHS.
893 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
894 // Output known-1 are known to be set if set in only one of the LHS, RHS.
895 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
896 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000897 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000898 }
899 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000900 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000901 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000902 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
903 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000904 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000905 }
906 case Instruction::UDiv: {
907 // For the purposes of computing leading zeros we can conservatively
908 // treat a udiv as a logical right shift by the power of 2 known to
909 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000911 unsigned LeadZ = KnownZero2.countLeadingOnes();
912
Jay Foad25a5e4c2010-12-01 08:53:58 +0000913 KnownOne2.clearAllBits();
914 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000915 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000916 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
917 if (RHSUnknownLeadingOnes != BitWidth)
918 LeadZ = std::min(BitWidth,
919 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
920
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000921 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000922 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000923 }
924 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000925 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
926 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000927
928 // Only known if known in both the LHS and RHS.
929 KnownOne &= KnownOne2;
930 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000931 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000932 case Instruction::FPTrunc:
933 case Instruction::FPExt:
934 case Instruction::FPToUI:
935 case Instruction::FPToSI:
936 case Instruction::SIToFP:
937 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000939 case Instruction::PtrToInt:
940 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000941 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000943 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000944 // FALL THROUGH and handle them the same as zext/trunc.
945 case Instruction::ZExt:
946 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000947 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000948
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000949 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000950 // Note that we handle pointer operands here because of inttoptr/ptrtoint
951 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000952 if(TD) {
953 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
954 } else {
955 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000956 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000957 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000958
959 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000960 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
961 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000962 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000963 KnownZero = KnownZero.zextOrTrunc(BitWidth);
964 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000965 // Any top bits are known to be zero.
966 if (BitWidth > SrcBitWidth)
967 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000968 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000969 }
970 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000971 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000972 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000973 // TODO: For now, not handling conversions like:
974 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000975 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000976 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000977 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000978 }
979 break;
980 }
981 case Instruction::SExt: {
982 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000983 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000984
Jay Foad583abbc2010-12-07 08:25:19 +0000985 KnownZero = KnownZero.trunc(SrcBitWidth);
986 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000987 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000988 KnownZero = KnownZero.zext(BitWidth);
989 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000990
991 // If the sign bit of the input is known set or clear, then we know the
992 // top bits of the result.
993 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
994 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
995 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
996 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000997 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000998 }
999 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001000 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001001 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1002 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001003 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001004 KnownZero <<= ShiftAmt;
1005 KnownOne <<= ShiftAmt;
1006 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Jay Foad5a29c362014-05-15 12:12:55 +00001007 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001008 }
1009 break;
1010 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001011 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001012 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1013 // Compute the new bits that are at the top now.
1014 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001015
Chris Lattner965c7692008-06-02 01:18:21 +00001016 // Unsigned shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001017 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001018 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1019 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1020 // high bits known zero.
1021 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Jay Foad5a29c362014-05-15 12:12:55 +00001022 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001023 }
1024 break;
1025 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001026 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001027 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1028 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001029 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001030
Chris Lattner965c7692008-06-02 01:18:21 +00001031 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001032 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001033 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1034 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001035
Chris Lattner965c7692008-06-02 01:18:21 +00001036 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1037 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1038 KnownZero |= HighBits;
1039 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1040 KnownOne |= HighBits;
Jay Foad5a29c362014-05-15 12:12:55 +00001041 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001042 }
1043 break;
1044 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001045 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001046 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001047 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001048 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001049 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001050 }
Chris Lattner965c7692008-06-02 01:18:21 +00001051 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001052 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001053 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001054 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001055 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001056 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001057 }
1058 case Instruction::SRem:
1059 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001060 APInt RA = Rem->getValue().abs();
1061 if (RA.isPowerOf2()) {
1062 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001063 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1064 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001065
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001066 // The low bits of the first operand are unchanged by the srem.
1067 KnownZero = KnownZero2 & LowBits;
1068 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001069
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001070 // If the first operand is non-negative or has all low bits zero, then
1071 // the upper bits are all zero.
1072 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1073 KnownZero |= ~LowBits;
1074
1075 // If the first operand is negative and not all low bits are zero, then
1076 // the upper bits are all one.
1077 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1078 KnownOne |= ~LowBits;
1079
Craig Topper1bef2c82012-12-22 19:15:35 +00001080 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001081 }
1082 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001083
1084 // The sign bit is the LHS's sign bit, except when the result of the
1085 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001086 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001087 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001088 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001089 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001090 // If it's known zero, our sign bit is also zero.
1091 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001092 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001093 }
1094
Chris Lattner965c7692008-06-02 01:18:21 +00001095 break;
1096 case Instruction::URem: {
1097 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1098 APInt RA = Rem->getValue();
1099 if (RA.isPowerOf2()) {
1100 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001101 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001102 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001103 KnownZero |= ~LowBits;
1104 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001105 break;
1106 }
1107 }
1108
1109 // Since the result is less than or equal to either operand, any leading
1110 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001111 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1112 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001113
Chris Lattner4612ae12009-01-20 18:22:57 +00001114 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001115 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001116 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001117 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 break;
1119 }
1120
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001121 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001122 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001123 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001124 if (Align == 0 && TD)
1125 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001126
Chris Lattner965c7692008-06-02 01:18:21 +00001127 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001128 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001129 break;
1130 }
1131 case Instruction::GetElementPtr: {
1132 // Analyze all of the subscripts of this getelementptr instruction
1133 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001134 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001135 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001136 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001137 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1138
1139 gep_type_iterator GTI = gep_type_begin(I);
1140 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1141 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001142 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001143 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001144 if (!TD) {
1145 TrailZ = 0;
1146 break;
1147 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001148
1149 // Handle case when index is vector zeroinitializer
1150 Constant *CIndex = cast<Constant>(Index);
1151 if (CIndex->isZeroValue())
1152 continue;
1153
1154 if (CIndex->getType()->isVectorTy())
1155 Index = CIndex->getSplatValue();
1156
Chris Lattner965c7692008-06-02 01:18:21 +00001157 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001158 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001159 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001160 TrailZ = std::min<unsigned>(TrailZ,
1161 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001162 } else {
1163 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001164 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001165 if (!IndexedTy->isSized()) {
1166 TrailZ = 0;
1167 break;
1168 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001169 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001170 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001171 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001172 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001173 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001174 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001175 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001176 }
1177 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001178
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001179 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001180 break;
1181 }
1182 case Instruction::PHI: {
1183 PHINode *P = cast<PHINode>(I);
1184 // Handle the case of a simple two-predecessor recurrence PHI.
1185 // There's a lot more that could theoretically be done here, but
1186 // this is sufficient to catch some interesting cases.
1187 if (P->getNumIncomingValues() == 2) {
1188 for (unsigned i = 0; i != 2; ++i) {
1189 Value *L = P->getIncomingValue(i);
1190 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001191 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 if (!LU)
1193 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001194 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001195 // Check for operations that have the property that if
1196 // both their operands have low zero bits, the result
1197 // will have low zero bits.
1198 if (Opcode == Instruction::Add ||
1199 Opcode == Instruction::Sub ||
1200 Opcode == Instruction::And ||
1201 Opcode == Instruction::Or ||
1202 Opcode == Instruction::Mul) {
1203 Value *LL = LU->getOperand(0);
1204 Value *LR = LU->getOperand(1);
1205 // Find a recurrence.
1206 if (LL == I)
1207 L = LR;
1208 else if (LR == I)
1209 L = LL;
1210 else
1211 break;
1212 // Ok, we have a PHI of the form L op= R. Check for low
1213 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001214 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001215
1216 // We need to take the minimum number of known bits
1217 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001218 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001219
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001220 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001221 std::min(KnownZero2.countTrailingOnes(),
1222 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001223 break;
1224 }
1225 }
1226 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001227
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001228 // Unreachable blocks may have zero-operand PHI nodes.
1229 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001230 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001231
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001232 // Otherwise take the unions of the known bit sets of the operands,
1233 // taking conservative care to avoid excessive recursion.
1234 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001235 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001236 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001237 break;
1238
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001239 KnownZero = APInt::getAllOnesValue(BitWidth);
1240 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001241 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1242 // Skip direct self references.
1243 if (P->getIncomingValue(i) == P) continue;
1244
1245 KnownZero2 = APInt(BitWidth, 0);
1246 KnownOne2 = APInt(BitWidth, 0);
1247 // Recurse, but cap the recursion to one level, because we don't
1248 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001249 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001250 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001251 KnownZero &= KnownZero2;
1252 KnownOne &= KnownOne2;
1253 // If all bits have been ruled out, there's no need to check
1254 // more operands.
1255 if (!KnownZero && !KnownOne)
1256 break;
1257 }
1258 }
Chris Lattner965c7692008-06-02 01:18:21 +00001259 break;
1260 }
1261 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001262 case Instruction::Invoke:
1263 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1264 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1265 // If a range metadata is attached to this IntrinsicInst, intersect the
1266 // explicit range specified by the metadata and the implicit range of
1267 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001268 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1269 switch (II->getIntrinsicID()) {
1270 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001271 case Intrinsic::ctlz:
1272 case Intrinsic::cttz: {
1273 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001274 // If this call is undefined for 0, the result will be less than 2^n.
1275 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1276 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001277 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001278 break;
1279 }
1280 case Intrinsic::ctpop: {
1281 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001282 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001283 break;
1284 }
Chad Rosierb3628842011-05-26 23:13:19 +00001285 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001286 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001287 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001288 }
1289 }
1290 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001291 case Instruction::ExtractValue:
1292 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1293 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1294 if (EVI->getNumIndices() != 1) break;
1295 if (EVI->getIndices()[0] == 0) {
1296 switch (II->getIntrinsicID()) {
1297 default: break;
1298 case Intrinsic::uadd_with_overflow:
1299 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001300 computeKnownBitsAddSub(true, II->getArgOperand(0),
1301 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001302 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001303 break;
1304 case Intrinsic::usub_with_overflow:
1305 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001306 computeKnownBitsAddSub(false, II->getArgOperand(0),
1307 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001308 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001309 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001310 case Intrinsic::umul_with_overflow:
1311 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001312 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1313 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001314 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001315 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001316 }
1317 }
1318 }
Chris Lattner965c7692008-06-02 01:18:21 +00001319 }
Jay Foad5a29c362014-05-15 12:12:55 +00001320
1321 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001322}
1323
Duncan Sandsd3951082011-01-25 09:38:29 +00001324/// ComputeSignBit - Determine whether the sign bit is known to be zero or
Jay Foada0653a32014-05-14 21:14:37 +00001325/// one. Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001326void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1327 const DataLayout *TD, unsigned Depth,
1328 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001329 unsigned BitWidth = getBitWidth(V->getType(), TD);
1330 if (!BitWidth) {
1331 KnownZero = false;
1332 KnownOne = false;
1333 return;
1334 }
1335 APInt ZeroBits(BitWidth, 0);
1336 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001337 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001338 KnownOne = OneBits[BitWidth - 1];
1339 KnownZero = ZeroBits[BitWidth - 1];
1340}
1341
Rafael Espindola319f74c2012-12-13 03:37:24 +00001342/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001343/// bit set when defined. For vectors return true if every element is known to
1344/// be a power of two when defined. Supports values with integer or pointer
1345/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001346bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1347 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001348 if (Constant *C = dyn_cast<Constant>(V)) {
1349 if (C->isNullValue())
1350 return OrZero;
1351 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1352 return CI->getValue().isPowerOf2();
1353 // TODO: Handle vector constants.
1354 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001355
1356 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1357 // it is shifted off the end then the result is undefined.
1358 if (match(V, m_Shl(m_One(), m_Value())))
1359 return true;
1360
1361 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1362 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001363 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001364 return true;
1365
1366 // The remaining tests are all recursive, so bail out if we hit the limit.
1367 if (Depth++ == MaxDepth)
1368 return false;
1369
Craig Topper9f008862014-04-15 04:59:12 +00001370 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001371 // A shift of a power of two is a power of two or zero.
1372 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1373 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001374 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001375
Duncan Sandsd3951082011-01-25 09:38:29 +00001376 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001377 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001378
1379 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001380 return
1381 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1382 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001383
Duncan Sandsba286d72011-10-26 20:55:21 +00001384 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1385 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001386 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1387 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001388 return true;
1389 // X & (-X) is always a power of two or zero.
1390 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1391 return true;
1392 return false;
1393 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001394
David Majnemerb7d54092013-07-30 21:01:36 +00001395 // Adding a power-of-two or zero to the same power-of-two or zero yields
1396 // either the original power-of-two, a larger power-of-two or zero.
1397 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1398 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1399 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1400 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1401 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001402 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001403 return true;
1404 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1405 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001406 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001407 return true;
1408
1409 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1410 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001411 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001412
1413 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001414 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001415 // If i8 V is a power of two or zero:
1416 // ZeroBits: 1 1 1 0 1 1 1 1
1417 // ~ZeroBits: 0 0 0 1 0 0 0 0
1418 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1419 // If OrZero isn't set, we cannot give back a zero result.
1420 // Make sure either the LHS or RHS has a bit set.
1421 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1422 return true;
1423 }
1424 }
David Majnemerbeab5672013-05-18 19:30:37 +00001425
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001426 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001427 // is a power of two only if the first operand is a power of two and not
1428 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001429 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1430 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001431 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1432 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001433 }
1434
Duncan Sandsd3951082011-01-25 09:38:29 +00001435 return false;
1436}
1437
Chandler Carruth80d3e562012-12-07 02:08:58 +00001438/// \brief Test whether a GEP's result is known to be non-null.
1439///
1440/// Uses properties inherent in a GEP to try to determine whether it is known
1441/// to be non-null.
1442///
1443/// Currently this routine does not support vector GEPs.
1444static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001445 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001446 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1447 return false;
1448
1449 // FIXME: Support vector-GEPs.
1450 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1451
1452 // If the base pointer is non-null, we cannot walk to a null address with an
1453 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001454 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001455 return true;
1456
1457 // Past this, if we don't have DataLayout, we can't do much.
1458 if (!DL)
1459 return false;
1460
1461 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1462 // If so, then the GEP cannot produce a null pointer, as doing so would
1463 // inherently violate the inbounds contract within address space zero.
1464 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1465 GTI != GTE; ++GTI) {
1466 // Struct types are easy -- they must always be indexed by a constant.
1467 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1468 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1469 unsigned ElementIdx = OpC->getZExtValue();
1470 const StructLayout *SL = DL->getStructLayout(STy);
1471 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1472 if (ElementOffset > 0)
1473 return true;
1474 continue;
1475 }
1476
1477 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1478 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1479 continue;
1480
1481 // Fast path the constant operand case both for efficiency and so we don't
1482 // increment Depth when just zipping down an all-constant GEP.
1483 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1484 if (!OpC->isZero())
1485 return true;
1486 continue;
1487 }
1488
1489 // We post-increment Depth here because while isKnownNonZero increments it
1490 // as well, when we pop back up that increment won't persist. We don't want
1491 // to recurse 10k times just because we have 10k GEP operands. We don't
1492 // bail completely out because we want to handle constant GEPs regardless
1493 // of depth.
1494 if (Depth++ >= MaxDepth)
1495 continue;
1496
Hal Finkel60db0582014-09-07 18:57:58 +00001497 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001498 return true;
1499 }
1500
1501 return false;
1502}
1503
Duncan Sandsd3951082011-01-25 09:38:29 +00001504/// isKnownNonZero - Return true if the given value is known to be non-zero
1505/// when defined. For vectors return true if every element is known to be
1506/// non-zero when defined. Supports values with integer or pointer type and
1507/// vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001508bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1509 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001510 if (Constant *C = dyn_cast<Constant>(V)) {
1511 if (C->isNullValue())
1512 return false;
1513 if (isa<ConstantInt>(C))
1514 // Must be non-zero due to null test above.
1515 return true;
1516 // TODO: Handle vectors
1517 return false;
1518 }
1519
1520 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001521 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001522 return false;
1523
Chandler Carruth80d3e562012-12-07 02:08:58 +00001524 // Check for pointer simplifications.
1525 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001526 if (isKnownNonNull(V))
1527 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001528 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001529 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001530 return true;
1531 }
1532
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001533 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001534
1535 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001536 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001537 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001538 return isKnownNonZero(X, TD, Depth, Q) ||
1539 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001540
1541 // ext X != 0 if X != 0.
1542 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001543 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001544
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001545 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001546 // if the lowest bit is shifted off the end.
1547 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001548 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001549 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001550 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001551 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001552
Duncan Sandsd3951082011-01-25 09:38:29 +00001553 APInt KnownZero(BitWidth, 0);
1554 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001555 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001556 if (KnownOne[0])
1557 return true;
1558 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001559 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001560 // defined if the sign bit is shifted off the end.
1561 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001562 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001563 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001564 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001565 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001566
Duncan Sandsd3951082011-01-25 09:38:29 +00001567 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001568 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001569 if (XKnownNegative)
1570 return true;
1571 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001572 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001573 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001574 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001575 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001576 // X + Y.
1577 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1578 bool XKnownNonNegative, XKnownNegative;
1579 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001580 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1581 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001582
1583 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001584 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001585 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001586 if (isKnownNonZero(X, TD, Depth, Q) ||
1587 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001588 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001589
1590 // If X and Y are both negative (as signed values) then their sum is not
1591 // zero unless both X and Y equal INT_MIN.
1592 if (BitWidth && XKnownNegative && YKnownNegative) {
1593 APInt KnownZero(BitWidth, 0);
1594 APInt KnownOne(BitWidth, 0);
1595 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1596 // The sign bit of X is set. If some other bit is set then X is not equal
1597 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001598 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001599 if ((KnownOne & Mask) != 0)
1600 return true;
1601 // The sign bit of Y is set. If some other bit is set then Y is not equal
1602 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001603 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001604 if ((KnownOne & Mask) != 0)
1605 return true;
1606 }
1607
1608 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001609 if (XKnownNonNegative &&
1610 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001611 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001612 if (YKnownNonNegative &&
1613 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001614 return true;
1615 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001616 // X * Y.
1617 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1618 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1619 // If X and Y are non-zero then so is X * Y as long as the multiplication
1620 // does not overflow.
1621 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001622 isKnownNonZero(X, TD, Depth, Q) &&
1623 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001624 return true;
1625 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001626 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1627 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001628 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1629 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001630 return true;
1631 }
1632
1633 if (!BitWidth) return false;
1634 APInt KnownZero(BitWidth, 0);
1635 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001636 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001637 return KnownOne != 0;
1638}
1639
Chris Lattner965c7692008-06-02 01:18:21 +00001640/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1641/// this predicate to simplify operations downstream. Mask is known to be zero
1642/// for bits that V cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001643///
1644/// This function is defined on values with integer type, values with pointer
1645/// type (but only if TD is non-null), and vectors of integers. In the case
1646/// where V is a vector, the mask, known zero, and known one values are the
1647/// same width as the vector element, and the bit is set only if it is true
1648/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001649bool MaskedValueIsZero(Value *V, const APInt &Mask,
1650 const DataLayout *TD, unsigned Depth,
1651 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001652 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001653 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001654 return (KnownZero & Mask) == Mask;
1655}
1656
1657
1658
1659/// ComputeNumSignBits - Return the number of times the sign bit of the
1660/// register is replicated into the other bits. We know that at least 1 bit
1661/// is always equal to the sign bit (itself), but other cases can give us
1662/// information. For example, immediately after an "ashr X, 2", we know that
1663/// the top 3 bits are all equal to each other, so we return 3.
1664///
1665/// 'Op' must have a scalar integer type.
1666///
Hal Finkel60db0582014-09-07 18:57:58 +00001667unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1668 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001669 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001670 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001671 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001672 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001673 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1674 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001675 unsigned Tmp, Tmp2;
1676 unsigned FirstAnswer = 1;
1677
Jay Foada0653a32014-05-14 21:14:37 +00001678 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001679 // below.
1680
Chris Lattner965c7692008-06-02 01:18:21 +00001681 if (Depth == 6)
1682 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001683
Dan Gohman80ca01c2009-07-17 20:47:02 +00001684 Operator *U = dyn_cast<Operator>(V);
1685 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001686 default: break;
1687 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001688 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001689 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001690
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001691 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001692 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001693 // ashr X, C -> adds C sign bits. Vectors too.
1694 const APInt *ShAmt;
1695 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1696 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001697 if (Tmp > TyBits) Tmp = TyBits;
1698 }
1699 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001700 }
1701 case Instruction::Shl: {
1702 const APInt *ShAmt;
1703 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001704 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001705 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001706 Tmp2 = ShAmt->getZExtValue();
1707 if (Tmp2 >= TyBits || // Bad shift.
1708 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1709 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001710 }
1711 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001712 }
Chris Lattner965c7692008-06-02 01:18:21 +00001713 case Instruction::And:
1714 case Instruction::Or:
1715 case Instruction::Xor: // NOT is handled here.
1716 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001717 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001718 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001719 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001720 FirstAnswer = std::min(Tmp, Tmp2);
1721 // We computed what we know about the sign bits as our first
1722 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001723 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001724 }
1725 break;
1726
1727 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001728 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001729 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001730 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001731 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001732
Chris Lattner965c7692008-06-02 01:18:21 +00001733 case Instruction::Add:
1734 // Add can have at most one carry bit. Thus we know that the output
1735 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001736 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001737 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001738
Chris Lattner965c7692008-06-02 01:18:21 +00001739 // Special case decrementing a value (ADD X, -1):
Dan Gohman4f356bb2009-02-24 02:00:40 +00001740 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001741 if (CRHS->isAllOnesValue()) {
1742 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001743 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001744
Chris Lattner965c7692008-06-02 01:18:21 +00001745 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1746 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001747 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001748 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001749
Chris Lattner965c7692008-06-02 01:18:21 +00001750 // If we are subtracting one from a positive number, there is no carry
1751 // out of the result.
1752 if (KnownZero.isNegative())
1753 return Tmp;
1754 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001755
Hal Finkel60db0582014-09-07 18:57:58 +00001756 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001757 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001758 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001759
Chris Lattner965c7692008-06-02 01:18:21 +00001760 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001761 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001762 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001763
Chris Lattner965c7692008-06-02 01:18:21 +00001764 // Handle NEG.
1765 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1766 if (CLHS->isNullValue()) {
1767 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001768 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001769 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1770 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001771 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001772 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001773
Chris Lattner965c7692008-06-02 01:18:21 +00001774 // If the input is known to be positive (the sign bit is known clear),
1775 // the output of the NEG has the same number of sign bits as the input.
1776 if (KnownZero.isNegative())
1777 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001778
Chris Lattner965c7692008-06-02 01:18:21 +00001779 // Otherwise, we treat this like a SUB.
1780 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001781
Chris Lattner965c7692008-06-02 01:18:21 +00001782 // Sub can have at most one carry bit. Thus we know that the output
1783 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001784 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001785 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001786 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001787
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001788 case Instruction::PHI: {
1789 PHINode *PN = cast<PHINode>(U);
1790 // Don't analyze large in-degree PHIs.
1791 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001792
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001793 // Take the minimum of all incoming values. This can't infinitely loop
1794 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001795 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001796 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1797 if (Tmp == 1) return Tmp;
1798 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001799 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1800 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001801 }
1802 return Tmp;
1803 }
1804
Chris Lattner965c7692008-06-02 01:18:21 +00001805 case Instruction::Trunc:
1806 // FIXME: it's tricky to do anything useful for this, but it is an important
1807 // case for targets like X86.
1808 break;
1809 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001810
Chris Lattner965c7692008-06-02 01:18:21 +00001811 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1812 // use this information.
1813 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001814 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001815 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001816
Chris Lattner965c7692008-06-02 01:18:21 +00001817 if (KnownZero.isNegative()) { // sign bit is 0
1818 Mask = KnownZero;
1819 } else if (KnownOne.isNegative()) { // sign bit is 1;
1820 Mask = KnownOne;
1821 } else {
1822 // Nothing known.
1823 return FirstAnswer;
1824 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001825
Chris Lattner965c7692008-06-02 01:18:21 +00001826 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1827 // the number of identical bits in the top of the input value.
1828 Mask = ~Mask;
1829 Mask <<= Mask.getBitWidth()-TyBits;
1830 // Return # leading zeros. We use 'min' here in case Val was zero before
1831 // shifting. We don't want to return '64' as for an i32 "0".
1832 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1833}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001834
Victor Hernandez47444882009-11-10 08:28:35 +00001835/// ComputeMultiple - This function computes the integer multiple of Base that
1836/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman6a976bb2009-11-18 00:58:27 +00001837/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001838/// through SExt instructions only if LookThroughSExt is true.
1839bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001840 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001841 const unsigned MaxDepth = 6;
1842
Dan Gohman6a976bb2009-11-18 00:58:27 +00001843 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001844 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001845 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001846
Chris Lattner229907c2011-07-18 04:54:35 +00001847 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001848
Dan Gohman6a976bb2009-11-18 00:58:27 +00001849 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001850
1851 if (Base == 0)
1852 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001853
Victor Hernandez47444882009-11-10 08:28:35 +00001854 if (Base == 1) {
1855 Multiple = V;
1856 return true;
1857 }
1858
1859 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1860 Constant *BaseVal = ConstantInt::get(T, Base);
1861 if (CO && CO == BaseVal) {
1862 // Multiple is 1.
1863 Multiple = ConstantInt::get(T, 1);
1864 return true;
1865 }
1866
1867 if (CI && CI->getZExtValue() % Base == 0) {
1868 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001869 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001870 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001871
Victor Hernandez47444882009-11-10 08:28:35 +00001872 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001873
Victor Hernandez47444882009-11-10 08:28:35 +00001874 Operator *I = dyn_cast<Operator>(V);
1875 if (!I) return false;
1876
1877 switch (I->getOpcode()) {
1878 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001879 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001880 if (!LookThroughSExt) return false;
1881 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001882 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001883 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1884 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001885 case Instruction::Shl:
1886 case Instruction::Mul: {
1887 Value *Op0 = I->getOperand(0);
1888 Value *Op1 = I->getOperand(1);
1889
1890 if (I->getOpcode() == Instruction::Shl) {
1891 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1892 if (!Op1CI) return false;
1893 // Turn Op0 << Op1 into Op0 * 2^Op1
1894 APInt Op1Int = Op1CI->getValue();
1895 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001896 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001897 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001898 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001899 }
1900
Craig Topper9f008862014-04-15 04:59:12 +00001901 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001902 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1903 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1904 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001905 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001906 MulC->getType()->getPrimitiveSizeInBits())
1907 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001908 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001909 MulC->getType()->getPrimitiveSizeInBits())
1910 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001911
Chris Lattner72d283c2010-09-05 17:20:46 +00001912 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1913 Multiple = ConstantExpr::getMul(MulC, Op1C);
1914 return true;
1915 }
Victor Hernandez47444882009-11-10 08:28:35 +00001916
1917 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1918 if (Mul0CI->getValue() == 1) {
1919 // V == Base * Op1, so return Op1
1920 Multiple = Op1;
1921 return true;
1922 }
1923 }
1924
Craig Topper9f008862014-04-15 04:59:12 +00001925 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001926 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1927 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1928 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001929 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001930 MulC->getType()->getPrimitiveSizeInBits())
1931 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001932 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001933 MulC->getType()->getPrimitiveSizeInBits())
1934 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001935
Chris Lattner72d283c2010-09-05 17:20:46 +00001936 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1937 Multiple = ConstantExpr::getMul(MulC, Op0C);
1938 return true;
1939 }
Victor Hernandez47444882009-11-10 08:28:35 +00001940
1941 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1942 if (Mul1CI->getValue() == 1) {
1943 // V == Base * Op0, so return Op0
1944 Multiple = Op0;
1945 return true;
1946 }
1947 }
Victor Hernandez47444882009-11-10 08:28:35 +00001948 }
1949 }
1950
1951 // We could not determine if V is a multiple of Base.
1952 return false;
1953}
1954
Craig Topper1bef2c82012-12-22 19:15:35 +00001955/// CannotBeNegativeZero - Return true if we can prove that the specified FP
Chris Lattnera12a6de2008-06-02 01:29:46 +00001956/// value is never equal to -0.0.
1957///
1958/// NOTE: this function will need to be revisited when we support non-default
1959/// rounding modes!
1960///
1961bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1962 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1963 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001964
Chris Lattnera12a6de2008-06-02 01:29:46 +00001965 if (Depth == 6)
1966 return 1; // Limit search depth.
1967
Dan Gohman80ca01c2009-07-17 20:47:02 +00001968 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00001969 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00001970
1971 // Check if the nsz fast-math flag is set
1972 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1973 if (FPO->hasNoSignedZeros())
1974 return true;
1975
Chris Lattnera12a6de2008-06-02 01:29:46 +00001976 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00001977 if (I->getOpcode() == Instruction::FAdd)
1978 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1979 if (CFP->isNullValue())
1980 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001981
Chris Lattnera12a6de2008-06-02 01:29:46 +00001982 // sitofp and uitofp turn into +0.0 for zero.
1983 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1984 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001985
Chris Lattnera12a6de2008-06-02 01:29:46 +00001986 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1987 // sqrt(-0.0) = -0.0, no other negative results are possible.
1988 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00001989 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001990
Chris Lattnera12a6de2008-06-02 01:29:46 +00001991 if (const CallInst *CI = dyn_cast<CallInst>(I))
1992 if (const Function *F = CI->getCalledFunction()) {
1993 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00001994 // abs(x) != -0.0
1995 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00001996 // fabs[lf](x) != -0.0
1997 if (F->getName() == "fabs") return true;
1998 if (F->getName() == "fabsf") return true;
1999 if (F->getName() == "fabsl") return true;
2000 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2001 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002002 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002003 }
2004 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002005
Chris Lattnera12a6de2008-06-02 01:29:46 +00002006 return false;
2007}
2008
Chris Lattner9cb10352010-12-26 20:15:01 +00002009/// isBytewiseValue - If the specified value can be set by repeating the same
2010/// byte in memory, return the i8 value that it is represented with. This is
2011/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2012/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2013/// byte store (e.g. i16 0x1234), return null.
2014Value *llvm::isBytewiseValue(Value *V) {
2015 // All byte-wide stores are splatable, even of arbitrary variables.
2016 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002017
2018 // Handle 'null' ConstantArrayZero etc.
2019 if (Constant *C = dyn_cast<Constant>(V))
2020 if (C->isNullValue())
2021 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002022
Chris Lattner9cb10352010-12-26 20:15:01 +00002023 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002024 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002025 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2026 if (CFP->getType()->isFloatTy())
2027 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2028 if (CFP->getType()->isDoubleTy())
2029 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2030 // Don't handle long double formats, which have strange constraints.
2031 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002032
2033 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00002034 // multiple of 8 bits.
2035 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2036 unsigned Width = CI->getBitWidth();
2037 if (isPowerOf2_32(Width) && Width > 8) {
2038 // We can handle this value if the recursive binary decomposition is the
2039 // same at all levels.
2040 APInt Val = CI->getValue();
2041 APInt Val2;
2042 while (Val.getBitWidth() != 8) {
2043 unsigned NextWidth = Val.getBitWidth()/2;
2044 Val2 = Val.lshr(NextWidth);
2045 Val2 = Val2.trunc(Val.getBitWidth()/2);
2046 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002047
Chris Lattner9cb10352010-12-26 20:15:01 +00002048 // If the top/bottom halves aren't the same, reject it.
2049 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00002050 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002051 }
2052 return ConstantInt::get(V->getContext(), Val);
2053 }
2054 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002055
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002056 // A ConstantDataArray/Vector is splatable if all its members are equal and
2057 // also splatable.
2058 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2059 Value *Elt = CA->getElementAsConstant(0);
2060 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002061 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002062 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002063
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002064 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2065 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002066 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002067
Chris Lattner9cb10352010-12-26 20:15:01 +00002068 return Val;
2069 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002070
Chris Lattner9cb10352010-12-26 20:15:01 +00002071 // Conceptually, we could handle things like:
2072 // %a = zext i8 %X to i16
2073 // %b = shl i16 %a, 8
2074 // %c = or i16 %a, %b
2075 // but until there is an example that actually needs this, it doesn't seem
2076 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002077 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002078}
2079
2080
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002081// This is the recursive version of BuildSubAggregate. It takes a few different
2082// arguments. Idxs is the index within the nested struct From that we are
2083// looking at now (which is of type IndexedType). IdxSkip is the number of
2084// indices from Idxs that should be left out when inserting into the resulting
2085// struct. To is the result struct built so far, new insertvalue instructions
2086// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002087static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002088 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002089 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002090 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002091 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002092 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002093 // Save the original To argument so we can modify it
2094 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002095 // General case, the type indexed by Idxs is a struct
2096 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2097 // Process each struct element recursively
2098 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002099 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002100 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002101 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002102 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002103 if (!To) {
2104 // Couldn't find any inserted value for this index? Cleanup
2105 while (PrevTo != OrigTo) {
2106 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2107 PrevTo = Del->getAggregateOperand();
2108 Del->eraseFromParent();
2109 }
2110 // Stop processing elements
2111 break;
2112 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002113 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002114 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002115 if (To)
2116 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002117 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002118 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2119 // the struct's elements had a value that was inserted directly. In the latter
2120 // case, perhaps we can't determine each of the subelements individually, but
2121 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002122
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002123 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002124 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002125
2126 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002127 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002128
2129 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002130 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002131 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002132}
2133
2134// This helper takes a nested struct and extracts a part of it (which is again a
2135// struct) into a new value. For example, given the struct:
2136// { a, { b, { c, d }, e } }
2137// and the indices "1, 1" this returns
2138// { c, d }.
2139//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002140// It does this by inserting an insertvalue for each element in the resulting
2141// struct, as opposed to just inserting a single struct. This will only work if
2142// each of the elements of the substruct are known (ie, inserted into From by an
2143// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002144//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002145// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002146static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002147 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002148 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002149 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002150 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002151 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002152 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002153 unsigned IdxSkip = Idxs.size();
2154
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002155 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002156}
2157
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002158/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
2159/// the scalar value indexed is already around as a register, for example if it
2160/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002161///
2162/// If InsertBefore is not null, this function will duplicate (modified)
2163/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002164Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2165 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002166 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002167 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002168 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002169 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002170 // We have indices, so V should have an indexable type.
2171 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2172 "Not looking at a struct or array?");
2173 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2174 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002175
Chris Lattner67058832012-01-25 06:48:06 +00002176 if (Constant *C = dyn_cast<Constant>(V)) {
2177 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002178 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002179 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2180 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002181
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002182 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002183 // Loop the indices for the insertvalue instruction in parallel with the
2184 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002185 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002186 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2187 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002188 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002189 // We can't handle this without inserting insertvalues
2190 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002191 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002192
2193 // The requested index identifies a part of a nested aggregate. Handle
2194 // this specially. For example,
2195 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2196 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2197 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2198 // This can be changed into
2199 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2200 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2201 // which allows the unused 0,0 element from the nested struct to be
2202 // removed.
2203 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2204 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002205 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002206
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002207 // This insert value inserts something else than what we are looking for.
2208 // See if the (aggregrate) value inserted into has the value we are
2209 // looking for, then.
2210 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002211 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002212 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002213 }
2214 // If we end up here, the indices of the insertvalue match with those
2215 // requested (though possibly only partially). Now we recursively look at
2216 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002217 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002218 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002219 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002220 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002221
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002222 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002223 // If we're extracting a value from an aggregrate that was extracted from
2224 // something else, we can extract from that something else directly instead.
2225 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002226
2227 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002228 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002229 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002230 SmallVector<unsigned, 5> Idxs;
2231 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002232 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002233 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002234
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002235 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002236 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002237
Craig Topper1bef2c82012-12-22 19:15:35 +00002238 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002239 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002240
Jay Foad57aa6362011-07-13 10:26:04 +00002241 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002242 }
2243 // Otherwise, we don't know (such as, extracting from a function return value
2244 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002245 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002246}
Evan Chengda3db112008-06-30 07:31:25 +00002247
Chris Lattnere28618d2010-11-30 22:25:26 +00002248/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
2249/// it can be expressed as a base pointer plus a constant offset. Return the
2250/// base and offset to the caller.
2251Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002252 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002253 // Without DataLayout, conservatively assume 64-bit offsets, which is
2254 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002255 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002256 APInt ByteOffset(BitWidth, 0);
2257 while (1) {
2258 if (Ptr->getType()->isVectorTy())
2259 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002260
Nuno Lopes368c4d02012-12-31 20:48:35 +00002261 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002262 if (DL) {
2263 APInt GEPOffset(BitWidth, 0);
2264 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2265 break;
2266
2267 ByteOffset += GEPOffset;
2268 }
2269
Nuno Lopes368c4d02012-12-31 20:48:35 +00002270 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002271 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2272 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002273 Ptr = cast<Operator>(Ptr)->getOperand(0);
2274 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2275 if (GA->mayBeOverridden())
2276 break;
2277 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002278 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002279 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002280 }
2281 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002282 Offset = ByteOffset.getSExtValue();
2283 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002284}
2285
2286
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002287/// getConstantStringInfo - This function computes the length of a
Evan Chengda3db112008-06-30 07:31:25 +00002288/// null-terminated C string pointed to by V. If successful, it returns true
2289/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002290bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2291 uint64_t Offset, bool TrimAtNul) {
2292 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002293
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002294 // Look through bitcast instructions and geps.
2295 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002296
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002297 // If the value is a GEP instructionor constant expression, treat it as an
2298 // offset.
2299 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002300 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002301 if (GEP->getNumOperands() != 3)
2302 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002303
Evan Chengda3db112008-06-30 07:31:25 +00002304 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002305 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2306 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002307 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002308 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002309
Evan Chengda3db112008-06-30 07:31:25 +00002310 // Check to make sure that the first operand of the GEP is an integer and
2311 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002312 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002313 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002314 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002315
Evan Chengda3db112008-06-30 07:31:25 +00002316 // If the second index isn't a ConstantInt, then this is a variable index
2317 // into the array. If this occurs, we can't say anything meaningful about
2318 // the string.
2319 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002320 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002321 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002322 else
2323 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002324 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002325 }
Nick Lewycky46209882011-10-20 00:34:35 +00002326
Evan Chengda3db112008-06-30 07:31:25 +00002327 // The GEP instruction, constant or instruction, must reference a global
2328 // variable that is a constant and is initialized. The referenced constant
2329 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002330 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002331 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002332 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002333
Nick Lewycky46209882011-10-20 00:34:35 +00002334 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002335 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002336 // This is a degenerate case. The initializer is constant zero so the
2337 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002338 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002339 return true;
2340 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002341
Evan Chengda3db112008-06-30 07:31:25 +00002342 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002343 const ConstantDataArray *Array =
2344 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002345 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002346 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002347
Evan Chengda3db112008-06-30 07:31:25 +00002348 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002349 uint64_t NumElts = Array->getType()->getArrayNumElements();
2350
2351 // Start out with the entire array in the StringRef.
2352 Str = Array->getAsString();
2353
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002354 if (Offset > NumElts)
2355 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002356
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002357 // Skip over 'offset' bytes.
2358 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002359
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002360 if (TrimAtNul) {
2361 // Trim off the \0 and anything after it. If the array is not nul
2362 // terminated, we just return the whole end of string. The client may know
2363 // some other way that the string is length-bound.
2364 Str = Str.substr(0, Str.find('\0'));
2365 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002366 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002367}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002368
2369// These next two are very similar to the above, but also look through PHI
2370// nodes.
2371// TODO: See if we can integrate these two together.
2372
2373/// GetStringLengthH - If we can compute the length of the string pointed to by
2374/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002375static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002376 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002377 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002378
2379 // If this is a PHI node, there are two cases: either we have already seen it
2380 // or we haven't.
2381 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2382 if (!PHIs.insert(PN))
2383 return ~0ULL; // already in the set.
2384
2385 // If it was new, see if all the input strings are the same length.
2386 uint64_t LenSoFar = ~0ULL;
2387 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2388 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2389 if (Len == 0) return 0; // Unknown length -> unknown.
2390
2391 if (Len == ~0ULL) continue;
2392
2393 if (Len != LenSoFar && LenSoFar != ~0ULL)
2394 return 0; // Disagree -> unknown.
2395 LenSoFar = Len;
2396 }
2397
2398 // Success, all agree.
2399 return LenSoFar;
2400 }
2401
2402 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2403 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2404 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2405 if (Len1 == 0) return 0;
2406 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2407 if (Len2 == 0) return 0;
2408 if (Len1 == ~0ULL) return Len2;
2409 if (Len2 == ~0ULL) return Len1;
2410 if (Len1 != Len2) return 0;
2411 return Len1;
2412 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002413
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002414 // Otherwise, see if we can read the string.
2415 StringRef StrData;
2416 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002417 return 0;
2418
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002419 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002420}
2421
2422/// GetStringLength - If we can compute the length of the string pointed to by
2423/// the specified pointer, return 'len+1'. If we can't, return 0.
2424uint64_t llvm::GetStringLength(Value *V) {
2425 if (!V->getType()->isPointerTy()) return 0;
2426
2427 SmallPtrSet<PHINode*, 32> PHIs;
2428 uint64_t Len = GetStringLengthH(V, PHIs);
2429 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2430 // an empty string as a length.
2431 return Len == ~0ULL ? 1 : Len;
2432}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002433
Dan Gohman0f124e12011-01-24 18:53:32 +00002434Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002435llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002436 if (!V->getType()->isPointerTy())
2437 return V;
2438 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2439 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2440 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002441 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2442 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002443 V = cast<Operator>(V)->getOperand(0);
2444 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2445 if (GA->mayBeOverridden())
2446 return V;
2447 V = GA->getAliasee();
2448 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002449 // See if InstructionSimplify knows any relevant tricks.
2450 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00002451 // TODO: Acquire a DominatorTree and AssumptionTracker and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002452 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002453 V = Simplified;
2454 continue;
2455 }
2456
Dan Gohmana4fcd242010-12-15 20:02:24 +00002457 return V;
2458 }
2459 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2460 }
2461 return V;
2462}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002463
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002464void
2465llvm::GetUnderlyingObjects(Value *V,
2466 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002467 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002468 unsigned MaxLookup) {
2469 SmallPtrSet<Value *, 4> Visited;
2470 SmallVector<Value *, 4> Worklist;
2471 Worklist.push_back(V);
2472 do {
2473 Value *P = Worklist.pop_back_val();
2474 P = GetUnderlyingObject(P, TD, MaxLookup);
2475
2476 if (!Visited.insert(P))
2477 continue;
2478
2479 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2480 Worklist.push_back(SI->getTrueValue());
2481 Worklist.push_back(SI->getFalseValue());
2482 continue;
2483 }
2484
2485 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2486 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2487 Worklist.push_back(PN->getIncomingValue(i));
2488 continue;
2489 }
2490
2491 Objects.push_back(P);
2492 } while (!Worklist.empty());
2493}
2494
Nick Lewycky3e334a42011-06-27 04:20:45 +00002495/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
2496/// are lifetime markers.
2497///
2498bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002499 for (const User *U : V->users()) {
2500 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002501 if (!II) return false;
2502
2503 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2504 II->getIntrinsicID() != Intrinsic::lifetime_end)
2505 return false;
2506 }
2507 return true;
2508}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002509
Dan Gohman7ac046a2012-01-04 23:01:09 +00002510bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002511 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002512 const Operator *Inst = dyn_cast<Operator>(V);
2513 if (!Inst)
2514 return false;
2515
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002516 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2517 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2518 if (C->canTrap())
2519 return false;
2520
2521 switch (Inst->getOpcode()) {
2522 default:
2523 return true;
2524 case Instruction::UDiv:
2525 case Instruction::URem:
Sanjay Patel784a5a42014-07-06 23:24:53 +00002526 // x / y is undefined if y == 0, but calculations like x / 3 are safe.
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002527 return isKnownNonZero(Inst->getOperand(1), TD);
2528 case Instruction::SDiv:
2529 case Instruction::SRem: {
2530 Value *Op = Inst->getOperand(1);
2531 // x / y is undefined if y == 0
2532 if (!isKnownNonZero(Op, TD))
2533 return false;
2534 // x / y might be undefined if y == -1
2535 unsigned BitWidth = getBitWidth(Op->getType(), TD);
2536 if (BitWidth == 0)
2537 return false;
2538 APInt KnownZero(BitWidth, 0);
2539 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00002540 computeKnownBits(Op, KnownZero, KnownOne, TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002541 return !!KnownZero;
2542 }
2543 case Instruction::Load: {
2544 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002545 if (!LI->isUnordered() ||
2546 // Speculative load may create a race that did not exist in the source.
2547 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002548 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002549 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002550 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002551 case Instruction::Call: {
2552 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2553 switch (II->getIntrinsicID()) {
Sanjay Patel784a5a42014-07-06 23:24:53 +00002554 // These synthetic intrinsics have no side-effects and just mark
Chandler Carruth28192c92012-04-07 19:22:18 +00002555 // information about their operands.
2556 // FIXME: There are other no-op synthetic instructions that potentially
2557 // should be considered at least *safe* to speculate...
2558 case Intrinsic::dbg_declare:
2559 case Intrinsic::dbg_value:
2560 return true;
2561
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002562 case Intrinsic::bswap:
2563 case Intrinsic::ctlz:
2564 case Intrinsic::ctpop:
2565 case Intrinsic::cttz:
2566 case Intrinsic::objectsize:
2567 case Intrinsic::sadd_with_overflow:
2568 case Intrinsic::smul_with_overflow:
2569 case Intrinsic::ssub_with_overflow:
2570 case Intrinsic::uadd_with_overflow:
2571 case Intrinsic::umul_with_overflow:
2572 case Intrinsic::usub_with_overflow:
2573 return true;
Matt Arsenaultee364ee2014-01-31 00:09:00 +00002574 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2575 // errno like libm sqrt would.
2576 case Intrinsic::sqrt:
2577 case Intrinsic::fma:
2578 case Intrinsic::fmuladd:
Matt Arsenault85cbc7e2014-08-29 16:01:17 +00002579 case Intrinsic::fabs:
Matt Arsenaultee364ee2014-01-31 00:09:00 +00002580 return true;
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002581 // TODO: some fp intrinsics are marked as having the same error handling
2582 // as libm. They're safe to speculate when they won't error.
2583 // TODO: are convert_{from,to}_fp16 safe?
2584 // TODO: can we list target-specific intrinsics here?
2585 default: break;
2586 }
2587 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002588 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002589 // side-effects, even if marked readnone nounwind.
2590 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002591 case Instruction::VAArg:
2592 case Instruction::Alloca:
2593 case Instruction::Invoke:
2594 case Instruction::PHI:
2595 case Instruction::Store:
2596 case Instruction::Ret:
2597 case Instruction::Br:
2598 case Instruction::IndirectBr:
2599 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002600 case Instruction::Unreachable:
2601 case Instruction::Fence:
2602 case Instruction::LandingPad:
2603 case Instruction::AtomicRMW:
2604 case Instruction::AtomicCmpXchg:
2605 case Instruction::Resume:
2606 return false; // Misc instructions which have effects
2607 }
2608}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002609
2610/// isKnownNonNull - Return true if we know that the specified value is never
2611/// null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002612bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002613 // Alloca never returns null, malloc might.
2614 if (isa<AllocaInst>(V)) return true;
2615
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002616 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002617 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002618 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002619
2620 // Global values are not null unless extern weak.
2621 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2622 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002623
Nick Lewyckyec373542014-05-20 05:13:21 +00002624 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002625 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002626 return true;
2627
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002628 // operator new never returns null.
2629 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2630 return true;
2631
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002632 return false;
2633}