blob: ced5151582fbc6678e8a7f97d16a2efafdd62f12 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Hal Finkel60db0582014-09-07 18:57:58 +000016#include "llvm/Analysis/AssumptionTracker.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
Sanjay Patelaee84212014-11-04 16:27:42 +000042/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
43/// 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
Benjamin Kramercfd8d902014-09-12 08:56:53 +000061namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000062// Simplifying using an assume can only be done in a particular control-flow
63// context (the context instruction provides that context). If an assume and
64// the context instruction are not in the same block then the DT helps in
65// figuring out if we can use it.
66struct Query {
67 ExclInvsSet ExclInvs;
68 AssumptionTracker *AT;
69 const Instruction *CxtI;
70 const DominatorTree *DT;
71
72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr,
73 const DominatorTree *DT = nullptr)
74 : AT(AT), CxtI(CxtI), DT(DT) {}
75
76 Query(const Query &Q, const Value *NewExcl)
77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) {
78 ExclInvs.insert(NewExcl);
79 }
80};
Benjamin Kramercfd8d902014-09-12 08:56:53 +000081} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +000082
Sanjay Patel547e9752014-11-04 16:09:50 +000083// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +000084// the preferred context instruction (if any).
85static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
86 // If we've been provided with a context instruction, then use that (provided
87 // it has been inserted).
88 if (CxtI && CxtI->getParent())
89 return CxtI;
90
91 // If the value is really an already-inserted instruction, then use that.
92 CxtI = dyn_cast<Instruction>(V);
93 if (CxtI && CxtI->getParent())
94 return CxtI;
95
96 return nullptr;
97}
98
99static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
100 const DataLayout *TD, unsigned Depth,
101 const Query &Q);
102
103void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
104 const DataLayout *TD, unsigned Depth,
105 AssumptionTracker *AT, const Instruction *CxtI,
106 const DominatorTree *DT) {
107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
108 Query(AT, safeCxtI(V, CxtI), DT));
109}
110
111static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
112 const DataLayout *TD, unsigned Depth,
113 const Query &Q);
114
115void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
116 const DataLayout *TD, unsigned Depth,
117 AssumptionTracker *AT, const Instruction *CxtI,
118 const DominatorTree *DT) {
119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
120 Query(AT, safeCxtI(V, CxtI), DT));
121}
122
123static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
124 const Query &Q);
125
126bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
127 AssumptionTracker *AT,
128 const Instruction *CxtI,
129 const DominatorTree *DT) {
130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
131 Query(AT, safeCxtI(V, CxtI), DT));
132}
133
134static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
135 const Query &Q);
136
137bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
138 AssumptionTracker *AT, const Instruction *CxtI,
139 const DominatorTree *DT) {
140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
141}
142
143static bool MaskedValueIsZero(Value *V, const APInt &Mask,
144 const DataLayout *TD, unsigned Depth,
145 const Query &Q);
146
147bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
148 const DataLayout *TD, unsigned Depth,
149 AssumptionTracker *AT, const Instruction *CxtI,
150 const DominatorTree *DT) {
151 return ::MaskedValueIsZero(V, Mask, TD, Depth,
152 Query(AT, safeCxtI(V, CxtI), DT));
153}
154
155static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
156 unsigned Depth, const Query &Q);
157
158unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
159 unsigned Depth, AssumptionTracker *AT,
160 const Instruction *CxtI,
161 const DominatorTree *DT) {
162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
163}
164
Jay Foada0653a32014-05-14 21:14:37 +0000165static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
166 APInt &KnownZero, APInt &KnownOne,
167 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000168 const DataLayout *TD, unsigned Depth,
169 const Query &Q) {
170 if (!Add) {
171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
172 // We know that the top bits of C-X are clear if X contains less bits
173 // than C (i.e. no wrap-around can happen). For example, 20-X is
174 // positive if we can prove that X is >= 0 and < 16.
175 if (!CLHS->getValue().isNegative()) {
176 unsigned BitWidth = KnownZero.getBitWidth();
177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
178 // NLZ can't be BitWidth with no sign bit
179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
181
182 // If all of the MaskV bits are known to be zero, then we know the
183 // output top bits are zero, because we now know that the output is
184 // from [0-C].
185 if ((KnownZero2 & MaskV) == MaskV) {
186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
187 // Top bits known zero.
188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
189 }
190 }
191 }
192 }
193
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000194 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000195
David Majnemer97ddca32014-08-22 00:40:43 +0000196 // If an initial sequence of bits in the result is not needed, the
197 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000201
David Majnemer97ddca32014-08-22 00:40:43 +0000202 // Carry in a 1 for a subtract, rather than a 0.
203 APInt CarryIn(BitWidth, 0);
204 if (!Add) {
205 // Sum = LHS + ~RHS + 1
206 std::swap(KnownZero2, KnownOne2);
207 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000208 }
209
David Majnemer97ddca32014-08-22 00:40:43 +0000210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
212
213 // Compute known bits of the carry.
214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
216
217 // Compute set of known bits (where all three relevant bits are known).
218 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
219 APInt RHSKnown = KnownZero2 | KnownOne2;
220 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
221 APInt Known = LHSKnown & RHSKnown & CarryKnown;
222
223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
224 "known bits of sum differ");
225
226 // Compute known bits of the result.
227 KnownZero = ~PossibleSumOne & Known;
228 KnownOne = PossibleSumOne & Known;
229
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000231 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000232 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000233 // Adding two non-negative numbers, or subtracting a negative number from
234 // a non-negative one, can't wrap into negative.
235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
236 KnownZero |= APInt::getSignBit(BitWidth);
237 // Adding two negative numbers, or subtracting a non-negative number from
238 // a negative one, can't wrap into non-negative.
239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
240 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000241 }
242 }
243}
244
Jay Foada0653a32014-05-14 21:14:37 +0000245static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
246 APInt &KnownZero, APInt &KnownOne,
247 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000248 const DataLayout *TD, unsigned Depth,
249 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000250 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000253
254 bool isKnownNegative = false;
255 bool isKnownNonNegative = false;
256 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000258 if (Op0 == Op1) {
259 // The product of a number with itself is non-negative.
260 isKnownNonNegative = true;
261 } else {
262 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
264 bool isKnownNegativeOp1 = KnownOne.isNegative();
265 bool isKnownNegativeOp0 = KnownOne2.isNegative();
266 // The product of two numbers with the same sign is non-negative.
267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
269 // The product of a negative number and a non-negative number is either
270 // negative or zero.
271 if (!isKnownNonNegative)
272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000275 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000276 }
277 }
278
279 // If low bits are zero in either operand, output low known-0 bits.
280 // Also compute a conserative estimate for high known-0 bits.
281 // More trickiness is possible, but this is sufficient for the
282 // interesting case of alignment computation.
283 KnownOne.clearAllBits();
284 unsigned TrailZ = KnownZero.countTrailingOnes() +
285 KnownZero2.countTrailingOnes();
286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
287 KnownZero2.countLeadingOnes(),
288 BitWidth) - BitWidth;
289
290 TrailZ = std::min(TrailZ, BitWidth);
291 LeadZ = std::min(LeadZ, BitWidth);
292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
293 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000294
295 // Only make use of no-wrap flags if we failed to compute the sign bit
296 // directly. This matters if the multiplication always overflows, in
297 // which case we prefer to follow the result of the direct computation,
298 // though as the program is invoking undefined behaviour we can choose
299 // whatever we like here.
300 if (isKnownNonNegative && !KnownOne.isNegative())
301 KnownZero.setBit(BitWidth - 1);
302 else if (isKnownNegative && !KnownZero.isNegative())
303 KnownOne.setBit(BitWidth - 1);
304}
305
Jingyue Wu37fcb592014-06-19 16:50:16 +0000306void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
307 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000309 unsigned NumRanges = Ranges.getNumOperands() / 2;
310 assert(NumRanges >= 1);
311
312 // Use the high end of the ranges to find leading zeros.
313 unsigned MinLeadingZeros = BitWidth;
314 for (unsigned i = 0; i < NumRanges; ++i) {
315 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
316 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
317 ConstantRange Range(Lower->getValue(), Upper->getValue());
318 if (Range.isWrappedSet())
319 MinLeadingZeros = 0; // -1 has no zeros
320 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
321 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
322 }
323
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000324 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000325}
Jay Foad5a29c362014-05-15 12:12:55 +0000326
Hal Finkel60db0582014-09-07 18:57:58 +0000327static bool isEphemeralValueOf(Instruction *I, const Value *E) {
328 SmallVector<const Value *, 16> WorkSet(1, I);
329 SmallPtrSet<const Value *, 32> Visited;
330 SmallPtrSet<const Value *, 16> EphValues;
331
332 while (!WorkSet.empty()) {
333 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000334 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000335 continue;
336
337 // If all uses of this value are ephemeral, then so is this value.
338 bool FoundNEUse = false;
339 for (const User *I : V->users())
340 if (!EphValues.count(I)) {
341 FoundNEUse = true;
342 break;
343 }
344
345 if (!FoundNEUse) {
346 if (V == E)
347 return true;
348
349 EphValues.insert(V);
350 if (const User *U = dyn_cast<User>(V))
351 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
352 J != JE; ++J) {
353 if (isSafeToSpeculativelyExecute(*J))
354 WorkSet.push_back(*J);
355 }
356 }
357 }
358
359 return false;
360}
361
362// Is this an intrinsic that cannot be speculated but also cannot trap?
363static bool isAssumeLikeIntrinsic(const Instruction *I) {
364 if (const CallInst *CI = dyn_cast<CallInst>(I))
365 if (Function *F = CI->getCalledFunction())
366 switch (F->getIntrinsicID()) {
367 default: break;
368 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
369 case Intrinsic::assume:
370 case Intrinsic::dbg_declare:
371 case Intrinsic::dbg_value:
372 case Intrinsic::invariant_start:
373 case Intrinsic::invariant_end:
374 case Intrinsic::lifetime_start:
375 case Intrinsic::lifetime_end:
376 case Intrinsic::objectsize:
377 case Intrinsic::ptr_annotation:
378 case Intrinsic::var_annotation:
379 return true;
380 }
381
382 return false;
383}
384
385static bool isValidAssumeForContext(Value *V, const Query &Q,
386 const DataLayout *DL) {
387 Instruction *Inv = cast<Instruction>(V);
388
389 // There are two restrictions on the use of an assume:
390 // 1. The assume must dominate the context (or the control flow must
391 // reach the assume whenever it reaches the context).
392 // 2. The context must not be in the assume's set of ephemeral values
393 // (otherwise we will use the assume to prove that the condition
394 // feeding the assume is trivially true, thus causing the removal of
395 // the assume).
396
397 if (Q.DT) {
398 if (Q.DT->dominates(Inv, Q.CxtI)) {
399 return true;
400 } else if (Inv->getParent() == Q.CxtI->getParent()) {
401 // The context comes first, but they're both in the same block. Make sure
402 // there is nothing in between that might interrupt the control flow.
403 for (BasicBlock::const_iterator I =
404 std::next(BasicBlock::const_iterator(Q.CxtI)),
405 IE(Inv); I != IE; ++I)
406 if (!isSafeToSpeculativelyExecute(I, DL) &&
407 !isAssumeLikeIntrinsic(I))
408 return false;
409
410 return !isEphemeralValueOf(Inv, Q.CxtI);
411 }
412
413 return false;
414 }
415
416 // When we don't have a DT, we do a limited search...
417 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
418 return true;
419 } else if (Inv->getParent() == Q.CxtI->getParent()) {
420 // Search forward from the assume until we reach the context (or the end
421 // of the block); the common case is that the assume will come first.
422 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
423 IE = Inv->getParent()->end(); I != IE; ++I)
424 if (I == Q.CxtI)
425 return true;
426
427 // The context must come first...
428 for (BasicBlock::const_iterator I =
429 std::next(BasicBlock::const_iterator(Q.CxtI)),
430 IE(Inv); I != IE; ++I)
431 if (!isSafeToSpeculativelyExecute(I, DL) &&
432 !isAssumeLikeIntrinsic(I))
433 return false;
434
435 return !isEphemeralValueOf(Inv, Q.CxtI);
436 }
437
438 return false;
439}
440
441bool llvm::isValidAssumeForContext(const Instruction *I,
442 const Instruction *CxtI,
443 const DataLayout *DL,
444 const DominatorTree *DT) {
445 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
446 Query(nullptr, CxtI, DT), DL);
447}
448
449template<typename LHS, typename RHS>
450inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
451 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
452m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
453 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
454}
455
456template<typename LHS, typename RHS>
457inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
458 BinaryOp_match<RHS, LHS, Instruction::And>>
459m_c_And(const LHS &L, const RHS &R) {
460 return m_CombineOr(m_And(L, R), m_And(R, L));
461}
462
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000463template<typename LHS, typename RHS>
464inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
465 BinaryOp_match<RHS, LHS, Instruction::Or>>
466m_c_Or(const LHS &L, const RHS &R) {
467 return m_CombineOr(m_Or(L, R), m_Or(R, L));
468}
469
470template<typename LHS, typename RHS>
471inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
472 BinaryOp_match<RHS, LHS, Instruction::Xor>>
473m_c_Xor(const LHS &L, const RHS &R) {
474 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
475}
476
Hal Finkel60db0582014-09-07 18:57:58 +0000477static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
478 APInt &KnownOne,
479 const DataLayout *DL,
480 unsigned Depth, const Query &Q) {
481 // Use of assumptions is context-sensitive. If we don't have a context, we
482 // cannot use them!
483 if (!Q.AT || !Q.CxtI)
484 return;
485
486 unsigned BitWidth = KnownZero.getBitWidth();
487
488 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent());
489 for (auto &CI : Q.AT->assumptions(F)) {
490 CallInst *I = CI;
491 if (Q.ExclInvs.count(I))
492 continue;
493
Philip Reames00d3b272014-11-24 23:44:28 +0000494 // Warning: This loop can end up being somewhat performance sensetive.
495 // We're running this loop for once for each value queried resulting in a
496 // runtime of ~O(#assumes * #values).
497
498 assert(isa<IntrinsicInst>(I) &&
499 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume &&
500 "must be an assume intrinsic");
501
502 Value *Arg = I->getArgOperand(0);
503
504 if (Arg == V &&
Hal Finkel60db0582014-09-07 18:57:58 +0000505 isValidAssumeForContext(I, Q, DL)) {
506 assert(BitWidth == 1 && "assume operand is not i1?");
507 KnownZero.clearAllBits();
508 KnownOne.setAllBits();
509 return;
510 }
511
512 Value *A, *B;
513 auto m_V = m_CombineOr(m_Specific(V),
514 m_CombineOr(m_PtrToInt(m_Specific(V)),
515 m_BitCast(m_Specific(V))));
516
517 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000518 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000519 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000520 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000521 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
522 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
523 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
524 KnownZero |= RHSKnownZero;
525 KnownOne |= RHSKnownOne;
526 // assume(v & b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000527 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)),
528 m_Value(A))) &&
Hal Finkel60db0582014-09-07 18:57:58 +0000529 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
530 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
531 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
532 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
533 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
534
535 // For those bits in the mask that are known to be one, we can propagate
536 // known bits from the RHS to V.
537 KnownZero |= RHSKnownZero & MaskKnownOne;
538 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000539 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000540 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
541 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000542 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
543 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
544 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
545 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
546 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
547
548 // For those bits in the mask that are known to be one, we can propagate
549 // inverted known bits from the RHS to V.
550 KnownZero |= RHSKnownOne & MaskKnownOne;
551 KnownOne |= RHSKnownZero & MaskKnownOne;
552 // assume(v | b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000553 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)),
554 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000555 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
556 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
557 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
558 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
559 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
560
561 // For those bits in B that are known to be zero, we can propagate known
562 // bits from the RHS to V.
563 KnownZero |= RHSKnownZero & BKnownZero;
564 KnownOne |= RHSKnownOne & BKnownZero;
565 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
567 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000568 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
569 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
570 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
571 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
572 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
573
574 // For those bits in B that are known to be zero, we can propagate
575 // inverted known bits from the RHS to V.
576 KnownZero |= RHSKnownOne & BKnownZero;
577 KnownOne |= RHSKnownZero & BKnownZero;
578 // assume(v ^ b = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000579 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)),
580 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000581 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
582 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
583 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
584 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
585 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
586
587 // For those bits in B that are known to be zero, we can propagate known
588 // bits from the RHS to V. For those bits in B that are known to be one,
589 // we can propagate inverted known bits from the RHS to V.
590 KnownZero |= RHSKnownZero & BKnownZero;
591 KnownOne |= RHSKnownOne & BKnownZero;
592 KnownZero |= RHSKnownOne & BKnownOne;
593 KnownOne |= RHSKnownZero & BKnownOne;
594 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000595 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
596 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000597 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
598 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
599 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
600 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
601 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
602
603 // For those bits in B that are known to be zero, we can propagate
604 // inverted known bits from the RHS to V. For those bits in B that are
605 // known to be one, we can propagate known bits from the RHS to V.
606 KnownZero |= RHSKnownOne & BKnownZero;
607 KnownOne |= RHSKnownZero & BKnownZero;
608 KnownZero |= RHSKnownZero & BKnownOne;
609 KnownOne |= RHSKnownOne & BKnownOne;
610 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000611 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
612 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
614 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
615 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
616 // For those bits in RHS that are known, we can propagate them to known
617 // bits in V shifted to the right by C.
618 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
619 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
620 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000621 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
622 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
624 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
625 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
626 // For those bits in RHS that are known, we can propagate them inverted
627 // to known bits in V shifted to the right by C.
628 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
629 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
630 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000631 } else if (match(Arg,
632 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 m_AShr(m_V,
634 m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000635 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000636 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
637 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
638 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
639 // For those bits in RHS that are known, we can propagate them to known
640 // bits in V shifted to the right by C.
641 KnownZero |= RHSKnownZero << C->getZExtValue();
642 KnownOne |= RHSKnownOne << C->getZExtValue();
643 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000644 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000645 m_LShr(m_V, m_ConstantInt(C)),
646 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000647 m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000648 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
649 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
650 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
651 // For those bits in RHS that are known, we can propagate them inverted
652 // to known bits in V shifted to the right by C.
653 KnownZero |= RHSKnownOne << C->getZExtValue();
654 KnownOne |= RHSKnownZero << C->getZExtValue();
655 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000656 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000657 Pred == ICmpInst::ICMP_SGE &&
658 isValidAssumeForContext(I, Q, DL)) {
659 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
660 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
661
662 if (RHSKnownZero.isNegative()) {
663 // We know that the sign bit is zero.
664 KnownZero |= APInt::getSignBit(BitWidth);
665 }
666 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000667 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 Pred == ICmpInst::ICMP_SGT &&
669 isValidAssumeForContext(I, Q, DL)) {
670 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
671 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
672
673 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
674 // We know that the sign bit is zero.
675 KnownZero |= APInt::getSignBit(BitWidth);
676 }
677 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000678 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000679 Pred == ICmpInst::ICMP_SLE &&
680 isValidAssumeForContext(I, Q, DL)) {
681 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
682 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
683
684 if (RHSKnownOne.isNegative()) {
685 // We know that the sign bit is one.
686 KnownOne |= APInt::getSignBit(BitWidth);
687 }
688 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000689 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 Pred == ICmpInst::ICMP_SLT &&
691 isValidAssumeForContext(I, Q, DL)) {
692 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
693 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
694
695 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
696 // We know that the sign bit is one.
697 KnownOne |= APInt::getSignBit(BitWidth);
698 }
699 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000700 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000701 Pred == ICmpInst::ICMP_ULE &&
702 isValidAssumeForContext(I, Q, DL)) {
703 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
704 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
705
706 // Whatever high bits in c are zero are known to be zero.
707 KnownZero |=
708 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
709 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000710 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000711 Pred == ICmpInst::ICMP_ULT &&
712 isValidAssumeForContext(I, Q, DL)) {
713 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
714 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
715
716 // Whatever high bits in c are zero are known to be zero (if c is a power
717 // of 2, then one more).
718 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
719 KnownZero |=
720 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
721 else
722 KnownZero |=
723 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000724 }
725 }
726}
727
Jay Foada0653a32014-05-14 21:14:37 +0000728/// Determine which bits of V are known to be either zero or one and return
729/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000730///
Chris Lattner965c7692008-06-02 01:18:21 +0000731/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
732/// we cannot optimize based on the assumption that it is zero without changing
733/// it to be an explicit zero. If we don't change it to zero, other code could
734/// optimized based on the contradictory assumption that it is non-zero.
735/// Because instcombine aggressively folds operations with undef args anyway,
736/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000737///
738/// This function is defined on values with integer type, values with pointer
739/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000740/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000741/// same width as the vector element, and the bit is set only if it is true
742/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000743void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
744 const DataLayout *TD, unsigned Depth,
745 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000746 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000747 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000748 unsigned BitWidth = KnownZero.getBitWidth();
749
Nadav Rotem3924cb02011-12-05 06:29:09 +0000750 assert((V->getType()->isIntOrIntVectorTy() ||
751 V->getType()->getScalarType()->isPointerTy()) &&
752 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000753 assert((!TD ||
754 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000755 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000756 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000757 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000758 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000759 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000760
761 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
762 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000763 KnownOne = CI->getValue();
764 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000765 return;
766 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000767 // Null and aggregate-zero are all-zeros.
768 if (isa<ConstantPointerNull>(V) ||
769 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000770 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000771 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000772 return;
773 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000774 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000775 // each element. There is no real need to handle ConstantVector here, because
776 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000777 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
778 // We know that CDS must be a vector of integers. Take the intersection of
779 // each element.
780 KnownZero.setAllBits(); KnownOne.setAllBits();
781 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000782 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000783 Elt = CDS->getElementAsInteger(i);
784 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000785 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000786 }
787 return;
788 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000789
Chandler Carruth5b8cd2f2014-10-19 09:06:56 +0000790 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
791 // the bits of its aliasee.
792 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
793 if (GA->mayBeOverridden()) {
794 KnownZero.clearAllBits(); KnownOne.clearAllBits();
795 } else {
796 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q);
797 }
798 return;
799 }
800
Chris Lattner965c7692008-06-02 01:18:21 +0000801 // The address of an aligned GlobalValue has trailing zeros.
802 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
803 unsigned Align = GV->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000804 if (Align == 0 && TD) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000805 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
806 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000807 if (ObjectType->isSized()) {
808 // If the object is defined in the current Module, we'll be giving
809 // it the preferred alignment. Otherwise, we have to assume that it
810 // may only have the minimum ABI alignment.
811 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
812 Align = TD->getPreferredAlignment(GVar);
813 else
814 Align = TD->getABITypeAlignment(ObjectType);
815 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000816 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000817 }
Chris Lattner965c7692008-06-02 01:18:21 +0000818 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000819 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000820 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000821 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000822 KnownZero.clearAllBits();
823 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000824 return;
825 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000826
Chris Lattner83791ce2011-05-23 00:03:39 +0000827 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000828 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000829
Hal Finkelccc70902014-07-22 16:58:55 +0000830 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000831 // An sret parameter has at least the ABI alignment of the return type.
832 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
833 if (EltTy->isSized())
834 Align = TD->getABITypeAlignment(EltTy);
835 }
836
837 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000838 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Hal Finkel60db0582014-09-07 18:57:58 +0000839
840 // Don't give up yet... there might be an assumption that provides more
841 // information...
842 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000843 return;
844 }
Chris Lattner965c7692008-06-02 01:18:21 +0000845
Chris Lattner83791ce2011-05-23 00:03:39 +0000846 // Start out not knowing anything.
847 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000848
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000849 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +0000850 return; // Limit search depth.
851
Hal Finkel60db0582014-09-07 18:57:58 +0000852 // Check whether a nearby assume intrinsic can determine some known bits.
853 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
854
Dan Gohman80ca01c2009-07-17 20:47:02 +0000855 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000856 if (!I) return;
857
858 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000859 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000860 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000861 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000862 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000863 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000864 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000865 case Instruction::And: {
866 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000867 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
868 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000869
Chris Lattner965c7692008-06-02 01:18:21 +0000870 // Output known-1 bits are only known if set in both the LHS & RHS.
871 KnownOne &= KnownOne2;
872 // Output known-0 are known to be clear if zero in either the LHS | RHS.
873 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000874 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000875 }
876 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000877 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
878 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000879
Chris Lattner965c7692008-06-02 01:18:21 +0000880 // Output known-0 bits are only known if clear in both the LHS & RHS.
881 KnownZero &= KnownZero2;
882 // Output known-1 are known to be set if set in either the LHS | RHS.
883 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000884 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000885 }
886 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000887 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
888 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000889
Chris Lattner965c7692008-06-02 01:18:21 +0000890 // Output known-0 bits are known if clear or set in both the LHS & RHS.
891 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
892 // Output known-1 are known to be set if set in only one of the LHS, RHS.
893 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
894 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000895 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000896 }
897 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000898 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000899 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000900 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
901 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000902 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000903 }
904 case Instruction::UDiv: {
905 // For the purposes of computing leading zeros we can conservatively
906 // treat a udiv as a logical right shift by the power of 2 known to
907 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000908 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000909 unsigned LeadZ = KnownZero2.countLeadingOnes();
910
Jay Foad25a5e4c2010-12-01 08:53:58 +0000911 KnownOne2.clearAllBits();
912 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000913 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000914 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
915 if (RHSUnknownLeadingOnes != BitWidth)
916 LeadZ = std::min(BitWidth,
917 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
918
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000919 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000920 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000921 }
922 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000923 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
924 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000925
926 // Only known if known in both the LHS and RHS.
927 KnownOne &= KnownOne2;
928 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000929 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000930 case Instruction::FPTrunc:
931 case Instruction::FPExt:
932 case Instruction::FPToUI:
933 case Instruction::FPToSI:
934 case Instruction::SIToFP:
935 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000936 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000937 case Instruction::PtrToInt:
938 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000939 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000940 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000941 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // FALL THROUGH and handle them the same as zext/trunc.
943 case Instruction::ZExt:
944 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000945 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000946
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000947 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000948 // Note that we handle pointer operands here because of inttoptr/ptrtoint
949 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000950 if(TD) {
951 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
952 } else {
953 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000954 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000955 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000956
957 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000958 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
959 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000960 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000961 KnownZero = KnownZero.zextOrTrunc(BitWidth);
962 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000963 // Any top bits are known to be zero.
964 if (BitWidth > SrcBitWidth)
965 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000966 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000967 }
968 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000969 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000970 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000971 // TODO: For now, not handling conversions like:
972 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000973 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000974 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000975 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000976 }
977 break;
978 }
979 case Instruction::SExt: {
980 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000981 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000982
Jay Foad583abbc2010-12-07 08:25:19 +0000983 KnownZero = KnownZero.trunc(SrcBitWidth);
984 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000985 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000986 KnownZero = KnownZero.zext(BitWidth);
987 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000988
989 // If the sign bit of the input is known set or clear, then we know the
990 // top bits of the result.
991 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
992 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
993 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
994 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000995 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000996 }
997 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000998 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000999 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1000 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +00001001 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001002 KnownZero <<= ShiftAmt;
1003 KnownOne <<= ShiftAmt;
1004 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001005 }
1006 break;
1007 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001008 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001009 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1010 // Compute the new bits that are at the top now.
1011 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001012
Chris Lattner965c7692008-06-02 01:18:21 +00001013 // Unsigned shift right.
Sanjay Patel8f093f42014-11-05 18:00:07 +00001014 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001015 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1016 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1017 // high bits known zero.
1018 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001019 }
1020 break;
1021 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001022 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001023 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1024 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001025 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001026
Chris Lattner965c7692008-06-02 01:18:21 +00001027 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +00001028 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001029 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1030 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001031
Chris Lattner965c7692008-06-02 01:18:21 +00001032 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1033 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1034 KnownZero |= HighBits;
1035 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1036 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001037 }
1038 break;
1039 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001040 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001041 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001042 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001043 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001044 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001045 }
Chris Lattner965c7692008-06-02 01:18:21 +00001046 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001047 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001048 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001049 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001050 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001051 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001052 }
1053 case Instruction::SRem:
1054 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001055 APInt RA = Rem->getValue().abs();
1056 if (RA.isPowerOf2()) {
1057 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +00001058 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
1059 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001060
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001061 // The low bits of the first operand are unchanged by the srem.
1062 KnownZero = KnownZero2 & LowBits;
1063 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001064
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001065 // If the first operand is non-negative or has all low bits zero, then
1066 // the upper bits are all zero.
1067 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1068 KnownZero |= ~LowBits;
1069
1070 // If the first operand is negative and not all low bits are zero, then
1071 // the upper bits are all one.
1072 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1073 KnownOne |= ~LowBits;
1074
Craig Topper1bef2c82012-12-22 19:15:35 +00001075 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001076 }
1077 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001078
1079 // The sign bit is the LHS's sign bit, except when the result of the
1080 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001081 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001082 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001083 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001084 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001085 // If it's known zero, our sign bit is also zero.
1086 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001087 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001088 }
1089
Chris Lattner965c7692008-06-02 01:18:21 +00001090 break;
1091 case Instruction::URem: {
1092 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1093 APInt RA = Rem->getValue();
1094 if (RA.isPowerOf2()) {
1095 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +00001096 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001097 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001098 KnownZero |= ~LowBits;
1099 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001100 break;
1101 }
1102 }
1103
1104 // Since the result is less than or equal to either operand, any leading
1105 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001106 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
1107 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001108
Chris Lattner4612ae12009-01-20 18:22:57 +00001109 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001110 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001111 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001112 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001113 break;
1114 }
1115
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001116 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +00001117 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001119 if (Align == 0 && TD)
1120 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001121
Chris Lattner965c7692008-06-02 01:18:21 +00001122 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001123 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001124 break;
1125 }
1126 case Instruction::GetElementPtr: {
1127 // Analyze all of the subscripts of this getelementptr instruction
1128 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001129 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001130 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001131 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001132 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1133
1134 gep_type_iterator GTI = gep_type_begin(I);
1135 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1136 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001137 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001138 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +00001139 if (!TD) {
1140 TrailZ = 0;
1141 break;
1142 }
Matt Arsenault74742a12013-08-19 21:43:16 +00001143
1144 // Handle case when index is vector zeroinitializer
1145 Constant *CIndex = cast<Constant>(Index);
1146 if (CIndex->isZeroValue())
1147 continue;
1148
1149 if (CIndex->getType()->isVectorTy())
1150 Index = CIndex->getSplatValue();
1151
Chris Lattner965c7692008-06-02 01:18:21 +00001152 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +00001153 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001154 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001155 TrailZ = std::min<unsigned>(TrailZ,
1156 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001157 } else {
1158 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001159 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001160 if (!IndexedTy->isSized()) {
1161 TrailZ = 0;
1162 break;
1163 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001164 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +00001165 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +00001166 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001167 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001168 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001169 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001170 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001171 }
1172 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001173
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001174 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001175 break;
1176 }
1177 case Instruction::PHI: {
1178 PHINode *P = cast<PHINode>(I);
1179 // Handle the case of a simple two-predecessor recurrence PHI.
1180 // There's a lot more that could theoretically be done here, but
1181 // this is sufficient to catch some interesting cases.
1182 if (P->getNumIncomingValues() == 2) {
1183 for (unsigned i = 0; i != 2; ++i) {
1184 Value *L = P->getIncomingValue(i);
1185 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001186 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001187 if (!LU)
1188 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001189 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001190 // Check for operations that have the property that if
1191 // both their operands have low zero bits, the result
1192 // will have low zero bits.
1193 if (Opcode == Instruction::Add ||
1194 Opcode == Instruction::Sub ||
1195 Opcode == Instruction::And ||
1196 Opcode == Instruction::Or ||
1197 Opcode == Instruction::Mul) {
1198 Value *LL = LU->getOperand(0);
1199 Value *LR = LU->getOperand(1);
1200 // Find a recurrence.
1201 if (LL == I)
1202 L = LR;
1203 else if (LR == I)
1204 L = LL;
1205 else
1206 break;
1207 // Ok, we have a PHI of the form L op= R. Check for low
1208 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001209 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001210
1211 // We need to take the minimum number of known bits
1212 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001213 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001214
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001215 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001216 std::min(KnownZero2.countTrailingOnes(),
1217 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001218 break;
1219 }
1220 }
1221 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001222
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001223 // Unreachable blocks may have zero-operand PHI nodes.
1224 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001225 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001226
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001227 // Otherwise take the unions of the known bit sets of the operands,
1228 // taking conservative care to avoid excessive recursion.
1229 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001230 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001231 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001232 break;
1233
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001234 KnownZero = APInt::getAllOnesValue(BitWidth);
1235 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001236 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1237 // Skip direct self references.
1238 if (P->getIncomingValue(i) == P) continue;
1239
1240 KnownZero2 = APInt(BitWidth, 0);
1241 KnownOne2 = APInt(BitWidth, 0);
1242 // Recurse, but cap the recursion to one level, because we don't
1243 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001244 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001245 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001246 KnownZero &= KnownZero2;
1247 KnownOne &= KnownOne2;
1248 // If all bits have been ruled out, there's no need to check
1249 // more operands.
1250 if (!KnownZero && !KnownOne)
1251 break;
1252 }
1253 }
Chris Lattner965c7692008-06-02 01:18:21 +00001254 break;
1255 }
1256 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001257 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001258 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001259 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1260 // If a range metadata is attached to this IntrinsicInst, intersect the
1261 // explicit range specified by the metadata and the implicit range of
1262 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001263 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1264 switch (II->getIntrinsicID()) {
1265 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001266 case Intrinsic::ctlz:
1267 case Intrinsic::cttz: {
1268 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001269 // If this call is undefined for 0, the result will be less than 2^n.
1270 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1271 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001272 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001273 break;
1274 }
1275 case Intrinsic::ctpop: {
1276 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001277 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001278 break;
1279 }
Chad Rosierb3628842011-05-26 23:13:19 +00001280 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001281 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001282 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001283 }
1284 }
1285 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001286 case Instruction::ExtractValue:
1287 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1288 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1289 if (EVI->getNumIndices() != 1) break;
1290 if (EVI->getIndices()[0] == 0) {
1291 switch (II->getIntrinsicID()) {
1292 default: break;
1293 case Intrinsic::uadd_with_overflow:
1294 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001295 computeKnownBitsAddSub(true, II->getArgOperand(0),
1296 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001297 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001298 break;
1299 case Intrinsic::usub_with_overflow:
1300 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001301 computeKnownBitsAddSub(false, II->getArgOperand(0),
1302 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001303 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001304 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001305 case Intrinsic::umul_with_overflow:
1306 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001307 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1308 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001309 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001310 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001311 }
1312 }
1313 }
Chris Lattner965c7692008-06-02 01:18:21 +00001314 }
Jay Foad5a29c362014-05-15 12:12:55 +00001315
1316 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001317}
1318
Sanjay Patelaee84212014-11-04 16:27:42 +00001319/// Determine whether the sign bit is known to be zero or one.
1320/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001321void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1322 const DataLayout *TD, unsigned Depth,
1323 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001324 unsigned BitWidth = getBitWidth(V->getType(), TD);
1325 if (!BitWidth) {
1326 KnownZero = false;
1327 KnownOne = false;
1328 return;
1329 }
1330 APInt ZeroBits(BitWidth, 0);
1331 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001332 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001333 KnownOne = OneBits[BitWidth - 1];
1334 KnownZero = ZeroBits[BitWidth - 1];
1335}
1336
Sanjay Patelaee84212014-11-04 16:27:42 +00001337/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001338/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001339/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001340/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001341bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1342 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001343 if (Constant *C = dyn_cast<Constant>(V)) {
1344 if (C->isNullValue())
1345 return OrZero;
1346 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1347 return CI->getValue().isPowerOf2();
1348 // TODO: Handle vector constants.
1349 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001350
1351 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1352 // it is shifted off the end then the result is undefined.
1353 if (match(V, m_Shl(m_One(), m_Value())))
1354 return true;
1355
1356 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1357 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001358 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001359 return true;
1360
1361 // The remaining tests are all recursive, so bail out if we hit the limit.
1362 if (Depth++ == MaxDepth)
1363 return false;
1364
Craig Topper9f008862014-04-15 04:59:12 +00001365 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001366 // A shift of a power of two is a power of two or zero.
1367 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1368 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001369 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001370
Duncan Sandsd3951082011-01-25 09:38:29 +00001371 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001372 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001373
1374 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001375 return
1376 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1377 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001378
Duncan Sandsba286d72011-10-26 20:55:21 +00001379 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1380 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001381 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1382 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001383 return true;
1384 // X & (-X) is always a power of two or zero.
1385 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1386 return true;
1387 return false;
1388 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001389
David Majnemerb7d54092013-07-30 21:01:36 +00001390 // Adding a power-of-two or zero to the same power-of-two or zero yields
1391 // either the original power-of-two, a larger power-of-two or zero.
1392 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1393 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1394 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1395 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1396 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001397 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001398 return true;
1399 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1400 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001401 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001402 return true;
1403
1404 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1405 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001406 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001407
1408 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001409 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001410 // If i8 V is a power of two or zero:
1411 // ZeroBits: 1 1 1 0 1 1 1 1
1412 // ~ZeroBits: 0 0 0 1 0 0 0 0
1413 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1414 // If OrZero isn't set, we cannot give back a zero result.
1415 // Make sure either the LHS or RHS has a bit set.
1416 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1417 return true;
1418 }
1419 }
David Majnemerbeab5672013-05-18 19:30:37 +00001420
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001421 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001422 // is a power of two only if the first operand is a power of two and not
1423 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001424 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1425 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001426 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1427 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001428 }
1429
Duncan Sandsd3951082011-01-25 09:38:29 +00001430 return false;
1431}
1432
Chandler Carruth80d3e562012-12-07 02:08:58 +00001433/// \brief Test whether a GEP's result is known to be non-null.
1434///
1435/// Uses properties inherent in a GEP to try to determine whether it is known
1436/// to be non-null.
1437///
1438/// Currently this routine does not support vector GEPs.
1439static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001440 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001441 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1442 return false;
1443
1444 // FIXME: Support vector-GEPs.
1445 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1446
1447 // If the base pointer is non-null, we cannot walk to a null address with an
1448 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001449 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001450 return true;
1451
1452 // Past this, if we don't have DataLayout, we can't do much.
1453 if (!DL)
1454 return false;
1455
1456 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1457 // If so, then the GEP cannot produce a null pointer, as doing so would
1458 // inherently violate the inbounds contract within address space zero.
1459 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1460 GTI != GTE; ++GTI) {
1461 // Struct types are easy -- they must always be indexed by a constant.
1462 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1463 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1464 unsigned ElementIdx = OpC->getZExtValue();
1465 const StructLayout *SL = DL->getStructLayout(STy);
1466 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1467 if (ElementOffset > 0)
1468 return true;
1469 continue;
1470 }
1471
1472 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1473 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1474 continue;
1475
1476 // Fast path the constant operand case both for efficiency and so we don't
1477 // increment Depth when just zipping down an all-constant GEP.
1478 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1479 if (!OpC->isZero())
1480 return true;
1481 continue;
1482 }
1483
1484 // We post-increment Depth here because while isKnownNonZero increments it
1485 // as well, when we pop back up that increment won't persist. We don't want
1486 // to recurse 10k times just because we have 10k GEP operands. We don't
1487 // bail completely out because we want to handle constant GEPs regardless
1488 // of depth.
1489 if (Depth++ >= MaxDepth)
1490 continue;
1491
Hal Finkel60db0582014-09-07 18:57:58 +00001492 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001493 return true;
1494 }
1495
1496 return false;
1497}
1498
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001499/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1500/// ensure that the value it's attached to is never Value? 'RangeType' is
1501/// is the type of the value described by the range.
1502static bool rangeMetadataExcludesValue(MDNode* Ranges,
1503 const APInt& Value) {
1504 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1505 assert(NumRanges >= 1);
1506 for (unsigned i = 0; i < NumRanges; ++i) {
1507 ConstantInt *Lower = cast<ConstantInt>(Ranges->getOperand(2*i + 0));
1508 ConstantInt *Upper = cast<ConstantInt>(Ranges->getOperand(2*i + 1));
1509 ConstantRange Range(Lower->getValue(), Upper->getValue());
1510 if (Range.contains(Value))
1511 return false;
1512 }
1513 return true;
1514}
1515
Sanjay Patelaee84212014-11-04 16:27:42 +00001516/// Return true if the given value is known to be non-zero when defined.
1517/// For vectors return true if every element is known to be non-zero when
1518/// defined. Supports values with integer or pointer type and vectors of
1519/// integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001520bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1521 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001522 if (Constant *C = dyn_cast<Constant>(V)) {
1523 if (C->isNullValue())
1524 return false;
1525 if (isa<ConstantInt>(C))
1526 // Must be non-zero due to null test above.
1527 return true;
1528 // TODO: Handle vectors
1529 return false;
1530 }
1531
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001532 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001533 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001534 // If the possible ranges don't contain zero, then the value is
1535 // definitely non-zero.
1536 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1537 const APInt ZeroValue(Ty->getBitWidth(), 0);
1538 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1539 return true;
1540 }
1541 }
1542 }
1543
Duncan Sandsd3951082011-01-25 09:38:29 +00001544 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001545 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001546 return false;
1547
Chandler Carruth80d3e562012-12-07 02:08:58 +00001548 // Check for pointer simplifications.
1549 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001550 if (isKnownNonNull(V))
1551 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001552 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001553 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001554 return true;
1555 }
1556
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001557 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001558
1559 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001560 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001561 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001562 return isKnownNonZero(X, TD, Depth, Q) ||
1563 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001564
1565 // ext X != 0 if X != 0.
1566 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001567 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001568
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001569 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001570 // if the lowest bit is shifted off the end.
1571 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001572 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001573 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001574 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001575 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001576
Duncan Sandsd3951082011-01-25 09:38:29 +00001577 APInt KnownZero(BitWidth, 0);
1578 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001579 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001580 if (KnownOne[0])
1581 return true;
1582 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001583 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001584 // defined if the sign bit is shifted off the end.
1585 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001586 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001587 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001588 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001589 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001590
Duncan Sandsd3951082011-01-25 09:38:29 +00001591 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001592 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001593 if (XKnownNegative)
1594 return true;
1595 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001596 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001597 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001598 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001599 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001600 // X + Y.
1601 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1602 bool XKnownNonNegative, XKnownNegative;
1603 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001604 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1605 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001606
1607 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001608 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001609 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001610 if (isKnownNonZero(X, TD, Depth, Q) ||
1611 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001612 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001613
1614 // If X and Y are both negative (as signed values) then their sum is not
1615 // zero unless both X and Y equal INT_MIN.
1616 if (BitWidth && XKnownNegative && YKnownNegative) {
1617 APInt KnownZero(BitWidth, 0);
1618 APInt KnownOne(BitWidth, 0);
1619 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1620 // The sign bit of X is set. If some other bit is set then X is not equal
1621 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001622 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001623 if ((KnownOne & Mask) != 0)
1624 return true;
1625 // The sign bit of Y is set. If some other bit is set then Y is not equal
1626 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001627 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001628 if ((KnownOne & Mask) != 0)
1629 return true;
1630 }
1631
1632 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001633 if (XKnownNonNegative &&
1634 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001635 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001636 if (YKnownNonNegative &&
1637 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001638 return true;
1639 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001640 // X * Y.
1641 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1642 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1643 // If X and Y are non-zero then so is X * Y as long as the multiplication
1644 // does not overflow.
1645 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001646 isKnownNonZero(X, TD, Depth, Q) &&
1647 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001648 return true;
1649 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001650 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1651 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001652 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1653 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001654 return true;
1655 }
1656
1657 if (!BitWidth) return false;
1658 APInt KnownZero(BitWidth, 0);
1659 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001660 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001661 return KnownOne != 0;
1662}
1663
Sanjay Patelaee84212014-11-04 16:27:42 +00001664/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1665/// simplify operations downstream. Mask is known to be zero for bits that V
1666/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001667///
1668/// This function is defined on values with integer type, values with pointer
1669/// type (but only if TD is non-null), and vectors of integers. In the case
1670/// where V is a vector, the mask, known zero, and known one values are the
1671/// same width as the vector element, and the bit is set only if it is true
1672/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001673bool MaskedValueIsZero(Value *V, const APInt &Mask,
1674 const DataLayout *TD, unsigned Depth,
1675 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001676 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001677 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001678 return (KnownZero & Mask) == Mask;
1679}
1680
1681
1682
Sanjay Patelaee84212014-11-04 16:27:42 +00001683/// Return the number of times the sign bit of the register is replicated into
1684/// the other bits. We know that at least 1 bit is always equal to the sign bit
1685/// (itself), but other cases can give us information. For example, immediately
1686/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1687/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001688///
1689/// 'Op' must have a scalar integer type.
1690///
Hal Finkel60db0582014-09-07 18:57:58 +00001691unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1692 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001693 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001694 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001695 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001696 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001697 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1698 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001699 unsigned Tmp, Tmp2;
1700 unsigned FirstAnswer = 1;
1701
Jay Foada0653a32014-05-14 21:14:37 +00001702 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001703 // below.
1704
Chris Lattner965c7692008-06-02 01:18:21 +00001705 if (Depth == 6)
1706 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001707
Dan Gohman80ca01c2009-07-17 20:47:02 +00001708 Operator *U = dyn_cast<Operator>(V);
1709 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001710 default: break;
1711 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001712 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001713 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001714
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001715 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001716 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001717 // ashr X, C -> adds C sign bits. Vectors too.
1718 const APInt *ShAmt;
1719 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1720 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001721 if (Tmp > TyBits) Tmp = TyBits;
1722 }
1723 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001724 }
1725 case Instruction::Shl: {
1726 const APInt *ShAmt;
1727 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001728 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001729 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001730 Tmp2 = ShAmt->getZExtValue();
1731 if (Tmp2 >= TyBits || // Bad shift.
1732 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1733 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001734 }
1735 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001736 }
Chris Lattner965c7692008-06-02 01:18:21 +00001737 case Instruction::And:
1738 case Instruction::Or:
1739 case Instruction::Xor: // NOT is handled here.
1740 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001741 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001742 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001743 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001744 FirstAnswer = std::min(Tmp, Tmp2);
1745 // We computed what we know about the sign bits as our first
1746 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001747 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001748 }
1749 break;
1750
1751 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001752 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001753 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001754 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001755 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001756
Chris Lattner965c7692008-06-02 01:18:21 +00001757 case Instruction::Add:
1758 // Add can have at most one carry bit. Thus we know that the output
1759 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001760 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001761 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001762
Chris Lattner965c7692008-06-02 01:18:21 +00001763 // Special case decrementing a value (ADD X, -1):
Dan Gohman4f356bb2009-02-24 02:00:40 +00001764 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001765 if (CRHS->isAllOnesValue()) {
1766 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001767 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001768
Chris Lattner965c7692008-06-02 01:18:21 +00001769 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1770 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001771 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001772 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001773
Chris Lattner965c7692008-06-02 01:18:21 +00001774 // If we are subtracting one from a positive number, there is no carry
1775 // out of the result.
1776 if (KnownZero.isNegative())
1777 return Tmp;
1778 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001779
Hal Finkel60db0582014-09-07 18:57:58 +00001780 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001781 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001782 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001783
Chris Lattner965c7692008-06-02 01:18:21 +00001784 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001785 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001786 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001787
Chris Lattner965c7692008-06-02 01:18:21 +00001788 // Handle NEG.
1789 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1790 if (CLHS->isNullValue()) {
1791 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001792 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001793 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1794 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001795 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001796 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001797
Chris Lattner965c7692008-06-02 01:18:21 +00001798 // If the input is known to be positive (the sign bit is known clear),
1799 // the output of the NEG has the same number of sign bits as the input.
1800 if (KnownZero.isNegative())
1801 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001802
Chris Lattner965c7692008-06-02 01:18:21 +00001803 // Otherwise, we treat this like a SUB.
1804 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001805
Chris Lattner965c7692008-06-02 01:18:21 +00001806 // Sub can have at most one carry bit. Thus we know that the output
1807 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001808 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001809 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001810 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001811
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001812 case Instruction::PHI: {
1813 PHINode *PN = cast<PHINode>(U);
1814 // Don't analyze large in-degree PHIs.
1815 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001816
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001817 // Take the minimum of all incoming values. This can't infinitely loop
1818 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001819 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001820 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1821 if (Tmp == 1) return Tmp;
1822 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001823 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1824 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001825 }
1826 return Tmp;
1827 }
1828
Chris Lattner965c7692008-06-02 01:18:21 +00001829 case Instruction::Trunc:
1830 // FIXME: it's tricky to do anything useful for this, but it is an important
1831 // case for targets like X86.
1832 break;
1833 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001834
Chris Lattner965c7692008-06-02 01:18:21 +00001835 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1836 // use this information.
1837 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001838 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001839 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001840
Chris Lattner965c7692008-06-02 01:18:21 +00001841 if (KnownZero.isNegative()) { // sign bit is 0
1842 Mask = KnownZero;
1843 } else if (KnownOne.isNegative()) { // sign bit is 1;
1844 Mask = KnownOne;
1845 } else {
1846 // Nothing known.
1847 return FirstAnswer;
1848 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001849
Chris Lattner965c7692008-06-02 01:18:21 +00001850 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1851 // the number of identical bits in the top of the input value.
1852 Mask = ~Mask;
1853 Mask <<= Mask.getBitWidth()-TyBits;
1854 // Return # leading zeros. We use 'min' here in case Val was zero before
1855 // shifting. We don't want to return '64' as for an i32 "0".
1856 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1857}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001858
Sanjay Patelaee84212014-11-04 16:27:42 +00001859/// This function computes the integer multiple of Base that equals V.
1860/// If successful, it returns true and returns the multiple in
1861/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001862/// through SExt instructions only if LookThroughSExt is true.
1863bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001864 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001865 const unsigned MaxDepth = 6;
1866
Dan Gohman6a976bb2009-11-18 00:58:27 +00001867 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001868 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001869 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001870
Chris Lattner229907c2011-07-18 04:54:35 +00001871 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001872
Dan Gohman6a976bb2009-11-18 00:58:27 +00001873 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001874
1875 if (Base == 0)
1876 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001877
Victor Hernandez47444882009-11-10 08:28:35 +00001878 if (Base == 1) {
1879 Multiple = V;
1880 return true;
1881 }
1882
1883 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1884 Constant *BaseVal = ConstantInt::get(T, Base);
1885 if (CO && CO == BaseVal) {
1886 // Multiple is 1.
1887 Multiple = ConstantInt::get(T, 1);
1888 return true;
1889 }
1890
1891 if (CI && CI->getZExtValue() % Base == 0) {
1892 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001893 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001894 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001895
Victor Hernandez47444882009-11-10 08:28:35 +00001896 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001897
Victor Hernandez47444882009-11-10 08:28:35 +00001898 Operator *I = dyn_cast<Operator>(V);
1899 if (!I) return false;
1900
1901 switch (I->getOpcode()) {
1902 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001903 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001904 if (!LookThroughSExt) return false;
1905 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001906 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001907 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1908 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001909 case Instruction::Shl:
1910 case Instruction::Mul: {
1911 Value *Op0 = I->getOperand(0);
1912 Value *Op1 = I->getOperand(1);
1913
1914 if (I->getOpcode() == Instruction::Shl) {
1915 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1916 if (!Op1CI) return false;
1917 // Turn Op0 << Op1 into Op0 * 2^Op1
1918 APInt Op1Int = Op1CI->getValue();
1919 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001920 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001921 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001922 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001923 }
1924
Craig Topper9f008862014-04-15 04:59:12 +00001925 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001926 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1927 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1928 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001929 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001930 MulC->getType()->getPrimitiveSizeInBits())
1931 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001932 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001933 MulC->getType()->getPrimitiveSizeInBits())
1934 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001935
Chris Lattner72d283c2010-09-05 17:20:46 +00001936 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1937 Multiple = ConstantExpr::getMul(MulC, Op1C);
1938 return true;
1939 }
Victor Hernandez47444882009-11-10 08:28:35 +00001940
1941 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1942 if (Mul0CI->getValue() == 1) {
1943 // V == Base * Op1, so return Op1
1944 Multiple = Op1;
1945 return true;
1946 }
1947 }
1948
Craig Topper9f008862014-04-15 04:59:12 +00001949 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001950 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1951 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1952 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001953 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001954 MulC->getType()->getPrimitiveSizeInBits())
1955 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001956 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001957 MulC->getType()->getPrimitiveSizeInBits())
1958 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001959
Chris Lattner72d283c2010-09-05 17:20:46 +00001960 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1961 Multiple = ConstantExpr::getMul(MulC, Op0C);
1962 return true;
1963 }
Victor Hernandez47444882009-11-10 08:28:35 +00001964
1965 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1966 if (Mul1CI->getValue() == 1) {
1967 // V == Base * Op0, so return Op0
1968 Multiple = Op0;
1969 return true;
1970 }
1971 }
Victor Hernandez47444882009-11-10 08:28:35 +00001972 }
1973 }
1974
1975 // We could not determine if V is a multiple of Base.
1976 return false;
1977}
1978
Sanjay Patelaee84212014-11-04 16:27:42 +00001979/// Return true if we can prove that the specified FP value is never equal to
1980/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00001981///
1982/// NOTE: this function will need to be revisited when we support non-default
1983/// rounding modes!
1984///
1985bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1986 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1987 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001988
Chris Lattnera12a6de2008-06-02 01:29:46 +00001989 if (Depth == 6)
1990 return 1; // Limit search depth.
1991
Dan Gohman80ca01c2009-07-17 20:47:02 +00001992 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00001993 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00001994
1995 // Check if the nsz fast-math flag is set
1996 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1997 if (FPO->hasNoSignedZeros())
1998 return true;
1999
Chris Lattnera12a6de2008-06-02 01:29:46 +00002000 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002001 if (I->getOpcode() == Instruction::FAdd)
2002 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2003 if (CFP->isNullValue())
2004 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002005
Chris Lattnera12a6de2008-06-02 01:29:46 +00002006 // sitofp and uitofp turn into +0.0 for zero.
2007 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2008 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002009
Chris Lattnera12a6de2008-06-02 01:29:46 +00002010 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2011 // sqrt(-0.0) = -0.0, no other negative results are possible.
2012 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002013 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002014
Chris Lattnera12a6de2008-06-02 01:29:46 +00002015 if (const CallInst *CI = dyn_cast<CallInst>(I))
2016 if (const Function *F = CI->getCalledFunction()) {
2017 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002018 // abs(x) != -0.0
2019 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002020 // fabs[lf](x) != -0.0
2021 if (F->getName() == "fabs") return true;
2022 if (F->getName() == "fabsf") return true;
2023 if (F->getName() == "fabsl") return true;
2024 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2025 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002026 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002027 }
2028 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002029
Chris Lattnera12a6de2008-06-02 01:29:46 +00002030 return false;
2031}
2032
Sanjay Patelaee84212014-11-04 16:27:42 +00002033/// If the specified value can be set by repeating the same byte in memory,
2034/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002035/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2036/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2037/// byte store (e.g. i16 0x1234), return null.
2038Value *llvm::isBytewiseValue(Value *V) {
2039 // All byte-wide stores are splatable, even of arbitrary variables.
2040 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002041
2042 // Handle 'null' ConstantArrayZero etc.
2043 if (Constant *C = dyn_cast<Constant>(V))
2044 if (C->isNullValue())
2045 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002046
Chris Lattner9cb10352010-12-26 20:15:01 +00002047 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002048 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002049 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2050 if (CFP->getType()->isFloatTy())
2051 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2052 if (CFP->getType()->isDoubleTy())
2053 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2054 // Don't handle long double formats, which have strange constraints.
2055 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002056
2057 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00002058 // multiple of 8 bits.
2059 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2060 unsigned Width = CI->getBitWidth();
2061 if (isPowerOf2_32(Width) && Width > 8) {
2062 // We can handle this value if the recursive binary decomposition is the
2063 // same at all levels.
2064 APInt Val = CI->getValue();
2065 APInt Val2;
2066 while (Val.getBitWidth() != 8) {
2067 unsigned NextWidth = Val.getBitWidth()/2;
2068 Val2 = Val.lshr(NextWidth);
2069 Val2 = Val2.trunc(Val.getBitWidth()/2);
2070 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002071
Chris Lattner9cb10352010-12-26 20:15:01 +00002072 // If the top/bottom halves aren't the same, reject it.
2073 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00002074 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002075 }
2076 return ConstantInt::get(V->getContext(), Val);
2077 }
2078 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002079
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002080 // A ConstantDataArray/Vector is splatable if all its members are equal and
2081 // also splatable.
2082 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2083 Value *Elt = CA->getElementAsConstant(0);
2084 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002085 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002086 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002087
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002088 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2089 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002090 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002091
Chris Lattner9cb10352010-12-26 20:15:01 +00002092 return Val;
2093 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002094
Chris Lattner9cb10352010-12-26 20:15:01 +00002095 // Conceptually, we could handle things like:
2096 // %a = zext i8 %X to i16
2097 // %b = shl i16 %a, 8
2098 // %c = or i16 %a, %b
2099 // but until there is an example that actually needs this, it doesn't seem
2100 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002101 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002102}
2103
2104
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002105// This is the recursive version of BuildSubAggregate. It takes a few different
2106// arguments. Idxs is the index within the nested struct From that we are
2107// looking at now (which is of type IndexedType). IdxSkip is the number of
2108// indices from Idxs that should be left out when inserting into the resulting
2109// struct. To is the result struct built so far, new insertvalue instructions
2110// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002111static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002112 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002113 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002114 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002115 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002116 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002117 // Save the original To argument so we can modify it
2118 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002119 // General case, the type indexed by Idxs is a struct
2120 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2121 // Process each struct element recursively
2122 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002123 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002124 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002125 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002126 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002127 if (!To) {
2128 // Couldn't find any inserted value for this index? Cleanup
2129 while (PrevTo != OrigTo) {
2130 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2131 PrevTo = Del->getAggregateOperand();
2132 Del->eraseFromParent();
2133 }
2134 // Stop processing elements
2135 break;
2136 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002137 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002138 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002139 if (To)
2140 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002141 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002142 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2143 // the struct's elements had a value that was inserted directly. In the latter
2144 // case, perhaps we can't determine each of the subelements individually, but
2145 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002146
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002147 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002148 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002149
2150 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002151 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002152
2153 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002154 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002155 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002156}
2157
2158// This helper takes a nested struct and extracts a part of it (which is again a
2159// struct) into a new value. For example, given the struct:
2160// { a, { b, { c, d }, e } }
2161// and the indices "1, 1" this returns
2162// { c, d }.
2163//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002164// It does this by inserting an insertvalue for each element in the resulting
2165// struct, as opposed to just inserting a single struct. This will only work if
2166// each of the elements of the substruct are known (ie, inserted into From by an
2167// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002168//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002169// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002170static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002171 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002172 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002173 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002174 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002175 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002176 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002177 unsigned IdxSkip = Idxs.size();
2178
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002179 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002180}
2181
Sanjay Patelaee84212014-11-04 16:27:42 +00002182/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002183/// the scalar value indexed is already around as a register, for example if it
2184/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002185///
2186/// If InsertBefore is not null, this function will duplicate (modified)
2187/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002188Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2189 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002190 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002191 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002192 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002193 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002194 // We have indices, so V should have an indexable type.
2195 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2196 "Not looking at a struct or array?");
2197 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2198 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002199
Chris Lattner67058832012-01-25 06:48:06 +00002200 if (Constant *C = dyn_cast<Constant>(V)) {
2201 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002202 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002203 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2204 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002205
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002206 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002207 // Loop the indices for the insertvalue instruction in parallel with the
2208 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002209 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002210 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2211 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002212 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002213 // We can't handle this without inserting insertvalues
2214 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002215 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002216
2217 // The requested index identifies a part of a nested aggregate. Handle
2218 // this specially. For example,
2219 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2220 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2221 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2222 // This can be changed into
2223 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2224 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2225 // which allows the unused 0,0 element from the nested struct to be
2226 // removed.
2227 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2228 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002229 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002230
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002231 // This insert value inserts something else than what we are looking for.
2232 // See if the (aggregrate) value inserted into has the value we are
2233 // looking for, then.
2234 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002235 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002236 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002237 }
2238 // If we end up here, the indices of the insertvalue match with those
2239 // requested (though possibly only partially). Now we recursively look at
2240 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002241 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002242 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002243 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002244 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002245
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002246 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002247 // If we're extracting a value from an aggregrate that was extracted from
2248 // something else, we can extract from that something else directly instead.
2249 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002250
2251 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002252 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002253 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002254 SmallVector<unsigned, 5> Idxs;
2255 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002256 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002257 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002258
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002259 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002260 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002261
Craig Topper1bef2c82012-12-22 19:15:35 +00002262 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002263 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002264
Jay Foad57aa6362011-07-13 10:26:04 +00002265 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002266 }
2267 // Otherwise, we don't know (such as, extracting from a function return value
2268 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002269 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002270}
Evan Chengda3db112008-06-30 07:31:25 +00002271
Sanjay Patelaee84212014-11-04 16:27:42 +00002272/// Analyze the specified pointer to see if it can be expressed as a base
2273/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002274Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002275 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002276 // Without DataLayout, conservatively assume 64-bit offsets, which is
2277 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002278 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002279 APInt ByteOffset(BitWidth, 0);
2280 while (1) {
2281 if (Ptr->getType()->isVectorTy())
2282 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002283
Nuno Lopes368c4d02012-12-31 20:48:35 +00002284 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002285 if (DL) {
2286 APInt GEPOffset(BitWidth, 0);
2287 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2288 break;
2289
2290 ByteOffset += GEPOffset;
2291 }
2292
Nuno Lopes368c4d02012-12-31 20:48:35 +00002293 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002294 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2295 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002296 Ptr = cast<Operator>(Ptr)->getOperand(0);
2297 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2298 if (GA->mayBeOverridden())
2299 break;
2300 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002301 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002302 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002303 }
2304 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002305 Offset = ByteOffset.getSExtValue();
2306 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002307}
2308
2309
Sanjay Patelaee84212014-11-04 16:27:42 +00002310/// This function computes the length of a null-terminated C string pointed to
2311/// by V. If successful, it returns true and returns the string in Str.
2312/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002313bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2314 uint64_t Offset, bool TrimAtNul) {
2315 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002316
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002317 // Look through bitcast instructions and geps.
2318 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002319
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002320 // If the value is a GEP instructionor constant expression, treat it as an
2321 // offset.
2322 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002323 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002324 if (GEP->getNumOperands() != 3)
2325 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002326
Evan Chengda3db112008-06-30 07:31:25 +00002327 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002328 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2329 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002330 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002331 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002332
Evan Chengda3db112008-06-30 07:31:25 +00002333 // Check to make sure that the first operand of the GEP is an integer and
2334 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002335 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002336 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002337 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002338
Evan Chengda3db112008-06-30 07:31:25 +00002339 // If the second index isn't a ConstantInt, then this is a variable index
2340 // into the array. If this occurs, we can't say anything meaningful about
2341 // the string.
2342 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002343 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002344 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002345 else
2346 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002347 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002348 }
Nick Lewycky46209882011-10-20 00:34:35 +00002349
Evan Chengda3db112008-06-30 07:31:25 +00002350 // The GEP instruction, constant or instruction, must reference a global
2351 // variable that is a constant and is initialized. The referenced constant
2352 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002353 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002354 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002355 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002356
Nick Lewycky46209882011-10-20 00:34:35 +00002357 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002358 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002359 // This is a degenerate case. The initializer is constant zero so the
2360 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002361 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002362 return true;
2363 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002364
Evan Chengda3db112008-06-30 07:31:25 +00002365 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002366 const ConstantDataArray *Array =
2367 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002368 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002369 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002370
Evan Chengda3db112008-06-30 07:31:25 +00002371 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002372 uint64_t NumElts = Array->getType()->getArrayNumElements();
2373
2374 // Start out with the entire array in the StringRef.
2375 Str = Array->getAsString();
2376
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002377 if (Offset > NumElts)
2378 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002379
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002380 // Skip over 'offset' bytes.
2381 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002383 if (TrimAtNul) {
2384 // Trim off the \0 and anything after it. If the array is not nul
2385 // terminated, we just return the whole end of string. The client may know
2386 // some other way that the string is length-bound.
2387 Str = Str.substr(0, Str.find('\0'));
2388 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002389 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002390}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002391
2392// These next two are very similar to the above, but also look through PHI
2393// nodes.
2394// TODO: See if we can integrate these two together.
2395
Sanjay Patelaee84212014-11-04 16:27:42 +00002396/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002397/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002398static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002399 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002400 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002401
2402 // If this is a PHI node, there are two cases: either we have already seen it
2403 // or we haven't.
2404 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002405 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002406 return ~0ULL; // already in the set.
2407
2408 // If it was new, see if all the input strings are the same length.
2409 uint64_t LenSoFar = ~0ULL;
2410 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2411 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2412 if (Len == 0) return 0; // Unknown length -> unknown.
2413
2414 if (Len == ~0ULL) continue;
2415
2416 if (Len != LenSoFar && LenSoFar != ~0ULL)
2417 return 0; // Disagree -> unknown.
2418 LenSoFar = Len;
2419 }
2420
2421 // Success, all agree.
2422 return LenSoFar;
2423 }
2424
2425 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2426 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2427 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2428 if (Len1 == 0) return 0;
2429 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2430 if (Len2 == 0) return 0;
2431 if (Len1 == ~0ULL) return Len2;
2432 if (Len2 == ~0ULL) return Len1;
2433 if (Len1 != Len2) return 0;
2434 return Len1;
2435 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002437 // Otherwise, see if we can read the string.
2438 StringRef StrData;
2439 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002440 return 0;
2441
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002442 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002443}
2444
Sanjay Patelaee84212014-11-04 16:27:42 +00002445/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002446/// the specified pointer, return 'len+1'. If we can't, return 0.
2447uint64_t llvm::GetStringLength(Value *V) {
2448 if (!V->getType()->isPointerTy()) return 0;
2449
2450 SmallPtrSet<PHINode*, 32> PHIs;
2451 uint64_t Len = GetStringLengthH(V, PHIs);
2452 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2453 // an empty string as a length.
2454 return Len == ~0ULL ? 1 : Len;
2455}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002456
Dan Gohman0f124e12011-01-24 18:53:32 +00002457Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002458llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002459 if (!V->getType()->isPointerTy())
2460 return V;
2461 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2462 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2463 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002464 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2465 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002466 V = cast<Operator>(V)->getOperand(0);
2467 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2468 if (GA->mayBeOverridden())
2469 return V;
2470 V = GA->getAliasee();
2471 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002472 // See if InstructionSimplify knows any relevant tricks.
2473 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00002474 // TODO: Acquire a DominatorTree and AssumptionTracker and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002475 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002476 V = Simplified;
2477 continue;
2478 }
2479
Dan Gohmana4fcd242010-12-15 20:02:24 +00002480 return V;
2481 }
2482 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2483 }
2484 return V;
2485}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002486
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002487void
2488llvm::GetUnderlyingObjects(Value *V,
2489 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002490 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002491 unsigned MaxLookup) {
2492 SmallPtrSet<Value *, 4> Visited;
2493 SmallVector<Value *, 4> Worklist;
2494 Worklist.push_back(V);
2495 do {
2496 Value *P = Worklist.pop_back_val();
2497 P = GetUnderlyingObject(P, TD, MaxLookup);
2498
David Blaikie70573dc2014-11-19 07:49:26 +00002499 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002500 continue;
2501
2502 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2503 Worklist.push_back(SI->getTrueValue());
2504 Worklist.push_back(SI->getFalseValue());
2505 continue;
2506 }
2507
2508 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2509 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2510 Worklist.push_back(PN->getIncomingValue(i));
2511 continue;
2512 }
2513
2514 Objects.push_back(P);
2515 } while (!Worklist.empty());
2516}
2517
Sanjay Patelaee84212014-11-04 16:27:42 +00002518/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002519bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002520 for (const User *U : V->users()) {
2521 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002522 if (!II) return false;
2523
2524 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2525 II->getIntrinsicID() != Intrinsic::lifetime_end)
2526 return false;
2527 }
2528 return true;
2529}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002530
Dan Gohman7ac046a2012-01-04 23:01:09 +00002531bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002532 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002533 const Operator *Inst = dyn_cast<Operator>(V);
2534 if (!Inst)
2535 return false;
2536
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002537 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2538 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2539 if (C->canTrap())
2540 return false;
2541
2542 switch (Inst->getOpcode()) {
2543 default:
2544 return true;
2545 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002546 case Instruction::URem: {
2547 // x / y is undefined if y == 0.
2548 const APInt *V;
2549 if (match(Inst->getOperand(1), m_APInt(V)))
2550 return *V != 0;
2551 return false;
2552 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002553 case Instruction::SDiv:
2554 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002555 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
2556 const APInt *X, *Y;
2557 if (match(Inst->getOperand(1), m_APInt(Y))) {
2558 if (*Y != 0) {
2559 if (*Y == -1) {
2560 // The numerator can't be MinSignedValue if the denominator is -1.
2561 if (match(Inst->getOperand(0), m_APInt(X)))
2562 return !Y->isMinSignedValue();
2563 // The numerator *might* be MinSignedValue.
2564 return false;
2565 }
2566 // The denominator is not 0 or -1, it's safe to proceed.
2567 return true;
2568 }
2569 }
2570 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002571 }
2572 case Instruction::Load: {
2573 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002574 if (!LI->isUnordered() ||
2575 // Speculative load may create a race that did not exist in the source.
2576 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002577 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002578 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002579 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002580 case Instruction::Call: {
Michael Liao736bac62014-11-06 19:05:57 +00002581 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2582 switch (II->getIntrinsicID()) {
2583 // These synthetic intrinsics have no side-effects and just mark
2584 // information about their operands.
2585 // FIXME: There are other no-op synthetic instructions that potentially
2586 // should be considered at least *safe* to speculate...
2587 case Intrinsic::dbg_declare:
2588 case Intrinsic::dbg_value:
2589 return true;
Chandler Carruth28192c92012-04-07 19:22:18 +00002590
Michael Liao736bac62014-11-06 19:05:57 +00002591 case Intrinsic::bswap:
2592 case Intrinsic::ctlz:
2593 case Intrinsic::ctpop:
2594 case Intrinsic::cttz:
2595 case Intrinsic::objectsize:
2596 case Intrinsic::sadd_with_overflow:
2597 case Intrinsic::smul_with_overflow:
2598 case Intrinsic::ssub_with_overflow:
2599 case Intrinsic::uadd_with_overflow:
2600 case Intrinsic::umul_with_overflow:
2601 case Intrinsic::usub_with_overflow:
2602 return true;
2603 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2604 // errno like libm sqrt would.
2605 case Intrinsic::sqrt:
2606 case Intrinsic::fma:
2607 case Intrinsic::fmuladd:
2608 case Intrinsic::fabs:
2609 case Intrinsic::minnum:
2610 case Intrinsic::maxnum:
2611 return true;
2612 // TODO: some fp intrinsics are marked as having the same error handling
2613 // as libm. They're safe to speculate when they won't error.
2614 // TODO: are convert_{from,to}_fp16 safe?
2615 // TODO: can we list target-specific intrinsics here?
2616 default: break;
2617 }
2618 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002619 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002620 // side-effects, even if marked readnone nounwind.
2621 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002622 case Instruction::VAArg:
2623 case Instruction::Alloca:
2624 case Instruction::Invoke:
2625 case Instruction::PHI:
2626 case Instruction::Store:
2627 case Instruction::Ret:
2628 case Instruction::Br:
2629 case Instruction::IndirectBr:
2630 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002631 case Instruction::Unreachable:
2632 case Instruction::Fence:
2633 case Instruction::LandingPad:
2634 case Instruction::AtomicRMW:
2635 case Instruction::AtomicCmpXchg:
2636 case Instruction::Resume:
2637 return false; // Misc instructions which have effects
2638 }
2639}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002640
Sanjay Patelaee84212014-11-04 16:27:42 +00002641/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002642bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002643 // Alloca never returns null, malloc might.
2644 if (isa<AllocaInst>(V)) return true;
2645
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002646 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002647 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002648 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002649
2650 // Global values are not null unless extern weak.
2651 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2652 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002653
Philip Reamescdb72f32014-10-20 22:40:55 +00002654 // A Load tagged w/nonnull metadata is never null.
2655 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00002656 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00002657
Nick Lewyckyec373542014-05-20 05:13:21 +00002658 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002659 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002660 return true;
2661
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002662 // operator new never returns null.
2663 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2664 return true;
2665
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002666 return false;
2667}