blob: 9648fd8d35de368ac0c6a2bf4dd17c5e6e151d75 [file] [log] [blame]
Brendon Cahoon254f8892016-07-29 16:44:44 +00001//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
13// that overlap loop iterations and explioits ILP via a compiler transformation.
14//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000064#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000065#include "llvm/ADT/MapVector.h"
66#include "llvm/ADT/PriorityQueue.h"
67#include "llvm/ADT/SetVector.h"
68#include "llvm/ADT/SmallPtrSet.h"
69#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000070#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000071#include "llvm/ADT/Statistic.h"
72#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
76#include "llvm/CodeGen/LiveIntervalAnalysis.h"
77#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000083#include "llvm/CodeGen/MachineInstrBundle.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000084#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000085#include "llvm/CodeGen/MachineMemOperand.h"
86#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000088#include "llvm/CodeGen/RegisterClassInfo.h"
89#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000090#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000091#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000092#include "llvm/IR/Attributes.h"
93#include "llvm/IR/DebugLoc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000094#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000095#include "llvm/PassAnalysisSupport.h"
96#include "llvm/PassRegistry.h"
97#include "llvm/PassSupport.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000098#include "llvm/Support/CommandLine.h"
99#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000100#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000101#include "llvm/Support/raw_ostream.h"
102#include "llvm/Target/TargetInstrInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000103#include "llvm/Target/TargetRegisterInfo.h"
104#include "llvm/Target/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000105#include <algorithm>
106#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000107#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000108#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000109#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000110#include <functional>
111#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000112#include <map>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000113#include <tuple>
114#include <utility>
115#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116
117using namespace llvm;
118
119#define DEBUG_TYPE "pipeliner"
120
121STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
122STATISTIC(NumPipelined, "Number of loops software pipelined");
123
124/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000125static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
126 cl::ZeroOrMore,
127 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000128
129/// A command line option to enable SWP at -Os.
130static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
131 cl::desc("Enable SWP at Os."), cl::Hidden,
132 cl::init(false));
133
134/// A command line argument to limit minimum initial interval for pipelining.
135static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
136 cl::desc("Size limit for the the MII."),
137 cl::Hidden, cl::init(27));
138
139/// A command line argument to limit the number of stages in the pipeline.
140static cl::opt<int>
141 SwpMaxStages("pipeliner-max-stages",
142 cl::desc("Maximum stages allowed in the generated scheduled."),
143 cl::Hidden, cl::init(3));
144
145/// A command line option to disable the pruning of chain dependences due to
146/// an unrelated Phi.
147static cl::opt<bool>
148 SwpPruneDeps("pipeliner-prune-deps",
149 cl::desc("Prune dependences between unrelated Phi nodes."),
150 cl::Hidden, cl::init(true));
151
152/// A command line option to disable the pruning of loop carried order
153/// dependences.
154static cl::opt<bool>
155 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
156 cl::desc("Prune loop carried order dependences."),
157 cl::Hidden, cl::init(true));
158
159#ifndef NDEBUG
160static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
161#endif
162
163static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
164 cl::ReallyHidden, cl::init(false),
165 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
166
167namespace {
168
169class NodeSet;
170class SMSchedule;
171class SwingSchedulerDAG;
172
173/// The main class in the implementation of the target independent
174/// software pipeliner pass.
175class MachinePipeliner : public MachineFunctionPass {
176public:
177 MachineFunction *MF = nullptr;
178 const MachineLoopInfo *MLI = nullptr;
179 const MachineDominatorTree *MDT = nullptr;
180 const InstrItineraryData *InstrItins;
181 const TargetInstrInfo *TII = nullptr;
182 RegisterClassInfo RegClassInfo;
183
184#ifndef NDEBUG
185 static int NumTries;
186#endif
187 /// Cache the target analysis information about the loop.
188 struct LoopInfo {
189 MachineBasicBlock *TBB = nullptr;
190 MachineBasicBlock *FBB = nullptr;
191 SmallVector<MachineOperand, 4> BrCond;
192 MachineInstr *LoopInductionVar = nullptr;
193 MachineInstr *LoopCompare = nullptr;
194 };
195 LoopInfo LI;
196
197 static char ID;
198 MachinePipeliner() : MachineFunctionPass(ID) {
199 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
200 }
201
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000202 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000203
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000204 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000205 AU.addRequired<AAResultsWrapperPass>();
206 AU.addPreserved<AAResultsWrapperPass>();
207 AU.addRequired<MachineLoopInfo>();
208 AU.addRequired<MachineDominatorTree>();
209 AU.addRequired<LiveIntervals>();
210 MachineFunctionPass::getAnalysisUsage(AU);
211 }
212
213private:
214 bool canPipelineLoop(MachineLoop &L);
215 bool scheduleLoop(MachineLoop &L);
216 bool swingModuloScheduler(MachineLoop &L);
217};
218
219/// This class builds the dependence graph for the instructions in a loop,
220/// and attempts to schedule the instructions using the SMS algorithm.
221class SwingSchedulerDAG : public ScheduleDAGInstrs {
222 MachinePipeliner &Pass;
223 /// The minimum initiation interval between iterations for this schedule.
224 unsigned MII;
225 /// Set to true if a valid pipelined schedule is found for the loop.
226 bool Scheduled;
227 MachineLoop &Loop;
228 LiveIntervals &LIS;
229 const RegisterClassInfo &RegClassInfo;
230
231 /// A toplogical ordering of the SUnits, which is needed for changing
232 /// dependences and iterating over the SUnits.
233 ScheduleDAGTopologicalSort Topo;
234
235 struct NodeInfo {
236 int ASAP;
237 int ALAP;
238 NodeInfo() : ASAP(0), ALAP(0) {}
239 };
240 /// Computed properties for each node in the graph.
241 std::vector<NodeInfo> ScheduleInfo;
242
243 enum OrderKind { BottomUp = 0, TopDown = 1 };
244 /// Computed node ordering for scheduling.
245 SetVector<SUnit *> NodeOrder;
246
247 typedef SmallVector<NodeSet, 8> NodeSetType;
248 typedef DenseMap<unsigned, unsigned> ValueMapTy;
249 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
250 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
251
252 /// Instructions to change when emitting the final schedule.
253 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
254
255 /// We may create a new instruction, so remember it because it
256 /// must be deleted when the pass is finished.
257 SmallPtrSet<MachineInstr *, 4> NewMIs;
258
259 /// Helper class to implement Johnson's circuit finding algorithm.
260 class Circuits {
261 std::vector<SUnit> &SUnits;
262 SetVector<SUnit *> Stack;
263 BitVector Blocked;
264 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
265 SmallVector<SmallVector<int, 4>, 16> AdjK;
266 unsigned NumPaths;
267 static unsigned MaxPaths;
268
269 public:
270 Circuits(std::vector<SUnit> &SUs)
271 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
272 AdjK(SUs.size()) {}
273 /// Reset the data structures used in the circuit algorithm.
274 void reset() {
275 Stack.clear();
276 Blocked.reset();
277 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
278 NumPaths = 0;
279 }
280 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
281 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
282 void unblock(int U);
283 };
284
285public:
286 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
287 const RegisterClassInfo &rci)
288 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
289 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
290 Topo(SUnits, &ExitSU) {}
291
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000292 void schedule() override;
293 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000294
295 /// Return true if the loop kernel has been scheduled.
296 bool hasNewSchedule() { return Scheduled; }
297
298 /// Return the earliest time an instruction may be scheduled.
299 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
300
301 /// Return the latest time an instruction my be scheduled.
302 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
303
304 /// The mobility function, which the the number of slots in which
305 /// an instruction may be scheduled.
306 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
307
308 /// The depth, in the dependence graph, for a node.
309 int getDepth(SUnit *Node) { return Node->getDepth(); }
310
311 /// The height, in the dependence graph, for a node.
312 int getHeight(SUnit *Node) { return Node->getHeight(); }
313
314 /// Return true if the dependence is a back-edge in the data dependence graph.
315 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
316 /// using an anti dependence from a Phi to an instruction.
317 bool isBackedge(SUnit *Source, const SDep &Dep) {
318 if (Dep.getKind() != SDep::Anti)
319 return false;
320 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
321 }
322
323 /// Return true if the dependence is an order dependence between non-Phis.
324 static bool isOrder(SUnit *Source, const SDep &Dep) {
325 if (Dep.getKind() != SDep::Order)
326 return false;
327 return (!Source->getInstr()->isPHI() &&
328 !Dep.getSUnit()->getInstr()->isPHI());
329 }
330
331 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
332
333 /// The latency of the dependence.
334 unsigned getLatency(SUnit *Source, const SDep &Dep) {
335 // Anti dependences represent recurrences, so use the latency of the
336 // instruction on the back-edge.
337 if (Dep.getKind() == SDep::Anti) {
338 if (Source->getInstr()->isPHI())
339 return Dep.getSUnit()->Latency;
340 if (Dep.getSUnit()->getInstr()->isPHI())
341 return Source->Latency;
342 return Dep.getLatency();
343 }
344 return Dep.getLatency();
345 }
346
347 /// The distance function, which indicates that operation V of iteration I
348 /// depends on operations U of iteration I-distance.
349 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
350 // Instructions that feed a Phi have a distance of 1. Computing larger
351 // values for arrays requires data dependence information.
352 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
353 return 1;
354 return 0;
355 }
356
357 /// Set the Minimum Initiation Interval for this schedule attempt.
358 void setMII(unsigned mii) { MII = mii; }
359
360 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
361 bool UpdateDAG = false);
362
363 /// Return the new base register that was stored away for the changed
364 /// instruction.
365 unsigned getInstrBaseReg(SUnit *SU) {
366 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
367 InstrChanges.find(SU);
368 if (It != InstrChanges.end())
369 return It->second.first;
370 return 0;
371 }
372
373private:
374 void addLoopCarriedDependences(AliasAnalysis *AA);
375 void updatePhiDependences();
376 void changeDependences();
377 unsigned calculateResMII();
378 unsigned calculateRecMII(NodeSetType &RecNodeSets);
379 void findCircuits(NodeSetType &NodeSets);
380 void fuseRecs(NodeSetType &NodeSets);
381 void removeDuplicateNodes(NodeSetType &NodeSets);
382 void computeNodeFunctions(NodeSetType &NodeSets);
383 void registerPressureFilter(NodeSetType &NodeSets);
384 void colocateNodeSets(NodeSetType &NodeSets);
385 void checkNodeSets(NodeSetType &NodeSets);
386 void groupRemainingNodes(NodeSetType &NodeSets);
387 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
388 SetVector<SUnit *> &NodesAdded);
389 void computeNodeOrder(NodeSetType &NodeSets);
390 bool schedulePipeline(SMSchedule &Schedule);
391 void generatePipelinedLoop(SMSchedule &Schedule);
392 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
393 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
394 MBBVectorTy &PrologBBs);
395 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
396 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
397 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
398 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
399 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
400 SMSchedule &Schedule, ValueMapTy *VRMap,
401 InstrMapTy &InstrMap, unsigned LastStageNum,
402 unsigned CurStageNum, bool IsLast);
403 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
404 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
405 SMSchedule &Schedule, ValueMapTy *VRMap,
406 InstrMapTy &InstrMap, unsigned LastStageNum,
407 unsigned CurStageNum, bool IsLast);
408 void removeDeadInstructions(MachineBasicBlock *KernelBB,
409 MBBVectorTy &EpilogBBs);
410 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
411 SMSchedule &Schedule);
412 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
413 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
414 ValueMapTy *VRMap);
415 bool computeDelta(MachineInstr &MI, unsigned &Delta);
416 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
417 unsigned Num);
418 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
419 unsigned InstStageNum);
420 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
421 unsigned InstStageNum,
422 SMSchedule &Schedule);
423 void updateInstruction(MachineInstr *NewMI, bool LastDef,
424 unsigned CurStageNum, unsigned InstStageNum,
425 SMSchedule &Schedule, ValueMapTy *VRMap);
426 MachineInstr *findDefInLoop(unsigned Reg);
427 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
428 unsigned LoopStage, ValueMapTy *VRMap,
429 MachineBasicBlock *BB);
430 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
431 SMSchedule &Schedule, ValueMapTy *VRMap,
432 InstrMapTy &InstrMap);
433 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
434 InstrMapTy &InstrMap, unsigned CurStageNum,
435 unsigned PhiNum, MachineInstr *Phi,
436 unsigned OldReg, unsigned NewReg,
437 unsigned PrevReg = 0);
438 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
439 unsigned &OffsetPos, unsigned &NewBase,
440 int64_t &NewOffset);
441};
442
443/// A NodeSet contains a set of SUnit DAG nodes with additional information
444/// that assigns a priority to the set.
445class NodeSet {
446 SetVector<SUnit *> Nodes;
447 bool HasRecurrence;
448 unsigned RecMII = 0;
449 int MaxMOV = 0;
450 int MaxDepth = 0;
451 unsigned Colocate = 0;
452 SUnit *ExceedPressure = nullptr;
453
454public:
455 typedef SetVector<SUnit *>::const_iterator iterator;
456
457 NodeSet() : Nodes(), HasRecurrence(false) {}
458
459 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
460
461 bool insert(SUnit *SU) { return Nodes.insert(SU); }
462
463 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
464
465 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
466 return Nodes.remove_if(P);
467 }
468
469 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
470
471 bool hasRecurrence() { return HasRecurrence; };
472
473 unsigned size() const { return Nodes.size(); }
474
475 bool empty() const { return Nodes.empty(); }
476
477 SUnit *getNode(unsigned i) const { return Nodes[i]; };
478
479 void setRecMII(unsigned mii) { RecMII = mii; };
480
481 void setColocate(unsigned c) { Colocate = c; };
482
483 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
484
485 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
486
487 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
488
489 int getRecMII() { return RecMII; }
490
491 /// Summarize node functions for the entire node set.
492 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
493 for (SUnit *SU : *this) {
494 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
495 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
496 }
497 }
498
499 void clear() {
500 Nodes.clear();
501 RecMII = 0;
502 HasRecurrence = false;
503 MaxMOV = 0;
504 MaxDepth = 0;
505 Colocate = 0;
506 ExceedPressure = nullptr;
507 }
508
509 operator SetVector<SUnit *> &() { return Nodes; }
510
511 /// Sort the node sets by importance. First, rank them by recurrence MII,
512 /// then by mobility (least mobile done first), and finally by depth.
513 /// Each node set may contain a colocate value which is used as the first
514 /// tie breaker, if it's set.
515 bool operator>(const NodeSet &RHS) const {
516 if (RecMII == RHS.RecMII) {
517 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
518 return Colocate < RHS.Colocate;
519 if (MaxMOV == RHS.MaxMOV)
520 return MaxDepth > RHS.MaxDepth;
521 return MaxMOV < RHS.MaxMOV;
522 }
523 return RecMII > RHS.RecMII;
524 }
525
526 bool operator==(const NodeSet &RHS) const {
527 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
528 MaxDepth == RHS.MaxDepth;
529 }
530
531 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
532
533 iterator begin() { return Nodes.begin(); }
534 iterator end() { return Nodes.end(); }
535
536 void print(raw_ostream &os) const {
537 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
538 << " depth " << MaxDepth << " col " << Colocate << "\n";
539 for (const auto &I : Nodes)
540 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
541 os << "\n";
542 }
543
544 void dump() const { print(dbgs()); }
545};
546
547/// This class repesents the scheduled code. The main data structure is a
548/// map from scheduled cycle to instructions. During scheduling, the
549/// data structure explicitly represents all stages/iterations. When
550/// the algorithm finshes, the schedule is collapsed into a single stage,
551/// which represents instructions from different loop iterations.
552///
553/// The SMS algorithm allows negative values for cycles, so the first cycle
554/// in the schedule is the smallest cycle value.
555class SMSchedule {
556private:
557 /// Map from execution cycle to instructions.
558 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
559
560 /// Map from instruction to execution cycle.
561 std::map<SUnit *, int> InstrToCycle;
562
563 /// Map for each register and the max difference between its uses and def.
564 /// The first element in the pair is the max difference in stages. The
565 /// second is true if the register defines a Phi value and loop value is
566 /// scheduled before the Phi.
567 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
568
569 /// Keep track of the first cycle value in the schedule. It starts
570 /// as zero, but the algorithm allows negative values.
571 int FirstCycle;
572
573 /// Keep track of the last cycle value in the schedule.
574 int LastCycle;
575
576 /// The initiation interval (II) for the schedule.
577 int InitiationInterval;
578
579 /// Target machine information.
580 const TargetSubtargetInfo &ST;
581
582 /// Virtual register information.
583 MachineRegisterInfo &MRI;
584
585 DFAPacketizer *Resources;
586
587public:
588 SMSchedule(MachineFunction *mf)
589 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
590 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
591 FirstCycle = 0;
592 LastCycle = 0;
593 InitiationInterval = 0;
594 }
595
596 ~SMSchedule() {
597 ScheduledInstrs.clear();
598 InstrToCycle.clear();
599 RegToStageDiff.clear();
600 delete Resources;
601 }
602
603 void reset() {
604 ScheduledInstrs.clear();
605 InstrToCycle.clear();
606 RegToStageDiff.clear();
607 FirstCycle = 0;
608 LastCycle = 0;
609 InitiationInterval = 0;
610 }
611
612 /// Set the initiation interval for this schedule.
613 void setInitiationInterval(int ii) { InitiationInterval = ii; }
614
615 /// Return the first cycle in the completed schedule. This
616 /// can be a negative value.
617 int getFirstCycle() const { return FirstCycle; }
618
619 /// Return the last cycle in the finalized schedule.
620 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
621
622 /// Return the cycle of the earliest scheduled instruction in the dependence
623 /// chain.
624 int earliestCycleInChain(const SDep &Dep);
625
626 /// Return the cycle of the latest scheduled instruction in the dependence
627 /// chain.
628 int latestCycleInChain(const SDep &Dep);
629
630 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
631 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
632 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
633
634 /// Iterators for the cycle to instruction map.
635 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
636 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
637 const_sched_iterator;
638
639 /// Return true if the instruction is scheduled at the specified stage.
640 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
641 return (stageScheduled(SU) == (int)StageNum);
642 }
643
644 /// Return the stage for a scheduled instruction. Return -1 if
645 /// the instruction has not been scheduled.
646 int stageScheduled(SUnit *SU) const {
647 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
648 if (it == InstrToCycle.end())
649 return -1;
650 return (it->second - FirstCycle) / InitiationInterval;
651 }
652
653 /// Return the cycle for a scheduled instruction. This function normalizes
654 /// the first cycle to be 0.
655 unsigned cycleScheduled(SUnit *SU) const {
656 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
657 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
658 return (it->second - FirstCycle) % InitiationInterval;
659 }
660
661 /// Return the maximum stage count needed for this schedule.
662 unsigned getMaxStageCount() {
663 return (LastCycle - FirstCycle) / InitiationInterval;
664 }
665
666 /// Return the max. number of stages/iterations that can occur between a
667 /// register definition and its uses.
668 unsigned getStagesForReg(int Reg, unsigned CurStage) {
669 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
670 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
671 return 1;
672 return Stages.first;
673 }
674
675 /// The number of stages for a Phi is a little different than other
676 /// instructions. The minimum value computed in RegToStageDiff is 1
677 /// because we assume the Phi is needed for at least 1 iteration.
678 /// This is not the case if the loop value is scheduled prior to the
679 /// Phi in the same stage. This function returns the number of stages
680 /// or iterations needed between the Phi definition and any uses.
681 unsigned getStagesForPhi(int Reg) {
682 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
683 if (Stages.second)
684 return Stages.first;
685 return Stages.first - 1;
686 }
687
688 /// Return the instructions that are scheduled at the specified cycle.
689 std::deque<SUnit *> &getInstructions(int cycle) {
690 return ScheduledInstrs[cycle];
691 }
692
693 bool isValidSchedule(SwingSchedulerDAG *SSD);
694 void finalizeSchedule(SwingSchedulerDAG *SSD);
695 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
696 std::deque<SUnit *> &Insts);
697 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
698 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
699 MachineOperand &MO);
700 void print(raw_ostream &os) const;
701 void dump() const;
702};
703
704} // end anonymous namespace
705
706unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
707char MachinePipeliner::ID = 0;
708#ifndef NDEBUG
709int MachinePipeliner::NumTries = 0;
710#endif
711char &llvm::MachinePipelinerID = MachinePipeliner::ID;
712INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
713 "Modulo Software Pipelining", false, false)
714INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
715INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
716INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
717INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
718INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
719 "Modulo Software Pipelining", false, false)
720
721/// The "main" function for implementing Swing Modulo Scheduling.
722bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
723 if (skipFunction(*mf.getFunction()))
724 return false;
725
726 if (!EnableSWP)
727 return false;
728
729 if (mf.getFunction()->getAttributes().hasAttribute(
730 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
731 !EnableSWPOptSize.getPosition())
732 return false;
733
734 MF = &mf;
735 MLI = &getAnalysis<MachineLoopInfo>();
736 MDT = &getAnalysis<MachineDominatorTree>();
737 TII = MF->getSubtarget().getInstrInfo();
738 RegClassInfo.runOnMachineFunction(*MF);
739
740 for (auto &L : *MLI)
741 scheduleLoop(*L);
742
743 return false;
744}
745
746/// Attempt to perform the SMS algorithm on the specified loop. This function is
747/// the main entry point for the algorithm. The function identifies candidate
748/// loops, calculates the minimum initiation interval, and attempts to schedule
749/// the loop.
750bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
751 bool Changed = false;
752 for (auto &InnerLoop : L)
753 Changed |= scheduleLoop(*InnerLoop);
754
755#ifndef NDEBUG
756 // Stop trying after reaching the limit (if any).
757 int Limit = SwpLoopLimit;
758 if (Limit >= 0) {
759 if (NumTries >= SwpLoopLimit)
760 return Changed;
761 NumTries++;
762 }
763#endif
764
765 if (!canPipelineLoop(L))
766 return Changed;
767
768 ++NumTrytoPipeline;
769
770 Changed = swingModuloScheduler(L);
771
772 return Changed;
773}
774
775/// Return true if the loop can be software pipelined. The algorithm is
776/// restricted to loops with a single basic block. Make sure that the
777/// branch in the loop can be analyzed.
778bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
779 if (L.getNumBlocks() != 1)
780 return false;
781
782 // Check if the branch can't be understood because we can't do pipelining
783 // if that's the case.
784 LI.TBB = nullptr;
785 LI.FBB = nullptr;
786 LI.BrCond.clear();
787 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
788 return false;
789
790 LI.LoopInductionVar = nullptr;
791 LI.LoopCompare = nullptr;
792 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
793 return false;
794
795 if (!L.getLoopPreheader())
796 return false;
797
798 // If any of the Phis contain subregs, then we can't pipeline
799 // because we don't know how to maintain subreg information in the
800 // VMap structure.
801 MachineBasicBlock *MBB = L.getHeader();
802 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
803 BBE = MBB->getFirstNonPHI();
804 BBI != BBE; ++BBI)
805 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
806 if (BBI->getOperand(i).getSubReg() != 0)
807 return false;
808
809 return true;
810}
811
812/// The SMS algorithm consists of the following main steps:
813/// 1. Computation and analysis of the dependence graph.
814/// 2. Ordering of the nodes (instructions).
815/// 3. Attempt to Schedule the loop.
816bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
817 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
818
819 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
820
821 MachineBasicBlock *MBB = L.getHeader();
822 // The kernel should not include any terminator instructions. These
823 // will be added back later.
824 SMS.startBlock(MBB);
825
826 // Compute the number of 'real' instructions in the basic block by
827 // ignoring terminators.
828 unsigned size = MBB->size();
829 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
830 E = MBB->instr_end();
831 I != E; ++I, --size)
832 ;
833
834 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
835 SMS.schedule();
836 SMS.exitRegion();
837
838 SMS.finishBlock();
839 return SMS.hasNewSchedule();
840}
841
842/// We override the schedule function in ScheduleDAGInstrs to implement the
843/// scheduling part of the Swing Modulo Scheduling algorithm.
844void SwingSchedulerDAG::schedule() {
845 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
846 buildSchedGraph(AA);
847 addLoopCarriedDependences(AA);
848 updatePhiDependences();
849 Topo.InitDAGTopologicalSorting();
850 changeDependences();
851 DEBUG({
852 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
853 SUnits[su].dumpAll(this);
854 });
855
856 NodeSetType NodeSets;
857 findCircuits(NodeSets);
858
859 // Calculate the MII.
860 unsigned ResMII = calculateResMII();
861 unsigned RecMII = calculateRecMII(NodeSets);
862
863 fuseRecs(NodeSets);
864
865 // This flag is used for testing and can cause correctness problems.
866 if (SwpIgnoreRecMII)
867 RecMII = 0;
868
869 MII = std::max(ResMII, RecMII);
870 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
871 << ")\n");
872
873 // Can't schedule a loop without a valid MII.
874 if (MII == 0)
875 return;
876
877 // Don't pipeline large loops.
878 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
879 return;
880
881 computeNodeFunctions(NodeSets);
882
883 registerPressureFilter(NodeSets);
884
885 colocateNodeSets(NodeSets);
886
887 checkNodeSets(NodeSets);
888
889 DEBUG({
890 for (auto &I : NodeSets) {
891 dbgs() << " Rec NodeSet ";
892 I.dump();
893 }
894 });
895
896 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
897
898 groupRemainingNodes(NodeSets);
899
900 removeDuplicateNodes(NodeSets);
901
902 DEBUG({
903 for (auto &I : NodeSets) {
904 dbgs() << " NodeSet ";
905 I.dump();
906 }
907 });
908
909 computeNodeOrder(NodeSets);
910
911 SMSchedule Schedule(Pass.MF);
912 Scheduled = schedulePipeline(Schedule);
913
914 if (!Scheduled)
915 return;
916
917 unsigned numStages = Schedule.getMaxStageCount();
918 // No need to generate pipeline if there are no overlapped iterations.
919 if (numStages == 0)
920 return;
921
922 // Check that the maximum stage count is less than user-defined limit.
923 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
924 return;
925
926 generatePipelinedLoop(Schedule);
927 ++NumPipelined;
928}
929
930/// Clean up after the software pipeliner runs.
931void SwingSchedulerDAG::finishBlock() {
932 for (MachineInstr *I : NewMIs)
933 MF.DeleteMachineInstr(I);
934 NewMIs.clear();
935
936 // Call the superclass.
937 ScheduleDAGInstrs::finishBlock();
938}
939
940/// Return the register values for the operands of a Phi instruction.
941/// This function assume the instruction is a Phi.
942static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
943 unsigned &InitVal, unsigned &LoopVal) {
944 assert(Phi.isPHI() && "Expecting a Phi.");
945
946 InitVal = 0;
947 LoopVal = 0;
948 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
949 if (Phi.getOperand(i + 1).getMBB() != Loop)
950 InitVal = Phi.getOperand(i).getReg();
951 else if (Phi.getOperand(i + 1).getMBB() == Loop)
952 LoopVal = Phi.getOperand(i).getReg();
953
954 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
955}
956
957/// Return the Phi register value that comes from the incoming block.
958static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
959 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
960 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
961 return Phi.getOperand(i).getReg();
962 return 0;
963}
964
965/// Return the Phi register value that comes the the loop block.
966static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
967 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
968 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
969 return Phi.getOperand(i).getReg();
970 return 0;
971}
972
973/// Return true if SUb can be reached from SUa following the chain edges.
974static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
975 SmallPtrSet<SUnit *, 8> Visited;
976 SmallVector<SUnit *, 8> Worklist;
977 Worklist.push_back(SUa);
978 while (!Worklist.empty()) {
979 const SUnit *SU = Worklist.pop_back_val();
980 for (auto &SI : SU->Succs) {
981 SUnit *SuccSU = SI.getSUnit();
982 if (SI.getKind() == SDep::Order) {
983 if (Visited.count(SuccSU))
984 continue;
985 if (SuccSU == SUb)
986 return true;
987 Worklist.push_back(SuccSU);
988 Visited.insert(SuccSU);
989 }
990 }
991 }
992 return false;
993}
994
995/// Return true if the instruction causes a chain between memory
996/// references before and after it.
997static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
998 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
999 (MI.hasOrderedMemoryRef() &&
1000 (!MI.mayLoad() || !MI.isInvariantLoad(AA)));
1001}
1002
1003/// Return the underlying objects for the memory references of an instruction.
1004/// This function calls the code in ValueTracking, but first checks that the
1005/// instruction has a memory operand.
1006static void getUnderlyingObjects(MachineInstr *MI,
1007 SmallVectorImpl<Value *> &Objs,
1008 const DataLayout &DL) {
1009 if (!MI->hasOneMemOperand())
1010 return;
1011 MachineMemOperand *MM = *MI->memoperands_begin();
1012 if (!MM->getValue())
1013 return;
1014 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1015}
1016
1017/// Add a chain edge between a load and store if the store can be an
1018/// alias of the load on a subsequent iteration, i.e., a loop carried
1019/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1020/// but that code doesn't create loop carried dependences.
1021void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1022 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1023 for (auto &SU : SUnits) {
1024 MachineInstr &MI = *SU.getInstr();
1025 if (isDependenceBarrier(MI, AA))
1026 PendingLoads.clear();
1027 else if (MI.mayLoad()) {
1028 SmallVector<Value *, 4> Objs;
1029 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1030 for (auto V : Objs) {
1031 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1032 SUs.push_back(&SU);
1033 }
1034 } else if (MI.mayStore()) {
1035 SmallVector<Value *, 4> Objs;
1036 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1037 for (auto V : Objs) {
1038 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1039 PendingLoads.find(V);
1040 if (I == PendingLoads.end())
1041 continue;
1042 for (auto Load : I->second) {
1043 if (isSuccOrder(Load, &SU))
1044 continue;
1045 MachineInstr &LdMI = *Load->getInstr();
1046 // First, perform the cheaper check that compares the base register.
1047 // If they are the same and the load offset is less than the store
1048 // offset, then mark the dependence as loop carried potentially.
1049 unsigned BaseReg1, BaseReg2;
1050 int64_t Offset1, Offset2;
1051 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1052 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1053 SU.addPred(SDep(Load, SDep::Barrier));
1054 continue;
1055 }
1056 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1057 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1058 "What happened to the chain edge?");
1059 SU.addPred(SDep(Load, SDep::Barrier));
1060 continue;
1061 }
1062 // Second, the more expensive check that uses alias analysis on the
1063 // base registers. If they alias, and the load offset is less than
1064 // the store offset, the mark the dependence as loop carried.
1065 if (!AA) {
1066 SU.addPred(SDep(Load, SDep::Barrier));
1067 continue;
1068 }
1069 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1070 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1071 if (!MMO1->getValue() || !MMO2->getValue()) {
1072 SU.addPred(SDep(Load, SDep::Barrier));
1073 continue;
1074 }
1075 if (MMO1->getValue() == MMO2->getValue() &&
1076 MMO1->getOffset() <= MMO2->getOffset()) {
1077 SU.addPred(SDep(Load, SDep::Barrier));
1078 continue;
1079 }
1080 AliasResult AAResult = AA->alias(
1081 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1082 MMO1->getAAInfo()),
1083 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1084 MMO2->getAAInfo()));
1085
1086 if (AAResult != NoAlias)
1087 SU.addPred(SDep(Load, SDep::Barrier));
1088 }
1089 }
1090 }
1091 }
1092}
1093
1094/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1095/// processes dependences for PHIs. This function adds true dependences
1096/// from a PHI to a use, and a loop carried dependence from the use to the
1097/// PHI. The loop carried dependence is represented as an anti dependence
1098/// edge. This function also removes chain dependences between unrelated
1099/// PHIs.
1100void SwingSchedulerDAG::updatePhiDependences() {
1101 SmallVector<SDep, 4> RemoveDeps;
1102 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1103
1104 // Iterate over each DAG node.
1105 for (SUnit &I : SUnits) {
1106 RemoveDeps.clear();
1107 // Set to true if the instruction has an operand defined by a Phi.
1108 unsigned HasPhiUse = 0;
1109 unsigned HasPhiDef = 0;
1110 MachineInstr *MI = I.getInstr();
1111 // Iterate over each operand, and we process the definitions.
1112 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1113 MOE = MI->operands_end();
1114 MOI != MOE; ++MOI) {
1115 if (!MOI->isReg())
1116 continue;
1117 unsigned Reg = MOI->getReg();
1118 if (MOI->isDef()) {
1119 // If the register is used by a Phi, then create an anti dependence.
1120 for (MachineRegisterInfo::use_instr_iterator
1121 UI = MRI.use_instr_begin(Reg),
1122 UE = MRI.use_instr_end();
1123 UI != UE; ++UI) {
1124 MachineInstr *UseMI = &*UI;
1125 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001126 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001127 if (!MI->isPHI()) {
1128 SDep Dep(SU, SDep::Anti, Reg);
1129 I.addPred(Dep);
1130 } else {
1131 HasPhiDef = Reg;
1132 // Add a chain edge to a dependent Phi that isn't an existing
1133 // predecessor.
1134 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1135 I.addPred(SDep(SU, SDep::Barrier));
1136 }
1137 }
1138 }
1139 } else if (MOI->isUse()) {
1140 // If the register is defined by a Phi, then create a true dependence.
1141 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001142 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001143 continue;
1144 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001145 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001146 if (!MI->isPHI()) {
1147 SDep Dep(SU, SDep::Data, Reg);
1148 Dep.setLatency(0);
1149 ST.adjustSchedDependency(SU, &I, Dep);
1150 I.addPred(Dep);
1151 } else {
1152 HasPhiUse = Reg;
1153 // Add a chain edge to a dependent Phi that isn't an existing
1154 // predecessor.
1155 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1156 I.addPred(SDep(SU, SDep::Barrier));
1157 }
1158 }
1159 }
1160 }
1161 // Remove order dependences from an unrelated Phi.
1162 if (!SwpPruneDeps)
1163 continue;
1164 for (auto &PI : I.Preds) {
1165 MachineInstr *PMI = PI.getSUnit()->getInstr();
1166 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1167 if (I.getInstr()->isPHI()) {
1168 if (PMI->getOperand(0).getReg() == HasPhiUse)
1169 continue;
1170 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1171 continue;
1172 }
1173 RemoveDeps.push_back(PI);
1174 }
1175 }
1176 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1177 I.removePred(RemoveDeps[i]);
1178 }
1179}
1180
1181/// Iterate over each DAG node and see if we can change any dependences
1182/// in order to reduce the recurrence MII.
1183void SwingSchedulerDAG::changeDependences() {
1184 // See if an instruction can use a value from the previous iteration.
1185 // If so, we update the base and offset of the instruction and change
1186 // the dependences.
1187 for (SUnit &I : SUnits) {
1188 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1189 int64_t NewOffset = 0;
1190 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1191 NewOffset))
1192 continue;
1193
1194 // Get the MI and SUnit for the instruction that defines the original base.
1195 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1196 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1197 if (!DefMI)
1198 continue;
1199 SUnit *DefSU = getSUnit(DefMI);
1200 if (!DefSU)
1201 continue;
1202 // Get the MI and SUnit for the instruction that defins the new base.
1203 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1204 if (!LastMI)
1205 continue;
1206 SUnit *LastSU = getSUnit(LastMI);
1207 if (!LastSU)
1208 continue;
1209
1210 if (Topo.IsReachable(&I, LastSU))
1211 continue;
1212
1213 // Remove the dependence. The value now depends on a prior iteration.
1214 SmallVector<SDep, 4> Deps;
1215 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1216 ++P)
1217 if (P->getSUnit() == DefSU)
1218 Deps.push_back(*P);
1219 for (int i = 0, e = Deps.size(); i != e; i++) {
1220 Topo.RemovePred(&I, Deps[i].getSUnit());
1221 I.removePred(Deps[i]);
1222 }
1223 // Remove the chain dependence between the instructions.
1224 Deps.clear();
1225 for (auto &P : LastSU->Preds)
1226 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1227 Deps.push_back(P);
1228 for (int i = 0, e = Deps.size(); i != e; i++) {
1229 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1230 LastSU->removePred(Deps[i]);
1231 }
1232
1233 // Add a dependence between the new instruction and the instruction
1234 // that defines the new base.
1235 SDep Dep(&I, SDep::Anti, NewBase);
1236 LastSU->addPred(Dep);
1237
1238 // Remember the base and offset information so that we can update the
1239 // instruction during code generation.
1240 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1241 }
1242}
1243
1244namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001245
Brendon Cahoon254f8892016-07-29 16:44:44 +00001246// FuncUnitSorter - Comparison operator used to sort instructions by
1247// the number of functional unit choices.
1248struct FuncUnitSorter {
1249 const InstrItineraryData *InstrItins;
1250 DenseMap<unsigned, unsigned> Resources;
1251
1252 // Compute the number of functional unit alternatives needed
1253 // at each stage, and take the minimum value. We prioritize the
1254 // instructions by the least number of choices first.
1255 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1256 unsigned schedClass = Inst->getDesc().getSchedClass();
1257 unsigned min = UINT_MAX;
1258 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1259 *IE = InstrItins->endStage(schedClass);
1260 IS != IE; ++IS) {
1261 unsigned funcUnits = IS->getUnits();
1262 unsigned numAlternatives = countPopulation(funcUnits);
1263 if (numAlternatives < min) {
1264 min = numAlternatives;
1265 F = funcUnits;
1266 }
1267 }
1268 return min;
1269 }
1270
1271 // Compute the critical resources needed by the instruction. This
1272 // function records the functional units needed by instructions that
1273 // must use only one functional unit. We use this as a tie breaker
1274 // for computing the resource MII. The instrutions that require
1275 // the same, highly used, functional unit have high priority.
1276 void calcCriticalResources(MachineInstr &MI) {
1277 unsigned SchedClass = MI.getDesc().getSchedClass();
1278 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1279 *IE = InstrItins->endStage(SchedClass);
1280 IS != IE; ++IS) {
1281 unsigned FuncUnits = IS->getUnits();
1282 if (countPopulation(FuncUnits) == 1)
1283 Resources[FuncUnits]++;
1284 }
1285 }
1286
1287 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1288 /// Return true if IS1 has less priority than IS2.
1289 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1290 unsigned F1 = 0, F2 = 0;
1291 unsigned MFUs1 = minFuncUnits(IS1, F1);
1292 unsigned MFUs2 = minFuncUnits(IS2, F2);
1293 if (MFUs1 == 1 && MFUs2 == 1)
1294 return Resources.lookup(F1) < Resources.lookup(F2);
1295 return MFUs1 > MFUs2;
1296 }
1297};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001298
1299} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001300
1301/// Calculate the resource constrained minimum initiation interval for the
1302/// specified loop. We use the DFA to model the resources needed for
1303/// each instruction, and we ignore dependences. A different DFA is created
1304/// for each cycle that is required. When adding a new instruction, we attempt
1305/// to add it to each existing DFA, until a legal space is found. If the
1306/// instruction cannot be reserved in an existing DFA, we create a new one.
1307unsigned SwingSchedulerDAG::calculateResMII() {
1308 SmallVector<DFAPacketizer *, 8> Resources;
1309 MachineBasicBlock *MBB = Loop.getHeader();
1310 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1311
1312 // Sort the instructions by the number of available choices for scheduling,
1313 // least to most. Use the number of critical resources as the tie breaker.
1314 FuncUnitSorter FUS =
1315 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1316 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1317 E = MBB->getFirstTerminator();
1318 I != E; ++I)
1319 FUS.calcCriticalResources(*I);
1320 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1321 FuncUnitOrder(FUS);
1322
1323 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1324 E = MBB->getFirstTerminator();
1325 I != E; ++I)
1326 FuncUnitOrder.push(&*I);
1327
1328 while (!FuncUnitOrder.empty()) {
1329 MachineInstr *MI = FuncUnitOrder.top();
1330 FuncUnitOrder.pop();
1331 if (TII->isZeroCost(MI->getOpcode()))
1332 continue;
1333 // Attempt to reserve the instruction in an existing DFA. At least one
1334 // DFA is needed for each cycle.
1335 unsigned NumCycles = getSUnit(MI)->Latency;
1336 unsigned ReservedCycles = 0;
1337 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1338 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1339 for (unsigned C = 0; C < NumCycles; ++C)
1340 while (RI != RE) {
1341 if ((*RI++)->canReserveResources(*MI)) {
1342 ++ReservedCycles;
1343 break;
1344 }
1345 }
1346 // Start reserving resources using existing DFAs.
1347 for (unsigned C = 0; C < ReservedCycles; ++C) {
1348 --RI;
1349 (*RI)->reserveResources(*MI);
1350 }
1351 // Add new DFAs, if needed, to reserve resources.
1352 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1353 DFAPacketizer *NewResource =
1354 TII->CreateTargetScheduleState(MF.getSubtarget());
1355 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1356 NewResource->reserveResources(*MI);
1357 Resources.push_back(NewResource);
1358 }
1359 }
1360 int Resmii = Resources.size();
1361 // Delete the memory for each of the DFAs that were created earlier.
1362 for (DFAPacketizer *RI : Resources) {
1363 DFAPacketizer *D = RI;
1364 delete D;
1365 }
1366 Resources.clear();
1367 return Resmii;
1368}
1369
1370/// Calculate the recurrence-constrainted minimum initiation interval.
1371/// Iterate over each circuit. Compute the delay(c) and distance(c)
1372/// for each circuit. The II needs to satisfy the inequality
1373/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1374/// II that satistifies the inequality, and the RecMII is the maximum
1375/// of those values.
1376unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1377 unsigned RecMII = 0;
1378
1379 for (NodeSet &Nodes : NodeSets) {
1380 if (Nodes.size() == 0)
1381 continue;
1382
1383 unsigned Delay = Nodes.size() - 1;
1384 unsigned Distance = 1;
1385
1386 // ii = ceil(delay / distance)
1387 unsigned CurMII = (Delay + Distance - 1) / Distance;
1388 Nodes.setRecMII(CurMII);
1389 if (CurMII > RecMII)
1390 RecMII = CurMII;
1391 }
1392
1393 return RecMII;
1394}
1395
1396/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1397/// but we do this to find the circuits, and then change them back.
1398static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1399 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1400 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1401 SUnit *SU = &SUnits[i];
1402 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1403 IP != EP; ++IP) {
1404 if (IP->getKind() != SDep::Anti)
1405 continue;
1406 DepsAdded.push_back(std::make_pair(SU, *IP));
1407 }
1408 }
1409 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1410 E = DepsAdded.end();
1411 I != E; ++I) {
1412 // Remove this anti dependency and add one in the reverse direction.
1413 SUnit *SU = I->first;
1414 SDep &D = I->second;
1415 SUnit *TargetSU = D.getSUnit();
1416 unsigned Reg = D.getReg();
1417 unsigned Lat = D.getLatency();
1418 SU->removePred(D);
1419 SDep Dep(SU, SDep::Anti, Reg);
1420 Dep.setLatency(Lat);
1421 TargetSU->addPred(Dep);
1422 }
1423}
1424
1425/// Create the adjacency structure of the nodes in the graph.
1426void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1427 SwingSchedulerDAG *DAG) {
1428 BitVector Added(SUnits.size());
1429 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1430 Added.reset();
1431 // Add any successor to the adjacency matrix and exclude duplicates.
1432 for (auto &SI : SUnits[i].Succs) {
1433 // Do not process a boundary node and a back-edge is processed only
1434 // if it goes to a Phi.
1435 if (SI.getSUnit()->isBoundaryNode() ||
1436 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1437 continue;
1438 int N = SI.getSUnit()->NodeNum;
1439 if (!Added.test(N)) {
1440 AdjK[i].push_back(N);
1441 Added.set(N);
1442 }
1443 }
1444 // A chain edge between a store and a load is treated as a back-edge in the
1445 // adjacency matrix.
1446 for (auto &PI : SUnits[i].Preds) {
1447 if (!SUnits[i].getInstr()->mayStore() ||
1448 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1449 continue;
1450 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1451 int N = PI.getSUnit()->NodeNum;
1452 if (!Added.test(N)) {
1453 AdjK[i].push_back(N);
1454 Added.set(N);
1455 }
1456 }
1457 }
1458 }
1459}
1460
1461/// Identify an elementary circuit in the dependence graph starting at the
1462/// specified node.
1463bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1464 bool HasBackedge) {
1465 SUnit *SV = &SUnits[V];
1466 bool F = false;
1467 Stack.insert(SV);
1468 Blocked.set(V);
1469
1470 for (auto W : AdjK[V]) {
1471 if (NumPaths > MaxPaths)
1472 break;
1473 if (W < S)
1474 continue;
1475 if (W == S) {
1476 if (!HasBackedge)
1477 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1478 F = true;
1479 ++NumPaths;
1480 break;
1481 } else if (!Blocked.test(W)) {
1482 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1483 F = true;
1484 }
1485 }
1486
1487 if (F)
1488 unblock(V);
1489 else {
1490 for (auto W : AdjK[V]) {
1491 if (W < S)
1492 continue;
1493 if (B[W].count(SV) == 0)
1494 B[W].insert(SV);
1495 }
1496 }
1497 Stack.pop_back();
1498 return F;
1499}
1500
1501/// Unblock a node in the circuit finding algorithm.
1502void SwingSchedulerDAG::Circuits::unblock(int U) {
1503 Blocked.reset(U);
1504 SmallPtrSet<SUnit *, 4> &BU = B[U];
1505 while (!BU.empty()) {
1506 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1507 assert(SI != BU.end() && "Invalid B set.");
1508 SUnit *W = *SI;
1509 BU.erase(W);
1510 if (Blocked.test(W->NodeNum))
1511 unblock(W->NodeNum);
1512 }
1513}
1514
1515/// Identify all the elementary circuits in the dependence graph using
1516/// Johnson's circuit algorithm.
1517void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1518 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1519 // but we do this to find the circuits, and then change them back.
1520 swapAntiDependences(SUnits);
1521
1522 Circuits Cir(SUnits);
1523 // Create the adjacency structure.
1524 Cir.createAdjacencyStructure(this);
1525 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1526 Cir.reset();
1527 Cir.circuit(i, i, NodeSets);
1528 }
1529
1530 // Change the dependences back so that we've created a DAG again.
1531 swapAntiDependences(SUnits);
1532}
1533
1534/// Return true for DAG nodes that we ignore when computing the cost functions.
1535/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1536/// in the calculation of the ASAP, ALAP, etc functions.
1537static bool ignoreDependence(const SDep &D, bool isPred) {
1538 if (D.isArtificial())
1539 return true;
1540 return D.getKind() == SDep::Anti && isPred;
1541}
1542
1543/// Compute several functions need to order the nodes for scheduling.
1544/// ASAP - Earliest time to schedule a node.
1545/// ALAP - Latest time to schedule a node.
1546/// MOV - Mobility function, difference between ALAP and ASAP.
1547/// D - Depth of each node.
1548/// H - Height of each node.
1549void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1550
1551 ScheduleInfo.resize(SUnits.size());
1552
1553 DEBUG({
1554 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1555 E = Topo.end();
1556 I != E; ++I) {
1557 SUnit *SU = &SUnits[*I];
1558 SU->dump(this);
1559 }
1560 });
1561
1562 int maxASAP = 0;
1563 // Compute ASAP.
1564 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1565 E = Topo.end();
1566 I != E; ++I) {
1567 int asap = 0;
1568 SUnit *SU = &SUnits[*I];
1569 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1570 EP = SU->Preds.end();
1571 IP != EP; ++IP) {
1572 if (ignoreDependence(*IP, true))
1573 continue;
1574 SUnit *pred = IP->getSUnit();
1575 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1576 getDistance(pred, SU, *IP) * MII));
1577 }
1578 maxASAP = std::max(maxASAP, asap);
1579 ScheduleInfo[*I].ASAP = asap;
1580 }
1581
1582 // Compute ALAP and MOV.
1583 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1584 E = Topo.rend();
1585 I != E; ++I) {
1586 int alap = maxASAP;
1587 SUnit *SU = &SUnits[*I];
1588 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1589 ES = SU->Succs.end();
1590 IS != ES; ++IS) {
1591 if (ignoreDependence(*IS, true))
1592 continue;
1593 SUnit *succ = IS->getSUnit();
1594 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1595 getDistance(SU, succ, *IS) * MII));
1596 }
1597
1598 ScheduleInfo[*I].ALAP = alap;
1599 }
1600
1601 // After computing the node functions, compute the summary for each node set.
1602 for (NodeSet &I : NodeSets)
1603 I.computeNodeSetInfo(this);
1604
1605 DEBUG({
1606 for (unsigned i = 0; i < SUnits.size(); i++) {
1607 dbgs() << "\tNode " << i << ":\n";
1608 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1609 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1610 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1611 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1612 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1613 }
1614 });
1615}
1616
1617/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1618/// as the predecessors of the elements of NodeOrder that are not also in
1619/// NodeOrder.
1620static bool pred_L(SetVector<SUnit *> &NodeOrder,
1621 SmallSetVector<SUnit *, 8> &Preds,
1622 const NodeSet *S = nullptr) {
1623 Preds.clear();
1624 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1625 I != E; ++I) {
1626 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1627 PI != PE; ++PI) {
1628 if (S && S->count(PI->getSUnit()) == 0)
1629 continue;
1630 if (ignoreDependence(*PI, true))
1631 continue;
1632 if (NodeOrder.count(PI->getSUnit()) == 0)
1633 Preds.insert(PI->getSUnit());
1634 }
1635 // Back-edges are predecessors with an anti-dependence.
1636 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1637 ES = (*I)->Succs.end();
1638 IS != ES; ++IS) {
1639 if (IS->getKind() != SDep::Anti)
1640 continue;
1641 if (S && S->count(IS->getSUnit()) == 0)
1642 continue;
1643 if (NodeOrder.count(IS->getSUnit()) == 0)
1644 Preds.insert(IS->getSUnit());
1645 }
1646 }
1647 return Preds.size() > 0;
1648}
1649
1650/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1651/// as the successors of the elements of NodeOrder that are not also in
1652/// NodeOrder.
1653static bool succ_L(SetVector<SUnit *> &NodeOrder,
1654 SmallSetVector<SUnit *, 8> &Succs,
1655 const NodeSet *S = nullptr) {
1656 Succs.clear();
1657 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1658 I != E; ++I) {
1659 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1660 SI != SE; ++SI) {
1661 if (S && S->count(SI->getSUnit()) == 0)
1662 continue;
1663 if (ignoreDependence(*SI, false))
1664 continue;
1665 if (NodeOrder.count(SI->getSUnit()) == 0)
1666 Succs.insert(SI->getSUnit());
1667 }
1668 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1669 PE = (*I)->Preds.end();
1670 PI != PE; ++PI) {
1671 if (PI->getKind() != SDep::Anti)
1672 continue;
1673 if (S && S->count(PI->getSUnit()) == 0)
1674 continue;
1675 if (NodeOrder.count(PI->getSUnit()) == 0)
1676 Succs.insert(PI->getSUnit());
1677 }
1678 }
1679 return Succs.size() > 0;
1680}
1681
1682/// Return true if there is a path from the specified node to any of the nodes
1683/// in DestNodes. Keep track and return the nodes in any path.
1684static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1685 SetVector<SUnit *> &DestNodes,
1686 SetVector<SUnit *> &Exclude,
1687 SmallPtrSet<SUnit *, 8> &Visited) {
1688 if (Cur->isBoundaryNode())
1689 return false;
1690 if (Exclude.count(Cur) != 0)
1691 return false;
1692 if (DestNodes.count(Cur) != 0)
1693 return true;
1694 if (!Visited.insert(Cur).second)
1695 return Path.count(Cur) != 0;
1696 bool FoundPath = false;
1697 for (auto &SI : Cur->Succs)
1698 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1699 for (auto &PI : Cur->Preds)
1700 if (PI.getKind() == SDep::Anti)
1701 FoundPath |=
1702 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1703 if (FoundPath)
1704 Path.insert(Cur);
1705 return FoundPath;
1706}
1707
1708/// Return true if Set1 is a subset of Set2.
1709template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1710 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1711 if (Set2.count(*I) == 0)
1712 return false;
1713 return true;
1714}
1715
1716/// Compute the live-out registers for the instructions in a node-set.
1717/// The live-out registers are those that are defined in the node-set,
1718/// but not used. Except for use operands of Phis.
1719static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1720 NodeSet &NS) {
1721 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1722 MachineRegisterInfo &MRI = MF.getRegInfo();
1723 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1724 SmallSet<unsigned, 4> Uses;
1725 for (SUnit *SU : NS) {
1726 const MachineInstr *MI = SU->getInstr();
1727 if (MI->isPHI())
1728 continue;
1729 for (ConstMIOperands MO(*MI); MO.isValid(); ++MO)
1730 if (MO->isReg() && MO->isUse()) {
1731 unsigned Reg = MO->getReg();
1732 if (TargetRegisterInfo::isVirtualRegister(Reg))
1733 Uses.insert(Reg);
1734 else if (MRI.isAllocatable(Reg))
1735 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1736 Uses.insert(*Units);
1737 }
1738 }
1739 for (SUnit *SU : NS)
1740 for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO)
1741 if (MO->isReg() && MO->isDef() && !MO->isDead()) {
1742 unsigned Reg = MO->getReg();
1743 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1744 if (!Uses.count(Reg))
1745 LiveOutRegs.push_back(RegisterMaskPair(Reg, 0));
1746 } else if (MRI.isAllocatable(Reg)) {
1747 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1748 if (!Uses.count(*Units))
1749 LiveOutRegs.push_back(RegisterMaskPair(*Units, 0));
1750 }
1751 }
1752 RPTracker.addLiveRegs(LiveOutRegs);
1753}
1754
1755/// A heuristic to filter nodes in recurrent node-sets if the register
1756/// pressure of a set is too high.
1757void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1758 for (auto &NS : NodeSets) {
1759 // Skip small node-sets since they won't cause register pressure problems.
1760 if (NS.size() <= 2)
1761 continue;
1762 IntervalPressure RecRegPressure;
1763 RegPressureTracker RecRPTracker(RecRegPressure);
1764 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1765 computeLiveOuts(MF, RecRPTracker, NS);
1766 RecRPTracker.closeBottom();
1767
1768 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1769 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1770 return A->NodeNum > B->NodeNum;
1771 });
1772
1773 for (auto &SU : SUnits) {
1774 // Since we're computing the register pressure for a subset of the
1775 // instructions in a block, we need to set the tracker for each
1776 // instruction in the node-set. The tracker is set to the instruction
1777 // just after the one we're interested in.
1778 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1779 RecRPTracker.setPos(std::next(CurInstI));
1780
1781 RegPressureDelta RPDelta;
1782 ArrayRef<PressureChange> CriticalPSets;
1783 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1784 CriticalPSets,
1785 RecRegPressure.MaxSetPressure);
1786 if (RPDelta.Excess.isValid()) {
1787 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1788 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1789 << ":" << RPDelta.Excess.getUnitInc());
1790 NS.setExceedPressure(SU);
1791 break;
1792 }
1793 RecRPTracker.recede();
1794 }
1795 }
1796}
1797
1798/// A heuristic to colocate node sets that have the same set of
1799/// successors.
1800void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1801 unsigned Colocate = 0;
1802 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1803 NodeSet &N1 = NodeSets[i];
1804 SmallSetVector<SUnit *, 8> S1;
1805 if (N1.empty() || !succ_L(N1, S1))
1806 continue;
1807 for (int j = i + 1; j < e; ++j) {
1808 NodeSet &N2 = NodeSets[j];
1809 if (N1.compareRecMII(N2) != 0)
1810 continue;
1811 SmallSetVector<SUnit *, 8> S2;
1812 if (N2.empty() || !succ_L(N2, S2))
1813 continue;
1814 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1815 N1.setColocate(++Colocate);
1816 N2.setColocate(Colocate);
1817 break;
1818 }
1819 }
1820 }
1821}
1822
1823/// Check if the existing node-sets are profitable. If not, then ignore the
1824/// recurrent node-sets, and attempt to schedule all nodes together. This is
1825/// a heuristic. If the MII is large and there is a non-recurrent node with
1826/// a large depth compared to the MII, then it's best to try and schedule
1827/// all instruction together instead of starting with the recurrent node-sets.
1828void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1829 // Look for loops with a large MII.
1830 if (MII <= 20)
1831 return;
1832 // Check if the node-set contains only a simple add recurrence.
1833 for (auto &NS : NodeSets)
1834 if (NS.size() > 2)
1835 return;
1836 // If the depth of any instruction is significantly larger than the MII, then
1837 // ignore the recurrent node-sets and treat all instructions equally.
1838 for (auto &SU : SUnits)
1839 if (SU.getDepth() > MII * 1.5) {
1840 NodeSets.clear();
1841 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1842 return;
1843 }
1844}
1845
1846/// Add the nodes that do not belong to a recurrence set into groups
1847/// based upon connected componenets.
1848void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1849 SetVector<SUnit *> NodesAdded;
1850 SmallPtrSet<SUnit *, 8> Visited;
1851 // Add the nodes that are on a path between the previous node sets and
1852 // the current node set.
1853 for (NodeSet &I : NodeSets) {
1854 SmallSetVector<SUnit *, 8> N;
1855 // Add the nodes from the current node set to the previous node set.
1856 if (succ_L(I, N)) {
1857 SetVector<SUnit *> Path;
1858 for (SUnit *NI : N) {
1859 Visited.clear();
1860 computePath(NI, Path, NodesAdded, I, Visited);
1861 }
1862 if (Path.size() > 0)
1863 I.insert(Path.begin(), Path.end());
1864 }
1865 // Add the nodes from the previous node set to the current node set.
1866 N.clear();
1867 if (succ_L(NodesAdded, N)) {
1868 SetVector<SUnit *> Path;
1869 for (SUnit *NI : N) {
1870 Visited.clear();
1871 computePath(NI, Path, I, NodesAdded, Visited);
1872 }
1873 if (Path.size() > 0)
1874 I.insert(Path.begin(), Path.end());
1875 }
1876 NodesAdded.insert(I.begin(), I.end());
1877 }
1878
1879 // Create a new node set with the connected nodes of any successor of a node
1880 // in a recurrent set.
1881 NodeSet NewSet;
1882 SmallSetVector<SUnit *, 8> N;
1883 if (succ_L(NodesAdded, N))
1884 for (SUnit *I : N)
1885 addConnectedNodes(I, NewSet, NodesAdded);
1886 if (NewSet.size() > 0)
1887 NodeSets.push_back(NewSet);
1888
1889 // Create a new node set with the connected nodes of any predecessor of a node
1890 // in a recurrent set.
1891 NewSet.clear();
1892 if (pred_L(NodesAdded, N))
1893 for (SUnit *I : N)
1894 addConnectedNodes(I, NewSet, NodesAdded);
1895 if (NewSet.size() > 0)
1896 NodeSets.push_back(NewSet);
1897
1898 // Create new nodes sets with the connected nodes any any remaining node that
1899 // has no predecessor.
1900 for (unsigned i = 0; i < SUnits.size(); ++i) {
1901 SUnit *SU = &SUnits[i];
1902 if (NodesAdded.count(SU) == 0) {
1903 NewSet.clear();
1904 addConnectedNodes(SU, NewSet, NodesAdded);
1905 if (NewSet.size() > 0)
1906 NodeSets.push_back(NewSet);
1907 }
1908 }
1909}
1910
1911/// Add the node to the set, and add all is its connected nodes to the set.
1912void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1913 SetVector<SUnit *> &NodesAdded) {
1914 NewSet.insert(SU);
1915 NodesAdded.insert(SU);
1916 for (auto &SI : SU->Succs) {
1917 SUnit *Successor = SI.getSUnit();
1918 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1919 addConnectedNodes(Successor, NewSet, NodesAdded);
1920 }
1921 for (auto &PI : SU->Preds) {
1922 SUnit *Predecessor = PI.getSUnit();
1923 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1924 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1925 }
1926}
1927
1928/// Return true if Set1 contains elements in Set2. The elements in common
1929/// are returned in a different container.
1930static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1931 SmallSetVector<SUnit *, 8> &Result) {
1932 Result.clear();
1933 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1934 SUnit *SU = Set1[i];
1935 if (Set2.count(SU) != 0)
1936 Result.insert(SU);
1937 }
1938 return !Result.empty();
1939}
1940
1941/// Merge the recurrence node sets that have the same initial node.
1942void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1943 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1944 ++I) {
1945 NodeSet &NI = *I;
1946 for (NodeSetType::iterator J = I + 1; J != E;) {
1947 NodeSet &NJ = *J;
1948 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1949 if (NJ.compareRecMII(NI) > 0)
1950 NI.setRecMII(NJ.getRecMII());
1951 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1952 ++NII)
1953 I->insert(*NII);
1954 NodeSets.erase(J);
1955 E = NodeSets.end();
1956 } else {
1957 ++J;
1958 }
1959 }
1960 }
1961}
1962
1963/// Remove nodes that have been scheduled in previous NodeSets.
1964void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1965 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1966 ++I)
1967 for (NodeSetType::iterator J = I + 1; J != E;) {
1968 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1969
1970 if (J->size() == 0) {
1971 NodeSets.erase(J);
1972 E = NodeSets.end();
1973 } else {
1974 ++J;
1975 }
1976 }
1977}
1978
1979/// Return true if Inst1 defines a value that is used in Inst2.
1980static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
1981 for (auto &SI : Inst1->Succs)
1982 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
1983 return true;
1984 return false;
1985}
1986
1987/// Compute an ordered list of the dependence graph nodes, which
1988/// indicates the order that the nodes will be scheduled. This is a
1989/// two-level algorithm. First, a partial order is created, which
1990/// consists of a list of sets ordered from highest to lowest priority.
1991void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1992 SmallSetVector<SUnit *, 8> R;
1993 NodeOrder.clear();
1994
1995 for (auto &Nodes : NodeSets) {
1996 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1997 OrderKind Order;
1998 SmallSetVector<SUnit *, 8> N;
1999 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2000 R.insert(N.begin(), N.end());
2001 Order = BottomUp;
2002 DEBUG(dbgs() << " Bottom up (preds) ");
2003 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2004 R.insert(N.begin(), N.end());
2005 Order = TopDown;
2006 DEBUG(dbgs() << " Top down (succs) ");
2007 } else if (isIntersect(N, Nodes, R)) {
2008 // If some of the successors are in the existing node-set, then use the
2009 // top-down ordering.
2010 Order = TopDown;
2011 DEBUG(dbgs() << " Top down (intersect) ");
2012 } else if (NodeSets.size() == 1) {
2013 for (auto &N : Nodes)
2014 if (N->Succs.size() == 0)
2015 R.insert(N);
2016 Order = BottomUp;
2017 DEBUG(dbgs() << " Bottom up (all) ");
2018 } else {
2019 // Find the node with the highest ASAP.
2020 SUnit *maxASAP = nullptr;
2021 for (SUnit *SU : Nodes) {
2022 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
2023 maxASAP = SU;
2024 }
2025 R.insert(maxASAP);
2026 Order = BottomUp;
2027 DEBUG(dbgs() << " Bottom up (default) ");
2028 }
2029
2030 while (!R.empty()) {
2031 if (Order == TopDown) {
2032 // Choose the node with the maximum height. If more than one, choose
2033 // the node with the lowest MOV. If still more than one, check if there
2034 // is a dependence between the instructions.
2035 while (!R.empty()) {
2036 SUnit *maxHeight = nullptr;
2037 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002038 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002039 maxHeight = I;
2040 else if (getHeight(I) == getHeight(maxHeight) &&
2041 getMOV(I) < getMOV(maxHeight) &&
2042 !hasDataDependence(maxHeight, I))
2043 maxHeight = I;
2044 else if (hasDataDependence(I, maxHeight))
2045 maxHeight = I;
2046 }
2047 NodeOrder.insert(maxHeight);
2048 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2049 R.remove(maxHeight);
2050 for (const auto &I : maxHeight->Succs) {
2051 if (Nodes.count(I.getSUnit()) == 0)
2052 continue;
2053 if (NodeOrder.count(I.getSUnit()) != 0)
2054 continue;
2055 if (ignoreDependence(I, false))
2056 continue;
2057 R.insert(I.getSUnit());
2058 }
2059 // Back-edges are predecessors with an anti-dependence.
2060 for (const auto &I : maxHeight->Preds) {
2061 if (I.getKind() != SDep::Anti)
2062 continue;
2063 if (Nodes.count(I.getSUnit()) == 0)
2064 continue;
2065 if (NodeOrder.count(I.getSUnit()) != 0)
2066 continue;
2067 R.insert(I.getSUnit());
2068 }
2069 }
2070 Order = BottomUp;
2071 DEBUG(dbgs() << "\n Switching order to bottom up ");
2072 SmallSetVector<SUnit *, 8> N;
2073 if (pred_L(NodeOrder, N, &Nodes))
2074 R.insert(N.begin(), N.end());
2075 } else {
2076 // Choose the node with the maximum depth. If more than one, choose
2077 // the node with the lowest MOV. If there is still more than one, check
2078 // for a dependence between the instructions.
2079 while (!R.empty()) {
2080 SUnit *maxDepth = nullptr;
2081 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002082 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002083 maxDepth = I;
2084 else if (getDepth(I) == getDepth(maxDepth) &&
2085 getMOV(I) < getMOV(maxDepth) &&
2086 !hasDataDependence(I, maxDepth))
2087 maxDepth = I;
2088 else if (hasDataDependence(maxDepth, I))
2089 maxDepth = I;
2090 }
2091 NodeOrder.insert(maxDepth);
2092 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2093 R.remove(maxDepth);
2094 if (Nodes.isExceedSU(maxDepth)) {
2095 Order = TopDown;
2096 R.clear();
2097 R.insert(Nodes.getNode(0));
2098 break;
2099 }
2100 for (const auto &I : maxDepth->Preds) {
2101 if (Nodes.count(I.getSUnit()) == 0)
2102 continue;
2103 if (NodeOrder.count(I.getSUnit()) != 0)
2104 continue;
2105 if (I.getKind() == SDep::Anti)
2106 continue;
2107 R.insert(I.getSUnit());
2108 }
2109 // Back-edges are predecessors with an anti-dependence.
2110 for (const auto &I : maxDepth->Succs) {
2111 if (I.getKind() != SDep::Anti)
2112 continue;
2113 if (Nodes.count(I.getSUnit()) == 0)
2114 continue;
2115 if (NodeOrder.count(I.getSUnit()) != 0)
2116 continue;
2117 R.insert(I.getSUnit());
2118 }
2119 }
2120 Order = TopDown;
2121 DEBUG(dbgs() << "\n Switching order to top down ");
2122 SmallSetVector<SUnit *, 8> N;
2123 if (succ_L(NodeOrder, N, &Nodes))
2124 R.insert(N.begin(), N.end());
2125 }
2126 }
2127 DEBUG(dbgs() << "\nDone with Nodeset\n");
2128 }
2129
2130 DEBUG({
2131 dbgs() << "Node order: ";
2132 for (SUnit *I : NodeOrder)
2133 dbgs() << " " << I->NodeNum << " ";
2134 dbgs() << "\n";
2135 });
2136}
2137
2138/// Process the nodes in the computed order and create the pipelined schedule
2139/// of the instructions, if possible. Return true if a schedule is found.
2140bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2141
2142 if (NodeOrder.size() == 0)
2143 return false;
2144
2145 bool scheduleFound = false;
2146 // Keep increasing II until a valid schedule is found.
2147 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2148 Schedule.reset();
2149 Schedule.setInitiationInterval(II);
2150 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2151
2152 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2153 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2154 do {
2155 SUnit *SU = *NI;
2156
2157 // Compute the schedule time for the instruction, which is based
2158 // upon the scheduled time for any predecessors/successors.
2159 int EarlyStart = INT_MIN;
2160 int LateStart = INT_MAX;
2161 // These values are set when the size of the schedule window is limited
2162 // due to chain dependences.
2163 int SchedEnd = INT_MAX;
2164 int SchedStart = INT_MIN;
2165 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2166 II, this);
2167 DEBUG({
2168 dbgs() << "Inst (" << SU->NodeNum << ") ";
2169 SU->getInstr()->dump();
2170 dbgs() << "\n";
2171 });
2172 DEBUG({
2173 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2174 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2175 });
2176
2177 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2178 SchedStart > LateStart)
2179 scheduleFound = false;
2180 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2181 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2182 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2183 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2184 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2185 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2186 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2187 SchedEnd =
2188 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2189 // When scheduling a Phi it is better to start at the late cycle and go
2190 // backwards. The default order may insert the Phi too far away from
2191 // its first dependence.
2192 if (SU->getInstr()->isPHI())
2193 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2194 else
2195 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2196 } else {
2197 int FirstCycle = Schedule.getFirstCycle();
2198 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2199 FirstCycle + getASAP(SU) + II - 1, II);
2200 }
2201 // Even if we find a schedule, make sure the schedule doesn't exceed the
2202 // allowable number of stages. We keep trying if this happens.
2203 if (scheduleFound)
2204 if (SwpMaxStages > -1 &&
2205 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2206 scheduleFound = false;
2207
2208 DEBUG({
2209 if (!scheduleFound)
2210 dbgs() << "\tCan't schedule\n";
2211 });
2212 } while (++NI != NE && scheduleFound);
2213
2214 // If a schedule is found, check if it is a valid schedule too.
2215 if (scheduleFound)
2216 scheduleFound = Schedule.isValidSchedule(this);
2217 }
2218
2219 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2220
2221 if (scheduleFound)
2222 Schedule.finalizeSchedule(this);
2223 else
2224 Schedule.reset();
2225
2226 return scheduleFound && Schedule.getMaxStageCount() > 0;
2227}
2228
2229/// Given a schedule for the loop, generate a new version of the loop,
2230/// and replace the old version. This function generates a prolog
2231/// that contains the initial iterations in the pipeline, and kernel
2232/// loop, and the epilogue that contains the code for the final
2233/// iterations.
2234void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2235 // Create a new basic block for the kernel and add it to the CFG.
2236 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2237
2238 unsigned MaxStageCount = Schedule.getMaxStageCount();
2239
2240 // Remember the registers that are used in different stages. The index is
2241 // the iteration, or stage, that the instruction is scheduled in. This is
2242 // a map between register names in the orignal block and the names created
2243 // in each stage of the pipelined loop.
2244 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2245 InstrMapTy InstrMap;
2246
2247 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2248 // Generate the prolog instructions that set up the pipeline.
2249 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2250 MF.insert(BB->getIterator(), KernelBB);
2251
2252 // Rearrange the instructions to generate the new, pipelined loop,
2253 // and update register names as needed.
2254 for (int Cycle = Schedule.getFirstCycle(),
2255 LastCycle = Schedule.getFinalCycle();
2256 Cycle <= LastCycle; ++Cycle) {
2257 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2258 // This inner loop schedules each instruction in the cycle.
2259 for (SUnit *CI : CycleInstrs) {
2260 if (CI->getInstr()->isPHI())
2261 continue;
2262 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2263 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2264 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2265 KernelBB->push_back(NewMI);
2266 InstrMap[NewMI] = CI->getInstr();
2267 }
2268 }
2269
2270 // Copy any terminator instructions to the new kernel, and update
2271 // names as needed.
2272 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2273 E = BB->instr_end();
2274 I != E; ++I) {
2275 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2276 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2277 KernelBB->push_back(NewMI);
2278 InstrMap[NewMI] = &*I;
2279 }
2280
2281 KernelBB->transferSuccessors(BB);
2282 KernelBB->replaceSuccessor(BB, KernelBB);
2283
2284 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2285 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2286 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2287 InstrMap, MaxStageCount, MaxStageCount, false);
2288
2289 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2290
2291 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2292 // Generate the epilog instructions to complete the pipeline.
2293 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2294 PrologBBs);
2295
2296 // We need this step because the register allocation doesn't handle some
2297 // situations well, so we insert copies to help out.
2298 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2299
2300 // Remove dead instructions due to loop induction variables.
2301 removeDeadInstructions(KernelBB, EpilogBBs);
2302
2303 // Add branches between prolog and epilog blocks.
2304 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2305
2306 // Remove the original loop since it's no longer referenced.
2307 BB->clear();
2308 BB->eraseFromParent();
2309
2310 delete[] VRMap;
2311}
2312
2313/// Generate the pipeline prolog code.
2314void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2315 MachineBasicBlock *KernelBB,
2316 ValueMapTy *VRMap,
2317 MBBVectorTy &PrologBBs) {
2318 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2319 assert(PreheaderBB != NULL &&
2320 "Need to add code to handle loops w/o preheader");
2321 MachineBasicBlock *PredBB = PreheaderBB;
2322 InstrMapTy InstrMap;
2323
2324 // Generate a basic block for each stage, not including the last stage,
2325 // which will be generated in the kernel. Each basic block may contain
2326 // instructions from multiple stages/iterations.
2327 for (unsigned i = 0; i < LastStage; ++i) {
2328 // Create and insert the prolog basic block prior to the original loop
2329 // basic block. The original loop is removed later.
2330 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2331 PrologBBs.push_back(NewBB);
2332 MF.insert(BB->getIterator(), NewBB);
2333 NewBB->transferSuccessors(PredBB);
2334 PredBB->addSuccessor(NewBB);
2335 PredBB = NewBB;
2336
2337 // Generate instructions for each appropriate stage. Process instructions
2338 // in original program order.
2339 for (int StageNum = i; StageNum >= 0; --StageNum) {
2340 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2341 BBE = BB->getFirstTerminator();
2342 BBI != BBE; ++BBI) {
2343 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2344 if (BBI->isPHI())
2345 continue;
2346 MachineInstr *NewMI =
2347 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2348 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2349 VRMap);
2350 NewBB->push_back(NewMI);
2351 InstrMap[NewMI] = &*BBI;
2352 }
2353 }
2354 }
2355 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2356 DEBUG({
2357 dbgs() << "prolog:\n";
2358 NewBB->dump();
2359 });
2360 }
2361
2362 PredBB->replaceSuccessor(BB, KernelBB);
2363
2364 // Check if we need to remove the branch from the preheader to the original
2365 // loop, and replace it with a branch to the new loop.
2366 unsigned numBranches = TII->RemoveBranch(*PreheaderBB);
2367 if (numBranches) {
2368 SmallVector<MachineOperand, 0> Cond;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002369 TII->InsertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002370 }
2371}
2372
2373/// Generate the pipeline epilog code. The epilog code finishes the iterations
2374/// that were started in either the prolog or the kernel. We create a basic
2375/// block for each stage that needs to complete.
2376void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2377 MachineBasicBlock *KernelBB,
2378 ValueMapTy *VRMap,
2379 MBBVectorTy &EpilogBBs,
2380 MBBVectorTy &PrologBBs) {
2381 // We need to change the branch from the kernel to the first epilog block, so
2382 // this call to analyze branch uses the kernel rather than the original BB.
2383 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2384 SmallVector<MachineOperand, 4> Cond;
2385 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2386 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2387 if (checkBranch)
2388 return;
2389
2390 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2391 if (*LoopExitI == KernelBB)
2392 ++LoopExitI;
2393 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2394 MachineBasicBlock *LoopExitBB = *LoopExitI;
2395
2396 MachineBasicBlock *PredBB = KernelBB;
2397 MachineBasicBlock *EpilogStart = LoopExitBB;
2398 InstrMapTy InstrMap;
2399
2400 // Generate a basic block for each stage, not including the last stage,
2401 // which was generated for the kernel. Each basic block may contain
2402 // instructions from multiple stages/iterations.
2403 int EpilogStage = LastStage + 1;
2404 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2405 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2406 EpilogBBs.push_back(NewBB);
2407 MF.insert(BB->getIterator(), NewBB);
2408
2409 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2410 NewBB->addSuccessor(LoopExitBB);
2411
2412 if (EpilogStart == LoopExitBB)
2413 EpilogStart = NewBB;
2414
2415 // Add instructions to the epilog depending on the current block.
2416 // Process instructions in original program order.
2417 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2418 for (auto &BBI : *BB) {
2419 if (BBI.isPHI())
2420 continue;
2421 MachineInstr *In = &BBI;
2422 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2423 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2424 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2425 NewBB->push_back(NewMI);
2426 InstrMap[NewMI] = In;
2427 }
2428 }
2429 }
2430 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2431 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2432 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2433 InstrMap, LastStage, EpilogStage, i == 1);
2434 PredBB = NewBB;
2435
2436 DEBUG({
2437 dbgs() << "epilog:\n";
2438 NewBB->dump();
2439 });
2440 }
2441
2442 // Fix any Phi nodes in the loop exit block.
2443 for (MachineInstr &MI : *LoopExitBB) {
2444 if (!MI.isPHI())
2445 break;
2446 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2447 MachineOperand &MO = MI.getOperand(i);
2448 if (MO.getMBB() == BB)
2449 MO.setMBB(PredBB);
2450 }
2451 }
2452
2453 // Create a branch to the new epilog from the kernel.
2454 // Remove the original branch and add a new branch to the epilog.
2455 TII->RemoveBranch(*KernelBB);
2456 TII->InsertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2457 // Add a branch to the loop exit.
2458 if (EpilogBBs.size() > 0) {
2459 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2460 SmallVector<MachineOperand, 4> Cond1;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002461 TII->InsertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002462 }
2463}
2464
2465/// Replace all uses of FromReg that appear outside the specified
2466/// basic block with ToReg.
2467static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2468 MachineBasicBlock *MBB,
2469 MachineRegisterInfo &MRI,
2470 LiveIntervals &LIS) {
2471 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2472 E = MRI.use_end();
2473 I != E;) {
2474 MachineOperand &O = *I;
2475 ++I;
2476 if (O.getParent()->getParent() != MBB)
2477 O.setReg(ToReg);
2478 }
2479 if (!LIS.hasInterval(ToReg))
2480 LIS.createEmptyInterval(ToReg);
2481}
2482
2483/// Return true if the register has a use that occurs outside the
2484/// specified loop.
2485static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2486 MachineRegisterInfo &MRI) {
2487 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2488 E = MRI.use_end();
2489 I != E; ++I)
2490 if (I->getParent()->getParent() != BB)
2491 return true;
2492 return false;
2493}
2494
2495/// Generate Phis for the specific block in the generated pipelined code.
2496/// This function looks at the Phis from the original code to guide the
2497/// creation of new Phis.
2498void SwingSchedulerDAG::generateExistingPhis(
2499 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2500 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2501 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2502 bool IsLast) {
2503 // Compute the stage number for the inital value of the Phi, which
2504 // comes from the prolog. The prolog to use depends on to which kernel/
2505 // epilog that we're adding the Phi.
2506 unsigned PrologStage = 0;
2507 unsigned PrevStage = 0;
2508 bool InKernel = (LastStageNum == CurStageNum);
2509 if (InKernel) {
2510 PrologStage = LastStageNum - 1;
2511 PrevStage = CurStageNum;
2512 } else {
2513 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2514 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2515 }
2516
2517 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2518 BBE = BB->getFirstNonPHI();
2519 BBI != BBE; ++BBI) {
2520 unsigned Def = BBI->getOperand(0).getReg();
2521
2522 unsigned InitVal = 0;
2523 unsigned LoopVal = 0;
2524 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2525
2526 unsigned PhiOp1 = 0;
2527 // The Phi value from the loop body typically is defined in the loop, but
2528 // not always. So, we need to check if the value is defined in the loop.
2529 unsigned PhiOp2 = LoopVal;
2530 if (VRMap[LastStageNum].count(LoopVal))
2531 PhiOp2 = VRMap[LastStageNum][LoopVal];
2532
2533 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2534 int LoopValStage =
2535 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2536 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2537 if (NumStages == 0) {
2538 // We don't need to generate a Phi anymore, but we need to rename any uses
2539 // of the Phi value.
2540 unsigned NewReg = VRMap[PrevStage][LoopVal];
2541 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2542 Def, NewReg);
2543 if (VRMap[CurStageNum].count(LoopVal))
2544 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2545 }
2546 // Adjust the number of Phis needed depending on the number of prologs left,
2547 // and the distance from where the Phi is first scheduled.
2548 unsigned NumPhis = NumStages;
2549 if (!InKernel && (int)PrologStage < LoopValStage)
2550 // The NumPhis is the maximum number of new Phis needed during the steady
2551 // state. If the Phi has not been scheduled in current prolog, then we
2552 // need to generate less Phis.
2553 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2554 // The number of Phis cannot exceed the number of prolog stages. Each
2555 // stage can potentially define two values.
2556 NumPhis = std::min(NumPhis, PrologStage + 2);
2557
2558 unsigned NewReg = 0;
2559
2560 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2561 // In the epilog, we may need to look back one stage to get the correct
2562 // Phi name because the epilog and prolog blocks execute the same stage.
2563 // The correct name is from the previous block only when the Phi has
2564 // been completely scheduled prior to the epilog, and Phi value is not
2565 // needed in multiple stages.
2566 int StageDiff = 0;
2567 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2568 NumPhis == 1)
2569 StageDiff = 1;
2570 // Adjust the computations below when the phi and the loop definition
2571 // are scheduled in different stages.
2572 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2573 StageDiff = StageScheduled - LoopValStage;
2574 for (unsigned np = 0; np < NumPhis; ++np) {
2575 // If the Phi hasn't been scheduled, then use the initial Phi operand
2576 // value. Otherwise, use the scheduled version of the instruction. This
2577 // is a little complicated when a Phi references another Phi.
2578 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2579 PhiOp1 = InitVal;
2580 // Check if the Phi has already been scheduled in a prolog stage.
2581 else if (PrologStage >= AccessStage + StageDiff + np &&
2582 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2583 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2584 // Check if the Phi has already been scheduled, but the loop intruction
2585 // is either another Phi, or doesn't occur in the loop.
2586 else if (PrologStage >= AccessStage + StageDiff + np) {
2587 // If the Phi references another Phi, we need to examine the other
2588 // Phi to get the correct value.
2589 PhiOp1 = LoopVal;
2590 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2591 int Indirects = 1;
2592 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2593 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2594 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2595 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2596 else
2597 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2598 InstOp1 = MRI.getVRegDef(PhiOp1);
2599 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2600 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2601 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2602 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2603 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2604 break;
2605 }
2606 ++Indirects;
2607 }
2608 } else
2609 PhiOp1 = InitVal;
2610 // If this references a generated Phi in the kernel, get the Phi operand
2611 // from the incoming block.
2612 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2613 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2614 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2615
2616 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2617 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2618 // In the epilog, a map lookup is needed to get the value from the kernel,
2619 // or previous epilog block. How is does this depends on if the
2620 // instruction is scheduled in the previous block.
2621 if (!InKernel) {
2622 int StageDiffAdj = 0;
2623 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2624 StageDiffAdj = StageScheduled - LoopValStage;
2625 // Use the loop value defined in the kernel, unless the kernel
2626 // contains the last definition of the Phi.
2627 if (np == 0 && PrevStage == LastStageNum &&
2628 (StageScheduled != 0 || LoopValStage != 0) &&
2629 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2630 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2631 // Use the value defined by the Phi. We add one because we switch
2632 // from looking at the loop value to the Phi definition.
2633 else if (np > 0 && PrevStage == LastStageNum &&
2634 VRMap[PrevStage - np + 1].count(Def))
2635 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2636 // Use the loop value defined in the kernel.
2637 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2638 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2639 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2640 // Use the value defined by the Phi, unless we're generating the first
2641 // epilog and the Phi refers to a Phi in a different stage.
2642 else if (VRMap[PrevStage - np].count(Def) &&
2643 (!LoopDefIsPhi || PrevStage != LastStageNum))
2644 PhiOp2 = VRMap[PrevStage - np][Def];
2645 }
2646
2647 // Check if we can reuse an existing Phi. This occurs when a Phi
2648 // references another Phi, and the other Phi is scheduled in an
2649 // earlier stage. We can try to reuse an existing Phi up until the last
2650 // stage of the current Phi.
Brendon Cahoon65b6ebc2016-08-16 14:29:24 +00002651 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002652 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2653 int StageDiff = (StageScheduled - LoopValStage);
2654 LVNumStages -= StageDiff;
2655 if (LVNumStages > (int)np) {
2656 NewReg = PhiOp2;
2657 unsigned ReuseStage = CurStageNum;
2658 if (Schedule.isLoopCarried(this, *PhiInst))
2659 ReuseStage -= LVNumStages;
2660 // Check if the Phi to reuse has been generated yet. If not, then
2661 // there is nothing to reuse.
2662 if (VRMap[ReuseStage].count(LoopVal)) {
2663 NewReg = VRMap[ReuseStage][LoopVal];
2664
2665 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2666 &*BBI, Def, NewReg);
2667 // Update the map with the new Phi name.
2668 VRMap[CurStageNum - np][Def] = NewReg;
2669 PhiOp2 = NewReg;
2670 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2671 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2672
2673 if (IsLast && np == NumPhis - 1)
2674 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2675 continue;
2676 }
2677 } else if (StageDiff > 0 &&
2678 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2679 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2680 }
2681
2682 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2683 NewReg = MRI.createVirtualRegister(RC);
2684
2685 MachineInstrBuilder NewPhi =
2686 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2687 TII->get(TargetOpcode::PHI), NewReg);
2688 NewPhi.addReg(PhiOp1).addMBB(BB1);
2689 NewPhi.addReg(PhiOp2).addMBB(BB2);
2690 if (np == 0)
2691 InstrMap[NewPhi] = &*BBI;
2692
2693 // We define the Phis after creating the new pipelined code, so
2694 // we need to rename the Phi values in scheduled instructions.
2695
2696 unsigned PrevReg = 0;
2697 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2698 PrevReg = VRMap[PrevStage - np][LoopVal];
2699 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2700 Def, NewReg, PrevReg);
2701 // If the Phi has been scheduled, use the new name for rewriting.
2702 if (VRMap[CurStageNum - np].count(Def)) {
2703 unsigned R = VRMap[CurStageNum - np][Def];
2704 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2705 R, NewReg);
2706 }
2707
2708 // Check if we need to rename any uses that occurs after the loop. The
2709 // register to replace depends on whether the Phi is scheduled in the
2710 // epilog.
2711 if (IsLast && np == NumPhis - 1)
2712 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2713
2714 // In the kernel, a dependent Phi uses the value from this Phi.
2715 if (InKernel)
2716 PhiOp2 = NewReg;
2717
2718 // Update the map with the new Phi name.
2719 VRMap[CurStageNum - np][Def] = NewReg;
2720 }
2721
2722 while (NumPhis++ < NumStages) {
2723 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2724 &*BBI, Def, NewReg, 0);
2725 }
2726
2727 // Check if we need to rename a Phi that has been eliminated due to
2728 // scheduling.
2729 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2730 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2731 }
2732}
2733
2734/// Generate Phis for the specified block in the generated pipelined code.
2735/// These are new Phis needed because the definition is scheduled after the
2736/// use in the pipelened sequence.
2737void SwingSchedulerDAG::generatePhis(
2738 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2739 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2740 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2741 bool IsLast) {
2742 // Compute the stage number that contains the initial Phi value, and
2743 // the Phi from the previous stage.
2744 unsigned PrologStage = 0;
2745 unsigned PrevStage = 0;
2746 unsigned StageDiff = CurStageNum - LastStageNum;
2747 bool InKernel = (StageDiff == 0);
2748 if (InKernel) {
2749 PrologStage = LastStageNum - 1;
2750 PrevStage = CurStageNum;
2751 } else {
2752 PrologStage = LastStageNum - StageDiff;
2753 PrevStage = LastStageNum + StageDiff - 1;
2754 }
2755
2756 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2757 BBE = BB->instr_end();
2758 BBI != BBE; ++BBI) {
2759 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2760 MachineOperand &MO = BBI->getOperand(i);
2761 if (!MO.isReg() || !MO.isDef() ||
2762 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2763 continue;
2764
2765 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2766 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2767 unsigned Def = MO.getReg();
2768 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2769 // An instruction scheduled in stage 0 and is used after the loop
2770 // requires a phi in the epilog for the last definition from either
2771 // the kernel or prolog.
2772 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2773 hasUseAfterLoop(Def, BB, MRI))
2774 NumPhis = 1;
2775 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2776 continue;
2777
2778 unsigned PhiOp2 = VRMap[PrevStage][Def];
2779 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2780 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2781 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2782 // The number of Phis can't exceed the number of prolog stages. The
2783 // prolog stage number is zero based.
2784 if (NumPhis > PrologStage + 1 - StageScheduled)
2785 NumPhis = PrologStage + 1 - StageScheduled;
2786 for (unsigned np = 0; np < NumPhis; ++np) {
2787 unsigned PhiOp1 = VRMap[PrologStage][Def];
2788 if (np <= PrologStage)
2789 PhiOp1 = VRMap[PrologStage - np][Def];
2790 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2791 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2792 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2793 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2794 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2795 }
2796 if (!InKernel)
2797 PhiOp2 = VRMap[PrevStage - np][Def];
2798
2799 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2800 unsigned NewReg = MRI.createVirtualRegister(RC);
2801
2802 MachineInstrBuilder NewPhi =
2803 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2804 TII->get(TargetOpcode::PHI), NewReg);
2805 NewPhi.addReg(PhiOp1).addMBB(BB1);
2806 NewPhi.addReg(PhiOp2).addMBB(BB2);
2807 if (np == 0)
2808 InstrMap[NewPhi] = &*BBI;
2809
2810 // Rewrite uses and update the map. The actions depend upon whether
2811 // we generating code for the kernel or epilog blocks.
2812 if (InKernel) {
2813 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2814 &*BBI, PhiOp1, NewReg);
2815 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2816 &*BBI, PhiOp2, NewReg);
2817
2818 PhiOp2 = NewReg;
2819 VRMap[PrevStage - np - 1][Def] = NewReg;
2820 } else {
2821 VRMap[CurStageNum - np][Def] = NewReg;
2822 if (np == NumPhis - 1)
2823 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2824 &*BBI, Def, NewReg);
2825 }
2826 if (IsLast && np == NumPhis - 1)
2827 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2828 }
2829 }
2830 }
2831}
2832
2833/// Remove instructions that generate values with no uses.
2834/// Typically, these are induction variable operations that generate values
2835/// used in the loop itself. A dead instruction has a definition with
2836/// no uses, or uses that occur in the original loop only.
2837void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2838 MBBVectorTy &EpilogBBs) {
2839 // For each epilog block, check that the value defined by each instruction
2840 // is used. If not, delete it.
2841 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2842 MBE = EpilogBBs.rend();
2843 MBB != MBE; ++MBB)
2844 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2845 ME = (*MBB)->instr_rend();
2846 MI != ME;) {
2847 // From DeadMachineInstructionElem. Don't delete inline assembly.
2848 if (MI->isInlineAsm()) {
2849 ++MI;
2850 continue;
2851 }
2852 bool SawStore = false;
2853 // Check if it's safe to remove the instruction due to side effects.
2854 // We can, and want to, remove Phis here.
2855 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2856 ++MI;
2857 continue;
2858 }
2859 bool used = true;
2860 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2861 MOE = MI->operands_end();
2862 MOI != MOE; ++MOI) {
2863 if (!MOI->isReg() || !MOI->isDef())
2864 continue;
2865 unsigned reg = MOI->getReg();
2866 unsigned realUses = 0;
2867 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2868 EI = MRI.use_end();
2869 UI != EI; ++UI) {
2870 // Check if there are any uses that occur only in the original
2871 // loop. If so, that's not a real use.
2872 if (UI->getParent()->getParent() != BB) {
2873 realUses++;
2874 used = true;
2875 break;
2876 }
2877 }
2878 if (realUses > 0)
2879 break;
2880 used = false;
2881 }
2882 if (!used) {
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002883 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002884 continue;
2885 }
2886 ++MI;
2887 }
2888 // In the kernel block, check if we can remove a Phi that generates a value
2889 // used in an instruction removed in the epilog block.
2890 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2891 BBE = KernelBB->getFirstNonPHI();
2892 BBI != BBE;) {
2893 MachineInstr *MI = &*BBI;
2894 ++BBI;
2895 unsigned reg = MI->getOperand(0).getReg();
2896 if (MRI.use_begin(reg) == MRI.use_end()) {
2897 MI->eraseFromParent();
2898 }
2899 }
2900}
2901
2902/// For loop carried definitions, we split the lifetime of a virtual register
2903/// that has uses past the definition in the next iteration. A copy with a new
2904/// virtual register is inserted before the definition, which helps with
2905/// generating a better register assignment.
2906///
2907/// v1 = phi(a, v2) v1 = phi(a, v2)
2908/// v2 = phi(b, v3) v2 = phi(b, v3)
2909/// v3 = .. v4 = copy v1
2910/// .. = V1 v3 = ..
2911/// .. = v4
2912void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2913 MBBVectorTy &EpilogBBs,
2914 SMSchedule &Schedule) {
2915 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2916 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2917 BBF = KernelBB->getFirstNonPHI();
2918 BBI != BBF; ++BBI) {
2919 unsigned Def = BBI->getOperand(0).getReg();
2920 // Check for any Phi definition that used as an operand of another Phi
2921 // in the same block.
2922 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2923 E = MRI.use_instr_end();
2924 I != E; ++I) {
2925 if (I->isPHI() && I->getParent() == KernelBB) {
2926 // Get the loop carried definition.
2927 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
2928 if (!LCDef)
2929 continue;
2930 MachineInstr *MI = MRI.getVRegDef(LCDef);
2931 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2932 continue;
2933 // Search through the rest of the block looking for uses of the Phi
2934 // definition. If one occurs, then split the lifetime.
2935 unsigned SplitReg = 0;
2936 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2937 KernelBB->instr_end()))
2938 if (BBJ.readsRegister(Def)) {
2939 // We split the lifetime when we find the first use.
2940 if (SplitReg == 0) {
2941 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2942 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2943 TII->get(TargetOpcode::COPY), SplitReg)
2944 .addReg(Def);
2945 }
2946 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2947 }
2948 if (!SplitReg)
2949 continue;
2950 // Search through each of the epilog blocks for any uses to be renamed.
2951 for (auto &Epilog : EpilogBBs)
2952 for (auto &I : *Epilog)
2953 if (I.readsRegister(Def))
2954 I.substituteRegister(Def, SplitReg, 0, *TRI);
2955 break;
2956 }
2957 }
2958 }
2959}
2960
2961/// Remove the incoming block from the Phis in a basic block.
2962static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2963 for (MachineInstr &MI : *BB) {
2964 if (!MI.isPHI())
2965 break;
2966 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2967 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2968 MI.RemoveOperand(i + 1);
2969 MI.RemoveOperand(i);
2970 break;
2971 }
2972 }
2973}
2974
2975/// Create branches from each prolog basic block to the appropriate epilog
2976/// block. These edges are needed if the loop ends before reaching the
2977/// kernel.
2978void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2979 MachineBasicBlock *KernelBB,
2980 MBBVectorTy &EpilogBBs,
2981 SMSchedule &Schedule, ValueMapTy *VRMap) {
2982 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2983 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2984 MachineInstr *Cmp = Pass.LI.LoopCompare;
2985 MachineBasicBlock *LastPro = KernelBB;
2986 MachineBasicBlock *LastEpi = KernelBB;
2987
2988 // Start from the blocks connected to the kernel and work "out"
2989 // to the first prolog and the last epilog blocks.
2990 SmallVector<MachineInstr *, 4> PrevInsts;
2991 unsigned MaxIter = PrologBBs.size() - 1;
2992 unsigned LC = UINT_MAX;
2993 unsigned LCMin = UINT_MAX;
2994 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2995 // Add branches to the prolog that go to the corresponding
2996 // epilog, and the fall-thru prolog/kernel block.
2997 MachineBasicBlock *Prolog = PrologBBs[j];
2998 MachineBasicBlock *Epilog = EpilogBBs[i];
2999 // We've executed one iteration, so decrement the loop count and check for
3000 // the loop end.
3001 SmallVector<MachineOperand, 4> Cond;
3002 // Check if the LOOP0 has already been removed. If so, then there is no need
3003 // to reduce the trip count.
3004 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003005 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003006 MaxIter);
3007
3008 // Record the value of the first trip count, which is used to determine if
3009 // branches and blocks can be removed for constant trip counts.
3010 if (LCMin == UINT_MAX)
3011 LCMin = LC;
3012
3013 unsigned numAdded = 0;
3014 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3015 Prolog->addSuccessor(Epilog);
3016 numAdded = TII->InsertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
3017 } else if (j >= LCMin) {
3018 Prolog->addSuccessor(Epilog);
3019 Prolog->removeSuccessor(LastPro);
3020 LastEpi->removeSuccessor(Epilog);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00003021 numAdded = TII->InsertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003022 removePhis(Epilog, LastEpi);
3023 // Remove the blocks that are no longer referenced.
3024 if (LastPro != LastEpi) {
3025 LastEpi->clear();
3026 LastEpi->eraseFromParent();
3027 }
3028 LastPro->clear();
3029 LastPro->eraseFromParent();
3030 } else {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00003031 numAdded = TII->InsertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003032 removePhis(Epilog, Prolog);
3033 }
3034 LastPro = Prolog;
3035 LastEpi = Epilog;
3036 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3037 E = Prolog->instr_rend();
3038 I != E && numAdded > 0; ++I, --numAdded)
3039 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3040 }
3041}
3042
3043/// Return true if we can compute the amount the instruction changes
3044/// during each iteration. Set Delta to the amount of the change.
3045bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3046 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3047 unsigned BaseReg;
3048 int64_t Offset;
3049 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3050 return false;
3051
3052 MachineRegisterInfo &MRI = MF.getRegInfo();
3053 // Check if there is a Phi. If so, get the definition in the loop.
3054 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3055 if (BaseDef && BaseDef->isPHI()) {
3056 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3057 BaseDef = MRI.getVRegDef(BaseReg);
3058 }
3059 if (!BaseDef)
3060 return false;
3061
3062 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003063 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003064 return false;
3065
3066 Delta = D;
3067 return true;
3068}
3069
3070/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003071/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003072/// different memory location.
3073void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3074 MachineInstr &OldMI, unsigned Num) {
3075 if (Num == 0)
3076 return;
3077 // If the instruction has memory operands, then adjust the offset
3078 // when the instruction appears in different stages.
3079 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3080 if (NumRefs == 0)
3081 return;
3082 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3083 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003084 for (MachineMemOperand *MMO : NewMI.memoperands()) {
3085 if (MMO->isVolatile() || MMO->isInvariant() || (!MMO->getValue())) {
3086 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003087 continue;
3088 }
3089 unsigned Delta;
3090 if (computeDelta(OldMI, Delta)) {
3091 int64_t AdjOffset = Delta * Num;
3092 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003093 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003094 } else
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003095 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003096 }
3097 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3098}
3099
3100/// Clone the instruction for the new pipelined loop and update the
3101/// memory operands, if needed.
3102MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3103 unsigned CurStageNum,
3104 unsigned InstStageNum) {
3105 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3106 // Check for tied operands in inline asm instructions. This should be handled
3107 // elsewhere, but I'm not sure of the best solution.
3108 if (OldMI->isInlineAsm())
3109 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3110 const auto &MO = OldMI->getOperand(i);
3111 if (MO.isReg() && MO.isUse())
3112 break;
3113 unsigned UseIdx;
3114 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3115 NewMI->tieOperands(i, UseIdx);
3116 }
3117 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3118 return NewMI;
3119}
3120
3121/// Clone the instruction for the new pipelined loop. If needed, this
3122/// function updates the instruction using the values saved in the
3123/// InstrChanges structure.
3124MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3125 unsigned CurStageNum,
3126 unsigned InstStageNum,
3127 SMSchedule &Schedule) {
3128 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3129 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3130 InstrChanges.find(getSUnit(OldMI));
3131 if (It != InstrChanges.end()) {
3132 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3133 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003134 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003135 return nullptr;
3136 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3137 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3138 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3139 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3140 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3141 }
3142 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3143 return NewMI;
3144}
3145
3146/// Update the machine instruction with new virtual registers. This
3147/// function may change the defintions and/or uses.
3148void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3149 unsigned CurStageNum,
3150 unsigned InstrStageNum,
3151 SMSchedule &Schedule,
3152 ValueMapTy *VRMap) {
3153 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3154 MachineOperand &MO = NewMI->getOperand(i);
3155 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3156 continue;
3157 unsigned reg = MO.getReg();
3158 if (MO.isDef()) {
3159 // Create a new virtual register for the definition.
3160 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3161 unsigned NewReg = MRI.createVirtualRegister(RC);
3162 MO.setReg(NewReg);
3163 VRMap[CurStageNum][reg] = NewReg;
3164 if (LastDef)
3165 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3166 } else if (MO.isUse()) {
3167 MachineInstr *Def = MRI.getVRegDef(reg);
3168 // Compute the stage that contains the last definition for instruction.
3169 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3170 unsigned StageNum = CurStageNum;
3171 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3172 // Compute the difference in stages between the defintion and the use.
3173 unsigned StageDiff = (InstrStageNum - DefStageNum);
3174 // Make an adjustment to get the last definition.
3175 StageNum -= StageDiff;
3176 }
3177 if (VRMap[StageNum].count(reg))
3178 MO.setReg(VRMap[StageNum][reg]);
3179 }
3180 }
3181}
3182
3183/// Return the instruction in the loop that defines the register.
3184/// If the definition is a Phi, then follow the Phi operand to
3185/// the instruction in the loop.
3186MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3187 SmallPtrSet<MachineInstr *, 8> Visited;
3188 MachineInstr *Def = MRI.getVRegDef(Reg);
3189 while (Def->isPHI()) {
3190 if (!Visited.insert(Def).second)
3191 break;
3192 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3193 if (Def->getOperand(i + 1).getMBB() == BB) {
3194 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3195 break;
3196 }
3197 }
3198 return Def;
3199}
3200
3201/// Return the new name for the value from the previous stage.
3202unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3203 unsigned LoopVal, unsigned LoopStage,
3204 ValueMapTy *VRMap,
3205 MachineBasicBlock *BB) {
3206 unsigned PrevVal = 0;
3207 if (StageNum > PhiStage) {
3208 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3209 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3210 // The name is defined in the previous stage.
3211 PrevVal = VRMap[StageNum - 1][LoopVal];
3212 else if (VRMap[StageNum].count(LoopVal))
3213 // The previous name is defined in the current stage when the instruction
3214 // order is swapped.
3215 PrevVal = VRMap[StageNum][LoopVal];
3216 else if (!LoopInst->isPHI())
3217 // The loop value hasn't yet been scheduled.
3218 PrevVal = LoopVal;
3219 else if (StageNum == PhiStage + 1)
3220 // The loop value is another phi, which has not been scheduled.
3221 PrevVal = getInitPhiReg(*LoopInst, BB);
3222 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3223 // The loop value is another phi, which has been scheduled.
3224 PrevVal =
3225 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3226 LoopStage, VRMap, BB);
3227 }
3228 return PrevVal;
3229}
3230
3231/// Rewrite the Phi values in the specified block to use the mappings
3232/// from the initial operand. Once the Phi is scheduled, we switch
3233/// to using the loop value instead of the Phi value, so those names
3234/// do not need to be rewritten.
3235void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3236 unsigned StageNum,
3237 SMSchedule &Schedule,
3238 ValueMapTy *VRMap,
3239 InstrMapTy &InstrMap) {
3240 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
3241 BBE = BB->getFirstNonPHI();
3242 BBI != BBE; ++BBI) {
3243 unsigned InitVal = 0;
3244 unsigned LoopVal = 0;
3245 getPhiRegs(*BBI, BB, InitVal, LoopVal);
3246 unsigned PhiDef = BBI->getOperand(0).getReg();
3247
3248 unsigned PhiStage =
3249 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3250 unsigned LoopStage =
3251 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3252 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3253 if (NumPhis > StageNum)
3254 NumPhis = StageNum;
3255 for (unsigned np = 0; np <= NumPhis; ++np) {
3256 unsigned NewVal =
3257 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3258 if (!NewVal)
3259 NewVal = InitVal;
3260 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
3261 PhiDef, NewVal);
3262 }
3263 }
3264}
3265
3266/// Rewrite a previously scheduled instruction to use the register value
3267/// from the new instruction. Make sure the instruction occurs in the
3268/// basic block, and we don't change the uses in the new instruction.
3269void SwingSchedulerDAG::rewriteScheduledInstr(
3270 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3271 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3272 unsigned NewReg, unsigned PrevReg) {
3273 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3274 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3275 // Rewrite uses that have been scheduled already to use the new
3276 // Phi register.
3277 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3278 EI = MRI.use_end();
3279 UI != EI;) {
3280 MachineOperand &UseOp = *UI;
3281 MachineInstr *UseMI = UseOp.getParent();
3282 ++UI;
3283 if (UseMI->getParent() != BB)
3284 continue;
3285 if (UseMI->isPHI()) {
3286 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3287 continue;
3288 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3289 continue;
3290 }
3291 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3292 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3293 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3294 int StageSched = Schedule.stageScheduled(OrigMISU);
3295 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3296 unsigned ReplaceReg = 0;
3297 // This is the stage for the scheduled instruction.
3298 if (StagePhi == StageSched && Phi->isPHI()) {
3299 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3300 if (PrevReg && InProlog)
3301 ReplaceReg = PrevReg;
3302 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3303 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3304 ReplaceReg = PrevReg;
3305 else
3306 ReplaceReg = NewReg;
3307 }
3308 // The scheduled instruction occurs before the scheduled Phi, and the
3309 // Phi is not loop carried.
3310 if (!InProlog && StagePhi + 1 == StageSched &&
3311 !Schedule.isLoopCarried(this, *Phi))
3312 ReplaceReg = NewReg;
3313 if (StagePhi > StageSched && Phi->isPHI())
3314 ReplaceReg = NewReg;
3315 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3316 ReplaceReg = NewReg;
3317 if (ReplaceReg) {
3318 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3319 UseOp.setReg(ReplaceReg);
3320 }
3321 }
3322}
3323
3324/// Check if we can change the instruction to use an offset value from the
3325/// previous iteration. If so, return true and set the base and offset values
3326/// so that we can rewrite the load, if necessary.
3327/// v1 = Phi(v0, v3)
3328/// v2 = load v1, 0
3329/// v3 = post_store v1, 4, x
3330/// This function enables the load to be rewritten as v2 = load v3, 4.
3331bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3332 unsigned &BasePos,
3333 unsigned &OffsetPos,
3334 unsigned &NewBase,
3335 int64_t &Offset) {
3336 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003337 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003338 return false;
3339 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003340 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003341 return false;
3342 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3343
3344 // Look for the Phi instruction.
3345 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
3346 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3347 if (!Phi || !Phi->isPHI())
3348 return false;
3349 // Get the register defined in the loop block.
3350 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3351 if (!PrevReg)
3352 return false;
3353
3354 // Check for the post-increment load/store instruction.
3355 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3356 if (!PrevDef || PrevDef == MI)
3357 return false;
3358
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003359 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003360 return false;
3361
3362 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003363 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003364 return false;
3365
3366 // Make sure offset values are both positive or both negative.
3367 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3368 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3369 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3370 return false;
3371
3372 // Set the return value once we determine that we return true.
3373 BasePos = BasePosLd;
3374 OffsetPos = OffsetPosLd;
3375 NewBase = PrevReg;
3376 Offset = StoreOffset;
3377 return true;
3378}
3379
3380/// Apply changes to the instruction if needed. The changes are need
3381/// to improve the scheduling and depend up on the final schedule.
3382MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3383 SMSchedule &Schedule,
3384 bool UpdateDAG) {
3385 SUnit *SU = getSUnit(MI);
3386 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3387 InstrChanges.find(SU);
3388 if (It != InstrChanges.end()) {
3389 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3390 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003391 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003392 return nullptr;
3393 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3394 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3395 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3396 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3397 int BaseStageNum = Schedule.stageScheduled(SU);
3398 int BaseCycleNum = Schedule.cycleScheduled(SU);
3399 if (BaseStageNum < DefStageNum) {
3400 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3401 int OffsetDiff = DefStageNum - BaseStageNum;
3402 if (DefCycleNum < BaseCycleNum) {
3403 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3404 if (OffsetDiff > 0)
3405 --OffsetDiff;
3406 }
3407 int64_t NewOffset =
3408 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3409 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3410 if (UpdateDAG) {
3411 SU->setInstr(NewMI);
3412 MISUnitMap[NewMI] = SU;
3413 }
3414 NewMIs.insert(NewMI);
3415 return NewMI;
3416 }
3417 }
3418 return nullptr;
3419}
3420
3421/// Return true for an order dependence that is loop carried potentially.
3422/// An order dependence is loop carried if the destination defines a value
3423/// that may be used by the source in a subsequent iteration.
3424bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3425 bool isSucc) {
3426 if (!isOrder(Source, Dep) || Dep.isArtificial())
3427 return false;
3428
3429 if (!SwpPruneLoopCarried)
3430 return true;
3431
3432 MachineInstr *SI = Source->getInstr();
3433 MachineInstr *DI = Dep.getSUnit()->getInstr();
3434 if (!isSucc)
3435 std::swap(SI, DI);
3436 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3437
3438 // Assume ordered loads and stores may have a loop carried dependence.
3439 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3440 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3441 return true;
3442
3443 // Only chain dependences between a load and store can be loop carried.
3444 if (!DI->mayStore() || !SI->mayLoad())
3445 return false;
3446
3447 unsigned DeltaS, DeltaD;
3448 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3449 return true;
3450
3451 unsigned BaseRegS, BaseRegD;
3452 int64_t OffsetS, OffsetD;
3453 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3454 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3455 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3456 return true;
3457
3458 if (BaseRegS != BaseRegD)
3459 return true;
3460
3461 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3462 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3463
3464 // This is the main test, which checks the offset values and the loop
3465 // increment value to determine if the accesses may be loop carried.
3466 if (OffsetS >= OffsetD)
3467 return OffsetS + AccessSizeS > DeltaS;
3468 else if (OffsetS < OffsetD)
3469 return OffsetD + AccessSizeD > DeltaD;
3470
3471 return true;
3472}
3473
3474/// Try to schedule the node at the specified StartCycle and continue
3475/// until the node is schedule or the EndCycle is reached. This function
3476/// returns true if the node is scheduled. This routine may search either
3477/// forward or backward for a place to insert the instruction based upon
3478/// the relative values of StartCycle and EndCycle.
3479bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3480 bool forward = true;
3481 if (StartCycle > EndCycle)
3482 forward = false;
3483
3484 // The terminating condition depends on the direction.
3485 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3486 for (int curCycle = StartCycle; curCycle != termCycle;
3487 forward ? ++curCycle : --curCycle) {
3488
3489 // Add the already scheduled instructions at the specified cycle to the DFA.
3490 Resources->clearResources();
3491 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3492 checkCycle <= LastCycle; checkCycle += II) {
3493 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3494
3495 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3496 E = cycleInstrs.end();
3497 I != E; ++I) {
3498 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3499 continue;
3500 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3501 "These instructions have already been scheduled.");
3502 Resources->reserveResources(*(*I)->getInstr());
3503 }
3504 }
3505 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3506 Resources->canReserveResources(*SU->getInstr())) {
3507 DEBUG({
3508 dbgs() << "\tinsert at cycle " << curCycle << " ";
3509 SU->getInstr()->dump();
3510 });
3511
3512 ScheduledInstrs[curCycle].push_back(SU);
3513 InstrToCycle.insert(std::make_pair(SU, curCycle));
3514 if (curCycle > LastCycle)
3515 LastCycle = curCycle;
3516 if (curCycle < FirstCycle)
3517 FirstCycle = curCycle;
3518 return true;
3519 }
3520 DEBUG({
3521 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3522 SU->getInstr()->dump();
3523 });
3524 }
3525 return false;
3526}
3527
3528// Return the cycle of the earliest scheduled instruction in the chain.
3529int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3530 SmallPtrSet<SUnit *, 8> Visited;
3531 SmallVector<SDep, 8> Worklist;
3532 Worklist.push_back(Dep);
3533 int EarlyCycle = INT_MAX;
3534 while (!Worklist.empty()) {
3535 const SDep &Cur = Worklist.pop_back_val();
3536 SUnit *PrevSU = Cur.getSUnit();
3537 if (Visited.count(PrevSU))
3538 continue;
3539 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3540 if (it == InstrToCycle.end())
3541 continue;
3542 EarlyCycle = std::min(EarlyCycle, it->second);
3543 for (const auto &PI : PrevSU->Preds)
3544 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3545 Worklist.push_back(PI);
3546 Visited.insert(PrevSU);
3547 }
3548 return EarlyCycle;
3549}
3550
3551// Return the cycle of the latest scheduled instruction in the chain.
3552int SMSchedule::latestCycleInChain(const SDep &Dep) {
3553 SmallPtrSet<SUnit *, 8> Visited;
3554 SmallVector<SDep, 8> Worklist;
3555 Worklist.push_back(Dep);
3556 int LateCycle = INT_MIN;
3557 while (!Worklist.empty()) {
3558 const SDep &Cur = Worklist.pop_back_val();
3559 SUnit *SuccSU = Cur.getSUnit();
3560 if (Visited.count(SuccSU))
3561 continue;
3562 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3563 if (it == InstrToCycle.end())
3564 continue;
3565 LateCycle = std::max(LateCycle, it->second);
3566 for (const auto &SI : SuccSU->Succs)
3567 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3568 Worklist.push_back(SI);
3569 Visited.insert(SuccSU);
3570 }
3571 return LateCycle;
3572}
3573
3574/// If an instruction has a use that spans multiple iterations, then
3575/// return true. These instructions are characterized by having a back-ege
3576/// to a Phi, which contains a reference to another Phi.
3577static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3578 for (auto &P : SU->Preds)
3579 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3580 for (auto &S : P.getSUnit()->Succs)
3581 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3582 return P.getSUnit();
3583 return nullptr;
3584}
3585
3586/// Compute the scheduling start slot for the instruction. The start slot
3587/// depends on any predecessor or successor nodes scheduled already.
3588void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3589 int *MinEnd, int *MaxStart, int II,
3590 SwingSchedulerDAG *DAG) {
3591 // Iterate over each instruction that has been scheduled already. The start
3592 // slot computuation depends on whether the previously scheduled instruction
3593 // is a predecessor or successor of the specified instruction.
3594 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3595
3596 // Iterate over each instruction in the current cycle.
3597 for (SUnit *I : getInstructions(cycle)) {
3598 // Because we're processing a DAG for the dependences, we recognize
3599 // the back-edge in recurrences by anti dependences.
3600 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3601 const SDep &Dep = SU->Preds[i];
3602 if (Dep.getSUnit() == I) {
3603 if (!DAG->isBackedge(SU, Dep)) {
3604 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3605 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3606 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3607 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3608 int End = earliestCycleInChain(Dep) + (II - 1);
3609 *MinEnd = std::min(*MinEnd, End);
3610 }
3611 } else {
3612 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3613 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3614 *MinLateStart = std::min(*MinLateStart, LateStart);
3615 }
3616 }
3617 // For instruction that requires multiple iterations, make sure that
3618 // the dependent instruction is not scheduled past the definition.
3619 SUnit *BE = multipleIterations(I, DAG);
3620 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3621 !SU->isPred(I))
3622 *MinLateStart = std::min(*MinLateStart, cycle);
3623 }
3624 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3625 if (SU->Succs[i].getSUnit() == I) {
3626 const SDep &Dep = SU->Succs[i];
3627 if (!DAG->isBackedge(SU, Dep)) {
3628 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3629 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3630 *MinLateStart = std::min(*MinLateStart, LateStart);
3631 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3632 int Start = latestCycleInChain(Dep) + 1 - II;
3633 *MaxStart = std::max(*MaxStart, Start);
3634 }
3635 } else {
3636 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3637 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3638 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3639 }
3640 }
3641 }
3642 }
3643}
3644
3645/// Order the instructions within a cycle so that the definitions occur
3646/// before the uses. Returns true if the instruction is added to the start
3647/// of the list, or false if added to the end.
3648bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3649 std::deque<SUnit *> &Insts) {
3650 MachineInstr *MI = SU->getInstr();
3651 bool OrderBeforeUse = false;
3652 bool OrderAfterDef = false;
3653 bool OrderBeforeDef = false;
3654 unsigned MoveDef = 0;
3655 unsigned MoveUse = 0;
3656 int StageInst1 = stageScheduled(SU);
3657
3658 unsigned Pos = 0;
3659 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3660 ++I, ++Pos) {
3661 // Relative order of Phis does not matter.
3662 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3663 continue;
3664 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3665 MachineOperand &MO = MI->getOperand(i);
3666 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3667 continue;
3668 unsigned Reg = MO.getReg();
3669 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003670 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003671 if (MI->getOperand(BasePos).getReg() == Reg)
3672 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3673 Reg = NewReg;
3674 bool Reads, Writes;
3675 std::tie(Reads, Writes) =
3676 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3677 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3678 OrderBeforeUse = true;
3679 MoveUse = Pos;
3680 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3681 // Add the instruction after the scheduled instruction.
3682 OrderAfterDef = true;
3683 MoveDef = Pos;
3684 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3685 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3686 OrderBeforeUse = true;
3687 MoveUse = Pos;
3688 } else {
3689 OrderAfterDef = true;
3690 MoveDef = Pos;
3691 }
3692 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3693 OrderBeforeUse = true;
3694 MoveUse = Pos;
3695 if (MoveUse != 0) {
3696 OrderAfterDef = true;
3697 MoveDef = Pos - 1;
3698 }
3699 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3700 // Add the instruction before the scheduled instruction.
3701 OrderBeforeUse = true;
3702 MoveUse = Pos;
3703 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3704 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3705 OrderBeforeDef = true;
3706 MoveUse = Pos;
3707 }
3708 }
3709 // Check for order dependences between instructions. Make sure the source
3710 // is ordered before the destination.
3711 for (auto &S : SU->Succs)
3712 if (S.getKind() == SDep::Order) {
3713 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3714 OrderBeforeUse = true;
3715 MoveUse = Pos;
3716 }
3717 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3718 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3719 if (S.isAssignedRegDep()) {
3720 OrderAfterDef = true;
3721 MoveDef = Pos;
3722 }
3723 } else {
3724 OrderBeforeUse = true;
3725 MoveUse = Pos;
3726 }
3727 }
3728 for (auto &P : SU->Preds)
3729 if (P.getKind() == SDep::Order) {
3730 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3731 OrderAfterDef = true;
3732 MoveDef = Pos;
3733 }
3734 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3735 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3736 if (P.isAssignedRegDep()) {
3737 OrderBeforeUse = true;
3738 MoveUse = Pos;
3739 }
3740 } else {
3741 OrderAfterDef = true;
3742 MoveDef = Pos;
3743 }
3744 }
3745 }
3746
3747 // A circular dependence.
3748 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3749 OrderBeforeUse = false;
3750
3751 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3752 // to a loop-carried dependence.
3753 if (OrderBeforeDef)
3754 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3755
3756 // The uncommon case when the instruction order needs to be updated because
3757 // there is both a use and def.
3758 if (OrderBeforeUse && OrderAfterDef) {
3759 SUnit *UseSU = Insts.at(MoveUse);
3760 SUnit *DefSU = Insts.at(MoveDef);
3761 if (MoveUse > MoveDef) {
3762 Insts.erase(Insts.begin() + MoveUse);
3763 Insts.erase(Insts.begin() + MoveDef);
3764 } else {
3765 Insts.erase(Insts.begin() + MoveDef);
3766 Insts.erase(Insts.begin() + MoveUse);
3767 }
3768 if (orderDependence(SSD, UseSU, Insts)) {
3769 Insts.push_front(SU);
3770 orderDependence(SSD, DefSU, Insts);
3771 return true;
3772 }
3773 Insts.pop_back();
3774 Insts.push_back(SU);
3775 Insts.push_back(UseSU);
3776 orderDependence(SSD, DefSU, Insts);
3777 return false;
3778 }
3779 // Put the new instruction first if there is a use in the list. Otherwise,
3780 // put it at the end of the list.
3781 if (OrderBeforeUse)
3782 Insts.push_front(SU);
3783 else
3784 Insts.push_back(SU);
3785 return OrderBeforeUse;
3786}
3787
3788/// Return true if the scheduled Phi has a loop carried operand.
3789bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3790 if (!Phi.isPHI())
3791 return false;
3792 assert(Phi.isPHI() && "Expecing a Phi.");
3793 SUnit *DefSU = SSD->getSUnit(&Phi);
3794 unsigned DefCycle = cycleScheduled(DefSU);
3795 int DefStage = stageScheduled(DefSU);
3796
3797 unsigned InitVal = 0;
3798 unsigned LoopVal = 0;
3799 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3800 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3801 if (!UseSU)
3802 return true;
3803 if (UseSU->getInstr()->isPHI())
3804 return true;
3805 unsigned LoopCycle = cycleScheduled(UseSU);
3806 int LoopStage = stageScheduled(UseSU);
3807 return LoopCycle > DefCycle ||
3808 (LoopCycle <= DefCycle && LoopStage <= DefStage);
3809}
3810
3811/// Return true if the instruction is a definition that is loop carried
3812/// and defines the use on the next iteration.
3813/// v1 = phi(v2, v3)
3814/// (Def) v3 = op v1
3815/// (MO) = v1
3816/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3817/// register.
3818bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3819 MachineInstr *Def, MachineOperand &MO) {
3820 if (!MO.isReg())
3821 return false;
3822 if (Def->isPHI())
3823 return false;
3824 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3825 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3826 return false;
3827 if (!isLoopCarried(SSD, *Phi))
3828 return false;
3829 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3830 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3831 MachineOperand &DMO = Def->getOperand(i);
3832 if (!DMO.isReg() || !DMO.isDef())
3833 continue;
3834 if (DMO.getReg() == LoopReg)
3835 return true;
3836 }
3837 return false;
3838}
3839
3840// Check if the generated schedule is valid. This function checks if
3841// an instruction that uses a physical register is scheduled in a
3842// different stage than the definition. The pipeliner does not handle
3843// physical register values that may cross a basic block boundary.
3844bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003845 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3846 SUnit &SU = SSD->SUnits[i];
3847 if (!SU.hasPhysRegDefs)
3848 continue;
3849 int StageDef = stageScheduled(&SU);
3850 assert(StageDef != -1 && "Instruction should have been scheduled.");
3851 for (auto &SI : SU.Succs)
3852 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003853 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003854 if (stageScheduled(SI.getSUnit()) != StageDef)
3855 return false;
3856 }
3857 return true;
3858}
3859
3860/// After the schedule has been formed, call this function to combine
3861/// the instructions from the different stages/cycles. That is, this
3862/// function creates a schedule that represents a single iteration.
3863void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3864 // Move all instructions to the first stage from later stages.
3865 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3866 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3867 ++stage) {
3868 std::deque<SUnit *> &cycleInstrs =
3869 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3870 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3871 E = cycleInstrs.rend();
3872 I != E; ++I)
3873 ScheduledInstrs[cycle].push_front(*I);
3874 }
3875 }
3876 // Iterate over the definitions in each instruction, and compute the
3877 // stage difference for each use. Keep the maximum value.
3878 for (auto &I : InstrToCycle) {
3879 int DefStage = stageScheduled(I.first);
3880 MachineInstr *MI = I.first->getInstr();
3881 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3882 MachineOperand &Op = MI->getOperand(i);
3883 if (!Op.isReg() || !Op.isDef())
3884 continue;
3885
3886 unsigned Reg = Op.getReg();
3887 unsigned MaxDiff = 0;
3888 bool PhiIsSwapped = false;
3889 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3890 EI = MRI.use_end();
3891 UI != EI; ++UI) {
3892 MachineOperand &UseOp = *UI;
3893 MachineInstr *UseMI = UseOp.getParent();
3894 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3895 int UseStage = stageScheduled(SUnitUse);
3896 unsigned Diff = 0;
3897 if (UseStage != -1 && UseStage >= DefStage)
3898 Diff = UseStage - DefStage;
3899 if (MI->isPHI()) {
3900 if (isLoopCarried(SSD, *MI))
3901 ++Diff;
3902 else
3903 PhiIsSwapped = true;
3904 }
3905 MaxDiff = std::max(Diff, MaxDiff);
3906 }
3907 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3908 }
3909 }
3910
3911 // Erase all the elements in the later stages. Only one iteration should
3912 // remain in the scheduled list, and it contains all the instructions.
3913 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3914 ScheduledInstrs.erase(cycle);
3915
3916 // Change the registers in instruction as specified in the InstrChanges
3917 // map. We need to use the new registers to create the correct order.
3918 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3919 SUnit *SU = &SSD->SUnits[i];
3920 SSD->applyInstrChange(SU->getInstr(), *this, true);
3921 }
3922
3923 // Reorder the instructions in each cycle to fix and improve the
3924 // generated code.
3925 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3926 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3927 std::deque<SUnit *> newOrderZC;
3928 // Put the zero-cost, pseudo instructions at the start of the cycle.
3929 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3930 SUnit *SU = cycleInstrs[i];
3931 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3932 orderDependence(SSD, SU, newOrderZC);
3933 }
3934 std::deque<SUnit *> newOrderI;
3935 // Then, add the regular instructions back.
3936 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3937 SUnit *SU = cycleInstrs[i];
3938 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3939 orderDependence(SSD, SU, newOrderI);
3940 }
3941 // Replace the old order with the new order.
3942 cycleInstrs.swap(newOrderZC);
3943 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3944 }
3945
3946 DEBUG(dump(););
3947}
3948
3949/// Print the schedule information to the given output.
3950void SMSchedule::print(raw_ostream &os) const {
3951 // Iterate over each cycle.
3952 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3953 // Iterate over each instruction in the cycle.
3954 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3955 for (SUnit *CI : cycleInstrs->second) {
3956 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3957 os << "(" << CI->NodeNum << ") ";
3958 CI->getInstr()->print(os);
3959 os << "\n";
3960 }
3961 }
3962}
3963
3964/// Utility function used for debugging to print the schedule.
3965void SMSchedule::dump() const { print(dbgs()); }