George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1 | //===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the MemorySSA class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------===// |
Daniel Berlin | 16ed57c | 2016-06-27 18:22:27 +0000 | [diff] [blame] | 13 | #include "llvm/Transforms/Utils/MemorySSA.h" |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 14 | #include "llvm/ADT/DenseMap.h" |
| 15 | #include "llvm/ADT/DenseSet.h" |
| 16 | #include "llvm/ADT/DepthFirstIterator.h" |
| 17 | #include "llvm/ADT/GraphTraits.h" |
| 18 | #include "llvm/ADT/PostOrderIterator.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 20 | #include "llvm/ADT/SmallBitVector.h" |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 21 | #include "llvm/ADT/SmallPtrSet.h" |
| 22 | #include "llvm/ADT/SmallSet.h" |
| 23 | #include "llvm/ADT/Statistic.h" |
| 24 | #include "llvm/Analysis/AliasAnalysis.h" |
| 25 | #include "llvm/Analysis/CFG.h" |
| 26 | #include "llvm/Analysis/GlobalsModRef.h" |
| 27 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| 28 | #include "llvm/Analysis/MemoryLocation.h" |
| 29 | #include "llvm/Analysis/PHITransAddr.h" |
| 30 | #include "llvm/IR/AssemblyAnnotationWriter.h" |
| 31 | #include "llvm/IR/DataLayout.h" |
| 32 | #include "llvm/IR/Dominators.h" |
| 33 | #include "llvm/IR/GlobalVariable.h" |
| 34 | #include "llvm/IR/IRBuilder.h" |
| 35 | #include "llvm/IR/IntrinsicInst.h" |
| 36 | #include "llvm/IR/LLVMContext.h" |
| 37 | #include "llvm/IR/Metadata.h" |
| 38 | #include "llvm/IR/Module.h" |
| 39 | #include "llvm/IR/PatternMatch.h" |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 40 | #include "llvm/Support/Debug.h" |
| 41 | #include "llvm/Support/FormattedStream.h" |
| 42 | #include "llvm/Transforms/Scalar.h" |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 43 | #include <algorithm> |
| 44 | |
| 45 | #define DEBUG_TYPE "memoryssa" |
| 46 | using namespace llvm; |
| 47 | STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); |
| 48 | STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); |
| 49 | STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 50 | |
Geoff Berry | efb0dd1 | 2016-06-14 21:19:40 +0000 | [diff] [blame] | 51 | INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 52 | true) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 53 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 54 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
Geoff Berry | efb0dd1 | 2016-06-14 21:19:40 +0000 | [diff] [blame] | 55 | INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, |
| 56 | true) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 57 | |
Chad Rosier | 232e29e | 2016-07-06 21:20:47 +0000 | [diff] [blame] | 58 | INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", |
| 59 | "Memory SSA Printer", false, false) |
| 60 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| 61 | INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", |
| 62 | "Memory SSA Printer", false, false) |
| 63 | |
| 64 | static cl::opt<bool> |
| 65 | VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, |
| 66 | cl::desc("Verify MemorySSA in legacy printer pass.")); |
| 67 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 68 | namespace llvm { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 69 | /// \brief An assembly annotator class to print Memory SSA information in |
| 70 | /// comments. |
| 71 | class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { |
| 72 | friend class MemorySSA; |
| 73 | const MemorySSA *MSSA; |
| 74 | |
| 75 | public: |
| 76 | MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} |
| 77 | |
| 78 | virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| 79 | formatted_raw_ostream &OS) { |
| 80 | if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) |
| 81 | OS << "; " << *MA << "\n"; |
| 82 | } |
| 83 | |
| 84 | virtual void emitInstructionAnnot(const Instruction *I, |
| 85 | formatted_raw_ostream &OS) { |
| 86 | if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) |
| 87 | OS << "; " << *MA << "\n"; |
| 88 | } |
| 89 | }; |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 90 | } |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 91 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 92 | namespace { |
| 93 | struct UpwardsMemoryQuery { |
| 94 | // True if our original query started off as a call |
| 95 | bool IsCall; |
| 96 | // The pointer location we started the query with. This will be empty if |
| 97 | // IsCall is true. |
| 98 | MemoryLocation StartingLoc; |
| 99 | // This is the instruction we were querying about. |
| 100 | const Instruction *Inst; |
| 101 | // The MemoryAccess we actually got called with, used to test local domination |
| 102 | const MemoryAccess *OriginalAccess; |
| 103 | |
| 104 | UpwardsMemoryQuery() |
| 105 | : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} |
| 106 | |
| 107 | UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) |
| 108 | : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { |
| 109 | if (!IsCall) |
| 110 | StartingLoc = MemoryLocation::get(Inst); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | static bool instructionClobbersQuery(MemoryDef *MD, const MemoryLocation &Loc, |
| 115 | const UpwardsMemoryQuery &Query, |
| 116 | AliasAnalysis &AA) { |
| 117 | Instruction *DefMemoryInst = MD->getMemoryInst(); |
| 118 | assert(DefMemoryInst && "Defining instruction not actually an instruction"); |
| 119 | |
| 120 | if (!Query.IsCall) |
| 121 | return AA.getModRefInfo(DefMemoryInst, Loc) & MRI_Mod; |
| 122 | |
| 123 | ModRefInfo I = AA.getModRefInfo(DefMemoryInst, ImmutableCallSite(Query.Inst)); |
| 124 | return I != MRI_NoModRef; |
| 125 | } |
| 126 | |
| 127 | /// Cache for our caching MemorySSA walker. |
| 128 | class WalkerCache { |
| 129 | DenseMap<ConstMemoryAccessPair, MemoryAccess *> Accesses; |
| 130 | DenseMap<const MemoryAccess *, MemoryAccess *> Calls; |
| 131 | |
| 132 | public: |
| 133 | MemoryAccess *lookup(const MemoryAccess *MA, const MemoryLocation &Loc, |
| 134 | bool IsCall) const { |
| 135 | ++NumClobberCacheLookups; |
| 136 | MemoryAccess *R = IsCall ? Calls.lookup(MA) : Accesses.lookup({MA, Loc}); |
| 137 | if (R) |
| 138 | ++NumClobberCacheHits; |
| 139 | return R; |
| 140 | } |
| 141 | |
| 142 | bool insert(const MemoryAccess *MA, MemoryAccess *To, |
| 143 | const MemoryLocation &Loc, bool IsCall) { |
| 144 | // This is fine for Phis, since there are times where we can't optimize |
| 145 | // them. Making a def its own clobber is never correct, though. |
| 146 | assert((MA != To || isa<MemoryPhi>(MA)) && |
| 147 | "Something can't clobber itself!"); |
| 148 | |
| 149 | ++NumClobberCacheInserts; |
| 150 | bool Inserted; |
| 151 | if (IsCall) |
| 152 | Inserted = Calls.insert({MA, To}).second; |
| 153 | else |
| 154 | Inserted = Accesses.insert({{MA, Loc}, To}).second; |
| 155 | |
| 156 | return Inserted; |
| 157 | } |
| 158 | |
| 159 | bool remove(const MemoryAccess *MA, const MemoryLocation &Loc, bool IsCall) { |
| 160 | return IsCall ? Calls.erase(MA) : Accesses.erase({MA, Loc}); |
| 161 | } |
| 162 | |
| 163 | void clear() { |
| 164 | Accesses.clear(); |
| 165 | Calls.clear(); |
| 166 | } |
| 167 | |
| 168 | bool contains(const MemoryAccess *MA) const { |
| 169 | for (auto &P : Accesses) |
| 170 | if (P.first.first == MA || P.second == MA) |
| 171 | return true; |
| 172 | for (auto &P : Calls) |
| 173 | if (P.first == MA || P.second == MA) |
| 174 | return true; |
| 175 | return false; |
| 176 | } |
| 177 | }; |
| 178 | |
| 179 | /// Walks the defining uses of MemoryDefs. Stops after we hit something that has |
| 180 | /// no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when comparing |
| 181 | /// against a null def_chain_iterator, this will compare equal only after |
| 182 | /// walking said Phi/liveOnEntry. |
| 183 | struct def_chain_iterator |
| 184 | : public iterator_facade_base<def_chain_iterator, std::forward_iterator_tag, |
| 185 | MemoryAccess *> { |
| 186 | def_chain_iterator() : MA(nullptr) {} |
| 187 | def_chain_iterator(MemoryAccess *MA) : MA(MA) {} |
| 188 | |
| 189 | MemoryAccess *operator*() const { return MA; } |
| 190 | |
| 191 | def_chain_iterator &operator++() { |
| 192 | // N.B. liveOnEntry has a null defining access. |
| 193 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) |
| 194 | MA = MUD->getDefiningAccess(); |
| 195 | else |
| 196 | MA = nullptr; |
| 197 | return *this; |
| 198 | } |
| 199 | |
| 200 | bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } |
| 201 | |
| 202 | private: |
| 203 | MemoryAccess *MA; |
| 204 | }; |
| 205 | |
| 206 | static iterator_range<def_chain_iterator> |
| 207 | def_chain(MemoryAccess *MA, MemoryAccess *UpTo = nullptr) { |
| 208 | #ifdef EXPENSIVE_CHECKS |
| 209 | assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator()) && |
| 210 | "UpTo isn't in the def chain!"); |
| 211 | #endif |
| 212 | return make_range(def_chain_iterator(MA), def_chain_iterator(UpTo)); |
| 213 | } |
| 214 | |
| 215 | /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing |
| 216 | /// inbetween `Start` and `ClobberAt` can clobbers `Start`. |
| 217 | /// |
| 218 | /// This is meant to be as simple and self-contained as possible. Because it |
| 219 | /// uses no cache, etc., it can be relatively expensive. |
| 220 | /// |
| 221 | /// \param Start The MemoryAccess that we want to walk from. |
| 222 | /// \param ClobberAt A clobber for Start. |
| 223 | /// \param StartLoc The MemoryLocation for Start. |
| 224 | /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. |
| 225 | /// \param Query The UpwardsMemoryQuery we used for our search. |
| 226 | /// \param AA The AliasAnalysis we used for our search. |
| 227 | static void LLVM_ATTRIBUTE_UNUSED |
| 228 | checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, |
| 229 | const MemoryLocation &StartLoc, const MemorySSA &MSSA, |
| 230 | const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { |
| 231 | assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); |
| 232 | |
| 233 | if (MSSA.isLiveOnEntryDef(Start)) { |
| 234 | assert(MSSA.isLiveOnEntryDef(ClobberAt) && |
| 235 | "liveOnEntry must clobber itself"); |
| 236 | return; |
| 237 | } |
| 238 | |
| 239 | assert((isa<MemoryPhi>(Start) || Start != ClobberAt) && |
| 240 | "Start can't clobber itself!"); |
| 241 | |
| 242 | bool FoundClobber = false; |
| 243 | DenseSet<MemoryAccessPair> VisitedPhis; |
| 244 | SmallVector<MemoryAccessPair, 8> Worklist; |
| 245 | Worklist.emplace_back(Start, StartLoc); |
| 246 | // Walk all paths from Start to ClobberAt, while looking for clobbers. If one |
| 247 | // is found, complain. |
| 248 | while (!Worklist.empty()) { |
| 249 | MemoryAccessPair MAP = Worklist.pop_back_val(); |
| 250 | // All we care about is that nothing from Start to ClobberAt clobbers Start. |
| 251 | // We learn nothing from revisiting nodes. |
| 252 | if (!VisitedPhis.insert(MAP).second) |
| 253 | continue; |
| 254 | |
| 255 | for (MemoryAccess *MA : def_chain(MAP.first)) { |
| 256 | if (MA == ClobberAt) { |
| 257 | if (auto *MD = dyn_cast<MemoryDef>(MA)) { |
| 258 | // instructionClobbersQuery isn't essentially free, so don't use `|=`, |
| 259 | // since it won't let us short-circuit. |
| 260 | // |
| 261 | // Also, note that this can't be hoisted out of the `Worklist` loop, |
| 262 | // since MD may only act as a clobber for 1 of N MemoryLocations. |
| 263 | FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD) || |
| 264 | instructionClobbersQuery(MD, MAP.second, Query, AA); |
| 265 | } |
| 266 | break; |
| 267 | } |
| 268 | |
| 269 | // We should never hit liveOnEntry, unless it's the clobber. |
| 270 | assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); |
| 271 | |
| 272 | if (auto *MD = dyn_cast<MemoryDef>(MA)) { |
| 273 | (void)MD; |
| 274 | assert(!instructionClobbersQuery(MD, MAP.second, Query, AA) && |
| 275 | "Found clobber before reaching ClobberAt!"); |
| 276 | continue; |
| 277 | } |
| 278 | |
| 279 | assert(isa<MemoryPhi>(MA)); |
| 280 | Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | // If ClobberAt is a MemoryPhi, we can assume something above it acted as a |
| 285 | // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. |
| 286 | assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && |
| 287 | "ClobberAt never acted as a clobber"); |
| 288 | } |
| 289 | |
| 290 | /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up |
| 291 | /// in one class. |
| 292 | class ClobberWalker { |
| 293 | /// Save a few bytes by using unsigned instead of size_t. |
| 294 | using ListIndex = unsigned; |
| 295 | |
| 296 | /// Represents a span of contiguous MemoryDefs, potentially ending in a |
| 297 | /// MemoryPhi. |
| 298 | struct DefPath { |
| 299 | MemoryLocation Loc; |
| 300 | // Note that, because we always walk in reverse, Last will always dominate |
| 301 | // First. Also note that First and Last are inclusive. |
| 302 | MemoryAccess *First; |
| 303 | MemoryAccess *Last; |
| 304 | // N.B. Blocker is currently basically unused. The goal is to use it to make |
| 305 | // cache invalidation better, but we're not there yet. |
| 306 | MemoryAccess *Blocker; |
| 307 | Optional<ListIndex> Previous; |
| 308 | |
| 309 | DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, |
| 310 | Optional<ListIndex> Previous) |
| 311 | : Loc(Loc), First(First), Last(Last), Previous(Previous) {} |
| 312 | |
| 313 | DefPath(const MemoryLocation &Loc, MemoryAccess *Init, |
| 314 | Optional<ListIndex> Previous) |
| 315 | : DefPath(Loc, Init, Init, Previous) {} |
| 316 | }; |
| 317 | |
| 318 | const MemorySSA &MSSA; |
| 319 | AliasAnalysis &AA; |
| 320 | DominatorTree &DT; |
| 321 | WalkerCache &WC; |
| 322 | UpwardsMemoryQuery *Query; |
| 323 | bool UseCache; |
| 324 | |
| 325 | // Phi optimization bookkeeping |
| 326 | SmallVector<DefPath, 32> Paths; |
| 327 | DenseSet<ConstMemoryAccessPair> VisitedPhis; |
| 328 | DenseMap<const BasicBlock *, MemoryAccess *> WalkTargetCache; |
| 329 | |
| 330 | void setUseCache(bool Use) { UseCache = Use; } |
| 331 | bool shouldIgnoreCache() const { |
| 332 | // UseCache will only be false when we're debugging, or when expensive |
| 333 | // checks are enabled. In either case, we don't care deeply about speed. |
| 334 | return LLVM_UNLIKELY(!UseCache); |
| 335 | } |
| 336 | |
| 337 | void addCacheEntry(const MemoryAccess *What, MemoryAccess *To, |
| 338 | const MemoryLocation &Loc) const { |
| 339 | // EXPENSIVE_CHECKS because most of these queries are redundant, and if What |
| 340 | // and To are in the same BB, that gives us n^2 behavior. |
| 341 | #ifdef EXPENSIVE_CHECKS |
| 342 | assert(MSSA.dominates(To, What)); |
| 343 | #endif |
| 344 | if (shouldIgnoreCache()) |
| 345 | return; |
| 346 | WC.insert(What, To, Loc, Query->IsCall); |
| 347 | } |
| 348 | |
| 349 | MemoryAccess *lookupCache(const MemoryAccess *MA, const MemoryLocation &Loc) { |
| 350 | return shouldIgnoreCache() ? nullptr : WC.lookup(MA, Loc, Query->IsCall); |
| 351 | } |
| 352 | |
| 353 | void cacheDefPath(const DefPath &DN, MemoryAccess *Target) const { |
| 354 | if (shouldIgnoreCache()) |
| 355 | return; |
| 356 | |
| 357 | for (MemoryAccess *MA : def_chain(DN.First, DN.Last)) |
| 358 | addCacheEntry(MA, Target, DN.Loc); |
| 359 | |
| 360 | // DefPaths only express the path we walked. So, DN.Last could either be a |
| 361 | // thing we want to cache, or not. |
| 362 | if (DN.Last != Target) |
| 363 | addCacheEntry(DN.Last, Target, DN.Loc); |
| 364 | } |
| 365 | |
| 366 | /// Find the nearest def or phi that `From` can legally be optimized to. |
| 367 | /// |
| 368 | /// FIXME: Deduplicate this with MSSA::findDominatingDef. Ideally, MSSA should |
| 369 | /// keep track of this information for us, and allow us O(1) lookups of this |
| 370 | /// info. |
| 371 | MemoryAccess *getWalkTarget(const MemoryPhi *From) { |
| 372 | assert(!MSSA.isLiveOnEntryDef(From) && "liveOnEntry has no target."); |
| 373 | assert(From->getNumOperands() && "Phi with no operands?"); |
| 374 | |
| 375 | BasicBlock *BB = From->getBlock(); |
| 376 | auto At = WalkTargetCache.find(BB); |
| 377 | if (At != WalkTargetCache.end()) |
| 378 | return At->second; |
| 379 | |
| 380 | SmallVector<const BasicBlock *, 8> ToCache; |
| 381 | ToCache.push_back(BB); |
| 382 | |
| 383 | MemoryAccess *Result = MSSA.getLiveOnEntryDef(); |
| 384 | DomTreeNode *Node = DT.getNode(BB); |
| 385 | while ((Node = Node->getIDom())) { |
| 386 | auto At = WalkTargetCache.find(BB); |
| 387 | if (At != WalkTargetCache.end()) { |
| 388 | Result = At->second; |
| 389 | break; |
| 390 | } |
| 391 | |
| 392 | auto *Accesses = MSSA.getBlockAccesses(Node->getBlock()); |
| 393 | if (Accesses) { |
| 394 | auto Iter = find_if(reverse(*Accesses), [](const MemoryAccess &MA) { |
| 395 | return !isa<MemoryUse>(MA); |
| 396 | }); |
| 397 | if (Iter != Accesses->rend()) { |
| 398 | Result = const_cast<MemoryAccess *>(&*Iter); |
| 399 | break; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | ToCache.push_back(Node->getBlock()); |
| 404 | } |
| 405 | |
| 406 | for (const BasicBlock *BB : ToCache) |
| 407 | WalkTargetCache.insert({BB, Result}); |
| 408 | return Result; |
| 409 | } |
| 410 | |
| 411 | /// Result of calling walkToPhiOrClobber. |
| 412 | struct UpwardsWalkResult { |
| 413 | /// The "Result" of the walk. Either a clobber, the last thing we walked, or |
| 414 | /// both. |
| 415 | MemoryAccess *Result; |
| 416 | bool IsKnownClobber; |
| 417 | bool FromCache; |
| 418 | }; |
| 419 | |
| 420 | /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. |
| 421 | /// This will update Desc.Last as it walks. It will (optionally) also stop at |
| 422 | /// StopAt. |
| 423 | /// |
| 424 | /// This does not test for whether StopAt is a clobber |
| 425 | UpwardsWalkResult walkToPhiOrClobber(DefPath &Desc, |
| 426 | MemoryAccess *StopAt = nullptr) { |
| 427 | assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); |
| 428 | |
| 429 | for (MemoryAccess *Current : def_chain(Desc.Last)) { |
| 430 | Desc.Last = Current; |
| 431 | if (Current == StopAt) |
| 432 | return {Current, false, false}; |
| 433 | |
| 434 | if (auto *MD = dyn_cast<MemoryDef>(Current)) |
| 435 | if (MSSA.isLiveOnEntryDef(MD) || |
| 436 | instructionClobbersQuery(MD, Desc.Loc, *Query, AA)) |
| 437 | return {MD, true, false}; |
| 438 | |
| 439 | // Cache checks must be done last, because if Current is a clobber, the |
| 440 | // cache will contain the clobber for Current. |
| 441 | if (MemoryAccess *MA = lookupCache(Current, Desc.Loc)) |
| 442 | return {MA, true, true}; |
| 443 | } |
| 444 | |
| 445 | assert(isa<MemoryPhi>(Desc.Last) && |
| 446 | "Ended at a non-clobber that's not a phi?"); |
| 447 | return {Desc.Last, false, false}; |
| 448 | } |
| 449 | |
| 450 | void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, |
| 451 | ListIndex PriorNode) { |
| 452 | auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), |
| 453 | upward_defs_end()); |
| 454 | for (const MemoryAccessPair &P : UpwardDefs) { |
| 455 | PausedSearches.push_back(Paths.size()); |
| 456 | Paths.emplace_back(P.second, P.first, PriorNode); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | /// Represents a search that terminated after finding a clobber. This clobber |
| 461 | /// may or may not be present in the path of defs from LastNode..SearchStart, |
| 462 | /// since it may have been retrieved from cache. |
| 463 | struct TerminatedPath { |
| 464 | MemoryAccess *Clobber; |
| 465 | ListIndex LastNode; |
| 466 | }; |
| 467 | |
| 468 | /// Get an access that keeps us from optimizing to the given phi. |
| 469 | /// |
| 470 | /// PausedSearches is an array of indices into the Paths array. Its incoming |
| 471 | /// value is the indices of searches that stopped at the last phi optimization |
| 472 | /// target. It's left in an unspecified state. |
| 473 | /// |
| 474 | /// If this returns None, NewPaused is a vector of searches that terminated |
| 475 | /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. |
| 476 | Optional<ListIndex> |
| 477 | getBlockingAccess(MemoryAccess *StopWhere, |
| 478 | SmallVectorImpl<ListIndex> &PausedSearches, |
| 479 | SmallVectorImpl<ListIndex> &NewPaused, |
| 480 | SmallVectorImpl<TerminatedPath> &Terminated) { |
| 481 | assert(!PausedSearches.empty() && "No searches to continue?"); |
| 482 | |
| 483 | // BFS vs DFS really doesn't make a difference here, so just do a DFS with |
| 484 | // PausedSearches as our stack. |
| 485 | while (!PausedSearches.empty()) { |
| 486 | ListIndex PathIndex = PausedSearches.pop_back_val(); |
| 487 | DefPath &Node = Paths[PathIndex]; |
| 488 | |
| 489 | // If we've already visited this path with this MemoryLocation, we don't |
| 490 | // need to do so again. |
| 491 | // |
| 492 | // NOTE: That we just drop these paths on the ground makes caching |
| 493 | // behavior sporadic. e.g. given a diamond: |
| 494 | // A |
| 495 | // B C |
| 496 | // D |
| 497 | // |
| 498 | // ...If we walk D, B, A, C, we'll only cache the result of phi |
| 499 | // optimization for A, B, and D; C will be skipped because it dies here. |
| 500 | // This arguably isn't the worst thing ever, since: |
| 501 | // - We generally query things in a top-down order, so if we got below D |
| 502 | // without needing cache entries for {C, MemLoc}, then chances are |
| 503 | // that those cache entries would end up ultimately unused. |
| 504 | // - We still cache things for A, so C only needs to walk up a bit. |
| 505 | // If this behavior becomes problematic, we can fix without a ton of extra |
| 506 | // work. |
| 507 | if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) |
| 508 | continue; |
| 509 | |
| 510 | UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); |
| 511 | if (Res.IsKnownClobber) { |
| 512 | assert(Res.Result != StopWhere || Res.FromCache); |
| 513 | // If this wasn't a cache hit, we hit a clobber when walking. That's a |
| 514 | // failure. |
| 515 | if (!Res.FromCache || !MSSA.dominates(Res.Result, StopWhere)) |
| 516 | return PathIndex; |
| 517 | |
| 518 | // Otherwise, it's a valid thing to potentially optimize to. |
| 519 | Terminated.push_back({Res.Result, PathIndex}); |
| 520 | continue; |
| 521 | } |
| 522 | |
| 523 | if (Res.Result == StopWhere) { |
| 524 | // We've hit our target. Save this path off for if we want to continue |
| 525 | // walking. |
| 526 | NewPaused.push_back(PathIndex); |
| 527 | continue; |
| 528 | } |
| 529 | |
| 530 | assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); |
| 531 | addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); |
| 532 | } |
| 533 | |
| 534 | return None; |
| 535 | } |
| 536 | |
| 537 | template <typename T, typename Walker> |
| 538 | struct generic_def_path_iterator |
| 539 | : public iterator_facade_base<generic_def_path_iterator<T, Walker>, |
| 540 | std::forward_iterator_tag, T *> { |
| 541 | generic_def_path_iterator() : W(nullptr), N(None) {} |
| 542 | generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} |
| 543 | |
| 544 | T &operator*() const { return curNode(); } |
| 545 | |
| 546 | generic_def_path_iterator &operator++() { |
| 547 | N = curNode().Previous; |
| 548 | return *this; |
| 549 | } |
| 550 | |
| 551 | bool operator==(const generic_def_path_iterator &O) const { |
| 552 | if (N.hasValue() != O.N.hasValue()) |
| 553 | return false; |
| 554 | return !N.hasValue() || *N == *O.N; |
| 555 | } |
| 556 | |
| 557 | private: |
| 558 | T &curNode() const { return W->Paths[*N]; } |
| 559 | |
| 560 | Walker *W; |
| 561 | Optional<ListIndex> N; |
| 562 | }; |
| 563 | |
| 564 | using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; |
| 565 | using const_def_path_iterator = |
| 566 | generic_def_path_iterator<const DefPath, const ClobberWalker>; |
| 567 | |
| 568 | iterator_range<def_path_iterator> def_path(ListIndex From) { |
| 569 | return make_range(def_path_iterator(this, From), def_path_iterator()); |
| 570 | } |
| 571 | |
| 572 | iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { |
| 573 | return make_range(const_def_path_iterator(this, From), |
| 574 | const_def_path_iterator()); |
| 575 | } |
| 576 | |
| 577 | struct OptznResult { |
| 578 | /// The path that contains our result. |
| 579 | TerminatedPath PrimaryClobber; |
| 580 | /// The paths that we can legally cache back from, but that aren't |
| 581 | /// necessarily the result of the Phi optimization. |
| 582 | SmallVector<TerminatedPath, 4> OtherClobbers; |
| 583 | }; |
| 584 | |
| 585 | ListIndex defPathIndex(const DefPath &N) const { |
| 586 | // The assert looks nicer if we don't need to do &N |
| 587 | const DefPath *NP = &N; |
| 588 | assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && |
| 589 | "Out of bounds DefPath!"); |
| 590 | return NP - &Paths.front(); |
| 591 | } |
| 592 | |
| 593 | /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths |
| 594 | /// that act as legal clobbers. Note that this won't return *all* clobbers. |
| 595 | /// |
| 596 | /// Phi optimization algorithm tl;dr: |
| 597 | /// - Find the earliest def/phi, A, we can optimize to |
| 598 | /// - Find if all paths from the starting memory access ultimately reach A |
| 599 | /// - If not, optimization isn't possible. |
| 600 | /// - Otherwise, walk from A to another clobber or phi, A'. |
| 601 | /// - If A' is a def, we're done. |
| 602 | /// - If A' is a phi, try to optimize it. |
| 603 | /// |
| 604 | /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path |
| 605 | /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. |
| 606 | OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, |
| 607 | const MemoryLocation &Loc) { |
| 608 | assert(Paths.empty() && VisitedPhis.empty() && |
| 609 | "Reset the optimization state."); |
| 610 | |
| 611 | Paths.emplace_back(Loc, Start, Phi, None); |
| 612 | // Stores how many "valid" optimization nodes we had prior to calling |
| 613 | // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. |
| 614 | auto PriorPathsSize = Paths.size(); |
| 615 | |
| 616 | SmallVector<ListIndex, 16> PausedSearches; |
| 617 | SmallVector<ListIndex, 8> NewPaused; |
| 618 | SmallVector<TerminatedPath, 4> TerminatedPaths; |
| 619 | |
| 620 | addSearches(Phi, PausedSearches, 0); |
| 621 | |
| 622 | // Moves the TerminatedPath with the "most dominated" Clobber to the end of |
| 623 | // Paths. |
| 624 | auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { |
| 625 | assert(!Paths.empty() && "Need a path to move"); |
| 626 | // FIXME: This is technically n^2 (n = distance(DefPath.First, |
| 627 | // DefPath.Last)) because of local dominance checks. |
| 628 | auto Dom = Paths.begin(); |
| 629 | for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) |
| 630 | if (!MSSA.dominates(I->Clobber, Dom->Clobber)) |
| 631 | Dom = I; |
| 632 | auto Last = Paths.end() - 1; |
| 633 | if (Last != Dom) |
| 634 | std::iter_swap(Last, Dom); |
| 635 | }; |
| 636 | |
| 637 | MemoryPhi *Current = Phi; |
| 638 | while (1) { |
| 639 | assert(!MSSA.isLiveOnEntryDef(Current) && |
| 640 | "liveOnEntry wasn't treated as a clobber?"); |
| 641 | |
| 642 | MemoryAccess *Target = getWalkTarget(Current); |
| 643 | // If a TerminatedPath doesn't dominate Target, then it wasn't a legal |
| 644 | // optimization for the prior phi. |
| 645 | assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { |
| 646 | return MSSA.dominates(P.Clobber, Target); |
| 647 | })); |
| 648 | |
| 649 | // FIXME: This is broken, because the Blocker may be reported to be |
| 650 | // liveOnEntry, and we'll happily wait for that to disappear (read: never) |
| 651 | // For the moment, this is fine, since we do basically nothing with |
| 652 | // blocker info. |
| 653 | if (Optional<ListIndex> Blocker = getBlockingAccess( |
| 654 | Target, PausedSearches, NewPaused, TerminatedPaths)) { |
| 655 | MemoryAccess *BlockingAccess = Paths[*Blocker].Last; |
| 656 | // Cache our work on the blocking node, since we know that's correct. |
| 657 | cacheDefPath(Paths[*Blocker], BlockingAccess); |
| 658 | |
| 659 | // Find the node we started at. We can't search based on N->Last, since |
| 660 | // we may have gone around a loop with a different MemoryLocation. |
| 661 | auto Iter = find_if(def_path(*Blocker), [&](const DefPath &N) { |
| 662 | return defPathIndex(N) < PriorPathsSize; |
| 663 | }); |
| 664 | assert(Iter != def_path_iterator()); |
| 665 | |
| 666 | DefPath &CurNode = *Iter; |
| 667 | assert(CurNode.Last == Current); |
| 668 | CurNode.Blocker = BlockingAccess; |
| 669 | |
| 670 | // Two things: |
| 671 | // A. We can't reliably cache all of NewPaused back. Consider a case |
| 672 | // where we have two paths in NewPaused; one of which can't optimize |
| 673 | // above this phi, whereas the other can. If we cache the second path |
| 674 | // back, we'll end up with suboptimal cache entries. We can handle |
| 675 | // cases like this a bit better when we either try to find all |
| 676 | // clobbers that block phi optimization, or when our cache starts |
| 677 | // supporting unfinished searches. |
| 678 | // B. We can't reliably cache TerminatedPaths back here without doing |
| 679 | // extra checks; consider a case like: |
| 680 | // T |
| 681 | // / \ |
| 682 | // D C |
| 683 | // \ / |
| 684 | // S |
| 685 | // Where T is our target, C is a node with a clobber on it, D is a |
| 686 | // diamond (with a clobber *only* on the left or right node, N), and |
| 687 | // S is our start. Say we walk to D, through the node opposite N |
| 688 | // (read: ignoring the clobber), and see a cache entry in the top |
| 689 | // node of D. That cache entry gets put into TerminatedPaths. We then |
| 690 | // walk up to C (N is later in our worklist), find the clobber, and |
| 691 | // quit. If we append TerminatedPaths to OtherClobbers, we'll cache |
| 692 | // the bottom part of D to the cached clobber, ignoring the clobber |
| 693 | // in N. Again, this problem goes away if we start tracking all |
| 694 | // blockers for a given phi optimization. |
| 695 | TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; |
| 696 | return {Result, {}}; |
| 697 | } |
| 698 | |
| 699 | // If there's nothing left to search, then all paths led to valid clobbers |
| 700 | // that we got from our cache; pick the nearest to the start, and allow |
| 701 | // the rest to be cached back. |
| 702 | if (NewPaused.empty()) { |
| 703 | MoveDominatedPathToEnd(TerminatedPaths); |
| 704 | TerminatedPath Result = TerminatedPaths.pop_back_val(); |
| 705 | return {Result, std::move(TerminatedPaths)}; |
| 706 | } |
| 707 | |
| 708 | MemoryAccess *DefChainEnd = nullptr; |
| 709 | SmallVector<TerminatedPath, 4> Clobbers; |
| 710 | for (ListIndex Paused : NewPaused) { |
| 711 | UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); |
| 712 | if (WR.IsKnownClobber) |
| 713 | Clobbers.push_back({WR.Result, Paused}); |
| 714 | else |
| 715 | // Micro-opt: If we hit the end of the chain, save it. |
| 716 | DefChainEnd = WR.Result; |
| 717 | } |
| 718 | |
| 719 | if (!TerminatedPaths.empty()) { |
| 720 | // If we couldn't find the dominating phi/liveOnEntry in the above loop, |
| 721 | // do it now. |
| 722 | if (!DefChainEnd) |
| 723 | for (MemoryAccess *MA : def_chain(Target)) |
| 724 | DefChainEnd = MA; |
| 725 | |
| 726 | // If any of the terminated paths don't dominate the phi we'll try to |
| 727 | // optimize, we need to figure out what they are and quit. |
| 728 | const BasicBlock *ChainBB = DefChainEnd->getBlock(); |
| 729 | for (const TerminatedPath &TP : TerminatedPaths) { |
| 730 | // Because we know that DefChainEnd is as "high" as we can go, we |
| 731 | // don't need local dominance checks; BB dominance is sufficient. |
| 732 | if (DT.dominates(ChainBB, TP.Clobber->getBlock())) |
| 733 | Clobbers.push_back(TP); |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | // If we have clobbers in the def chain, find the one closest to Current |
| 738 | // and quit. |
| 739 | if (!Clobbers.empty()) { |
| 740 | MoveDominatedPathToEnd(Clobbers); |
| 741 | TerminatedPath Result = Clobbers.pop_back_val(); |
| 742 | return {Result, std::move(Clobbers)}; |
| 743 | } |
| 744 | |
| 745 | assert(all_of(NewPaused, |
| 746 | [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); |
| 747 | |
| 748 | // Because liveOnEntry is a clobber, this must be a phi. |
| 749 | auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); |
| 750 | |
| 751 | PriorPathsSize = Paths.size(); |
| 752 | PausedSearches.clear(); |
| 753 | for (ListIndex I : NewPaused) |
| 754 | addSearches(DefChainPhi, PausedSearches, I); |
| 755 | NewPaused.clear(); |
| 756 | |
| 757 | Current = DefChainPhi; |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | /// Caches everything in an OptznResult. |
| 762 | void cacheOptResult(const OptznResult &R) { |
| 763 | if (R.OtherClobbers.empty()) { |
| 764 | // If we're not going to be caching OtherClobbers, don't bother with |
| 765 | // marking visited/etc. |
| 766 | for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) |
| 767 | cacheDefPath(N, R.PrimaryClobber.Clobber); |
| 768 | return; |
| 769 | } |
| 770 | |
| 771 | // PrimaryClobber is our answer. If we can cache anything back, we need to |
| 772 | // stop caching when we visit PrimaryClobber. |
| 773 | SmallBitVector Visited(Paths.size()); |
| 774 | for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) { |
| 775 | Visited[defPathIndex(N)] = true; |
| 776 | cacheDefPath(N, R.PrimaryClobber.Clobber); |
| 777 | } |
| 778 | |
| 779 | for (const TerminatedPath &P : R.OtherClobbers) { |
| 780 | for (const DefPath &N : const_def_path(P.LastNode)) { |
| 781 | ListIndex NIndex = defPathIndex(N); |
| 782 | if (Visited[NIndex]) |
| 783 | break; |
| 784 | Visited[NIndex] = true; |
| 785 | cacheDefPath(N, P.Clobber); |
| 786 | } |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | void verifyOptResult(const OptznResult &R) const { |
| 791 | assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { |
| 792 | return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); |
| 793 | })); |
| 794 | } |
| 795 | |
| 796 | void resetPhiOptznState() { |
| 797 | Paths.clear(); |
| 798 | VisitedPhis.clear(); |
| 799 | } |
| 800 | |
| 801 | public: |
| 802 | ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT, |
| 803 | WalkerCache &WC) |
| 804 | : MSSA(MSSA), AA(AA), DT(DT), WC(WC), UseCache(true) {} |
| 805 | |
| 806 | void reset() { WalkTargetCache.clear(); } |
| 807 | |
| 808 | /// Finds the nearest clobber for the given query, optimizing phis if |
| 809 | /// possible. |
| 810 | MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, |
| 811 | bool UseWalkerCache = true) { |
| 812 | setUseCache(UseWalkerCache); |
| 813 | Query = &Q; |
| 814 | |
| 815 | MemoryAccess *Current = Start; |
| 816 | // This walker pretends uses don't exist. If we're handed one, silently grab |
| 817 | // its def. (This has the nice side-effect of ensuring we never cache uses) |
| 818 | if (auto *MU = dyn_cast<MemoryUse>(Start)) |
| 819 | Current = MU->getDefiningAccess(); |
| 820 | |
| 821 | DefPath FirstDesc(Q.StartingLoc, Current, Current, None); |
| 822 | // Fast path for the overly-common case (no crazy phi optimization |
| 823 | // necessary) |
| 824 | UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); |
| 825 | if (WalkResult.IsKnownClobber) { |
| 826 | cacheDefPath(FirstDesc, WalkResult.Result); |
| 827 | return WalkResult.Result; |
| 828 | } |
| 829 | |
| 830 | OptznResult OptRes = |
| 831 | tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), Current, Q.StartingLoc); |
| 832 | verifyOptResult(OptRes); |
| 833 | cacheOptResult(OptRes); |
| 834 | resetPhiOptznState(); |
| 835 | |
| 836 | #ifdef EXPENSIVE_CHECKS |
| 837 | checkClobberSanity(Current, OptRes.PrimaryClobber.Clobber, Q.StartingLoc, |
| 838 | MSSA, Q, AA); |
| 839 | #endif |
| 840 | return OptRes.PrimaryClobber.Clobber; |
| 841 | } |
| 842 | }; |
| 843 | |
| 844 | struct RenamePassData { |
| 845 | DomTreeNode *DTN; |
| 846 | DomTreeNode::const_iterator ChildIt; |
| 847 | MemoryAccess *IncomingVal; |
| 848 | |
| 849 | RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, |
| 850 | MemoryAccess *M) |
| 851 | : DTN(D), ChildIt(It), IncomingVal(M) {} |
| 852 | void swap(RenamePassData &RHS) { |
| 853 | std::swap(DTN, RHS.DTN); |
| 854 | std::swap(ChildIt, RHS.ChildIt); |
| 855 | std::swap(IncomingVal, RHS.IncomingVal); |
| 856 | } |
| 857 | }; |
| 858 | } // anonymous namespace |
| 859 | |
| 860 | namespace llvm { |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 861 | /// \brief A MemorySSAWalker that does AA walks and caching of lookups to |
| 862 | /// disambiguate accesses. |
| 863 | /// |
| 864 | /// FIXME: The current implementation of this can take quadratic space in rare |
| 865 | /// cases. This can be fixed, but it is something to note until it is fixed. |
| 866 | /// |
| 867 | /// In order to trigger this behavior, you need to store to N distinct locations |
| 868 | /// (that AA can prove don't alias), perform M stores to other memory |
| 869 | /// locations that AA can prove don't alias any of the initial N locations, and |
| 870 | /// then load from all of the N locations. In this case, we insert M cache |
| 871 | /// entries for each of the N loads. |
| 872 | /// |
| 873 | /// For example: |
| 874 | /// define i32 @foo() { |
| 875 | /// %a = alloca i32, align 4 |
| 876 | /// %b = alloca i32, align 4 |
| 877 | /// store i32 0, i32* %a, align 4 |
| 878 | /// store i32 0, i32* %b, align 4 |
| 879 | /// |
| 880 | /// ; Insert M stores to other memory that doesn't alias %a or %b here |
| 881 | /// |
| 882 | /// %c = load i32, i32* %a, align 4 ; Caches M entries in |
| 883 | /// ; CachedUpwardsClobberingAccess for the |
| 884 | /// ; MemoryLocation %a |
| 885 | /// %d = load i32, i32* %b, align 4 ; Caches M entries in |
| 886 | /// ; CachedUpwardsClobberingAccess for the |
| 887 | /// ; MemoryLocation %b |
| 888 | /// |
| 889 | /// ; For completeness' sake, loading %a or %b again would not cache *another* |
| 890 | /// ; M entries. |
| 891 | /// %r = add i32 %c, %d |
| 892 | /// ret i32 %r |
| 893 | /// } |
| 894 | class MemorySSA::CachingWalker final : public MemorySSAWalker { |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 895 | WalkerCache Cache; |
| 896 | ClobberWalker Walker; |
| 897 | bool AutoResetWalker; |
| 898 | |
| 899 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); |
| 900 | void verifyRemoved(MemoryAccess *); |
| 901 | |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 902 | public: |
| 903 | CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); |
| 904 | ~CachingWalker() override; |
| 905 | |
| 906 | MemoryAccess *getClobberingMemoryAccess(const Instruction *) override; |
| 907 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
| 908 | MemoryLocation &) override; |
| 909 | void invalidateInfo(MemoryAccess *) override; |
| 910 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 911 | /// Whether we call resetClobberWalker() after each time we *actually* walk to |
| 912 | /// answer a clobber query. |
| 913 | void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 914 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 915 | /// Drop the walker's persistent data structures. At the moment, this means |
| 916 | /// "drop the walker's cache of BasicBlocks -> |
| 917 | /// earliest-MemoryAccess-we-can-optimize-to". This is necessary if we're |
| 918 | /// going to have DT updates, if we remove MemoryAccesses, etc. |
| 919 | void resetClobberWalker() { Walker.reset(); } |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 920 | }; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 921 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 922 | /// \brief Rename a single basic block into MemorySSA form. |
| 923 | /// Uses the standard SSA renaming algorithm. |
| 924 | /// \returns The new incoming value. |
| 925 | MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, |
| 926 | MemoryAccess *IncomingVal) { |
| 927 | auto It = PerBlockAccesses.find(BB); |
| 928 | // Skip most processing if the list is empty. |
| 929 | if (It != PerBlockAccesses.end()) { |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 930 | AccessList *Accesses = It->second.get(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 931 | for (MemoryAccess &L : *Accesses) { |
| 932 | switch (L.getValueID()) { |
| 933 | case Value::MemoryUseVal: |
| 934 | cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal); |
| 935 | break; |
| 936 | case Value::MemoryDefVal: |
| 937 | // We can't legally optimize defs, because we only allow single |
| 938 | // memory phis/uses on operations, and if we optimize these, we can |
| 939 | // end up with multiple reaching defs. Uses do not have this |
| 940 | // problem, since they do not produce a value |
| 941 | cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal); |
| 942 | IncomingVal = &L; |
| 943 | break; |
| 944 | case Value::MemoryPhiVal: |
| 945 | IncomingVal = &L; |
| 946 | break; |
| 947 | } |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | // Pass through values to our successors |
| 952 | for (const BasicBlock *S : successors(BB)) { |
| 953 | auto It = PerBlockAccesses.find(S); |
| 954 | // Rename the phi nodes in our successor block |
| 955 | if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) |
| 956 | continue; |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 957 | AccessList *Accesses = It->second.get(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 958 | auto *Phi = cast<MemoryPhi>(&Accesses->front()); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 959 | Phi->addIncoming(IncomingVal, BB); |
| 960 | } |
| 961 | |
| 962 | return IncomingVal; |
| 963 | } |
| 964 | |
| 965 | /// \brief This is the standard SSA renaming algorithm. |
| 966 | /// |
| 967 | /// We walk the dominator tree in preorder, renaming accesses, and then filling |
| 968 | /// in phi nodes in our successors. |
| 969 | void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, |
| 970 | SmallPtrSet<BasicBlock *, 16> &Visited) { |
| 971 | SmallVector<RenamePassData, 32> WorkStack; |
| 972 | IncomingVal = renameBlock(Root->getBlock(), IncomingVal); |
| 973 | WorkStack.push_back({Root, Root->begin(), IncomingVal}); |
| 974 | Visited.insert(Root->getBlock()); |
| 975 | |
| 976 | while (!WorkStack.empty()) { |
| 977 | DomTreeNode *Node = WorkStack.back().DTN; |
| 978 | DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; |
| 979 | IncomingVal = WorkStack.back().IncomingVal; |
| 980 | |
| 981 | if (ChildIt == Node->end()) { |
| 982 | WorkStack.pop_back(); |
| 983 | } else { |
| 984 | DomTreeNode *Child = *ChildIt; |
| 985 | ++WorkStack.back().ChildIt; |
| 986 | BasicBlock *BB = Child->getBlock(); |
| 987 | Visited.insert(BB); |
| 988 | IncomingVal = renameBlock(BB, IncomingVal); |
| 989 | WorkStack.push_back({Child, Child->begin(), IncomingVal}); |
| 990 | } |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | /// \brief Compute dominator levels, used by the phi insertion algorithm above. |
| 995 | void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) { |
| 996 | for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); |
| 997 | DFI != DFE; ++DFI) |
| 998 | DomLevels[*DFI] = DFI.getPathLength() - 1; |
| 999 | } |
| 1000 | |
George Burgess IV | a362b09 | 2016-07-06 00:28:43 +0000 | [diff] [blame] | 1001 | /// \brief This handles unreachable block accesses by deleting phi nodes in |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1002 | /// unreachable blocks, and marking all other unreachable MemoryAccess's as |
| 1003 | /// being uses of the live on entry definition. |
| 1004 | void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { |
| 1005 | assert(!DT->isReachableFromEntry(BB) && |
| 1006 | "Reachable block found while handling unreachable blocks"); |
| 1007 | |
Daniel Berlin | fc7e651 | 2016-07-06 05:32:05 +0000 | [diff] [blame] | 1008 | // Make sure phi nodes in our reachable successors end up with a |
| 1009 | // LiveOnEntryDef for our incoming edge, even though our block is forward |
| 1010 | // unreachable. We could just disconnect these blocks from the CFG fully, |
| 1011 | // but we do not right now. |
| 1012 | for (const BasicBlock *S : successors(BB)) { |
| 1013 | if (!DT->isReachableFromEntry(S)) |
| 1014 | continue; |
| 1015 | auto It = PerBlockAccesses.find(S); |
| 1016 | // Rename the phi nodes in our successor block |
| 1017 | if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) |
| 1018 | continue; |
| 1019 | AccessList *Accesses = It->second.get(); |
| 1020 | auto *Phi = cast<MemoryPhi>(&Accesses->front()); |
| 1021 | Phi->addIncoming(LiveOnEntryDef.get(), BB); |
| 1022 | } |
| 1023 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1024 | auto It = PerBlockAccesses.find(BB); |
| 1025 | if (It == PerBlockAccesses.end()) |
| 1026 | return; |
| 1027 | |
| 1028 | auto &Accesses = It->second; |
| 1029 | for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { |
| 1030 | auto Next = std::next(AI); |
| 1031 | // If we have a phi, just remove it. We are going to replace all |
| 1032 | // users with live on entry. |
| 1033 | if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) |
| 1034 | UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); |
| 1035 | else |
| 1036 | Accesses->erase(AI); |
| 1037 | AI = Next; |
| 1038 | } |
| 1039 | } |
| 1040 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1041 | MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) |
| 1042 | : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), |
| 1043 | NextID(0) { |
Daniel Berlin | 16ed57c | 2016-06-27 18:22:27 +0000 | [diff] [blame] | 1044 | buildMemorySSA(); |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1045 | } |
| 1046 | |
| 1047 | MemorySSA::MemorySSA(MemorySSA &&MSSA) |
| 1048 | : AA(MSSA.AA), DT(MSSA.DT), F(MSSA.F), |
| 1049 | ValueToMemoryAccess(std::move(MSSA.ValueToMemoryAccess)), |
| 1050 | PerBlockAccesses(std::move(MSSA.PerBlockAccesses)), |
| 1051 | LiveOnEntryDef(std::move(MSSA.LiveOnEntryDef)), |
| 1052 | Walker(std::move(MSSA.Walker)), NextID(MSSA.NextID) { |
| 1053 | // Update the Walker MSSA pointer so it doesn't point to the moved-from MSSA |
| 1054 | // object any more. |
| 1055 | Walker->MSSA = this; |
| 1056 | } |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1057 | |
| 1058 | MemorySSA::~MemorySSA() { |
| 1059 | // Drop all our references |
| 1060 | for (const auto &Pair : PerBlockAccesses) |
| 1061 | for (MemoryAccess &MA : *Pair.second) |
| 1062 | MA.dropAllReferences(); |
| 1063 | } |
| 1064 | |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1065 | MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1066 | auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); |
| 1067 | |
| 1068 | if (Res.second) |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1069 | Res.first->second = make_unique<AccessList>(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1070 | return Res.first->second.get(); |
| 1071 | } |
| 1072 | |
Daniel Berlin | 16ed57c | 2016-06-27 18:22:27 +0000 | [diff] [blame] | 1073 | void MemorySSA::buildMemorySSA() { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1074 | // We create an access to represent "live on entry", for things like |
| 1075 | // arguments or users of globals, where the memory they use is defined before |
| 1076 | // the beginning of the function. We do not actually insert it into the IR. |
| 1077 | // We do not define a live on exit for the immediate uses, and thus our |
| 1078 | // semantics do *not* imply that something with no immediate uses can simply |
| 1079 | // be removed. |
| 1080 | BasicBlock &StartingPoint = F.getEntryBlock(); |
| 1081 | LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, |
| 1082 | &StartingPoint, NextID++); |
| 1083 | |
| 1084 | // We maintain lists of memory accesses per-block, trading memory for time. We |
| 1085 | // could just look up the memory access for every possible instruction in the |
| 1086 | // stream. |
| 1087 | SmallPtrSet<BasicBlock *, 32> DefiningBlocks; |
Daniel Berlin | 1b51a29 | 2016-02-07 01:52:19 +0000 | [diff] [blame] | 1088 | SmallPtrSet<BasicBlock *, 32> DefUseBlocks; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1089 | // Go through each block, figure out where defs occur, and chain together all |
| 1090 | // the accesses. |
| 1091 | for (BasicBlock &B : F) { |
Daniel Berlin | 7898ca6 | 2016-02-07 01:52:15 +0000 | [diff] [blame] | 1092 | bool InsertIntoDef = false; |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1093 | AccessList *Accesses = nullptr; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1094 | for (Instruction &I : B) { |
Peter Collingbourne | ffecb14 | 2016-05-26 01:19:17 +0000 | [diff] [blame] | 1095 | MemoryUseOrDef *MUD = createNewAccess(&I); |
George Burgess IV | b42b762 | 2016-03-11 19:34:03 +0000 | [diff] [blame] | 1096 | if (!MUD) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1097 | continue; |
George Burgess IV | 3887a41 | 2016-03-21 21:25:39 +0000 | [diff] [blame] | 1098 | InsertIntoDef |= isa<MemoryDef>(MUD); |
Daniel Berlin | 1b51a29 | 2016-02-07 01:52:19 +0000 | [diff] [blame] | 1099 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1100 | if (!Accesses) |
| 1101 | Accesses = getOrCreateAccessList(&B); |
George Burgess IV | b42b762 | 2016-03-11 19:34:03 +0000 | [diff] [blame] | 1102 | Accesses->push_back(MUD); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1103 | } |
Daniel Berlin | 7898ca6 | 2016-02-07 01:52:15 +0000 | [diff] [blame] | 1104 | if (InsertIntoDef) |
| 1105 | DefiningBlocks.insert(&B); |
George Burgess IV | 3887a41 | 2016-03-21 21:25:39 +0000 | [diff] [blame] | 1106 | if (Accesses) |
Daniel Berlin | 1b51a29 | 2016-02-07 01:52:19 +0000 | [diff] [blame] | 1107 | DefUseBlocks.insert(&B); |
| 1108 | } |
| 1109 | |
| 1110 | // Compute live-in. |
| 1111 | // Live in is normally defined as "all the blocks on the path from each def to |
| 1112 | // each of it's uses". |
| 1113 | // MemoryDef's are implicit uses of previous state, so they are also uses. |
| 1114 | // This means we don't really have def-only instructions. The only |
| 1115 | // MemoryDef's that are not really uses are those that are of the LiveOnEntry |
| 1116 | // variable (because LiveOnEntry can reach anywhere, and every def is a |
| 1117 | // must-kill of LiveOnEntry). |
| 1118 | // In theory, you could precisely compute live-in by using alias-analysis to |
| 1119 | // disambiguate defs and uses to see which really pair up with which. |
| 1120 | // In practice, this would be really expensive and difficult. So we simply |
| 1121 | // assume all defs are also uses that need to be kept live. |
| 1122 | // Because of this, the end result of this live-in computation will be "the |
| 1123 | // entire set of basic blocks that reach any use". |
| 1124 | |
| 1125 | SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
| 1126 | SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(), |
| 1127 | DefUseBlocks.end()); |
| 1128 | // Now that we have a set of blocks where a value is live-in, recursively add |
| 1129 | // predecessors until we find the full region the value is live. |
| 1130 | while (!LiveInBlockWorklist.empty()) { |
| 1131 | BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
| 1132 | |
| 1133 | // The block really is live in here, insert it into the set. If already in |
| 1134 | // the set, then it has already been processed. |
| 1135 | if (!LiveInBlocks.insert(BB).second) |
| 1136 | continue; |
| 1137 | |
| 1138 | // Since the value is live into BB, it is either defined in a predecessor or |
| 1139 | // live into it to. |
| 1140 | LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB)); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1141 | } |
| 1142 | |
| 1143 | // Determine where our MemoryPhi's should go |
Daniel Berlin | 77fa84e | 2016-04-19 06:13:28 +0000 | [diff] [blame] | 1144 | ForwardIDFCalculator IDFs(*DT); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1145 | IDFs.setDefiningBlocks(DefiningBlocks); |
Daniel Berlin | 1b51a29 | 2016-02-07 01:52:19 +0000 | [diff] [blame] | 1146 | IDFs.setLiveInBlocks(LiveInBlocks); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1147 | SmallVector<BasicBlock *, 32> IDFBlocks; |
| 1148 | IDFs.calculate(IDFBlocks); |
| 1149 | |
| 1150 | // Now place MemoryPhi nodes. |
| 1151 | for (auto &BB : IDFBlocks) { |
| 1152 | // Insert phi node |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1153 | AccessList *Accesses = getOrCreateAccessList(BB); |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1154 | MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); |
Daniel Berlin | f6c9ae9 | 2016-02-10 17:41:25 +0000 | [diff] [blame] | 1155 | ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1156 | // Phi's always are placed at the front of the block. |
| 1157 | Accesses->push_front(Phi); |
| 1158 | } |
| 1159 | |
| 1160 | // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get |
| 1161 | // filled in with all blocks. |
| 1162 | SmallPtrSet<BasicBlock *, 16> Visited; |
| 1163 | renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); |
| 1164 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1165 | CachingWalker *Walker = getWalkerImpl(); |
| 1166 | |
| 1167 | // We're doing a batch of updates; don't drop useful caches between them. |
| 1168 | Walker->setAutoResetWalker(false); |
Daniel Berlin | 16ed57c | 2016-06-27 18:22:27 +0000 | [diff] [blame] | 1169 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1170 | // Now optimize the MemoryUse's defining access to point to the nearest |
| 1171 | // dominating clobbering def. |
| 1172 | // This ensures that MemoryUse's that are killed by the same store are |
| 1173 | // immediate users of that store, one of the invariants we guarantee. |
| 1174 | for (auto DomNode : depth_first(DT)) { |
| 1175 | BasicBlock *BB = DomNode->getBlock(); |
| 1176 | auto AI = PerBlockAccesses.find(BB); |
| 1177 | if (AI == PerBlockAccesses.end()) |
| 1178 | continue; |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1179 | AccessList *Accesses = AI->second.get(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1180 | for (auto &MA : *Accesses) { |
| 1181 | if (auto *MU = dyn_cast<MemoryUse>(&MA)) { |
| 1182 | Instruction *Inst = MU->getMemoryInst(); |
Daniel Berlin | 6412002 | 2016-03-02 21:16:28 +0000 | [diff] [blame] | 1183 | MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst)); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1184 | } |
| 1185 | } |
| 1186 | } |
| 1187 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1188 | Walker->setAutoResetWalker(true); |
| 1189 | Walker->resetClobberWalker(); |
| 1190 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1191 | // Mark the uses in unreachable blocks as live on entry, so that they go |
| 1192 | // somewhere. |
| 1193 | for (auto &BB : F) |
| 1194 | if (!Visited.count(&BB)) |
| 1195 | markUnreachableAsLiveOnEntry(&BB); |
Daniel Berlin | 16ed57c | 2016-06-27 18:22:27 +0000 | [diff] [blame] | 1196 | } |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1197 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1198 | MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } |
| 1199 | |
| 1200 | MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { |
Daniel Berlin | 16ed57c | 2016-06-27 18:22:27 +0000 | [diff] [blame] | 1201 | if (Walker) |
| 1202 | return Walker.get(); |
| 1203 | |
| 1204 | Walker = make_unique<CachingWalker>(this, AA, DT); |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1205 | return Walker.get(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1206 | } |
| 1207 | |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1208 | MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { |
| 1209 | assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); |
| 1210 | AccessList *Accesses = getOrCreateAccessList(BB); |
| 1211 | MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); |
| 1212 | ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); |
| 1213 | // Phi's always are placed at the front of the block. |
| 1214 | Accesses->push_front(Phi); |
| 1215 | return Phi; |
| 1216 | } |
| 1217 | |
| 1218 | MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, |
| 1219 | MemoryAccess *Definition) { |
| 1220 | assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); |
| 1221 | MemoryUseOrDef *NewAccess = createNewAccess(I); |
| 1222 | assert( |
| 1223 | NewAccess != nullptr && |
| 1224 | "Tried to create a memory access for a non-memory touching instruction"); |
| 1225 | NewAccess->setDefiningAccess(Definition); |
| 1226 | return NewAccess; |
| 1227 | } |
| 1228 | |
| 1229 | MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I, |
| 1230 | MemoryAccess *Definition, |
| 1231 | const BasicBlock *BB, |
| 1232 | InsertionPlace Point) { |
| 1233 | MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); |
| 1234 | auto *Accesses = getOrCreateAccessList(BB); |
| 1235 | if (Point == Beginning) { |
| 1236 | // It goes after any phi nodes |
| 1237 | auto AI = std::find_if( |
| 1238 | Accesses->begin(), Accesses->end(), |
| 1239 | [](const MemoryAccess &MA) { return !isa<MemoryPhi>(MA); }); |
| 1240 | |
| 1241 | Accesses->insert(AI, NewAccess); |
| 1242 | } else { |
| 1243 | Accesses->push_back(NewAccess); |
| 1244 | } |
| 1245 | |
| 1246 | return NewAccess; |
| 1247 | } |
| 1248 | MemoryAccess *MemorySSA::createMemoryAccessBefore(Instruction *I, |
| 1249 | MemoryAccess *Definition, |
| 1250 | MemoryAccess *InsertPt) { |
| 1251 | assert(I->getParent() == InsertPt->getBlock() && |
| 1252 | "New and old access must be in the same block"); |
| 1253 | MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); |
| 1254 | auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); |
| 1255 | Accesses->insert(AccessList::iterator(InsertPt), NewAccess); |
| 1256 | return NewAccess; |
| 1257 | } |
| 1258 | |
| 1259 | MemoryAccess *MemorySSA::createMemoryAccessAfter(Instruction *I, |
| 1260 | MemoryAccess *Definition, |
| 1261 | MemoryAccess *InsertPt) { |
| 1262 | assert(I->getParent() == InsertPt->getBlock() && |
| 1263 | "New and old access must be in the same block"); |
| 1264 | MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); |
| 1265 | auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); |
| 1266 | Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess); |
| 1267 | return NewAccess; |
| 1268 | } |
| 1269 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1270 | /// \brief Helper function to create new memory accesses |
Peter Collingbourne | ffecb14 | 2016-05-26 01:19:17 +0000 | [diff] [blame] | 1271 | MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { |
Peter Collingbourne | b9aa1f4 | 2016-05-26 04:58:46 +0000 | [diff] [blame] | 1272 | // The assume intrinsic has a control dependency which we model by claiming |
| 1273 | // that it writes arbitrarily. Ignore that fake memory dependency here. |
| 1274 | // FIXME: Replace this special casing with a more accurate modelling of |
| 1275 | // assume's control dependency. |
| 1276 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| 1277 | if (II->getIntrinsicID() == Intrinsic::assume) |
| 1278 | return nullptr; |
| 1279 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1280 | // Find out what affect this instruction has on memory. |
| 1281 | ModRefInfo ModRef = AA->getModRefInfo(I); |
| 1282 | bool Def = bool(ModRef & MRI_Mod); |
| 1283 | bool Use = bool(ModRef & MRI_Ref); |
| 1284 | |
| 1285 | // It's possible for an instruction to not modify memory at all. During |
| 1286 | // construction, we ignore them. |
Peter Collingbourne | ffecb14 | 2016-05-26 01:19:17 +0000 | [diff] [blame] | 1287 | if (!Def && !Use) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1288 | return nullptr; |
| 1289 | |
| 1290 | assert((Def || Use) && |
| 1291 | "Trying to create a memory access with a non-memory instruction"); |
| 1292 | |
George Burgess IV | b42b762 | 2016-03-11 19:34:03 +0000 | [diff] [blame] | 1293 | MemoryUseOrDef *MUD; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1294 | if (Def) |
George Burgess IV | b42b762 | 2016-03-11 19:34:03 +0000 | [diff] [blame] | 1295 | MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1296 | else |
George Burgess IV | b42b762 | 2016-03-11 19:34:03 +0000 | [diff] [blame] | 1297 | MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); |
| 1298 | ValueToMemoryAccess.insert(std::make_pair(I, MUD)); |
| 1299 | return MUD; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1300 | } |
| 1301 | |
| 1302 | MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, |
| 1303 | enum InsertionPlace Where) { |
| 1304 | // Handle the initial case |
| 1305 | if (Where == Beginning) |
| 1306 | // The only thing that could define us at the beginning is a phi node |
| 1307 | if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) |
| 1308 | return Phi; |
| 1309 | |
| 1310 | DomTreeNode *CurrNode = DT->getNode(UseBlock); |
| 1311 | // Need to be defined by our dominator |
| 1312 | if (Where == Beginning) |
| 1313 | CurrNode = CurrNode->getIDom(); |
| 1314 | Where = End; |
| 1315 | while (CurrNode) { |
| 1316 | auto It = PerBlockAccesses.find(CurrNode->getBlock()); |
| 1317 | if (It != PerBlockAccesses.end()) { |
| 1318 | auto &Accesses = It->second; |
David Majnemer | d770877 | 2016-06-24 04:05:21 +0000 | [diff] [blame] | 1319 | for (MemoryAccess &RA : reverse(*Accesses)) { |
| 1320 | if (isa<MemoryDef>(RA) || isa<MemoryPhi>(RA)) |
| 1321 | return &RA; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1322 | } |
| 1323 | } |
| 1324 | CurrNode = CurrNode->getIDom(); |
| 1325 | } |
| 1326 | return LiveOnEntryDef.get(); |
| 1327 | } |
| 1328 | |
| 1329 | /// \brief Returns true if \p Replacer dominates \p Replacee . |
| 1330 | bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, |
| 1331 | const MemoryAccess *Replacee) const { |
| 1332 | if (isa<MemoryUseOrDef>(Replacee)) |
| 1333 | return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); |
| 1334 | const auto *MP = cast<MemoryPhi>(Replacee); |
| 1335 | // For a phi node, the use occurs in the predecessor block of the phi node. |
| 1336 | // Since we may occur multiple times in the phi node, we have to check each |
| 1337 | // operand to ensure Replacer dominates each operand where Replacee occurs. |
| 1338 | for (const Use &Arg : MP->operands()) { |
George Burgess IV | b5a229f | 2016-02-02 23:15:26 +0000 | [diff] [blame] | 1339 | if (Arg.get() != Replacee && |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1340 | !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) |
| 1341 | return false; |
| 1342 | } |
| 1343 | return true; |
| 1344 | } |
| 1345 | |
Daniel Berlin | 83fc77b | 2016-03-01 18:46:54 +0000 | [diff] [blame] | 1346 | /// \brief If all arguments of a MemoryPHI are defined by the same incoming |
| 1347 | /// argument, return that argument. |
| 1348 | static MemoryAccess *onlySingleValue(MemoryPhi *MP) { |
| 1349 | MemoryAccess *MA = nullptr; |
| 1350 | |
| 1351 | for (auto &Arg : MP->operands()) { |
| 1352 | if (!MA) |
| 1353 | MA = cast<MemoryAccess>(Arg); |
| 1354 | else if (MA != Arg) |
| 1355 | return nullptr; |
| 1356 | } |
| 1357 | return MA; |
| 1358 | } |
| 1359 | |
| 1360 | /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. |
| 1361 | /// |
| 1362 | /// Because of the way the intrusive list and use lists work, it is important to |
| 1363 | /// do removal in the right order. |
| 1364 | void MemorySSA::removeFromLookups(MemoryAccess *MA) { |
| 1365 | assert(MA->use_empty() && |
| 1366 | "Trying to remove memory access that still has uses"); |
| 1367 | if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) |
| 1368 | MUD->setDefiningAccess(nullptr); |
| 1369 | // Invalidate our walker's cache if necessary |
| 1370 | if (!isa<MemoryUse>(MA)) |
| 1371 | Walker->invalidateInfo(MA); |
| 1372 | // The call below to erase will destroy MA, so we can't change the order we |
| 1373 | // are doing things here |
| 1374 | Value *MemoryInst; |
| 1375 | if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { |
| 1376 | MemoryInst = MUD->getMemoryInst(); |
| 1377 | } else { |
| 1378 | MemoryInst = MA->getBlock(); |
| 1379 | } |
| 1380 | ValueToMemoryAccess.erase(MemoryInst); |
| 1381 | |
George Burgess IV | e0e6e48 | 2016-03-02 02:35:04 +0000 | [diff] [blame] | 1382 | auto AccessIt = PerBlockAccesses.find(MA->getBlock()); |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1383 | std::unique_ptr<AccessList> &Accesses = AccessIt->second; |
Daniel Berlin | 83fc77b | 2016-03-01 18:46:54 +0000 | [diff] [blame] | 1384 | Accesses->erase(MA); |
George Burgess IV | e0e6e48 | 2016-03-02 02:35:04 +0000 | [diff] [blame] | 1385 | if (Accesses->empty()) |
| 1386 | PerBlockAccesses.erase(AccessIt); |
Daniel Berlin | 83fc77b | 2016-03-01 18:46:54 +0000 | [diff] [blame] | 1387 | } |
| 1388 | |
| 1389 | void MemorySSA::removeMemoryAccess(MemoryAccess *MA) { |
| 1390 | assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); |
| 1391 | // We can only delete phi nodes if they have no uses, or we can replace all |
| 1392 | // uses with a single definition. |
| 1393 | MemoryAccess *NewDefTarget = nullptr; |
| 1394 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { |
| 1395 | // Note that it is sufficient to know that all edges of the phi node have |
| 1396 | // the same argument. If they do, by the definition of dominance frontiers |
| 1397 | // (which we used to place this phi), that argument must dominate this phi, |
| 1398 | // and thus, must dominate the phi's uses, and so we will not hit the assert |
| 1399 | // below. |
| 1400 | NewDefTarget = onlySingleValue(MP); |
| 1401 | assert((NewDefTarget || MP->use_empty()) && |
| 1402 | "We can't delete this memory phi"); |
| 1403 | } else { |
| 1404 | NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); |
| 1405 | } |
| 1406 | |
| 1407 | // Re-point the uses at our defining access |
| 1408 | if (!MA->use_empty()) |
| 1409 | MA->replaceAllUsesWith(NewDefTarget); |
| 1410 | |
| 1411 | // The call below to erase will destroy MA, so we can't change the order we |
| 1412 | // are doing things here |
| 1413 | removeFromLookups(MA); |
| 1414 | } |
| 1415 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1416 | void MemorySSA::print(raw_ostream &OS) const { |
| 1417 | MemorySSAAnnotatedWriter Writer(this); |
| 1418 | F.print(OS, &Writer); |
| 1419 | } |
| 1420 | |
| 1421 | void MemorySSA::dump() const { |
| 1422 | MemorySSAAnnotatedWriter Writer(this); |
| 1423 | F.print(dbgs(), &Writer); |
| 1424 | } |
| 1425 | |
Daniel Berlin | 932b4cb | 2016-02-10 17:39:43 +0000 | [diff] [blame] | 1426 | void MemorySSA::verifyMemorySSA() const { |
| 1427 | verifyDefUses(F); |
| 1428 | verifyDomination(F); |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1429 | verifyOrdering(F); |
| 1430 | } |
| 1431 | |
| 1432 | /// \brief Verify that the order and existence of MemoryAccesses matches the |
| 1433 | /// order and existence of memory affecting instructions. |
| 1434 | void MemorySSA::verifyOrdering(Function &F) const { |
| 1435 | // Walk all the blocks, comparing what the lookups think and what the access |
| 1436 | // lists think, as well as the order in the blocks vs the order in the access |
| 1437 | // lists. |
| 1438 | SmallVector<MemoryAccess *, 32> ActualAccesses; |
| 1439 | for (BasicBlock &B : F) { |
| 1440 | const AccessList *AL = getBlockAccesses(&B); |
| 1441 | MemoryAccess *Phi = getMemoryAccess(&B); |
| 1442 | if (Phi) |
| 1443 | ActualAccesses.push_back(Phi); |
| 1444 | for (Instruction &I : B) { |
| 1445 | MemoryAccess *MA = getMemoryAccess(&I); |
| 1446 | assert((!MA || AL) && "We have memory affecting instructions " |
| 1447 | "in this block but they are not in the " |
| 1448 | "access list"); |
| 1449 | if (MA) |
| 1450 | ActualAccesses.push_back(MA); |
| 1451 | } |
| 1452 | // Either we hit the assert, really have no accesses, or we have both |
| 1453 | // accesses and an access list |
| 1454 | if (!AL) |
| 1455 | continue; |
| 1456 | assert(AL->size() == ActualAccesses.size() && |
| 1457 | "We don't have the same number of accesses in the block as on the " |
| 1458 | "access list"); |
| 1459 | auto ALI = AL->begin(); |
| 1460 | auto AAI = ActualAccesses.begin(); |
| 1461 | while (ALI != AL->end() && AAI != ActualAccesses.end()) { |
| 1462 | assert(&*ALI == *AAI && "Not the same accesses in the same order"); |
| 1463 | ++ALI; |
| 1464 | ++AAI; |
| 1465 | } |
| 1466 | ActualAccesses.clear(); |
| 1467 | } |
Daniel Berlin | 932b4cb | 2016-02-10 17:39:43 +0000 | [diff] [blame] | 1468 | } |
| 1469 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1470 | /// \brief Verify the domination properties of MemorySSA by checking that each |
| 1471 | /// definition dominates all of its uses. |
Daniel Berlin | 932b4cb | 2016-02-10 17:39:43 +0000 | [diff] [blame] | 1472 | void MemorySSA::verifyDomination(Function &F) const { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1473 | for (BasicBlock &B : F) { |
| 1474 | // Phi nodes are attached to basic blocks |
| 1475 | if (MemoryPhi *MP = getMemoryAccess(&B)) { |
| 1476 | for (User *U : MP->users()) { |
| 1477 | BasicBlock *UseBlock; |
| 1478 | // Phi operands are used on edges, we simulate the right domination by |
| 1479 | // acting as if the use occurred at the end of the predecessor block. |
| 1480 | if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) { |
| 1481 | for (const auto &Arg : P->operands()) { |
| 1482 | if (Arg == MP) { |
| 1483 | UseBlock = P->getIncomingBlock(Arg); |
| 1484 | break; |
| 1485 | } |
| 1486 | } |
| 1487 | } else { |
| 1488 | UseBlock = cast<MemoryAccess>(U)->getBlock(); |
| 1489 | } |
George Burgess IV | 60adac4 | 2016-02-02 23:26:01 +0000 | [diff] [blame] | 1490 | (void)UseBlock; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1491 | assert(DT->dominates(MP->getBlock(), UseBlock) && |
| 1492 | "Memory PHI does not dominate it's uses"); |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | for (Instruction &I : B) { |
| 1497 | MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); |
| 1498 | if (!MD) |
| 1499 | continue; |
| 1500 | |
Benjamin Kramer | 451f54c | 2016-02-22 13:11:58 +0000 | [diff] [blame] | 1501 | for (User *U : MD->users()) { |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1502 | BasicBlock *UseBlock; |
| 1503 | (void)UseBlock; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1504 | // Things are allowed to flow to phi nodes over their predecessor edge. |
| 1505 | if (auto *P = dyn_cast<MemoryPhi>(U)) { |
| 1506 | for (const auto &Arg : P->operands()) { |
| 1507 | if (Arg == MD) { |
| 1508 | UseBlock = P->getIncomingBlock(Arg); |
| 1509 | break; |
| 1510 | } |
| 1511 | } |
| 1512 | } else { |
| 1513 | UseBlock = cast<MemoryAccess>(U)->getBlock(); |
| 1514 | } |
| 1515 | assert(DT->dominates(MD->getBlock(), UseBlock) && |
| 1516 | "Memory Def does not dominate it's uses"); |
| 1517 | } |
| 1518 | } |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use |
| 1523 | /// appears in the use list of \p Def. |
| 1524 | /// |
| 1525 | /// llvm_unreachable is used instead of asserts because this may be called in |
| 1526 | /// a build without asserts. In that case, we don't want this to turn into a |
| 1527 | /// nop. |
Daniel Berlin | 932b4cb | 2016-02-10 17:39:43 +0000 | [diff] [blame] | 1528 | void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1529 | // The live on entry use may cause us to get a NULL def here |
| 1530 | if (!Def) { |
| 1531 | if (!isLiveOnEntryDef(Use)) |
| 1532 | llvm_unreachable("Null def but use not point to live on entry def"); |
| 1533 | } else if (std::find(Def->user_begin(), Def->user_end(), Use) == |
| 1534 | Def->user_end()) { |
| 1535 | llvm_unreachable("Did not find use in def's use list"); |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | /// \brief Verify the immediate use information, by walking all the memory |
| 1540 | /// accesses and verifying that, for each use, it appears in the |
| 1541 | /// appropriate def's use list |
Daniel Berlin | 932b4cb | 2016-02-10 17:39:43 +0000 | [diff] [blame] | 1542 | void MemorySSA::verifyDefUses(Function &F) const { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1543 | for (BasicBlock &B : F) { |
| 1544 | // Phi nodes are attached to basic blocks |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1545 | if (MemoryPhi *Phi = getMemoryAccess(&B)) { |
David Majnemer | 580e754 | 2016-06-25 00:04:06 +0000 | [diff] [blame] | 1546 | assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( |
| 1547 | pred_begin(&B), pred_end(&B))) && |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1548 | "Incomplete MemoryPhi Node"); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1549 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) |
| 1550 | verifyUseInDefs(Phi->getIncomingValue(I), Phi); |
Daniel Berlin | 1430026 | 2016-06-21 18:39:20 +0000 | [diff] [blame] | 1551 | } |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1552 | |
| 1553 | for (Instruction &I : B) { |
| 1554 | if (MemoryAccess *MA = getMemoryAccess(&I)) { |
| 1555 | assert(isa<MemoryUseOrDef>(MA) && |
| 1556 | "Found a phi node not attached to a bb"); |
| 1557 | verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA); |
| 1558 | } |
| 1559 | } |
| 1560 | } |
| 1561 | } |
| 1562 | |
| 1563 | MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const { |
Daniel Berlin | f6c9ae9 | 2016-02-10 17:41:25 +0000 | [diff] [blame] | 1564 | return ValueToMemoryAccess.lookup(I); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1565 | } |
| 1566 | |
| 1567 | MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { |
| 1568 | return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB)); |
| 1569 | } |
| 1570 | |
| 1571 | /// \brief Determine, for two memory accesses in the same block, |
| 1572 | /// whether \p Dominator dominates \p Dominatee. |
| 1573 | /// \returns True if \p Dominator dominates \p Dominatee. |
| 1574 | bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, |
| 1575 | const MemoryAccess *Dominatee) const { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1576 | assert((Dominator->getBlock() == Dominatee->getBlock()) && |
| 1577 | "Asking for local domination when accesses are in different blocks!"); |
Sebastian Pop | e1f60b1 | 2016-06-10 21:36:41 +0000 | [diff] [blame] | 1578 | |
| 1579 | // A node dominates itself. |
| 1580 | if (Dominatee == Dominator) |
| 1581 | return true; |
| 1582 | |
| 1583 | // When Dominatee is defined on function entry, it is not dominated by another |
| 1584 | // memory access. |
| 1585 | if (isLiveOnEntryDef(Dominatee)) |
| 1586 | return false; |
| 1587 | |
| 1588 | // When Dominator is defined on function entry, it dominates the other memory |
| 1589 | // access. |
| 1590 | if (isLiveOnEntryDef(Dominator)) |
| 1591 | return true; |
| 1592 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1593 | // Get the access list for the block |
Daniel Berlin | ada263d | 2016-06-20 20:21:33 +0000 | [diff] [blame] | 1594 | const AccessList *AccessList = getBlockAccesses(Dominator->getBlock()); |
| 1595 | AccessList::const_reverse_iterator It(Dominator->getIterator()); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1596 | |
| 1597 | // If we hit the beginning of the access list before we hit dominatee, we must |
| 1598 | // dominate it |
| 1599 | return std::none_of(It, AccessList->rend(), |
| 1600 | [&](const MemoryAccess &MA) { return &MA == Dominatee; }); |
| 1601 | } |
| 1602 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1603 | bool MemorySSA::dominates(const MemoryAccess *Dominator, |
| 1604 | const MemoryAccess *Dominatee) const { |
| 1605 | if (Dominator == Dominatee) |
| 1606 | return true; |
| 1607 | |
| 1608 | if (isLiveOnEntryDef(Dominatee)) |
| 1609 | return false; |
| 1610 | |
| 1611 | if (Dominator->getBlock() != Dominatee->getBlock()) |
| 1612 | return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); |
| 1613 | return locallyDominates(Dominator, Dominatee); |
| 1614 | } |
| 1615 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1616 | const static char LiveOnEntryStr[] = "liveOnEntry"; |
| 1617 | |
| 1618 | void MemoryDef::print(raw_ostream &OS) const { |
| 1619 | MemoryAccess *UO = getDefiningAccess(); |
| 1620 | |
| 1621 | OS << getID() << " = MemoryDef("; |
| 1622 | if (UO && UO->getID()) |
| 1623 | OS << UO->getID(); |
| 1624 | else |
| 1625 | OS << LiveOnEntryStr; |
| 1626 | OS << ')'; |
| 1627 | } |
| 1628 | |
| 1629 | void MemoryPhi::print(raw_ostream &OS) const { |
| 1630 | bool First = true; |
| 1631 | OS << getID() << " = MemoryPhi("; |
| 1632 | for (const auto &Op : operands()) { |
| 1633 | BasicBlock *BB = getIncomingBlock(Op); |
| 1634 | MemoryAccess *MA = cast<MemoryAccess>(Op); |
| 1635 | if (!First) |
| 1636 | OS << ','; |
| 1637 | else |
| 1638 | First = false; |
| 1639 | |
| 1640 | OS << '{'; |
| 1641 | if (BB->hasName()) |
| 1642 | OS << BB->getName(); |
| 1643 | else |
| 1644 | BB->printAsOperand(OS, false); |
| 1645 | OS << ','; |
| 1646 | if (unsigned ID = MA->getID()) |
| 1647 | OS << ID; |
| 1648 | else |
| 1649 | OS << LiveOnEntryStr; |
| 1650 | OS << '}'; |
| 1651 | } |
| 1652 | OS << ')'; |
| 1653 | } |
| 1654 | |
| 1655 | MemoryAccess::~MemoryAccess() {} |
| 1656 | |
| 1657 | void MemoryUse::print(raw_ostream &OS) const { |
| 1658 | MemoryAccess *UO = getDefiningAccess(); |
| 1659 | OS << "MemoryUse("; |
| 1660 | if (UO && UO->getID()) |
| 1661 | OS << UO->getID(); |
| 1662 | else |
| 1663 | OS << LiveOnEntryStr; |
| 1664 | OS << ')'; |
| 1665 | } |
| 1666 | |
| 1667 | void MemoryAccess::dump() const { |
| 1668 | print(dbgs()); |
| 1669 | dbgs() << "\n"; |
| 1670 | } |
| 1671 | |
Chad Rosier | 232e29e | 2016-07-06 21:20:47 +0000 | [diff] [blame] | 1672 | char MemorySSAPrinterLegacyPass::ID = 0; |
| 1673 | |
| 1674 | MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { |
| 1675 | initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 1676 | } |
| 1677 | |
| 1678 | void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 1679 | AU.setPreservesAll(); |
| 1680 | AU.addRequired<MemorySSAWrapperPass>(); |
| 1681 | AU.addPreserved<MemorySSAWrapperPass>(); |
| 1682 | } |
| 1683 | |
| 1684 | bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { |
| 1685 | auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); |
| 1686 | MSSA.print(dbgs()); |
| 1687 | if (VerifyMemorySSA) |
| 1688 | MSSA.verifyMemorySSA(); |
| 1689 | return false; |
| 1690 | } |
| 1691 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1692 | char MemorySSAAnalysis::PassID; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1693 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1694 | MemorySSA MemorySSAAnalysis::run(Function &F, AnalysisManager<Function> &AM) { |
| 1695 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| 1696 | auto &AA = AM.getResult<AAManager>(F); |
| 1697 | return MemorySSA(F, &AA, &DT); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1698 | } |
| 1699 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1700 | PreservedAnalyses MemorySSAPrinterPass::run(Function &F, |
| 1701 | FunctionAnalysisManager &AM) { |
| 1702 | OS << "MemorySSA for function: " << F.getName() << "\n"; |
| 1703 | AM.getResult<MemorySSAAnalysis>(F).print(OS); |
| 1704 | |
| 1705 | return PreservedAnalyses::all(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1706 | } |
| 1707 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1708 | PreservedAnalyses MemorySSAVerifierPass::run(Function &F, |
| 1709 | FunctionAnalysisManager &AM) { |
| 1710 | AM.getResult<MemorySSAAnalysis>(F).verifyMemorySSA(); |
| 1711 | |
| 1712 | return PreservedAnalyses::all(); |
| 1713 | } |
| 1714 | |
| 1715 | char MemorySSAWrapperPass::ID = 0; |
| 1716 | |
| 1717 | MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { |
| 1718 | initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 1719 | } |
| 1720 | |
| 1721 | void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } |
| 1722 | |
| 1723 | void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1724 | AU.setPreservesAll(); |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1725 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
| 1726 | AU.addRequiredTransitive<AAResultsWrapperPass>(); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1727 | } |
| 1728 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1729 | bool MemorySSAWrapperPass::runOnFunction(Function &F) { |
| 1730 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1731 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 1732 | MSSA.reset(new MemorySSA(F, &AA, &DT)); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1733 | return false; |
| 1734 | } |
| 1735 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1736 | void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1737 | |
Geoff Berry | b96d3b2 | 2016-06-01 21:30:40 +0000 | [diff] [blame] | 1738 | void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1739 | MSSA->print(OS); |
| 1740 | } |
| 1741 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1742 | MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} |
| 1743 | |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1744 | MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, |
| 1745 | DominatorTree *D) |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1746 | : MemorySSAWalker(M), Walker(*M, *A, *D, Cache), |
| 1747 | AutoResetWalker(true) {} |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1748 | |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1749 | MemorySSA::CachingWalker::~CachingWalker() {} |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1750 | |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1751 | void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { |
Daniel Berlin | 83fc77b | 2016-03-01 18:46:54 +0000 | [diff] [blame] | 1752 | // TODO: We can do much better cache invalidation with differently stored |
| 1753 | // caches. For now, for MemoryUses, we simply remove them |
| 1754 | // from the cache, and kill the entire call/non-call cache for everything |
| 1755 | // else. The problem is for phis or defs, currently we'd need to follow use |
| 1756 | // chains down and invalidate anything below us in the chain that currently |
| 1757 | // terminates at this access. |
| 1758 | |
| 1759 | // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse |
| 1760 | // is by definition never a barrier, so nothing in the cache could point to |
| 1761 | // this use. In that case, we only need invalidate the info for the use |
| 1762 | // itself. |
| 1763 | |
| 1764 | if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) { |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1765 | UpwardsMemoryQuery Q(MU->getMemoryInst(), MU); |
| 1766 | Cache.remove(MU, Q.StartingLoc, Q.IsCall); |
Geoff Berry | 9fe26e6 | 2016-04-22 14:44:10 +0000 | [diff] [blame] | 1767 | } else { |
| 1768 | // If it is not a use, the best we can do right now is destroy the cache. |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1769 | Cache.clear(); |
Geoff Berry | 9fe26e6 | 2016-04-22 14:44:10 +0000 | [diff] [blame] | 1770 | } |
| 1771 | |
Filipe Cabecinhas | 0da9937 | 2016-04-29 15:22:48 +0000 | [diff] [blame] | 1772 | #ifdef EXPENSIVE_CHECKS |
Geoff Berry | 9fe26e6 | 2016-04-22 14:44:10 +0000 | [diff] [blame] | 1773 | verifyRemoved(MA); |
| 1774 | #endif |
Daniel Berlin | 83fc77b | 2016-03-01 18:46:54 +0000 | [diff] [blame] | 1775 | } |
| 1776 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1777 | /// \brief Walk the use-def chains starting at \p MA and find |
| 1778 | /// the MemoryAccess that actually clobbers Loc. |
| 1779 | /// |
| 1780 | /// \returns our clobbering memory access |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1781 | MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( |
| 1782 | MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1783 | MemoryAccess *New = Walker.findClobber(StartingAccess, Q); |
| 1784 | #ifdef EXPENSIVE_CHECKS |
| 1785 | MemoryAccess *NewNoCache = |
| 1786 | Walker.findClobber(StartingAccess, Q, /*UseWalkerCache=*/false); |
| 1787 | assert(NewNoCache == New && "Cache made us hand back a different result?"); |
| 1788 | #endif |
| 1789 | if (AutoResetWalker) |
| 1790 | resetClobberWalker(); |
| 1791 | return New; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1792 | } |
| 1793 | |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1794 | MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( |
| 1795 | MemoryAccess *StartingAccess, MemoryLocation &Loc) { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1796 | if (isa<MemoryPhi>(StartingAccess)) |
| 1797 | return StartingAccess; |
| 1798 | |
| 1799 | auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); |
| 1800 | if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) |
| 1801 | return StartingUseOrDef; |
| 1802 | |
| 1803 | Instruction *I = StartingUseOrDef->getMemoryInst(); |
| 1804 | |
| 1805 | // Conservatively, fences are always clobbers, so don't perform the walk if we |
| 1806 | // hit a fence. |
David Majnemer | a940f36 | 2016-07-15 17:19:24 +0000 | [diff] [blame] | 1807 | if (!ImmutableCallSite(I) && I->isFenceLike()) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1808 | return StartingUseOrDef; |
| 1809 | |
| 1810 | UpwardsMemoryQuery Q; |
| 1811 | Q.OriginalAccess = StartingUseOrDef; |
| 1812 | Q.StartingLoc = Loc; |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1813 | Q.Inst = I; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1814 | Q.IsCall = false; |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1815 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1816 | if (auto *CacheResult = Cache.lookup(StartingUseOrDef, Loc, Q.IsCall)) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1817 | return CacheResult; |
| 1818 | |
| 1819 | // Unlike the other function, do not walk to the def of a def, because we are |
| 1820 | // handed something we already believe is the clobbering access. |
| 1821 | MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) |
| 1822 | ? StartingUseOrDef->getDefiningAccess() |
| 1823 | : StartingUseOrDef; |
| 1824 | |
| 1825 | MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1826 | DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); |
| 1827 | DEBUG(dbgs() << *StartingUseOrDef << "\n"); |
| 1828 | DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); |
| 1829 | DEBUG(dbgs() << *Clobber << "\n"); |
| 1830 | return Clobber; |
| 1831 | } |
| 1832 | |
| 1833 | MemoryAccess * |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1834 | MemorySSA::CachingWalker::getClobberingMemoryAccess(const Instruction *I) { |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1835 | // There should be no way to lookup an instruction and get a phi as the |
| 1836 | // access, since we only map BB's to PHI's. So, this must be a use or def. |
| 1837 | auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I)); |
| 1838 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1839 | UpwardsMemoryQuery Q(I, StartingAccess); |
David Majnemer | a940f36 | 2016-07-15 17:19:24 +0000 | [diff] [blame] | 1840 | // We can't sanely do anything with a fences, they conservatively |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1841 | // clobber all memory, and have no locations to get pointers from to |
David Majnemer | a940f36 | 2016-07-15 17:19:24 +0000 | [diff] [blame] | 1842 | // try to disambiguate. |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1843 | if (!Q.IsCall && I->isFenceLike()) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1844 | return StartingAccess; |
| 1845 | |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1846 | if (auto *CacheResult = Cache.lookup(StartingAccess, Q.StartingLoc, Q.IsCall)) |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1847 | return CacheResult; |
| 1848 | |
| 1849 | // Start with the thing we already think clobbers this location |
| 1850 | MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); |
| 1851 | |
| 1852 | // At this point, DefiningAccess may be the live on entry def. |
| 1853 | // If it is, we will not get a better result. |
| 1854 | if (MSSA->isLiveOnEntryDef(DefiningAccess)) |
| 1855 | return DefiningAccess; |
| 1856 | |
| 1857 | MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1858 | DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); |
| 1859 | DEBUG(dbgs() << *DefiningAccess << "\n"); |
| 1860 | DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); |
| 1861 | DEBUG(dbgs() << *Result << "\n"); |
| 1862 | |
| 1863 | return Result; |
| 1864 | } |
| 1865 | |
Geoff Berry | 9fe26e6 | 2016-04-22 14:44:10 +0000 | [diff] [blame] | 1866 | // Verify that MA doesn't exist in any of the caches. |
George Burgess IV | fd1f2f8 | 2016-06-24 21:02:12 +0000 | [diff] [blame] | 1867 | void MemorySSA::CachingWalker::verifyRemoved(MemoryAccess *MA) { |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1868 | assert(!Cache.contains(MA) && "Found removed MemoryAccess in cache."); |
Geoff Berry | 9fe26e6 | 2016-04-22 14:44:10 +0000 | [diff] [blame] | 1869 | } |
| 1870 | |
George Burgess IV | e1100f5 | 2016-02-02 22:46:49 +0000 | [diff] [blame] | 1871 | MemoryAccess * |
| 1872 | DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { |
| 1873 | MemoryAccess *MA = MSSA->getMemoryAccess(I); |
| 1874 | if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) |
| 1875 | return Use->getDefiningAccess(); |
| 1876 | return MA; |
| 1877 | } |
| 1878 | |
| 1879 | MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( |
| 1880 | MemoryAccess *StartingAccess, MemoryLocation &) { |
| 1881 | if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) |
| 1882 | return Use->getDefiningAccess(); |
| 1883 | return StartingAccess; |
| 1884 | } |
George Burgess IV | 5f30897 | 2016-07-19 01:29:15 +0000 | [diff] [blame^] | 1885 | } // namespace llvm |