blob: b6c6649577dceee622c125c7832529e80c5cec39 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000030#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000031#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000033#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000034#include "llvm/IR/Function.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000037#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000038#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000039#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000040#include "llvm/IR/PassManager.h"
41#include "llvm/IR/Use.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000047#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000048#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000049#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000050#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000051#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000052#include <cassert>
53#include <iterator>
54#include <memory>
55#include <utility>
56
57using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000058
59#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000060
Geoff Berryefb0dd12016-06-14 21:19:40 +000061INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000062 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000063INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000065INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000067
Chad Rosier232e29e2016-07-06 21:20:47 +000068INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
73
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000074static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
78
Chad Rosier232e29e2016-07-06 21:20:47 +000079static cl::opt<bool>
80 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
81 cl::desc("Verify MemorySSA in legacy printer pass."));
82
George Burgess IVe1100f52016-02-02 22:46:49 +000083namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000084
George Burgess IVe1100f52016-02-02 22:46:49 +000085/// \brief An assembly annotator class to print Memory SSA information in
86/// comments.
87class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
88 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090 const MemorySSA *MSSA;
91
92public:
93 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
94
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000095 void emitBasicBlockStartAnnot(const BasicBlock *BB,
96 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +000097 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
98 OS << "; " << *MA << "\n";
99 }
100
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000101 void emitInstructionAnnot(const Instruction *I,
102 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000103 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
104 OS << "; " << *MA << "\n";
105 }
106};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000107
108} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000109
George Burgess IV5f308972016-07-19 01:29:15 +0000110namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000111
Daniel Berlindff31de2016-08-02 21:57:52 +0000112/// Our current alias analysis API differentiates heavily between calls and
113/// non-calls, and functions called on one usually assert on the other.
114/// This class encapsulates the distinction to simplify other code that wants
115/// "Memory affecting instructions and related data" to use as a key.
116/// For example, this class is used as a densemap key in the use optimizer.
117class MemoryLocOrCall {
118public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000119 bool IsCall = false;
120
121 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000122 MemoryLocOrCall(MemoryUseOrDef *MUD)
123 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000124 MemoryLocOrCall(const MemoryUseOrDef *MUD)
125 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000126
127 MemoryLocOrCall(Instruction *Inst) {
128 if (ImmutableCallSite(Inst)) {
129 IsCall = true;
130 CS = ImmutableCallSite(Inst);
131 } else {
132 IsCall = false;
133 // There is no such thing as a memorylocation for a fence inst, and it is
134 // unique in that regard.
135 if (!isa<FenceInst>(Inst))
136 Loc = MemoryLocation::get(Inst);
137 }
138 }
139
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000140 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000141
Daniel Berlindff31de2016-08-02 21:57:52 +0000142 ImmutableCallSite getCS() const {
143 assert(IsCall);
144 return CS;
145 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000146
Daniel Berlindff31de2016-08-02 21:57:52 +0000147 MemoryLocation getLoc() const {
148 assert(!IsCall);
149 return Loc;
150 }
151
152 bool operator==(const MemoryLocOrCall &Other) const {
153 if (IsCall != Other.IsCall)
154 return false;
155
156 if (IsCall)
157 return CS.getCalledValue() == Other.CS.getCalledValue();
158 return Loc == Other.Loc;
159 }
160
161private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000162 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000163 ImmutableCallSite CS;
164 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000165 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000166};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000167
168} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000169
170namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000171
Daniel Berlindff31de2016-08-02 21:57:52 +0000172template <> struct DenseMapInfo<MemoryLocOrCall> {
173 static inline MemoryLocOrCall getEmptyKey() {
174 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
175 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000176
Daniel Berlindff31de2016-08-02 21:57:52 +0000177 static inline MemoryLocOrCall getTombstoneKey() {
178 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
179 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000180
Daniel Berlindff31de2016-08-02 21:57:52 +0000181 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
182 if (MLOC.IsCall)
183 return hash_combine(MLOC.IsCall,
184 DenseMapInfo<const Value *>::getHashValue(
185 MLOC.getCS().getCalledValue()));
186 return hash_combine(
187 MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
188 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000189
Daniel Berlindff31de2016-08-02 21:57:52 +0000190 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
191 return LHS == RHS;
192 }
193};
Daniel Berlindf101192016-08-03 00:01:46 +0000194
George Burgess IVf7672852016-08-03 19:59:11 +0000195enum class Reorderability { Always, IfNoAlias, Never };
George Burgess IV82e355c2016-08-03 19:39:54 +0000196
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000197} // end namespace llvm
198
George Burgess IV82e355c2016-08-03 19:39:54 +0000199/// This does one-way checks to see if Use could theoretically be hoisted above
200/// MayClobber. This will not check the other way around.
201///
202/// This assumes that, for the purposes of MemorySSA, Use comes directly after
203/// MayClobber, with no potentially clobbering operations in between them.
204/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
205static Reorderability getLoadReorderability(const LoadInst *Use,
206 const LoadInst *MayClobber) {
207 bool VolatileUse = Use->isVolatile();
208 bool VolatileClobber = MayClobber->isVolatile();
209 // Volatile operations may never be reordered with other volatile operations.
210 if (VolatileUse && VolatileClobber)
211 return Reorderability::Never;
212
213 // The lang ref allows reordering of volatile and non-volatile operations.
214 // Whether an aliasing nonvolatile load and volatile load can be reordered,
215 // though, is ambiguous. Because it may not be best to exploit this ambiguity,
216 // we only allow volatile/non-volatile reordering if the volatile and
217 // non-volatile operations don't alias.
218 Reorderability Result = VolatileUse || VolatileClobber
219 ? Reorderability::IfNoAlias
220 : Reorderability::Always;
221
222 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
223 // is weaker, it can be moved above other loads. We just need to be sure that
224 // MayClobber isn't an acquire load, because loads can't be moved above
225 // acquire loads.
226 //
227 // Note that this explicitly *does* allow the free reordering of monotonic (or
228 // weaker) loads of the same address.
229 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
230 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
231 AtomicOrdering::Acquire);
232 if (SeqCstUse || MayClobberIsAcquire)
233 return Reorderability::Never;
234 return Result;
235}
236
Sebastian Popd57d93c2016-10-12 03:08:40 +0000237static bool instructionClobbersQuery(MemoryDef *MD,
238 const MemoryLocation &UseLoc,
239 const Instruction *UseInst,
240 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000241 Instruction *DefInst = MD->getMemoryInst();
242 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000243 ImmutableCallSite UseCS(UseInst);
George Burgess IV5f308972016-07-19 01:29:15 +0000244
Daniel Berlindf101192016-08-03 00:01:46 +0000245 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
246 // These intrinsics will show up as affecting memory, but they are just
247 // markers.
248 switch (II->getIntrinsicID()) {
249 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000250 if (UseCS)
251 return false;
252 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc);
Daniel Berlindf101192016-08-03 00:01:46 +0000253 case Intrinsic::lifetime_end:
254 case Intrinsic::invariant_start:
255 case Intrinsic::invariant_end:
256 case Intrinsic::assume:
257 return false;
258 default:
259 break;
260 }
261 }
262
Daniel Berlindff31de2016-08-02 21:57:52 +0000263 if (UseCS) {
264 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
265 return I != MRI_NoModRef;
266 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000267
268 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) {
269 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) {
270 switch (getLoadReorderability(UseLoad, DefLoad)) {
271 case Reorderability::Always:
272 return false;
273 case Reorderability::Never:
274 return true;
275 case Reorderability::IfNoAlias:
276 return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad));
277 }
278 }
279 }
280
Daniel Berlindff31de2016-08-02 21:57:52 +0000281 return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod;
282}
283
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000284static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
285 const MemoryLocOrCall &UseMLOC,
286 AliasAnalysis &AA) {
287 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
288 // to exist while MemoryLocOrCall is pushed through places.
289 if (UseMLOC.IsCall)
290 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
291 AA);
292 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
293 AA);
294}
295
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000296// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000297bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
298 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000299 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000300}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000301
302namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000303
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000304struct UpwardsMemoryQuery {
305 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000306 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000307 // The pointer location we started the query with. This will be empty if
308 // IsCall is true.
309 MemoryLocation StartingLoc;
310 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000311 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000312 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000313 const MemoryAccess *OriginalAccess = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000314
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000315 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000316
317 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
318 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
319 if (!IsCall)
320 StartingLoc = MemoryLocation::get(Inst);
321 }
322};
323
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000324} // end anonymous namespace
325
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000326static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
327 AliasAnalysis &AA) {
328 Instruction *Inst = MD->getMemoryInst();
329 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
330 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000331 case Intrinsic::lifetime_end:
332 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
333 default:
334 return false;
335 }
336 }
337 return false;
338}
339
340static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
341 const Instruction *I) {
342 // If the memory can't be changed, then loads of the memory can't be
343 // clobbered.
344 //
345 // FIXME: We should handle invariant groups, as well. It's a bit harder,
346 // because we need to pay close attention to invariant group barriers.
347 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000348 AA.pointsToConstantMemory(cast<LoadInst>(I)->
349 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000350}
351
George Burgess IV5f308972016-07-19 01:29:15 +0000352/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
353/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
354///
355/// This is meant to be as simple and self-contained as possible. Because it
356/// uses no cache, etc., it can be relatively expensive.
357///
358/// \param Start The MemoryAccess that we want to walk from.
359/// \param ClobberAt A clobber for Start.
360/// \param StartLoc The MemoryLocation for Start.
361/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
362/// \param Query The UpwardsMemoryQuery we used for our search.
363/// \param AA The AliasAnalysis we used for our search.
364static void LLVM_ATTRIBUTE_UNUSED
365checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
366 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
367 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
368 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
369
370 if (MSSA.isLiveOnEntryDef(Start)) {
371 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
372 "liveOnEntry must clobber itself");
373 return;
374 }
375
George Burgess IV5f308972016-07-19 01:29:15 +0000376 bool FoundClobber = false;
377 DenseSet<MemoryAccessPair> VisitedPhis;
378 SmallVector<MemoryAccessPair, 8> Worklist;
379 Worklist.emplace_back(Start, StartLoc);
380 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
381 // is found, complain.
382 while (!Worklist.empty()) {
383 MemoryAccessPair MAP = Worklist.pop_back_val();
384 // All we care about is that nothing from Start to ClobberAt clobbers Start.
385 // We learn nothing from revisiting nodes.
386 if (!VisitedPhis.insert(MAP).second)
387 continue;
388
389 for (MemoryAccess *MA : def_chain(MAP.first)) {
390 if (MA == ClobberAt) {
391 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
392 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
393 // since it won't let us short-circuit.
394 //
395 // Also, note that this can't be hoisted out of the `Worklist` loop,
396 // since MD may only act as a clobber for 1 of N MemoryLocations.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000397 FoundClobber =
398 FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
399 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000400 }
401 break;
402 }
403
404 // We should never hit liveOnEntry, unless it's the clobber.
405 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
406
407 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
408 (void)MD;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000409 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
George Burgess IV5f308972016-07-19 01:29:15 +0000410 "Found clobber before reaching ClobberAt!");
411 continue;
412 }
413
414 assert(isa<MemoryPhi>(MA));
415 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
416 }
417 }
418
419 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
420 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
421 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
422 "ClobberAt never acted as a clobber");
423}
424
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000425namespace {
426
George Burgess IV5f308972016-07-19 01:29:15 +0000427/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
428/// in one class.
429class ClobberWalker {
430 /// Save a few bytes by using unsigned instead of size_t.
431 using ListIndex = unsigned;
432
433 /// Represents a span of contiguous MemoryDefs, potentially ending in a
434 /// MemoryPhi.
435 struct DefPath {
436 MemoryLocation Loc;
437 // Note that, because we always walk in reverse, Last will always dominate
438 // First. Also note that First and Last are inclusive.
439 MemoryAccess *First;
440 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000441 Optional<ListIndex> Previous;
442
443 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
444 Optional<ListIndex> Previous)
445 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
446
447 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
448 Optional<ListIndex> Previous)
449 : DefPath(Loc, Init, Init, Previous) {}
450 };
451
452 const MemorySSA &MSSA;
453 AliasAnalysis &AA;
454 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000455 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000456
457 // Phi optimization bookkeeping
458 SmallVector<DefPath, 32> Paths;
459 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000460
George Burgess IV5f308972016-07-19 01:29:15 +0000461 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000462 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000463 assert(From->getNumOperands() && "Phi with no operands?");
464
465 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000466 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
467 DomTreeNode *Node = DT.getNode(BB);
468 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000469 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
470 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000471 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000472 }
George Burgess IV5f308972016-07-19 01:29:15 +0000473 return Result;
474 }
475
476 /// Result of calling walkToPhiOrClobber.
477 struct UpwardsWalkResult {
478 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
479 /// both.
480 MemoryAccess *Result;
481 bool IsKnownClobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000482 };
483
484 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
485 /// This will update Desc.Last as it walks. It will (optionally) also stop at
486 /// StopAt.
487 ///
488 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000489 UpwardsWalkResult
490 walkToPhiOrClobber(DefPath &Desc,
491 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000492 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
493
494 for (MemoryAccess *Current : def_chain(Desc.Last)) {
495 Desc.Last = Current;
496 if (Current == StopAt)
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000497 return {Current, false};
George Burgess IV5f308972016-07-19 01:29:15 +0000498
499 if (auto *MD = dyn_cast<MemoryDef>(Current))
500 if (MSSA.isLiveOnEntryDef(MD) ||
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000501 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000502 return {MD, true};
George Burgess IV5f308972016-07-19 01:29:15 +0000503 }
504
505 assert(isa<MemoryPhi>(Desc.Last) &&
506 "Ended at a non-clobber that's not a phi?");
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000507 return {Desc.Last, false};
George Burgess IV5f308972016-07-19 01:29:15 +0000508 }
509
510 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
511 ListIndex PriorNode) {
512 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
513 upward_defs_end());
514 for (const MemoryAccessPair &P : UpwardDefs) {
515 PausedSearches.push_back(Paths.size());
516 Paths.emplace_back(P.second, P.first, PriorNode);
517 }
518 }
519
520 /// Represents a search that terminated after finding a clobber. This clobber
521 /// may or may not be present in the path of defs from LastNode..SearchStart,
522 /// since it may have been retrieved from cache.
523 struct TerminatedPath {
524 MemoryAccess *Clobber;
525 ListIndex LastNode;
526 };
527
528 /// Get an access that keeps us from optimizing to the given phi.
529 ///
530 /// PausedSearches is an array of indices into the Paths array. Its incoming
531 /// value is the indices of searches that stopped at the last phi optimization
532 /// target. It's left in an unspecified state.
533 ///
534 /// If this returns None, NewPaused is a vector of searches that terminated
535 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000536 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000537 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000538 SmallVectorImpl<ListIndex> &PausedSearches,
539 SmallVectorImpl<ListIndex> &NewPaused,
540 SmallVectorImpl<TerminatedPath> &Terminated) {
541 assert(!PausedSearches.empty() && "No searches to continue?");
542
543 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
544 // PausedSearches as our stack.
545 while (!PausedSearches.empty()) {
546 ListIndex PathIndex = PausedSearches.pop_back_val();
547 DefPath &Node = Paths[PathIndex];
548
549 // If we've already visited this path with this MemoryLocation, we don't
550 // need to do so again.
551 //
552 // NOTE: That we just drop these paths on the ground makes caching
553 // behavior sporadic. e.g. given a diamond:
554 // A
555 // B C
556 // D
557 //
558 // ...If we walk D, B, A, C, we'll only cache the result of phi
559 // optimization for A, B, and D; C will be skipped because it dies here.
560 // This arguably isn't the worst thing ever, since:
561 // - We generally query things in a top-down order, so if we got below D
562 // without needing cache entries for {C, MemLoc}, then chances are
563 // that those cache entries would end up ultimately unused.
564 // - We still cache things for A, so C only needs to walk up a bit.
565 // If this behavior becomes problematic, we can fix without a ton of extra
566 // work.
567 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
568 continue;
569
570 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
571 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000572 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000573 // If this wasn't a cache hit, we hit a clobber when walking. That's a
574 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000575 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000576 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000577 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000578
579 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000580 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000581 continue;
582 }
583
584 if (Res.Result == StopWhere) {
585 // We've hit our target. Save this path off for if we want to continue
586 // walking.
587 NewPaused.push_back(PathIndex);
588 continue;
589 }
590
591 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
592 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
593 }
594
595 return None;
596 }
597
598 template <typename T, typename Walker>
599 struct generic_def_path_iterator
600 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
601 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000602 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000603 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
604
605 T &operator*() const { return curNode(); }
606
607 generic_def_path_iterator &operator++() {
608 N = curNode().Previous;
609 return *this;
610 }
611
612 bool operator==(const generic_def_path_iterator &O) const {
613 if (N.hasValue() != O.N.hasValue())
614 return false;
615 return !N.hasValue() || *N == *O.N;
616 }
617
618 private:
619 T &curNode() const { return W->Paths[*N]; }
620
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000621 Walker *W = nullptr;
622 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000623 };
624
625 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
626 using const_def_path_iterator =
627 generic_def_path_iterator<const DefPath, const ClobberWalker>;
628
629 iterator_range<def_path_iterator> def_path(ListIndex From) {
630 return make_range(def_path_iterator(this, From), def_path_iterator());
631 }
632
633 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
634 return make_range(const_def_path_iterator(this, From),
635 const_def_path_iterator());
636 }
637
638 struct OptznResult {
639 /// The path that contains our result.
640 TerminatedPath PrimaryClobber;
641 /// The paths that we can legally cache back from, but that aren't
642 /// necessarily the result of the Phi optimization.
643 SmallVector<TerminatedPath, 4> OtherClobbers;
644 };
645
646 ListIndex defPathIndex(const DefPath &N) const {
647 // The assert looks nicer if we don't need to do &N
648 const DefPath *NP = &N;
649 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
650 "Out of bounds DefPath!");
651 return NP - &Paths.front();
652 }
653
654 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
655 /// that act as legal clobbers. Note that this won't return *all* clobbers.
656 ///
657 /// Phi optimization algorithm tl;dr:
658 /// - Find the earliest def/phi, A, we can optimize to
659 /// - Find if all paths from the starting memory access ultimately reach A
660 /// - If not, optimization isn't possible.
661 /// - Otherwise, walk from A to another clobber or phi, A'.
662 /// - If A' is a def, we're done.
663 /// - If A' is a phi, try to optimize it.
664 ///
665 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
666 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
667 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
668 const MemoryLocation &Loc) {
669 assert(Paths.empty() && VisitedPhis.empty() &&
670 "Reset the optimization state.");
671
672 Paths.emplace_back(Loc, Start, Phi, None);
673 // Stores how many "valid" optimization nodes we had prior to calling
674 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
675 auto PriorPathsSize = Paths.size();
676
677 SmallVector<ListIndex, 16> PausedSearches;
678 SmallVector<ListIndex, 8> NewPaused;
679 SmallVector<TerminatedPath, 4> TerminatedPaths;
680
681 addSearches(Phi, PausedSearches, 0);
682
683 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
684 // Paths.
685 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
686 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000687 auto Dom = Paths.begin();
688 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
689 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
690 Dom = I;
691 auto Last = Paths.end() - 1;
692 if (Last != Dom)
693 std::iter_swap(Last, Dom);
694 };
695
696 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000697 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000698 assert(!MSSA.isLiveOnEntryDef(Current) &&
699 "liveOnEntry wasn't treated as a clobber?");
700
Daniel Berlind0420312017-04-01 09:01:12 +0000701 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000702 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
703 // optimization for the prior phi.
704 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
705 return MSSA.dominates(P.Clobber, Target);
706 }));
707
708 // FIXME: This is broken, because the Blocker may be reported to be
709 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000710 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000711 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000712 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000713
714 // Find the node we started at. We can't search based on N->Last, since
715 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000716 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000717 return defPathIndex(N) < PriorPathsSize;
718 });
719 assert(Iter != def_path_iterator());
720
721 DefPath &CurNode = *Iter;
722 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000723
724 // Two things:
725 // A. We can't reliably cache all of NewPaused back. Consider a case
726 // where we have two paths in NewPaused; one of which can't optimize
727 // above this phi, whereas the other can. If we cache the second path
728 // back, we'll end up with suboptimal cache entries. We can handle
729 // cases like this a bit better when we either try to find all
730 // clobbers that block phi optimization, or when our cache starts
731 // supporting unfinished searches.
732 // B. We can't reliably cache TerminatedPaths back here without doing
733 // extra checks; consider a case like:
734 // T
735 // / \
736 // D C
737 // \ /
738 // S
739 // Where T is our target, C is a node with a clobber on it, D is a
740 // diamond (with a clobber *only* on the left or right node, N), and
741 // S is our start. Say we walk to D, through the node opposite N
742 // (read: ignoring the clobber), and see a cache entry in the top
743 // node of D. That cache entry gets put into TerminatedPaths. We then
744 // walk up to C (N is later in our worklist), find the clobber, and
745 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
746 // the bottom part of D to the cached clobber, ignoring the clobber
747 // in N. Again, this problem goes away if we start tracking all
748 // blockers for a given phi optimization.
749 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
750 return {Result, {}};
751 }
752
753 // If there's nothing left to search, then all paths led to valid clobbers
754 // that we got from our cache; pick the nearest to the start, and allow
755 // the rest to be cached back.
756 if (NewPaused.empty()) {
757 MoveDominatedPathToEnd(TerminatedPaths);
758 TerminatedPath Result = TerminatedPaths.pop_back_val();
759 return {Result, std::move(TerminatedPaths)};
760 }
761
762 MemoryAccess *DefChainEnd = nullptr;
763 SmallVector<TerminatedPath, 4> Clobbers;
764 for (ListIndex Paused : NewPaused) {
765 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
766 if (WR.IsKnownClobber)
767 Clobbers.push_back({WR.Result, Paused});
768 else
769 // Micro-opt: If we hit the end of the chain, save it.
770 DefChainEnd = WR.Result;
771 }
772
773 if (!TerminatedPaths.empty()) {
774 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
775 // do it now.
776 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000777 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000778 DefChainEnd = MA;
779
780 // If any of the terminated paths don't dominate the phi we'll try to
781 // optimize, we need to figure out what they are and quit.
782 const BasicBlock *ChainBB = DefChainEnd->getBlock();
783 for (const TerminatedPath &TP : TerminatedPaths) {
784 // Because we know that DefChainEnd is as "high" as we can go, we
785 // don't need local dominance checks; BB dominance is sufficient.
786 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
787 Clobbers.push_back(TP);
788 }
789 }
790
791 // If we have clobbers in the def chain, find the one closest to Current
792 // and quit.
793 if (!Clobbers.empty()) {
794 MoveDominatedPathToEnd(Clobbers);
795 TerminatedPath Result = Clobbers.pop_back_val();
796 return {Result, std::move(Clobbers)};
797 }
798
799 assert(all_of(NewPaused,
800 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
801
802 // Because liveOnEntry is a clobber, this must be a phi.
803 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
804
805 PriorPathsSize = Paths.size();
806 PausedSearches.clear();
807 for (ListIndex I : NewPaused)
808 addSearches(DefChainPhi, PausedSearches, I);
809 NewPaused.clear();
810
811 Current = DefChainPhi;
812 }
813 }
814
George Burgess IV5f308972016-07-19 01:29:15 +0000815 void verifyOptResult(const OptznResult &R) const {
816 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
817 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
818 }));
819 }
820
821 void resetPhiOptznState() {
822 Paths.clear();
823 VisitedPhis.clear();
824 }
825
826public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000827 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
828 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000829
Daniel Berlin7500c562017-04-01 08:59:45 +0000830 void reset() {}
George Burgess IV5f308972016-07-19 01:29:15 +0000831
832 /// Finds the nearest clobber for the given query, optimizing phis if
833 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000834 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000835 Query = &Q;
836
837 MemoryAccess *Current = Start;
838 // This walker pretends uses don't exist. If we're handed one, silently grab
839 // its def. (This has the nice side-effect of ensuring we never cache uses)
840 if (auto *MU = dyn_cast<MemoryUse>(Start))
841 Current = MU->getDefiningAccess();
842
843 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
844 // Fast path for the overly-common case (no crazy phi optimization
845 // necessary)
846 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000847 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000848 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000849 Result = WalkResult.Result;
850 } else {
851 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
852 Current, Q.StartingLoc);
853 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000854 resetPhiOptznState();
855 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000856 }
857
George Burgess IV5f308972016-07-19 01:29:15 +0000858#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000859 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000860#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000861 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000862 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000863
864 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000865};
866
867struct RenamePassData {
868 DomTreeNode *DTN;
869 DomTreeNode::const_iterator ChildIt;
870 MemoryAccess *IncomingVal;
871
872 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
873 MemoryAccess *M)
874 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000875
George Burgess IV5f308972016-07-19 01:29:15 +0000876 void swap(RenamePassData &RHS) {
877 std::swap(DTN, RHS.DTN);
878 std::swap(ChildIt, RHS.ChildIt);
879 std::swap(IncomingVal, RHS.IncomingVal);
880 }
881};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000882
883} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000884
885namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000886
Daniel Berlind952cea2017-04-07 01:28:36 +0000887/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
888/// longer does caching on its own,
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000889/// but the name has been retained for the moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000890class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000891 ClobberWalker Walker;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000892 bool AutoResetWalker = true;
George Burgess IV5f308972016-07-19 01:29:15 +0000893
894 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
895 void verifyRemoved(MemoryAccess *);
896
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000897public:
898 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000899 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000900
George Burgess IV400ae402016-07-20 19:51:34 +0000901 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000902
George Burgess IV400ae402016-07-20 19:51:34 +0000903 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000904 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000905 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000906 void invalidateInfo(MemoryAccess *) override;
907
George Burgess IV5f308972016-07-19 01:29:15 +0000908 /// Whether we call resetClobberWalker() after each time we *actually* walk to
909 /// answer a clobber query.
910 void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000911
Daniel Berlin7500c562017-04-01 08:59:45 +0000912 /// Drop the walker's persistent data structures.
George Burgess IV5f308972016-07-19 01:29:15 +0000913 void resetClobberWalker() { Walker.reset(); }
Geoff Berrycdf53332016-08-08 17:52:01 +0000914
915 void verify(const MemorySSA *MSSA) override {
916 MemorySSAWalker::verify(MSSA);
917 Walker.verify(MSSA);
918 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000919};
George Burgess IVe1100f52016-02-02 22:46:49 +0000920
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000921} // end namespace llvm
922
Daniel Berlin78cbd282017-02-20 22:26:03 +0000923void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
924 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000925 // Pass through values to our successors
926 for (const BasicBlock *S : successors(BB)) {
927 auto It = PerBlockAccesses.find(S);
928 // Rename the phi nodes in our successor block
929 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
930 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000931 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000932 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000933 if (RenameAllUses) {
934 int PhiIndex = Phi->getBasicBlockIndex(BB);
935 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
936 Phi->setIncomingValue(PhiIndex, IncomingVal);
937 } else
938 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000939 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000940}
George Burgess IVe1100f52016-02-02 22:46:49 +0000941
Daniel Berlin78cbd282017-02-20 22:26:03 +0000942/// \brief Rename a single basic block into MemorySSA form.
943/// Uses the standard SSA renaming algorithm.
944/// \returns The new incoming value.
945MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
946 bool RenameAllUses) {
947 auto It = PerBlockAccesses.find(BB);
948 // Skip most processing if the list is empty.
949 if (It != PerBlockAccesses.end()) {
950 AccessList *Accesses = It->second.get();
951 for (MemoryAccess &L : *Accesses) {
952 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
953 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
954 MUD->setDefiningAccess(IncomingVal);
955 if (isa<MemoryDef>(&L))
956 IncomingVal = &L;
957 } else {
958 IncomingVal = &L;
959 }
960 }
961 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000962 return IncomingVal;
963}
964
965/// \brief This is the standard SSA renaming algorithm.
966///
967/// We walk the dominator tree in preorder, renaming accesses, and then filling
968/// in phi nodes in our successors.
969void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000970 SmallPtrSetImpl<BasicBlock *> &Visited,
971 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000972 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000973 // Skip everything if we already renamed this block and we are skipping.
974 // Note: You can't sink this into the if, because we need it to occur
975 // regardless of whether we skip blocks or not.
976 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
977 if (SkipVisited && AlreadyVisited)
978 return;
979
980 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
981 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +0000982 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +0000983
984 while (!WorkStack.empty()) {
985 DomTreeNode *Node = WorkStack.back().DTN;
986 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
987 IncomingVal = WorkStack.back().IncomingVal;
988
989 if (ChildIt == Node->end()) {
990 WorkStack.pop_back();
991 } else {
992 DomTreeNode *Child = *ChildIt;
993 ++WorkStack.back().ChildIt;
994 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +0000995 // Note: You can't sink this into the if, because we need it to occur
996 // regardless of whether we skip blocks or not.
997 AlreadyVisited = !Visited.insert(BB).second;
998 if (SkipVisited && AlreadyVisited) {
999 // We already visited this during our renaming, which can happen when
1000 // being asked to rename multiple blocks. Figure out the incoming val,
1001 // which is the last def.
1002 // Incoming value can only change if there is a block def, and in that
1003 // case, it's the last block def in the list.
1004 if (auto *BlockDefs = getWritableBlockDefs(BB))
1005 IncomingVal = &*BlockDefs->rbegin();
1006 } else
1007 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1008 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001009 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1010 }
1011 }
1012}
1013
George Burgess IVa362b092016-07-06 00:28:43 +00001014/// \brief This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001015/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1016/// being uses of the live on entry definition.
1017void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1018 assert(!DT->isReachableFromEntry(BB) &&
1019 "Reachable block found while handling unreachable blocks");
1020
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001021 // Make sure phi nodes in our reachable successors end up with a
1022 // LiveOnEntryDef for our incoming edge, even though our block is forward
1023 // unreachable. We could just disconnect these blocks from the CFG fully,
1024 // but we do not right now.
1025 for (const BasicBlock *S : successors(BB)) {
1026 if (!DT->isReachableFromEntry(S))
1027 continue;
1028 auto It = PerBlockAccesses.find(S);
1029 // Rename the phi nodes in our successor block
1030 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1031 continue;
1032 AccessList *Accesses = It->second.get();
1033 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1034 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1035 }
1036
George Burgess IVe1100f52016-02-02 22:46:49 +00001037 auto It = PerBlockAccesses.find(BB);
1038 if (It == PerBlockAccesses.end())
1039 return;
1040
1041 auto &Accesses = It->second;
1042 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1043 auto Next = std::next(AI);
1044 // If we have a phi, just remove it. We are going to replace all
1045 // users with live on entry.
1046 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1047 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1048 else
1049 Accesses->erase(AI);
1050 AI = Next;
1051 }
1052}
1053
Geoff Berryb96d3b22016-06-01 21:30:40 +00001054MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1055 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
Daniel Berlincd2deac2016-10-20 20:13:45 +00001056 NextID(INVALID_MEMORYACCESS_ID) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001057 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001058}
1059
George Burgess IVe1100f52016-02-02 22:46:49 +00001060MemorySSA::~MemorySSA() {
1061 // Drop all our references
1062 for (const auto &Pair : PerBlockAccesses)
1063 for (MemoryAccess &MA : *Pair.second)
1064 MA.dropAllReferences();
1065}
1066
Daniel Berlin14300262016-06-21 18:39:20 +00001067MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001068 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1069
1070 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001071 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001072 return Res.first->second.get();
1073}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001074
Daniel Berlind602e042017-01-25 20:56:19 +00001075MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1076 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1077
1078 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001079 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001080 return Res.first->second.get();
1081}
George Burgess IVe1100f52016-02-02 22:46:49 +00001082
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001083namespace llvm {
1084
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001085/// This class is a batch walker of all MemoryUse's in the program, and points
1086/// their defining access at the thing that actually clobbers them. Because it
1087/// is a batch walker that touches everything, it does not operate like the
1088/// other walkers. This walker is basically performing a top-down SSA renaming
1089/// pass, where the version stack is used as the cache. This enables it to be
1090/// significantly more time and memory efficient than using the regular walker,
1091/// which is walking bottom-up.
1092class MemorySSA::OptimizeUses {
1093public:
1094 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1095 DominatorTree *DT)
1096 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1097 Walker = MSSA->getWalker();
1098 }
1099
1100 void optimizeUses();
1101
1102private:
1103 /// This represents where a given memorylocation is in the stack.
1104 struct MemlocStackInfo {
1105 // This essentially is keeping track of versions of the stack. Whenever
1106 // the stack changes due to pushes or pops, these versions increase.
1107 unsigned long StackEpoch;
1108 unsigned long PopEpoch;
1109 // This is the lower bound of places on the stack to check. It is equal to
1110 // the place the last stack walk ended.
1111 // Note: Correctness depends on this being initialized to 0, which densemap
1112 // does
1113 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001114 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001115 // This is where the last walk for this memory location ended.
1116 unsigned long LastKill;
1117 bool LastKillValid;
1118 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001119
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001120 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1121 SmallVectorImpl<MemoryAccess *> &,
1122 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001123
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001124 MemorySSA *MSSA;
1125 MemorySSAWalker *Walker;
1126 AliasAnalysis *AA;
1127 DominatorTree *DT;
1128};
1129
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001130} // end namespace llvm
1131
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001132/// Optimize the uses in a given block This is basically the SSA renaming
1133/// algorithm, with one caveat: We are able to use a single stack for all
1134/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1135/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1136/// going to be some position in that stack of possible ones.
1137///
1138/// We track the stack positions that each MemoryLocation needs
1139/// to check, and last ended at. This is because we only want to check the
1140/// things that changed since last time. The same MemoryLocation should
1141/// get clobbered by the same store (getModRefInfo does not use invariantness or
1142/// things like this, and if they start, we can modify MemoryLocOrCall to
1143/// include relevant data)
1144void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1145 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1146 SmallVectorImpl<MemoryAccess *> &VersionStack,
1147 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1148
1149 /// If no accesses, nothing to do.
1150 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1151 if (Accesses == nullptr)
1152 return;
1153
1154 // Pop everything that doesn't dominate the current block off the stack,
1155 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001156 while (true) {
1157 assert(
1158 !VersionStack.empty() &&
1159 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001160 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1161 if (DT->dominates(BackBlock, BB))
1162 break;
1163 while (VersionStack.back()->getBlock() == BackBlock)
1164 VersionStack.pop_back();
1165 ++PopEpoch;
1166 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001167
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001168 for (MemoryAccess &MA : *Accesses) {
1169 auto *MU = dyn_cast<MemoryUse>(&MA);
1170 if (!MU) {
1171 VersionStack.push_back(&MA);
1172 ++StackEpoch;
1173 continue;
1174 }
1175
George Burgess IV024f3d22016-08-03 19:57:02 +00001176 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Daniel Berlincd2deac2016-10-20 20:13:45 +00001177 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
George Burgess IV024f3d22016-08-03 19:57:02 +00001178 continue;
1179 }
1180
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001181 MemoryLocOrCall UseMLOC(MU);
1182 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001183 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001184 // stack due to changing blocks. We may have to reset the lower bound or
1185 // last kill info.
1186 if (LocInfo.PopEpoch != PopEpoch) {
1187 LocInfo.PopEpoch = PopEpoch;
1188 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001189 // If the lower bound was in something that no longer dominates us, we
1190 // have to reset it.
1191 // We can't simply track stack size, because the stack may have had
1192 // pushes/pops in the meantime.
1193 // XXX: This is non-optimal, but only is slower cases with heavily
1194 // branching dominator trees. To get the optimal number of queries would
1195 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1196 // the top of that stack dominates us. This does not seem worth it ATM.
1197 // A much cheaper optimization would be to always explore the deepest
1198 // branch of the dominator tree first. This will guarantee this resets on
1199 // the smallest set of blocks.
1200 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001201 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001202 // Reset the lower bound of things to check.
1203 // TODO: Some day we should be able to reset to last kill, rather than
1204 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001205 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001206 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001207 LocInfo.LastKillValid = false;
1208 }
1209 } else if (LocInfo.StackEpoch != StackEpoch) {
1210 // If all that has changed is the StackEpoch, we only have to check the
1211 // new things on the stack, because we've checked everything before. In
1212 // this case, the lower bound of things to check remains the same.
1213 LocInfo.PopEpoch = PopEpoch;
1214 LocInfo.StackEpoch = StackEpoch;
1215 }
1216 if (!LocInfo.LastKillValid) {
1217 LocInfo.LastKill = VersionStack.size() - 1;
1218 LocInfo.LastKillValid = true;
1219 }
1220
1221 // At this point, we should have corrected last kill and LowerBound to be
1222 // in bounds.
1223 assert(LocInfo.LowerBound < VersionStack.size() &&
1224 "Lower bound out of range");
1225 assert(LocInfo.LastKill < VersionStack.size() &&
1226 "Last kill info out of range");
1227 // In any case, the new upper bound is the top of the stack.
1228 unsigned long UpperBound = VersionStack.size() - 1;
1229
1230 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Daniel Berlin26fcea92016-08-02 20:02:21 +00001231 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1232 << *(MU->getMemoryInst()) << ")"
1233 << " because there are " << UpperBound - LocInfo.LowerBound
1234 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001235 // Because we did not walk, LastKill is no longer valid, as this may
1236 // have been a kill.
1237 LocInfo.LastKillValid = false;
1238 continue;
1239 }
1240 bool FoundClobberResult = false;
1241 while (UpperBound > LocInfo.LowerBound) {
1242 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1243 // For phis, use the walker, see where we ended up, go there
1244 Instruction *UseInst = MU->getMemoryInst();
1245 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1246 // We are guaranteed to find it or something is wrong
1247 while (VersionStack[UpperBound] != Result) {
1248 assert(UpperBound != 0);
1249 --UpperBound;
1250 }
1251 FoundClobberResult = true;
1252 break;
1253 }
1254
1255 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001256 // If the lifetime of the pointer ends at this instruction, it's live on
1257 // entry.
1258 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1259 // Reset UpperBound to liveOnEntryDef's place in the stack
1260 UpperBound = 0;
1261 FoundClobberResult = true;
1262 break;
1263 }
Daniel Berlindff31de2016-08-02 21:57:52 +00001264 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001265 FoundClobberResult = true;
1266 break;
1267 }
1268 --UpperBound;
1269 }
1270 // At the end of this loop, UpperBound is either a clobber, or lower bound
1271 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1272 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlincd2deac2016-10-20 20:13:45 +00001273 MU->setDefiningAccess(VersionStack[UpperBound], true);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001274 // We were last killed now by where we got to
1275 LocInfo.LastKill = UpperBound;
1276 } else {
1277 // Otherwise, we checked all the new ones, and now we know we can get to
1278 // LastKill.
Daniel Berlincd2deac2016-10-20 20:13:45 +00001279 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001280 }
1281 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001282 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001283 }
1284}
1285
1286/// Optimize uses to point to their actual clobbering definitions.
1287void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001288 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001289 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001290 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1291
1292 unsigned long StackEpoch = 1;
1293 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001294 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001295 for (const auto *DomNode : depth_first(DT->getRootNode()))
1296 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1297 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001298}
1299
Daniel Berlin3d512a22016-08-22 19:14:30 +00001300void MemorySSA::placePHINodes(
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001301 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1302 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001303 // Determine where our MemoryPhi's should go
1304 ForwardIDFCalculator IDFs(*DT);
1305 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001306 SmallVector<BasicBlock *, 32> IDFBlocks;
1307 IDFs.calculate(IDFBlocks);
1308
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001309 std::sort(IDFBlocks.begin(), IDFBlocks.end(),
1310 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1311 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1312 });
1313
Daniel Berlin3d512a22016-08-22 19:14:30 +00001314 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001315 for (auto &BB : IDFBlocks)
1316 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001317}
1318
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001319void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001320 // We create an access to represent "live on entry", for things like
1321 // arguments or users of globals, where the memory they use is defined before
1322 // the beginning of the function. We do not actually insert it into the IR.
1323 // We do not define a live on exit for the immediate uses, and thus our
1324 // semantics do *not* imply that something with no immediate uses can simply
1325 // be removed.
1326 BasicBlock &StartingPoint = F.getEntryBlock();
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001327 LiveOnEntryDef =
1328 llvm::make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
1329 &StartingPoint, NextID++);
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001330 DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1331 unsigned NextBBNum = 0;
George Burgess IVe1100f52016-02-02 22:46:49 +00001332
1333 // We maintain lists of memory accesses per-block, trading memory for time. We
1334 // could just look up the memory access for every possible instruction in the
1335 // stream.
1336 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001337 // Go through each block, figure out where defs occur, and chain together all
1338 // the accesses.
1339 for (BasicBlock &B : F) {
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001340 BBNumbers[&B] = NextBBNum++;
Daniel Berlin7898ca62016-02-07 01:52:15 +00001341 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001342 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001343 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001344 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001345 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001346 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001347 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001348
George Burgess IVe1100f52016-02-02 22:46:49 +00001349 if (!Accesses)
1350 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001351 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001352 if (isa<MemoryDef>(MUD)) {
1353 InsertIntoDef = true;
1354 if (!Defs)
1355 Defs = getOrCreateDefsList(&B);
1356 Defs->push_back(*MUD);
1357 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001358 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001359 if (InsertIntoDef)
1360 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001361 }
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001362 placePHINodes(DefiningBlocks, BBNumbers);
George Burgess IVe1100f52016-02-02 22:46:49 +00001363
1364 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1365 // filled in with all blocks.
1366 SmallPtrSet<BasicBlock *, 16> Visited;
1367 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1368
George Burgess IV5f308972016-07-19 01:29:15 +00001369 CachingWalker *Walker = getWalkerImpl();
1370
1371 // We're doing a batch of updates; don't drop useful caches between them.
1372 Walker->setAutoResetWalker(false);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001373 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001374 Walker->setAutoResetWalker(true);
1375 Walker->resetClobberWalker();
1376
George Burgess IVe1100f52016-02-02 22:46:49 +00001377 // Mark the uses in unreachable blocks as live on entry, so that they go
1378 // somewhere.
1379 for (auto &BB : F)
1380 if (!Visited.count(&BB))
1381 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001382}
George Burgess IVe1100f52016-02-02 22:46:49 +00001383
George Burgess IV5f308972016-07-19 01:29:15 +00001384MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1385
1386MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001387 if (Walker)
1388 return Walker.get();
1389
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001390 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001391 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001392}
1393
Daniel Berlind602e042017-01-25 20:56:19 +00001394// This is a helper function used by the creation routines. It places NewAccess
1395// into the access and defs lists for a given basic block, at the given
1396// insertion point.
1397void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1398 const BasicBlock *BB,
1399 InsertionPlace Point) {
1400 auto *Accesses = getOrCreateAccessList(BB);
1401 if (Point == Beginning) {
1402 // If it's a phi node, it goes first, otherwise, it goes after any phi
1403 // nodes.
1404 if (isa<MemoryPhi>(NewAccess)) {
1405 Accesses->push_front(NewAccess);
1406 auto *Defs = getOrCreateDefsList(BB);
1407 Defs->push_front(*NewAccess);
1408 } else {
1409 auto AI = find_if_not(
1410 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1411 Accesses->insert(AI, NewAccess);
1412 if (!isa<MemoryUse>(NewAccess)) {
1413 auto *Defs = getOrCreateDefsList(BB);
1414 auto DI = find_if_not(
1415 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1416 Defs->insert(DI, *NewAccess);
1417 }
1418 }
1419 } else {
1420 Accesses->push_back(NewAccess);
1421 if (!isa<MemoryUse>(NewAccess)) {
1422 auto *Defs = getOrCreateDefsList(BB);
1423 Defs->push_back(*NewAccess);
1424 }
1425 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001426 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001427}
1428
1429void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1430 AccessList::iterator InsertPt) {
1431 auto *Accesses = getWritableBlockAccesses(BB);
1432 bool WasEnd = InsertPt == Accesses->end();
1433 Accesses->insert(AccessList::iterator(InsertPt), What);
1434 if (!isa<MemoryUse>(What)) {
1435 auto *Defs = getOrCreateDefsList(BB);
1436 // If we got asked to insert at the end, we have an easy job, just shove it
1437 // at the end. If we got asked to insert before an existing def, we also get
1438 // an terator. If we got asked to insert before a use, we have to hunt for
1439 // the next def.
1440 if (WasEnd) {
1441 Defs->push_back(*What);
1442 } else if (isa<MemoryDef>(InsertPt)) {
1443 Defs->insert(InsertPt->getDefsIterator(), *What);
1444 } else {
1445 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1446 ++InsertPt;
1447 // Either we found a def, or we are inserting at the end
1448 if (InsertPt == Accesses->end())
1449 Defs->push_back(*What);
1450 else
1451 Defs->insert(InsertPt->getDefsIterator(), *What);
1452 }
1453 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001454 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001455}
1456
Daniel Berlin60ead052017-01-28 01:23:13 +00001457// Move What before Where in the IR. The end result is taht What will belong to
1458// the right lists and have the right Block set, but will not otherwise be
1459// correct. It will not have the right defining access, and if it is a def,
1460// things below it will not properly be updated.
1461void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1462 AccessList::iterator Where) {
1463 // Keep it in the lookup tables, remove from the lists
1464 removeFromLists(What, false);
1465 What->setBlock(BB);
1466 insertIntoListsBefore(What, BB, Where);
1467}
1468
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001469void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1470 InsertionPlace Point) {
1471 removeFromLists(What, false);
1472 What->setBlock(BB);
1473 insertIntoListsForBlock(What, BB, Point);
1474}
1475
Daniel Berlin14300262016-06-21 18:39:20 +00001476MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1477 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001478 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001479 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001480 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001481 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001482 return Phi;
1483}
1484
1485MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1486 MemoryAccess *Definition) {
1487 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1488 MemoryUseOrDef *NewAccess = createNewAccess(I);
1489 assert(
1490 NewAccess != nullptr &&
1491 "Tried to create a memory access for a non-memory touching instruction");
1492 NewAccess->setDefiningAccess(Definition);
1493 return NewAccess;
1494}
1495
Daniel Berlind952cea2017-04-07 01:28:36 +00001496// Return true if the instruction has ordering constraints.
1497// Note specifically that this only considers stores and loads
1498// because others are still considered ModRef by getModRefInfo.
1499static inline bool isOrdered(const Instruction *I) {
1500 if (auto *SI = dyn_cast<StoreInst>(I)) {
1501 if (!SI->isUnordered())
1502 return true;
1503 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1504 if (!LI->isUnordered())
1505 return true;
1506 }
1507 return false;
1508}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001509
George Burgess IVe1100f52016-02-02 22:46:49 +00001510/// \brief Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001511MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001512 // The assume intrinsic has a control dependency which we model by claiming
1513 // that it writes arbitrarily. Ignore that fake memory dependency here.
1514 // FIXME: Replace this special casing with a more accurate modelling of
1515 // assume's control dependency.
1516 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1517 if (II->getIntrinsicID() == Intrinsic::assume)
1518 return nullptr;
1519
George Burgess IVe1100f52016-02-02 22:46:49 +00001520 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001521 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001522 // The isOrdered check is used to ensure that volatiles end up as defs
1523 // (atomics end up as ModRef right now anyway). Until we separate the
1524 // ordering chain from the memory chain, this enables people to see at least
1525 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1526 // will still give an answer that bypasses other volatile loads. TODO:
1527 // Separate memory aliasing and ordering into two different chains so that we
1528 // can precisely represent both "what memory will this read/write/is clobbered
1529 // by" and "what instructions can I move this past".
1530 bool Def = bool(ModRef & MRI_Mod) || isOrdered(I);
George Burgess IVe1100f52016-02-02 22:46:49 +00001531 bool Use = bool(ModRef & MRI_Ref);
1532
1533 // It's possible for an instruction to not modify memory at all. During
1534 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001535 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001536 return nullptr;
1537
1538 assert((Def || Use) &&
1539 "Trying to create a memory access with a non-memory instruction");
1540
George Burgess IVb42b7622016-03-11 19:34:03 +00001541 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001542 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001543 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001544 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001545 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001546 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001547 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001548}
1549
George Burgess IVe1100f52016-02-02 22:46:49 +00001550/// \brief Returns true if \p Replacer dominates \p Replacee .
1551bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1552 const MemoryAccess *Replacee) const {
1553 if (isa<MemoryUseOrDef>(Replacee))
1554 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1555 const auto *MP = cast<MemoryPhi>(Replacee);
1556 // For a phi node, the use occurs in the predecessor block of the phi node.
1557 // Since we may occur multiple times in the phi node, we have to check each
1558 // operand to ensure Replacer dominates each operand where Replacee occurs.
1559 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001560 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001561 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1562 return false;
1563 }
1564 return true;
1565}
1566
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001567/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001568void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1569 assert(MA->use_empty() &&
1570 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001571 BlockNumbering.erase(MA);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001572 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1573 MUD->setDefiningAccess(nullptr);
1574 // Invalidate our walker's cache if necessary
1575 if (!isa<MemoryUse>(MA))
1576 Walker->invalidateInfo(MA);
1577 // The call below to erase will destroy MA, so we can't change the order we
1578 // are doing things here
1579 Value *MemoryInst;
1580 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1581 MemoryInst = MUD->getMemoryInst();
1582 } else {
1583 MemoryInst = MA->getBlock();
1584 }
Daniel Berlin5130cc82016-07-31 21:08:20 +00001585 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1586 if (VMA->second == MA)
1587 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001588}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001589
Daniel Berlin60ead052017-01-28 01:23:13 +00001590/// \brief Properly remove \p MA from all of MemorySSA's lists.
1591///
1592/// Because of the way the intrusive list and use lists work, it is important to
1593/// do removal in the right order.
1594/// ShouldDelete defaults to true, and will cause the memory access to also be
1595/// deleted, not just removed.
1596void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Daniel Berlind602e042017-01-25 20:56:19 +00001597 // The access list owns the reference, so we erase it from the non-owning list
1598 // first.
1599 if (!isa<MemoryUse>(MA)) {
1600 auto DefsIt = PerBlockDefs.find(MA->getBlock());
1601 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1602 Defs->remove(*MA);
1603 if (Defs->empty())
1604 PerBlockDefs.erase(DefsIt);
1605 }
1606
Daniel Berlin60ead052017-01-28 01:23:13 +00001607 // The erase call here will delete it. If we don't want it deleted, we call
1608 // remove instead.
George Burgess IVe0e6e482016-03-02 02:35:04 +00001609 auto AccessIt = PerBlockAccesses.find(MA->getBlock());
Daniel Berlinada263d2016-06-20 20:21:33 +00001610 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001611 if (ShouldDelete)
1612 Accesses->erase(MA);
1613 else
1614 Accesses->remove(MA);
1615
George Burgess IVe0e6e482016-03-02 02:35:04 +00001616 if (Accesses->empty())
1617 PerBlockAccesses.erase(AccessIt);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001618}
1619
George Burgess IVe1100f52016-02-02 22:46:49 +00001620void MemorySSA::print(raw_ostream &OS) const {
1621 MemorySSAAnnotatedWriter Writer(this);
1622 F.print(OS, &Writer);
1623}
1624
Don Hinton3e0199f2017-10-12 16:16:06 +00001625#ifdef LLVM_ENABLE_DUMP
Daniel Berlin78cbd282017-02-20 22:26:03 +00001626LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001627#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001628
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001629void MemorySSA::verifyMemorySSA() const {
1630 verifyDefUses(F);
1631 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001632 verifyOrdering(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001633 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001634}
1635
1636/// \brief Verify that the order and existence of MemoryAccesses matches the
1637/// order and existence of memory affecting instructions.
1638void MemorySSA::verifyOrdering(Function &F) const {
1639 // Walk all the blocks, comparing what the lookups think and what the access
1640 // lists think, as well as the order in the blocks vs the order in the access
1641 // lists.
1642 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001643 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001644 for (BasicBlock &B : F) {
1645 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001646 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001647 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001648 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001649 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001650 ActualDefs.push_back(Phi);
1651 }
1652
Daniel Berlin14300262016-06-21 18:39:20 +00001653 for (Instruction &I : B) {
1654 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001655 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1656 "We have memory affecting instructions "
1657 "in this block but they are not in the "
1658 "access list or defs list");
1659 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001660 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001661 if (isa<MemoryDef>(MA))
1662 ActualDefs.push_back(MA);
1663 }
Daniel Berlin14300262016-06-21 18:39:20 +00001664 }
1665 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001666 // accesses and an access list.
1667 // Same with defs.
1668 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001669 continue;
1670 assert(AL->size() == ActualAccesses.size() &&
1671 "We don't have the same number of accesses in the block as on the "
1672 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001673 assert((DL || ActualDefs.size() == 0) &&
1674 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001675 assert((!DL || DL->size() == ActualDefs.size()) &&
1676 "We don't have the same number of defs in the block as on the "
1677 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001678 auto ALI = AL->begin();
1679 auto AAI = ActualAccesses.begin();
1680 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1681 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1682 ++ALI;
1683 ++AAI;
1684 }
1685 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001686 if (DL) {
1687 auto DLI = DL->begin();
1688 auto ADI = ActualDefs.begin();
1689 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1690 assert(&*DLI == *ADI && "Not the same defs in the same order");
1691 ++DLI;
1692 ++ADI;
1693 }
1694 }
1695 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001696 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001697}
1698
George Burgess IVe1100f52016-02-02 22:46:49 +00001699/// \brief Verify the domination properties of MemorySSA by checking that each
1700/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001701void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001702#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001703 for (BasicBlock &B : F) {
1704 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001705 if (MemoryPhi *MP = getMemoryAccess(&B))
1706 for (const Use &U : MP->uses())
1707 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001708
George Burgess IVe1100f52016-02-02 22:46:49 +00001709 for (Instruction &I : B) {
1710 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1711 if (!MD)
1712 continue;
1713
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001714 for (const Use &U : MD->uses())
1715 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001716 }
1717 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001718#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001719}
1720
1721/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
1722/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001723void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001724#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001725 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001726 if (!Def)
1727 assert(isLiveOnEntryDef(Use) &&
1728 "Null def but use not point to live on entry def");
1729 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001730 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001731 "Did not find use in def's use list");
1732#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001733}
1734
1735/// \brief Verify the immediate use information, by walking all the memory
1736/// accesses and verifying that, for each use, it appears in the
1737/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001738void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001739 for (BasicBlock &B : F) {
1740 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001741 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001742 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1743 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001744 "Incomplete MemoryPhi Node");
George Burgess IVe1100f52016-02-02 22:46:49 +00001745 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1746 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Daniel Berlin14300262016-06-21 18:39:20 +00001747 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001748
1749 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001750 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1751 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001752 }
1753 }
1754 }
1755}
1756
George Burgess IV66837ab2016-11-01 21:17:46 +00001757MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1758 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
George Burgess IVe1100f52016-02-02 22:46:49 +00001759}
1760
1761MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
George Burgess IV66837ab2016-11-01 21:17:46 +00001762 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
George Burgess IVe1100f52016-02-02 22:46:49 +00001763}
1764
Daniel Berlin5c46b942016-07-19 22:49:43 +00001765/// Perform a local numbering on blocks so that instruction ordering can be
1766/// determined in constant time.
1767/// TODO: We currently just number in order. If we numbered by N, we could
1768/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1769/// log2(N) sequences of mixed before and after) without needing to invalidate
1770/// the numbering.
1771void MemorySSA::renumberBlock(const BasicBlock *B) const {
1772 // The pre-increment ensures the numbers really start at 1.
1773 unsigned long CurrentNumber = 0;
1774 const AccessList *AL = getBlockAccesses(B);
1775 assert(AL != nullptr && "Asking to renumber an empty block");
1776 for (const auto &I : *AL)
1777 BlockNumbering[&I] = ++CurrentNumber;
1778 BlockNumberingValid.insert(B);
1779}
1780
George Burgess IVe1100f52016-02-02 22:46:49 +00001781/// \brief Determine, for two memory accesses in the same block,
1782/// whether \p Dominator dominates \p Dominatee.
1783/// \returns True if \p Dominator dominates \p Dominatee.
1784bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1785 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001786 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001787
Daniel Berlin19860302016-07-19 23:08:08 +00001788 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001789 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001790 // A node dominates itself.
1791 if (Dominatee == Dominator)
1792 return true;
1793
1794 // When Dominatee is defined on function entry, it is not dominated by another
1795 // memory access.
1796 if (isLiveOnEntryDef(Dominatee))
1797 return false;
1798
1799 // When Dominator is defined on function entry, it dominates the other memory
1800 // access.
1801 if (isLiveOnEntryDef(Dominator))
1802 return true;
1803
Daniel Berlin5c46b942016-07-19 22:49:43 +00001804 if (!BlockNumberingValid.count(DominatorBlock))
1805 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001806
Daniel Berlin5c46b942016-07-19 22:49:43 +00001807 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1808 // All numbers start with 1
1809 assert(DominatorNum != 0 && "Block was not numbered properly");
1810 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1811 assert(DominateeNum != 0 && "Block was not numbered properly");
1812 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001813}
1814
George Burgess IV5f308972016-07-19 01:29:15 +00001815bool MemorySSA::dominates(const MemoryAccess *Dominator,
1816 const MemoryAccess *Dominatee) const {
1817 if (Dominator == Dominatee)
1818 return true;
1819
1820 if (isLiveOnEntryDef(Dominatee))
1821 return false;
1822
1823 if (Dominator->getBlock() != Dominatee->getBlock())
1824 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1825 return locallyDominates(Dominator, Dominatee);
1826}
1827
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001828bool MemorySSA::dominates(const MemoryAccess *Dominator,
1829 const Use &Dominatee) const {
1830 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1831 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1832 // The def must dominate the incoming block of the phi.
1833 if (UseBB != Dominator->getBlock())
1834 return DT->dominates(Dominator->getBlock(), UseBB);
1835 // If the UseBB and the DefBB are the same, compare locally.
1836 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1837 }
1838 // If it's not a PHI node use, the normal dominates can already handle it.
1839 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1840}
1841
George Burgess IVe1100f52016-02-02 22:46:49 +00001842const static char LiveOnEntryStr[] = "liveOnEntry";
1843
Reid Kleckner96ab8722017-05-18 17:24:10 +00001844void MemoryAccess::print(raw_ostream &OS) const {
1845 switch (getValueID()) {
1846 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1847 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1848 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1849 }
1850 llvm_unreachable("invalid value id");
1851}
1852
George Burgess IVe1100f52016-02-02 22:46:49 +00001853void MemoryDef::print(raw_ostream &OS) const {
1854 MemoryAccess *UO = getDefiningAccess();
1855
1856 OS << getID() << " = MemoryDef(";
1857 if (UO && UO->getID())
1858 OS << UO->getID();
1859 else
1860 OS << LiveOnEntryStr;
1861 OS << ')';
1862}
1863
1864void MemoryPhi::print(raw_ostream &OS) const {
1865 bool First = true;
1866 OS << getID() << " = MemoryPhi(";
1867 for (const auto &Op : operands()) {
1868 BasicBlock *BB = getIncomingBlock(Op);
1869 MemoryAccess *MA = cast<MemoryAccess>(Op);
1870 if (!First)
1871 OS << ',';
1872 else
1873 First = false;
1874
1875 OS << '{';
1876 if (BB->hasName())
1877 OS << BB->getName();
1878 else
1879 BB->printAsOperand(OS, false);
1880 OS << ',';
1881 if (unsigned ID = MA->getID())
1882 OS << ID;
1883 else
1884 OS << LiveOnEntryStr;
1885 OS << '}';
1886 }
1887 OS << ')';
1888}
1889
George Burgess IVe1100f52016-02-02 22:46:49 +00001890void MemoryUse::print(raw_ostream &OS) const {
1891 MemoryAccess *UO = getDefiningAccess();
1892 OS << "MemoryUse(";
1893 if (UO && UO->getID())
1894 OS << UO->getID();
1895 else
1896 OS << LiveOnEntryStr;
1897 OS << ')';
1898}
1899
1900void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001901// Cannot completely remove virtual function even in release mode.
Don Hinton3e0199f2017-10-12 16:16:06 +00001902#ifdef LLVM_ENABLE_DUMP
George Burgess IVe1100f52016-02-02 22:46:49 +00001903 print(dbgs());
1904 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001905#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001906}
1907
Chad Rosier232e29e2016-07-06 21:20:47 +00001908char MemorySSAPrinterLegacyPass::ID = 0;
1909
1910MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1911 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1912}
1913
1914void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1915 AU.setPreservesAll();
1916 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00001917}
1918
1919bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1920 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1921 MSSA.print(dbgs());
1922 if (VerifyMemorySSA)
1923 MSSA.verifyMemorySSA();
1924 return false;
1925}
1926
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001927AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00001928
Daniel Berlin1e98c042016-09-26 17:22:54 +00001929MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1930 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00001931 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1932 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001933 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001934}
1935
Geoff Berryb96d3b22016-06-01 21:30:40 +00001936PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1937 FunctionAnalysisManager &AM) {
1938 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00001939 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001940
1941 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00001942}
1943
Geoff Berryb96d3b22016-06-01 21:30:40 +00001944PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1945 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00001946 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001947
1948 return PreservedAnalyses::all();
1949}
1950
1951char MemorySSAWrapperPass::ID = 0;
1952
1953MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1954 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1955}
1956
1957void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1958
1959void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001960 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001961 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1962 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001963}
1964
Geoff Berryb96d3b22016-06-01 21:30:40 +00001965bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1966 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1967 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1968 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001969 return false;
1970}
1971
Geoff Berryb96d3b22016-06-01 21:30:40 +00001972void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00001973
Geoff Berryb96d3b22016-06-01 21:30:40 +00001974void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001975 MSSA->print(OS);
1976}
1977
George Burgess IVe1100f52016-02-02 22:46:49 +00001978MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
1979
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001980MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
1981 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001982 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00001983
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001984void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00001985 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1986 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001987}
1988
George Burgess IVe1100f52016-02-02 22:46:49 +00001989/// \brief Walk the use-def chains starting at \p MA and find
1990/// the MemoryAccess that actually clobbers Loc.
1991///
1992/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001993MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
1994 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +00001995 MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
1996#ifdef EXPENSIVE_CHECKS
Daniel Berlind7a7ae02017-04-05 19:01:58 +00001997 MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
George Burgess IV5f308972016-07-19 01:29:15 +00001998 assert(NewNoCache == New && "Cache made us hand back a different result?");
Simon Pilgrim51693842017-06-11 12:49:29 +00001999 (void)NewNoCache;
George Burgess IV5f308972016-07-19 01:29:15 +00002000#endif
2001 if (AutoResetWalker)
2002 resetClobberWalker();
2003 return New;
George Burgess IVe1100f52016-02-02 22:46:49 +00002004}
2005
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002006MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002007 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002008 if (isa<MemoryPhi>(StartingAccess))
2009 return StartingAccess;
2010
2011 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2012 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2013 return StartingUseOrDef;
2014
2015 Instruction *I = StartingUseOrDef->getMemoryInst();
2016
2017 // Conservatively, fences are always clobbers, so don't perform the walk if we
2018 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002019 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002020 return StartingUseOrDef;
2021
2022 UpwardsMemoryQuery Q;
2023 Q.OriginalAccess = StartingUseOrDef;
2024 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002025 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002026 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002027
George Burgess IVe1100f52016-02-02 22:46:49 +00002028 // Unlike the other function, do not walk to the def of a def, because we are
2029 // handed something we already believe is the clobbering access.
2030 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2031 ? StartingUseOrDef->getDefiningAccess()
2032 : StartingUseOrDef;
2033
2034 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002035 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2036 DEBUG(dbgs() << *StartingUseOrDef << "\n");
2037 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2038 DEBUG(dbgs() << *Clobber << "\n");
2039 return Clobber;
2040}
2041
2042MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002043MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2044 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2045 // If this is a MemoryPhi, we can't do anything.
2046 if (!StartingAccess)
2047 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002048
Daniel Berlincd2deac2016-10-20 20:13:45 +00002049 // If this is an already optimized use or def, return the optimized result.
2050 // Note: Currently, we do not store the optimized def result because we'd need
2051 // a separate field, since we can't use it as the defining access.
Daniel Berline33bc312017-04-04 23:43:10 +00002052 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2053 if (MUD->isOptimized())
2054 return MUD->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002055
George Burgess IV400ae402016-07-20 19:51:34 +00002056 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002057 UpwardsMemoryQuery Q(I, StartingAccess);
David Majnemera940f362016-07-15 17:19:24 +00002058 // We can't sanely do anything with a fences, they conservatively
George Burgess IVe1100f52016-02-02 22:46:49 +00002059 // clobber all memory, and have no locations to get pointers from to
David Majnemera940f362016-07-15 17:19:24 +00002060 // try to disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002061 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002062 return StartingAccess;
2063
George Burgess IV024f3d22016-08-03 19:57:02 +00002064 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2065 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
Daniel Berline33bc312017-04-04 23:43:10 +00002066 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2067 MUD->setOptimized(LiveOnEntry);
George Burgess IV024f3d22016-08-03 19:57:02 +00002068 return LiveOnEntry;
2069 }
2070
George Burgess IVe1100f52016-02-02 22:46:49 +00002071 // Start with the thing we already think clobbers this location
2072 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2073
2074 // At this point, DefiningAccess may be the live on entry def.
2075 // If it is, we will not get a better result.
2076 if (MSSA->isLiveOnEntryDef(DefiningAccess))
2077 return DefiningAccess;
2078
2079 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002080 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2081 DEBUG(dbgs() << *DefiningAccess << "\n");
2082 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2083 DEBUG(dbgs() << *Result << "\n");
Daniel Berline33bc312017-04-04 23:43:10 +00002084 if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
2085 MUD->setOptimized(Result);
George Burgess IVe1100f52016-02-02 22:46:49 +00002086
2087 return Result;
2088}
2089
George Burgess IVe1100f52016-02-02 22:46:49 +00002090MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002091DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002092 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2093 return Use->getDefiningAccess();
2094 return MA;
2095}
2096
2097MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002098 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002099 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2100 return Use->getDefiningAccess();
2101 return StartingAccess;
2102}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002103
2104void MemoryPhi::deleteMe(DerivedUser *Self) {
2105 delete static_cast<MemoryPhi *>(Self);
2106}
2107
2108void MemoryDef::deleteMe(DerivedUser *Self) {
2109 delete static_cast<MemoryDef *>(Self);
2110}
2111
2112void MemoryUse::deleteMe(DerivedUser *Self) {
2113 delete static_cast<MemoryUse *>(Self);
2114}