blob: f65ba1b600522a488c2581fea036ae6e0070fbe5 [file] [log] [blame]
Evan Cheng7e763d82011-07-25 18:43:53 +00001//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
Benjamin Kramera7c40ef2014-08-13 16:26:38 +000017#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
Evan Cheng7e763d82011-07-25 18:43:53 +000019
20#include "X86MCTargetDesc.h"
Craig Topperc6d4efa2014-03-19 06:53:25 +000021#include "llvm/MC/MCInstrDesc.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000022#include "llvm/Support/DataTypes.h"
Craig Topper4ed72782012-02-05 05:38:58 +000023#include "llvm/Support/ErrorHandling.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000024
25namespace llvm {
26
27namespace X86 {
28 // Enums for memory operand decoding. Each memory operand is represented with
29 // a 5 operand sequence in the form:
30 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31 // These enums help decode this.
32 enum {
33 AddrBaseReg = 0,
34 AddrScaleAmt = 1,
35 AddrIndexReg = 2,
36 AddrDisp = 3,
37
38 /// AddrSegmentReg - The operand # of the segment in the memory operand.
39 AddrSegmentReg = 4,
40
41 /// AddrNumOperands - Total number of operands in a memory reference.
42 AddrNumOperands = 5
43 };
Craig Topperc7277d92015-12-25 22:09:49 +000044
45 /// AVX512 static rounding constants. These need to match the values in
46 /// avx512fintrin.h.
47 enum STATIC_ROUNDING {
48 TO_NEAREST_INT = 0,
49 TO_NEG_INF = 1,
50 TO_POS_INF = 2,
51 TO_ZERO = 3,
52 CUR_DIRECTION = 4
53 };
Andrew V. Tischenkobfc90612017-10-16 11:14:29 +000054
55 /// The constants to describe instr prefixes if there are
56 enum IPREFIXES {
57 IP_NO_PREFIX = 0,
58 IP_HAS_OP_SIZE = 1,
59 IP_HAS_AD_SIZE = 2,
60 IP_HAS_REPEAT_NE = 4,
61 IP_HAS_REPEAT = 8,
62 IP_HAS_LOCK = 16
63 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +000064} // end namespace X86;
Evan Cheng7e763d82011-07-25 18:43:53 +000065
66/// X86II - This namespace holds all of the target specific flags that
67/// instruction info tracks.
68///
69namespace X86II {
70 /// Target Operand Flag enum.
71 enum TOF {
72 //===------------------------------------------------------------------===//
73 // X86 Specific MachineOperand flags.
74
75 MO_NO_FLAG,
76
77 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
78 /// relocation of:
79 /// SYMBOL_LABEL + [. - PICBASELABEL]
80 MO_GOT_ABSOLUTE_ADDRESS,
81
82 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
83 /// immediate should get the value of the symbol minus the PIC base label:
84 /// SYMBOL_LABEL - PICBASELABEL
85 MO_PIC_BASE_OFFSET,
86
87 /// MO_GOT - On a symbol operand this indicates that the immediate is the
88 /// offset to the GOT entry for the symbol name from the base of the GOT.
89 ///
90 /// See the X86-64 ELF ABI supplement for more details.
91 /// SYMBOL_LABEL @GOT
92 MO_GOT,
93
94 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
95 /// the offset to the location of the symbol name from the base of the GOT.
96 ///
97 /// See the X86-64 ELF ABI supplement for more details.
98 /// SYMBOL_LABEL @GOTOFF
99 MO_GOTOFF,
100
101 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
102 /// offset to the GOT entry for the symbol name from the current code
103 /// location.
104 ///
105 /// See the X86-64 ELF ABI supplement for more details.
106 /// SYMBOL_LABEL @GOTPCREL
107 MO_GOTPCREL,
108
109 /// MO_PLT - On a symbol operand this indicates that the immediate is
110 /// offset to the PLT entry of symbol name from the current code location.
111 ///
112 /// See the X86-64 ELF ABI supplement for more details.
113 /// SYMBOL_LABEL @PLT
114 MO_PLT,
115
116 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000117 /// the offset of the GOT entry with the TLS index structure that contains
118 /// the module number and variable offset for the symbol. Used in the
119 /// general dynamic TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD,
124
Hans Wennborg789acfb2012-06-01 16:27:21 +0000125 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
126 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000127 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000128 /// __tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000129 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000130 ///
131 /// See 'ELF Handling for Thread-Local Storage' for more details.
132 /// SYMBOL_LABEL @TLSLD
133 MO_TLSLD,
134
135 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
136 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000137 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000138 /// ___tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000139 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000140 ///
141 /// See 'ELF Handling for Thread-Local Storage' for more details.
142 /// SYMBOL_LABEL @TLSLDM
143 MO_TLSLDM,
144
Evan Cheng7e763d82011-07-25 18:43:53 +0000145 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000146 /// the offset of the GOT entry with the thread-pointer offset for the
147 /// symbol. Used in the x86-64 initial exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000148 ///
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @GOTTPOFF
151 MO_GOTTPOFF,
152
153 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000154 /// the absolute address of the GOT entry with the negative thread-pointer
155 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
156 /// model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000157 ///
158 /// See 'ELF Handling for Thread-Local Storage' for more details.
159 /// SYMBOL_LABEL @INDNTPOFF
160 MO_INDNTPOFF,
161
162 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000163 /// the thread-pointer offset for the symbol. Used in the x86-64 local
164 /// exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000165 ///
166 /// See 'ELF Handling for Thread-Local Storage' for more details.
167 /// SYMBOL_LABEL @TPOFF
168 MO_TPOFF,
169
Hans Wennborg789acfb2012-06-01 16:27:21 +0000170 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000171 /// the offset of the GOT entry with the TLS offset of the symbol. Used
172 /// in the local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000173 ///
174 /// See 'ELF Handling for Thread-Local Storage' for more details.
175 /// SYMBOL_LABEL @DTPOFF
176 MO_DTPOFF,
177
Evan Cheng7e763d82011-07-25 18:43:53 +0000178 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000179 /// the negative thread-pointer offset for the symbol. Used in the IA32
180 /// local exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000181 ///
182 /// See 'ELF Handling for Thread-Local Storage' for more details.
183 /// SYMBOL_LABEL @NTPOFF
184 MO_NTPOFF,
185
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000186 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000187 /// the offset of the GOT entry with the negative thread-pointer offset for
188 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000189 ///
190 /// See 'ELF Handling for Thread-Local Storage' for more details.
191 /// SYMBOL_LABEL @GOTNTPOFF
192 MO_GOTNTPOFF,
193
Evan Cheng7e763d82011-07-25 18:43:53 +0000194 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
195 /// reference is actually to the "__imp_FOO" symbol. This is used for
196 /// dllimport linkage on windows.
197 MO_DLLIMPORT,
198
Evan Cheng7e763d82011-07-25 18:43:53 +0000199 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
200 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
201 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
202 MO_DARWIN_NONLAZY,
203
204 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
205 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
206 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
207 MO_DARWIN_NONLAZY_PIC_BASE,
208
Evan Cheng7e763d82011-07-25 18:43:53 +0000209 /// MO_TLVP - On a symbol operand this indicates that the immediate is
210 /// some TLS offset.
211 ///
212 /// This is the TLS offset for the Darwin TLS mechanism.
213 MO_TLVP,
214
215 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
216 /// is some TLS offset from the picbase.
217 ///
218 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
Anton Korobeynikovc6b40172012-02-11 17:26:53 +0000219 MO_TLVP_PIC_BASE,
220
221 /// MO_SECREL - On a symbol operand this indicates that the immediate is
222 /// the offset from beginning of section.
223 ///
224 /// This is the TLS offset for the COFF/Windows TLS mechanism.
Peter Collingbournedc5e5832017-02-02 00:32:03 +0000225 MO_SECREL,
226
227 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
228 /// to be an absolute symbol in range [0,128), so we can use the @ABS8
229 /// symbol modifier.
230 MO_ABS8,
Evan Cheng7e763d82011-07-25 18:43:53 +0000231 };
232
Craig Topperf655cdd2014-11-11 07:32:32 +0000233 enum : uint64_t {
Evan Cheng7e763d82011-07-25 18:43:53 +0000234 //===------------------------------------------------------------------===//
235 // Instruction encodings. These are the standard/most common forms for X86
236 // instructions.
237 //
238
239 // PseudoFrm - This represents an instruction that is a pseudo instruction
240 // or one that has not been implemented yet. It is illegal to code generate
241 // it, but tolerated for intermediate implementation stages.
242 Pseudo = 0,
243
244 /// Raw - This form is for instructions that don't have any operands, so
245 /// they are just a fixed opcode value, like 'leave'.
246 RawFrm = 1,
247
248 /// AddRegFrm - This form is used for instructions like 'push r32' that have
249 /// their one register operand added to their opcode.
250 AddRegFrm = 2,
251
Craig Topper35da3d12014-01-16 07:36:58 +0000252 /// RawFrmMemOffs - This form is for instructions that store an absolute
253 /// memory offset as an immediate with a possible segment override.
Craig Topper61b62e52016-08-22 07:38:41 +0000254 RawFrmMemOffs = 3,
Craig Topper35da3d12014-01-16 07:36:58 +0000255
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000256 /// RawFrmSrc - This form is for instructions that use the source index
257 /// register SI/ESI/RSI with a possible segment override.
Craig Topper61b62e52016-08-22 07:38:41 +0000258 RawFrmSrc = 4,
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000259
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000260 /// RawFrmDst - This form is for instructions that use the destination index
261 /// register DI/EDI/ESI.
Craig Topper61b62e52016-08-22 07:38:41 +0000262 RawFrmDst = 5,
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000263
Eric Christopher572e03a2015-06-19 01:53:21 +0000264 /// RawFrmSrc - This form is for instructions that use the source index
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000265 /// register SI/ESI/ERI with a possible segment override, and also the
266 /// destination index register DI/ESI/RDI.
Craig Topper61b62e52016-08-22 07:38:41 +0000267 RawFrmDstSrc = 6,
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000268
Craig Topper2fb696b2014-02-19 06:59:13 +0000269 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
270 /// immediates, the first of which is a 16-bit immediate (specified by
271 /// the imm encoding) and the second is a 8-bit fixed value.
Craig Topper61b62e52016-08-22 07:38:41 +0000272 RawFrmImm8 = 7,
Craig Topper2fb696b2014-02-19 06:59:13 +0000273
274 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
275 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
276 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
277 /// manual, this operand is described as pntr16:32 and pntr16:16
Craig Topper61b62e52016-08-22 07:38:41 +0000278 RawFrmImm16 = 8,
Craig Toppera0869dc2014-02-10 06:55:41 +0000279
Evan Cheng7e763d82011-07-25 18:43:53 +0000280 /// MRM[0-7][rm] - These forms are used to represent instructions that use
281 /// a Mod/RM byte, and use the middle field to hold extended opcode
282 /// information. In the intel manual these are represented as /0, /1, ...
283 ///
284
Craig Topper61b62e52016-08-22 07:38:41 +0000285 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
286 /// to specify a destination, which in this case is memory.
287 ///
288 MRMDestMem = 32,
289
290 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
291 /// to specify a source, which in this case is memory.
292 ///
293 MRMSrcMem = 33,
294
Craig Topper5f8419d2016-08-22 07:38:50 +0000295 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
296 /// operand 3 with VEX.VVVV and load from memory.
297 ///
298 MRMSrcMem4VOp3 = 34,
299
Craig Topper9b20fec2016-08-22 07:38:45 +0000300 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
301 /// byte to specify the fourth source, which in this case is memory.
302 ///
Craig Topper5f8419d2016-08-22 07:38:50 +0000303 MRMSrcMemOp4 = 35,
Craig Topper9b20fec2016-08-22 07:38:45 +0000304
Craig Topper61b62e52016-08-22 07:38:41 +0000305 /// MRMXm - This form is used for instructions that use the Mod/RM byte
306 /// to specify a memory source, but doesn't use the middle field.
307 ///
308 MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
Evan Cheng7e763d82011-07-25 18:43:53 +0000309
310 // Next, instructions that operate on a memory r/m operand...
Craig Topper61b62e52016-08-22 07:38:41 +0000311 MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3
312 MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7
Evan Cheng7e763d82011-07-25 18:43:53 +0000313
Craig Topper61b62e52016-08-22 07:38:41 +0000314 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
315 /// to specify a destination, which in this case is a register.
316 ///
317 MRMDestReg = 48,
318
319 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
320 /// to specify a source, which in this case is a register.
321 ///
322 MRMSrcReg = 49,
323
Craig Topper5f8419d2016-08-22 07:38:50 +0000324 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
325 /// operand 3 with VEX.VVVV and do not load from memory.
326 ///
327 MRMSrcReg4VOp3 = 50,
328
Craig Topper9b20fec2016-08-22 07:38:45 +0000329 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
330 /// byte to specify the fourth source, which in this case is a register.
331 ///
Craig Topper5f8419d2016-08-22 07:38:50 +0000332 MRMSrcRegOp4 = 51,
Craig Topper9b20fec2016-08-22 07:38:45 +0000333
Craig Topper61b62e52016-08-22 07:38:41 +0000334 /// MRMXr - This form is used for instructions that use the Mod/RM byte
335 /// to specify a register source, but doesn't use the middle field.
336 ///
337 MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
338
339 // Instructions that operate on a register r/m operand...
340 MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3
341 MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7
342
343 /// MRM_XX - A mod/rm byte of exactly 0xXX.
344 MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
345 MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
346 MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
347 MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
348 MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
349 MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
350 MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
351 MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
352 MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
353 MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
354 MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
355 MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
356 MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
357 MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
358 MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
359 MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000360
Craig Topper56f0ed812014-02-19 08:25:02 +0000361 FormMask = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000362
363 //===------------------------------------------------------------------===//
364 // Actual flags...
365
Craig Topperfa6298a2014-02-02 09:25:09 +0000366 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
367 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
368 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
Nirav Dave61ffc9c2017-11-21 19:28:13 +0000369 // prefix in 16-bit mode. OpSizeIgnore means that the instruction may
370 // take a optional 0x66 byte but should not emit with one.
Craig Topper56f0ed812014-02-19 08:25:02 +0000371 OpSizeShift = 7,
Craig Topperfa6298a2014-02-02 09:25:09 +0000372 OpSizeMask = 0x3 << OpSizeShift,
373
Nirav Dave61ffc9c2017-11-21 19:28:13 +0000374 OpSizeFixed = 0 << OpSizeShift,
375 OpSize16 = 1 << OpSizeShift,
376 OpSize32 = 2 << OpSizeShift,
377 OpSizeIgnore = 3 << OpSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000378
Craig Topperb86338f2014-12-24 06:05:22 +0000379 // AsSize - AdSizeX implies this instruction determines its need of 0x67
380 // prefix from a normal ModRM memory operand. The other types indicate that
381 // an operand is encoded with a specific width and a prefix is needed if
382 // it differs from the current mode.
Craig Topper56f0ed812014-02-19 08:25:02 +0000383 AdSizeShift = OpSizeShift + 2,
Craig Topperb86338f2014-12-24 06:05:22 +0000384 AdSizeMask = 0x3 << AdSizeShift,
385
386 AdSizeX = 1 << AdSizeShift,
387 AdSize16 = 1 << AdSizeShift,
388 AdSize32 = 2 << AdSizeShift,
389 AdSize64 = 3 << AdSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000390
391 //===------------------------------------------------------------------===//
Craig Topper10243c82014-01-31 08:47:06 +0000392 // OpPrefix - There are several prefix bytes that are used as opcode
393 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
394 // no prefix.
Evan Cheng7e763d82011-07-25 18:43:53 +0000395 //
Craig Topperb86338f2014-12-24 06:05:22 +0000396 OpPrefixShift = AdSizeShift + 2,
Craig Topper5ccb6172014-02-18 00:21:49 +0000397 OpPrefixMask = 0x7 << OpPrefixShift,
Yunzhong Gaob8bbcbf2013-09-27 18:38:42 +0000398
Craig Topper5ccb6172014-02-18 00:21:49 +0000399 // PS, PD - Prefix code for packed single and double precision vector
400 // floating point operations performed in the SSE registers.
401 PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000402
Craig Topper10243c82014-01-31 08:47:06 +0000403 // XS, XD - These prefix codes are for single and double precision scalar
404 // floating point operations performed in the SSE registers.
Craig Topper5ccb6172014-02-18 00:21:49 +0000405 XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000406
Craig Topper10243c82014-01-31 08:47:06 +0000407 //===------------------------------------------------------------------===//
408 // OpMap - This field determines which opcode map this instruction
409 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
410 //
Craig Topper5ccb6172014-02-18 00:21:49 +0000411 OpMapShift = OpPrefixShift + 3,
Craig Topper56f0ed812014-02-19 08:25:02 +0000412 OpMapMask = 0x7 << OpMapShift,
Craig Topper10243c82014-01-31 08:47:06 +0000413
414 // OB - OneByte - Set if this instruction has a one byte opcode.
415 OB = 0 << OpMapShift,
416
417 // TB - TwoByte - Set if this instruction has a two byte opcode, which
418 // starts with a 0x0F byte before the real opcode.
419 TB = 1 << OpMapShift,
420
421 // T8, TA - Prefix after the 0x0F prefix.
422 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
423
424 // XOP8 - Prefix to include use of imm byte.
425 XOP8 = 4 << OpMapShift,
426
427 // XOP9 - Prefix to exclude use of imm byte.
428 XOP9 = 5 << OpMapShift,
429
430 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
431 XOPA = 6 << OpMapShift,
432
Evan Cheng7e763d82011-07-25 18:43:53 +0000433 //===------------------------------------------------------------------===//
434 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
435 // They are used to specify GPRs and SSE registers, 64-bit operand size,
436 // etc. We only cares about REX.W and REX.R bits and only the former is
437 // statically determined.
438 //
Craig Topper56f0ed812014-02-19 08:25:02 +0000439 REXShift = OpMapShift + 3,
Evan Cheng7e763d82011-07-25 18:43:53 +0000440 REX_W = 1 << REXShift,
441
442 //===------------------------------------------------------------------===//
443 // This three-bit field describes the size of an immediate operand. Zero is
444 // unused so that we can tell if we forgot to set a value.
445 ImmShift = REXShift + 1,
David Woodhouse0b6c9492014-01-30 22:20:41 +0000446 ImmMask = 15 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000447 Imm8 = 1 << ImmShift,
448 Imm8PCRel = 2 << ImmShift,
Craig Topperca0eda32016-08-22 01:37:19 +0000449 Imm8Reg = 3 << ImmShift,
450 Imm16 = 4 << ImmShift,
451 Imm16PCRel = 5 << ImmShift,
452 Imm32 = 6 << ImmShift,
453 Imm32PCRel = 7 << ImmShift,
454 Imm32S = 8 << ImmShift,
455 Imm64 = 9 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000456
457 //===------------------------------------------------------------------===//
458 // FP Instruction Classification... Zero is non-fp instruction.
459
460 // FPTypeMask - Mask for all of the FP types...
David Woodhouse0b6c9492014-01-30 22:20:41 +0000461 FPTypeShift = ImmShift + 4,
Evan Cheng7e763d82011-07-25 18:43:53 +0000462 FPTypeMask = 7 << FPTypeShift,
463
464 // NotFP - The default, set for instructions that do not use FP registers.
465 NotFP = 0 << FPTypeShift,
466
467 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
468 ZeroArgFP = 1 << FPTypeShift,
469
470 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
471 OneArgFP = 2 << FPTypeShift,
472
473 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
474 // result back to ST(0). For example, fcos, fsqrt, etc.
475 //
476 OneArgFPRW = 3 << FPTypeShift,
477
478 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
479 // explicit argument, storing the result to either ST(0) or the implicit
480 // argument. For example: fadd, fsub, fmul, etc...
481 TwoArgFP = 4 << FPTypeShift,
482
483 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
484 // explicit argument, but have no destination. Example: fucom, fucomi, ...
485 CompareFP = 5 << FPTypeShift,
486
487 // CondMovFP - "2 operand" floating point conditional move instructions.
488 CondMovFP = 6 << FPTypeShift,
489
490 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
491 SpecialFP = 7 << FPTypeShift,
492
493 // Lock prefix
494 LOCKShift = FPTypeShift + 3,
495 LOCK = 1 << LOCKShift,
496
Craig Topperec688662014-01-31 07:00:55 +0000497 // REP prefix
498 REPShift = LOCKShift + 1,
499 REP = 1 << REPShift,
500
501 // Execution domain for SSE instructions.
502 // 0 means normal, non-SSE instruction.
503 SSEDomainShift = REPShift + 1,
Evan Cheng7e763d82011-07-25 18:43:53 +0000504
Craig Topperd402df32014-02-02 07:08:01 +0000505 // Encoding
506 EncodingShift = SSEDomainShift + 2,
507 EncodingMask = 0x3 << EncodingShift,
508
509 // VEX - encoding using 0xC4/0xC5
Craig Topperf655cdd2014-11-11 07:32:32 +0000510 VEX = 1 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000511
512 /// XOP - Opcode prefix used by XOP instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000513 XOP = 2 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000514
515 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
516 // syntax support up to 32 512-bit register operands and up to 7 16-bit
517 // mask operands as well as source operand data swizzling/memory operand
518 // conversion, eviction hint, and rounding mode.
Craig Topperf655cdd2014-11-11 07:32:32 +0000519 EVEX = 3 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000520
521 // Opcode
522 OpcodeShift = EncodingShift + 2,
Evan Cheng7e763d82011-07-25 18:43:53 +0000523
Evan Cheng7e763d82011-07-25 18:43:53 +0000524 /// VEX_W - Has a opcode specific functionality, but is used in the same
525 /// way as REX_W is for regular SSE instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000526 VEX_WShift = OpcodeShift + 8,
527 VEX_W = 1ULL << VEX_WShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000528
529 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
530 /// address instructions in SSE are represented as 3 address ones in AVX
531 /// and the additional register is encoded in VEX_VVVV prefix.
Craig Topperf655cdd2014-11-11 07:32:32 +0000532 VEX_4VShift = VEX_WShift + 1,
533 VEX_4V = 1ULL << VEX_4VShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000534
Evan Cheng7e763d82011-07-25 18:43:53 +0000535 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
536 /// instruction uses 256-bit wide registers. This is usually auto detected
537 /// if a VR256 register is used, but some AVX instructions also have this
538 /// field marked when using a f256 memory references.
Craig Topper5f8419d2016-08-22 07:38:50 +0000539 VEX_LShift = VEX_4VShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000540 VEX_L = 1ULL << VEX_LShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000541
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000542 // EVEX_K - Set if this instruction requires masking
Craig Topper52254122016-08-22 01:37:16 +0000543 EVEX_KShift = VEX_LShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000544 EVEX_K = 1ULL << EVEX_KShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000545
546 // EVEX_Z - Set if this instruction has EVEX.Z field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000547 EVEX_ZShift = EVEX_KShift + 1,
548 EVEX_Z = 1ULL << EVEX_ZShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000549
550 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000551 EVEX_L2Shift = EVEX_ZShift + 1,
552 EVEX_L2 = 1ULL << EVEX_L2Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000553
554 // EVEX_B - Set if this instruction has EVEX.B field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000555 EVEX_BShift = EVEX_L2Shift + 1,
556 EVEX_B = 1ULL << EVEX_BShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000557
Adam Nemet54adb0f2014-07-17 17:04:50 +0000558 // The scaling factor for the AVX512's 8-bit compressed displacement.
Craig Topperf655cdd2014-11-11 07:32:32 +0000559 CD8_Scale_Shift = EVEX_BShift + 1,
560 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000561
Evan Cheng7e763d82011-07-25 18:43:53 +0000562 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
563 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
564 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
565 /// storing a classifier in the imm8 field. To simplify our implementation,
566 /// we handle this by storeing the classifier in the opcode field and using
567 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Adam Nemet54adb0f2014-07-17 17:04:50 +0000568 Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
Craig Topperf655cdd2014-11-11 07:32:32 +0000569 Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
Bruno Cardoso Lopes0f9a1f52011-11-25 19:33:42 +0000570
Elena Demikhovskyb19c9dc2014-01-13 12:55:03 +0000571 /// Explicitly specified rounding control
Craig Topper9b20fec2016-08-22 07:38:45 +0000572 EVEX_RCShift = Has3DNow0F0FOpcodeShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000573 EVEX_RC = 1ULL << EVEX_RCShift
Evan Cheng7e763d82011-07-25 18:43:53 +0000574 };
575
576 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
577 // specified machine instruction.
578 //
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000579 inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000580 return TSFlags >> X86II::OpcodeShift;
581 }
582
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000583 inline bool hasImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000584 return (TSFlags & X86II::ImmMask) != 0;
585 }
586
587 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
588 /// of the specified instruction.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000589 inline unsigned getSizeOfImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000590 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000591 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000592 case X86II::Imm8:
Craig Topperca0eda32016-08-22 01:37:19 +0000593 case X86II::Imm8PCRel:
594 case X86II::Imm8Reg: return 1;
Evan Cheng7e763d82011-07-25 18:43:53 +0000595 case X86II::Imm16:
596 case X86II::Imm16PCRel: return 2;
597 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000598 case X86II::Imm32S:
Evan Cheng7e763d82011-07-25 18:43:53 +0000599 case X86II::Imm32PCRel: return 4;
600 case X86II::Imm64: return 8;
601 }
602 }
603
604 /// isImmPCRel - Return true if the immediate of the specified instruction's
605 /// TSFlags indicates that it is pc relative.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000606 inline unsigned isImmPCRel(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000607 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000608 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000609 case X86II::Imm8PCRel:
610 case X86II::Imm16PCRel:
611 case X86II::Imm32PCRel:
612 return true;
613 case X86II::Imm8:
Craig Topperca0eda32016-08-22 01:37:19 +0000614 case X86II::Imm8Reg:
Evan Cheng7e763d82011-07-25 18:43:53 +0000615 case X86II::Imm16:
616 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000617 case X86II::Imm32S:
618 case X86II::Imm64:
619 return false;
620 }
621 }
622
623 /// isImmSigned - Return true if the immediate of the specified instruction's
624 /// TSFlags indicates that it is signed.
625 inline unsigned isImmSigned(uint64_t TSFlags) {
626 switch (TSFlags & X86II::ImmMask) {
627 default: llvm_unreachable("Unknown immediate signedness");
628 case X86II::Imm32S:
629 return true;
630 case X86II::Imm8:
631 case X86II::Imm8PCRel:
Craig Topperca0eda32016-08-22 01:37:19 +0000632 case X86II::Imm8Reg:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000633 case X86II::Imm16:
634 case X86II::Imm16PCRel:
635 case X86II::Imm32:
636 case X86II::Imm32PCRel:
Evan Cheng7e763d82011-07-25 18:43:53 +0000637 case X86II::Imm64:
638 return false;
639 }
640 }
641
Preston Gurdddf96b52013-04-10 20:11:59 +0000642 /// getOperandBias - compute any additional adjustment needed to
643 /// the offset to the start of the memory operand
644 /// in this instruction.
645 /// If this is a two-address instruction,skip one of the register operands.
646 /// FIXME: This should be handled during MCInst lowering.
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000647 inline unsigned getOperandBias(const MCInstrDesc& Desc)
Preston Gurdddf96b52013-04-10 20:11:59 +0000648 {
649 unsigned NumOps = Desc.getNumOperands();
Preston Gurdddf96b52013-04-10 20:11:59 +0000650 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000651 return 1;
652 if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
653 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000654 // Special case for AVX-512 GATHER with 2 TIED_TO operands
655 // Skip the first 2 operands: dst, mask_wb
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000656 return 2;
657 if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
658 Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
Preston Gurdddf96b52013-04-10 20:11:59 +0000659 // Special case for GATHER with 2 TIED_TO operands
660 // Skip the first 2 operands: dst, mask_wb
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000661 return 2;
662 if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000663 // SCATTER
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000664 return 1;
665 return 0;
Preston Gurdddf96b52013-04-10 20:11:59 +0000666 }
667
Evan Cheng7e763d82011-07-25 18:43:53 +0000668 /// getMemoryOperandNo - The function returns the MCInst operand # for the
669 /// first field of the memory operand. If the instruction doesn't have a
670 /// memory operand, this returns -1.
671 ///
672 /// Note that this ignores tied operands. If there is a tied register which
673 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
674 /// counted as one operand.
675 ///
Craig Topper477649a2016-04-28 05:58:46 +0000676 inline int getMemoryOperandNo(uint64_t TSFlags) {
Craig Topperf655cdd2014-11-11 07:32:32 +0000677 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
Craig Topperf655cdd2014-11-11 07:32:32 +0000678 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
679
Evan Cheng7e763d82011-07-25 18:43:53 +0000680 switch (TSFlags & X86II::FormMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000681 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
Evan Cheng7e763d82011-07-25 18:43:53 +0000682 case X86II::Pseudo:
683 case X86II::RawFrm:
684 case X86II::AddRegFrm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000685 case X86II::RawFrmImm8:
686 case X86II::RawFrmImm16:
Craig Topper35da3d12014-01-16 07:36:58 +0000687 case X86II::RawFrmMemOffs:
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000688 case X86II::RawFrmSrc:
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000689 case X86II::RawFrmDst:
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000690 case X86II::RawFrmDstSrc:
Craig Topper3fb423e2015-12-25 17:07:24 +0000691 return -1;
Evan Cheng7e763d82011-07-25 18:43:53 +0000692 case X86II::MRMDestMem:
693 return 0;
Craig Topper3dcdde22015-01-05 08:19:10 +0000694 case X86II::MRMSrcMem:
695 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
696 // mask register.
Craig Topper9b20fec2016-08-22 07:38:45 +0000697 return 1 + HasVEX_4V + HasEVEX_K;
Craig Topper5f8419d2016-08-22 07:38:50 +0000698 case X86II::MRMSrcMem4VOp3:
699 // Skip registers encoded in reg.
700 return 1 + HasEVEX_K;
Craig Topper9b20fec2016-08-22 07:38:45 +0000701 case X86II::MRMSrcMemOp4:
702 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
703 return 3;
Craig Topper61b62e52016-08-22 07:38:41 +0000704 case X86II::MRMDestReg:
705 case X86II::MRMSrcReg:
Craig Topper5f8419d2016-08-22 07:38:50 +0000706 case X86II::MRMSrcReg4VOp3:
Craig Topper9b20fec2016-08-22 07:38:45 +0000707 case X86II::MRMSrcRegOp4:
Craig Toppera0869dc2014-02-10 06:55:41 +0000708 case X86II::MRMXr:
Evan Cheng7e763d82011-07-25 18:43:53 +0000709 case X86II::MRM0r: case X86II::MRM1r:
710 case X86II::MRM2r: case X86II::MRM3r:
711 case X86II::MRM4r: case X86II::MRM5r:
712 case X86II::MRM6r: case X86II::MRM7r:
713 return -1;
Craig Toppera0869dc2014-02-10 06:55:41 +0000714 case X86II::MRMXm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000715 case X86II::MRM0m: case X86II::MRM1m:
716 case X86II::MRM2m: case X86II::MRM3m:
717 case X86II::MRM4m: case X86II::MRM5m:
Craig Topper3dcdde22015-01-05 08:19:10 +0000718 case X86II::MRM6m: case X86II::MRM7m:
719 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
720 return 0 + HasVEX_4V + HasEVEX_K;
Craig Topper0d1fd552014-02-19 05:34:21 +0000721 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
Craig Topper3453a432015-12-25 17:07:30 +0000722 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
723 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
Craig Topper0d1fd552014-02-19 05:34:21 +0000724 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
Craig Topper3453a432015-12-25 17:07:30 +0000725 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
Kevin Enderby0d928a12014-07-31 23:57:38 +0000726 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
Craig Topper3453a432015-12-25 17:07:30 +0000727 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
728 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
729 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
730 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
731 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
732 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
733 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
734 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
735 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
736 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
737 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
738 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
739 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
740 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
741 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
742 case X86II::MRM_FF:
Evan Cheng7e763d82011-07-25 18:43:53 +0000743 return -1;
744 }
745 }
746
747 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
748 /// higher) register? e.g. r8, xmm8, xmm13, etc.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000749 inline bool isX86_64ExtendedReg(unsigned RegNo) {
Craig Topper6acca802016-08-27 17:13:37 +0000750 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
751 (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
752 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000753 return true;
754
Evan Cheng7e763d82011-07-25 18:43:53 +0000755 switch (RegNo) {
756 default: break;
757 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
758 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
759 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
760 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
761 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
762 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
763 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
764 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
Evan Cheng7e763d82011-07-25 18:43:53 +0000765 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
766 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
Craig Topper06c60c02016-08-27 17:13:34 +0000767 case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
768 case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
Craig Topper3fb423e2015-12-25 17:07:24 +0000769 return true;
Evan Cheng7e763d82011-07-25 18:43:53 +0000770 }
771 return false;
772 }
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000773
774 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
775 /// registers? e.g. zmm21, etc.
776 static inline bool is32ExtendedReg(unsigned RegNo) {
Craig Toppera11be0b2016-02-26 05:29:35 +0000777 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
778 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
779 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000780 }
781
Michael Liao5bf95782014-12-04 05:20:33 +0000782
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000783 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000784 return (reg == X86::SPL || reg == X86::BPL ||
785 reg == X86::SIL || reg == X86::DIL);
786 }
Craig Topper202b4532016-09-22 03:00:50 +0000787
788 /// isKMasked - Is this a masked instruction.
789 inline bool isKMasked(uint64_t TSFlags) {
790 return (TSFlags & X86II::EVEX_K) != 0;
791 }
792
793 /// isKMergedMasked - Is this a merge masked instruction.
794 inline bool isKMergeMasked(uint64_t TSFlags) {
795 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
796 }
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000797}
Evan Cheng7e763d82011-07-25 18:43:53 +0000798
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000799} // end namespace llvm;
Evan Cheng7e763d82011-07-25 18:43:53 +0000800
801#endif