blob: 2780189540282d09947e8cea6a40bdcc0f106154 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
John Criswell482202a2003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner99f48c62002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
15// %Y = add int 1, %X
16// %Z = add int 1, %Y
17// into:
18// %Z = add int 2, %X
19//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000027// 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All SetCC instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000032// N. This list is incomplete
33//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000036#include "llvm/Transforms/Scalar.h"
Chris Lattner471bd762003-05-22 19:07:21 +000037#include "llvm/Instructions.h"
Chris Lattner04805fa2002-02-26 21:46:54 +000038#include "llvm/Pass.h"
Chris Lattner34428442003-05-27 16:40:51 +000039#include "llvm/Constants.h"
40#include "llvm/ConstantHandling.h"
Chris Lattner1085bdf2002-11-04 16:18:53 +000041#include "llvm/DerivedTypes.h"
Chris Lattner0f1d8a32003-06-26 05:06:25 +000042#include "llvm/GlobalVariable.h"
Chris Lattnerf4ad1652003-11-02 05:57:39 +000043#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
Chris Lattner60a65912002-02-12 21:07:25 +000046#include "llvm/Support/InstIterator.h"
Chris Lattner260ab202002-04-18 17:39:14 +000047#include "llvm/Support/InstVisitor.h"
Chris Lattner970c33a2003-06-19 17:00:31 +000048#include "llvm/Support/CallSite.h"
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049#include "Support/Statistic.h"
Chris Lattner053c0932002-05-14 15:24:07 +000050#include <algorithm>
Chris Lattnerca081252001-12-14 16:52:21 +000051
Chris Lattner260ab202002-04-18 17:39:14 +000052namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000053 Statistic<> NumCombined ("instcombine", "Number of insts combined");
54 Statistic<> NumConstProp("instcombine", "Number of constant folds");
55 Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
56
Chris Lattnerc8e66542002-04-27 06:56:12 +000057 class InstCombiner : public FunctionPass,
Chris Lattner260ab202002-04-18 17:39:14 +000058 public InstVisitor<InstCombiner, Instruction*> {
59 // Worklist of all of the instructions that need to be simplified.
60 std::vector<Instruction*> WorkList;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000061 TargetData *TD;
Chris Lattner260ab202002-04-18 17:39:14 +000062
Chris Lattner113f4f42002-06-25 16:13:24 +000063 void AddUsesToWorkList(Instruction &I) {
Chris Lattner260ab202002-04-18 17:39:14 +000064 // The instruction was simplified, add all users of the instruction to
65 // the work lists because they might get more simplified now...
66 //
Chris Lattner113f4f42002-06-25 16:13:24 +000067 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattner260ab202002-04-18 17:39:14 +000068 UI != UE; ++UI)
69 WorkList.push_back(cast<Instruction>(*UI));
70 }
71
Chris Lattner99f48c62002-09-02 04:59:56 +000072 // removeFromWorkList - remove all instances of I from the worklist.
73 void removeFromWorkList(Instruction *I);
Chris Lattner260ab202002-04-18 17:39:14 +000074 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000075 virtual bool runOnFunction(Function &F);
Chris Lattner260ab202002-04-18 17:39:14 +000076
Chris Lattnerf12cc842002-04-28 21:27:06 +000077 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerf4ad1652003-11-02 05:57:39 +000078 AU.addRequired<TargetData>();
Chris Lattner820d9712002-10-21 20:00:28 +000079 AU.setPreservesCFG();
Chris Lattnerf12cc842002-04-28 21:27:06 +000080 }
81
Chris Lattner260ab202002-04-18 17:39:14 +000082 // Visitation implementation - Implement instruction combining for different
83 // instruction types. The semantics are as follows:
84 // Return Value:
85 // null - No change was made
Chris Lattnere6794492002-08-12 21:17:25 +000086 // I - Change was made, I is still valid, I may be dead though
Chris Lattner260ab202002-04-18 17:39:14 +000087 // otherwise - Change was made, replace I with returned instruction
88 //
Chris Lattner113f4f42002-06-25 16:13:24 +000089 Instruction *visitAdd(BinaryOperator &I);
90 Instruction *visitSub(BinaryOperator &I);
91 Instruction *visitMul(BinaryOperator &I);
92 Instruction *visitDiv(BinaryOperator &I);
93 Instruction *visitRem(BinaryOperator &I);
94 Instruction *visitAnd(BinaryOperator &I);
95 Instruction *visitOr (BinaryOperator &I);
96 Instruction *visitXor(BinaryOperator &I);
97 Instruction *visitSetCondInst(BinaryOperator &I);
Chris Lattnere8d6c602003-03-10 19:16:08 +000098 Instruction *visitShiftInst(ShiftInst &I);
Chris Lattner113f4f42002-06-25 16:13:24 +000099 Instruction *visitCastInst(CastInst &CI);
Chris Lattner970c33a2003-06-19 17:00:31 +0000100 Instruction *visitCallInst(CallInst &CI);
101 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner113f4f42002-06-25 16:13:24 +0000102 Instruction *visitPHINode(PHINode &PN);
103 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner1085bdf2002-11-04 16:18:53 +0000104 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner0f1d8a32003-06-26 05:06:25 +0000105 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner9eef8a72003-06-04 04:46:00 +0000106 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner260ab202002-04-18 17:39:14 +0000107
108 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner113f4f42002-06-25 16:13:24 +0000109 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000110
Chris Lattner970c33a2003-06-19 17:00:31 +0000111 private:
Chris Lattneraec3d942003-10-07 22:32:43 +0000112 Instruction *visitCallSite(CallSite CS);
Chris Lattner970c33a2003-06-19 17:00:31 +0000113 bool transformConstExprCastCall(CallSite CS);
114
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000115 // InsertNewInstBefore - insert an instruction New before instruction Old
116 // in the program. Add the new instruction to the worklist.
117 //
118 void InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattner65217ff2002-08-23 18:32:43 +0000119 assert(New && New->getParent() == 0 &&
120 "New instruction already inserted into a basic block!");
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000121 BasicBlock *BB = Old.getParent();
122 BB->getInstList().insert(&Old, New); // Insert inst
123 WorkList.push_back(New); // Add to worklist
124 }
125
Chris Lattner3ac7c262003-08-13 20:16:26 +0000126 public:
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000127 // ReplaceInstUsesWith - This method is to be used when an instruction is
128 // found to be dead, replacable with another preexisting expression. Here
129 // we add all uses of I to the worklist, replace all uses of I with the new
130 // value, then return I, so that the inst combiner will know that I was
131 // modified.
132 //
133 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
134 AddUsesToWorkList(I); // Add all modified instrs to worklist
135 I.replaceAllUsesWith(V);
136 return &I;
137 }
Chris Lattner3ac7c262003-08-13 20:16:26 +0000138 private:
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000139 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
140 /// InsertBefore instruction. This is specialized a bit to avoid inserting
141 /// casts that are known to not do anything...
142 ///
143 Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
144 Instruction *InsertBefore);
145
Chris Lattner7fb29e12003-03-11 00:12:48 +0000146 // SimplifyCommutative - This performs a few simplifications for commutative
147 // operators...
148 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerba1cb382003-09-19 17:17:26 +0000149
150 Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
151 ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
Chris Lattner260ab202002-04-18 17:39:14 +0000152 };
Chris Lattnerb28b6802002-07-23 18:06:35 +0000153
Chris Lattnerc8b70922002-07-26 21:12:46 +0000154 RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattner260ab202002-04-18 17:39:14 +0000155}
156
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000157// getComplexity: Assign a complexity or rank value to LLVM Values...
158// 0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst
159static unsigned getComplexity(Value *V) {
160 if (isa<Instruction>(V)) {
161 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
162 return 2;
163 return 3;
164 }
165 if (isa<Argument>(V)) return 2;
166 return isa<Constant>(V) ? 0 : 1;
167}
Chris Lattner260ab202002-04-18 17:39:14 +0000168
Chris Lattner7fb29e12003-03-11 00:12:48 +0000169// isOnlyUse - Return true if this instruction will be deleted if we stop using
170// it.
171static bool isOnlyUse(Value *V) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000172 return V->hasOneUse() || isa<Constant>(V);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000173}
174
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000175// SimplifyCommutative - This performs a few simplifications for commutative
176// operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000177//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000178// 1. Order operands such that they are listed from right (least complex) to
179// left (most complex). This puts constants before unary operators before
180// binary operators.
181//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000182// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
183// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000184//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000185bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000186 bool Changed = false;
187 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
188 Changed = !I.swapOperands();
189
190 if (!I.isAssociative()) return Changed;
191 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattner7fb29e12003-03-11 00:12:48 +0000192 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
193 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
194 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner34428442003-05-27 16:40:51 +0000195 Constant *Folded = ConstantExpr::get(I.getOpcode(),
196 cast<Constant>(I.getOperand(1)),
197 cast<Constant>(Op->getOperand(1)));
Chris Lattner7fb29e12003-03-11 00:12:48 +0000198 I.setOperand(0, Op->getOperand(0));
199 I.setOperand(1, Folded);
200 return true;
201 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
202 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
203 isOnlyUse(Op) && isOnlyUse(Op1)) {
204 Constant *C1 = cast<Constant>(Op->getOperand(1));
205 Constant *C2 = cast<Constant>(Op1->getOperand(1));
206
207 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner34428442003-05-27 16:40:51 +0000208 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000209 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
210 Op1->getOperand(0),
211 Op1->getName(), &I);
212 WorkList.push_back(New);
213 I.setOperand(0, New);
214 I.setOperand(1, Folded);
215 return true;
216 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000217 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000218 return Changed;
Chris Lattner260ab202002-04-18 17:39:14 +0000219}
Chris Lattnerca081252001-12-14 16:52:21 +0000220
Chris Lattnerbb74e222003-03-10 23:06:50 +0000221// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
222// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000223//
Chris Lattnerbb74e222003-03-10 23:06:50 +0000224static inline Value *dyn_castNegVal(Value *V) {
225 if (BinaryOperator::isNeg(V))
226 return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));
227
Chris Lattner9244df62003-04-30 22:19:10 +0000228 // Constants can be considered to be negated values if they can be folded...
229 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattner34428442003-05-27 16:40:51 +0000230 return ConstantExpr::get(Instruction::Sub,
231 Constant::getNullValue(V->getType()), C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000232 return 0;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000233}
234
Chris Lattnerbb74e222003-03-10 23:06:50 +0000235static inline Value *dyn_castNotVal(Value *V) {
236 if (BinaryOperator::isNot(V))
237 return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));
238
239 // Constants can be considered to be not'ed values...
Chris Lattnerdd65d862003-04-30 22:34:06 +0000240 if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
Chris Lattner34428442003-05-27 16:40:51 +0000241 return ConstantExpr::get(Instruction::Xor,
242 ConstantIntegral::getAllOnesValue(C->getType()),C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000243 return 0;
244}
245
Chris Lattner7fb29e12003-03-11 00:12:48 +0000246// dyn_castFoldableMul - If this value is a multiply that can be folded into
247// other computations (because it has a constant operand), return the
248// non-constant operand of the multiply.
249//
250static inline Value *dyn_castFoldableMul(Value *V) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000251 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner7fb29e12003-03-11 00:12:48 +0000252 if (Instruction *I = dyn_cast<Instruction>(V))
253 if (I->getOpcode() == Instruction::Mul)
254 if (isa<Constant>(I->getOperand(1)))
255 return I->getOperand(0);
256 return 0;
Chris Lattner3082c5a2003-02-18 19:28:33 +0000257}
Chris Lattner31ae8632002-08-14 17:51:49 +0000258
Chris Lattner7fb29e12003-03-11 00:12:48 +0000259// dyn_castMaskingAnd - If this value is an And instruction masking a value with
260// a constant, return the constant being anded with.
261//
Chris Lattner01d56392003-08-12 19:17:27 +0000262template<class ValueType>
263static inline Constant *dyn_castMaskingAnd(ValueType *V) {
Chris Lattner7fb29e12003-03-11 00:12:48 +0000264 if (Instruction *I = dyn_cast<Instruction>(V))
265 if (I->getOpcode() == Instruction::And)
266 return dyn_cast<Constant>(I->getOperand(1));
267
268 // If this is a constant, it acts just like we were masking with it.
269 return dyn_cast<Constant>(V);
270}
Chris Lattner3082c5a2003-02-18 19:28:33 +0000271
272// Log2 - Calculate the log base 2 for the specified value if it is exactly a
273// power of 2.
274static unsigned Log2(uint64_t Val) {
275 assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
276 unsigned Count = 0;
277 while (Val != 1) {
278 if (Val & 1) return 0; // Multiple bits set?
279 Val >>= 1;
280 ++Count;
281 }
282 return Count;
Chris Lattner31ae8632002-08-14 17:51:49 +0000283}
284
Chris Lattnerb8b97502003-08-13 19:01:45 +0000285
286/// AssociativeOpt - Perform an optimization on an associative operator. This
287/// function is designed to check a chain of associative operators for a
288/// potential to apply a certain optimization. Since the optimization may be
289/// applicable if the expression was reassociated, this checks the chain, then
290/// reassociates the expression as necessary to expose the optimization
291/// opportunity. This makes use of a special Functor, which must define
292/// 'shouldApply' and 'apply' methods.
293///
294template<typename Functor>
295Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
296 unsigned Opcode = Root.getOpcode();
297 Value *LHS = Root.getOperand(0);
298
299 // Quick check, see if the immediate LHS matches...
300 if (F.shouldApply(LHS))
301 return F.apply(Root);
302
303 // Otherwise, if the LHS is not of the same opcode as the root, return.
304 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000305 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +0000306 // Should we apply this transform to the RHS?
307 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
308
309 // If not to the RHS, check to see if we should apply to the LHS...
310 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
311 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
312 ShouldApply = true;
313 }
314
315 // If the functor wants to apply the optimization to the RHS of LHSI,
316 // reassociate the expression from ((? op A) op B) to (? op (A op B))
317 if (ShouldApply) {
318 BasicBlock *BB = Root.getParent();
319 // All of the instructions have a single use and have no side-effects,
320 // because of this, we can pull them all into the current basic block.
321 if (LHSI->getParent() != BB) {
322 // Move all of the instructions from root to LHSI into the current
323 // block.
324 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
325 Instruction *LastUse = &Root;
326 while (TmpLHSI->getParent() == BB) {
327 LastUse = TmpLHSI;
328 TmpLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
329 }
330
331 // Loop over all of the instructions in other blocks, moving them into
332 // the current one.
333 Value *TmpLHS = TmpLHSI;
334 do {
335 TmpLHSI = cast<Instruction>(TmpLHS);
336 // Remove from current block...
337 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
338 // Insert before the last instruction...
339 BB->getInstList().insert(LastUse, TmpLHSI);
340 TmpLHS = TmpLHSI->getOperand(0);
341 } while (TmpLHSI != LHSI);
342 }
343
344 // Now all of the instructions are in the current basic block, go ahead
345 // and perform the reassociation.
346 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
347
348 // First move the selected RHS to the LHS of the root...
349 Root.setOperand(0, LHSI->getOperand(1));
350
351 // Make what used to be the LHS of the root be the user of the root...
352 Value *ExtraOperand = TmpLHSI->getOperand(1);
353 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
354 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
355 BB->getInstList().remove(&Root); // Remove root from the BB
356 BB->getInstList().insert(TmpLHSI, &Root); // Insert root before TmpLHSI
357
358 // Now propagate the ExtraOperand down the chain of instructions until we
359 // get to LHSI.
360 while (TmpLHSI != LHSI) {
361 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
362 Value *NextOp = NextLHSI->getOperand(1);
363 NextLHSI->setOperand(1, ExtraOperand);
364 TmpLHSI = NextLHSI;
365 ExtraOperand = NextOp;
366 }
367
368 // Now that the instructions are reassociated, have the functor perform
369 // the transformation...
370 return F.apply(Root);
371 }
372
373 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
374 }
375 return 0;
376}
377
378
379// AddRHS - Implements: X + X --> X << 1
380struct AddRHS {
381 Value *RHS;
382 AddRHS(Value *rhs) : RHS(rhs) {}
383 bool shouldApply(Value *LHS) const { return LHS == RHS; }
384 Instruction *apply(BinaryOperator &Add) const {
385 return new ShiftInst(Instruction::Shl, Add.getOperand(0),
386 ConstantInt::get(Type::UByteTy, 1));
387 }
388};
389
390// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
391// iff C1&C2 == 0
392struct AddMaskingAnd {
393 Constant *C2;
394 AddMaskingAnd(Constant *c) : C2(c) {}
395 bool shouldApply(Value *LHS) const {
396 if (Constant *C1 = dyn_castMaskingAnd(LHS))
397 return ConstantExpr::get(Instruction::And, C1, C2)->isNullValue();
398 return false;
399 }
400 Instruction *apply(BinaryOperator &Add) const {
401 return BinaryOperator::create(Instruction::Or, Add.getOperand(0),
402 Add.getOperand(1));
403 }
404};
405
406
407
Chris Lattner113f4f42002-06-25 16:13:24 +0000408Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000409 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000410 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattner9fa53de2002-05-06 16:49:18 +0000411
Chris Lattnerb8b97502003-08-13 19:01:45 +0000412 // X + 0 --> X
Chris Lattnere6794492002-08-12 21:17:25 +0000413 if (RHS == Constant::getNullValue(I.getType()))
414 return ReplaceInstUsesWith(I, LHS);
Chris Lattner9fa53de2002-05-06 16:49:18 +0000415
Chris Lattnerb8b97502003-08-13 19:01:45 +0000416 // X + X --> X << 1
417 if (I.getType()->isInteger())
418 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattnerede3fe02003-08-13 04:18:28 +0000419
Chris Lattner147e9752002-05-08 22:46:53 +0000420 // -A + B --> B - A
Chris Lattnerbb74e222003-03-10 23:06:50 +0000421 if (Value *V = dyn_castNegVal(LHS))
Chris Lattner147e9752002-05-08 22:46:53 +0000422 return BinaryOperator::create(Instruction::Sub, RHS, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +0000423
424 // A + -B --> A - B
Chris Lattnerbb74e222003-03-10 23:06:50 +0000425 if (!isa<Constant>(RHS))
426 if (Value *V = dyn_castNegVal(RHS))
427 return BinaryOperator::create(Instruction::Sub, LHS, V);
Chris Lattner260ab202002-04-18 17:39:14 +0000428
Chris Lattner57c8d992003-02-18 19:57:07 +0000429 // X*C + X --> X * (C+1)
430 if (dyn_castFoldableMul(LHS) == RHS) {
Chris Lattner34428442003-05-27 16:40:51 +0000431 Constant *CP1 =
432 ConstantExpr::get(Instruction::Add,
433 cast<Constant>(cast<Instruction>(LHS)->getOperand(1)),
434 ConstantInt::get(I.getType(), 1));
Chris Lattner57c8d992003-02-18 19:57:07 +0000435 return BinaryOperator::create(Instruction::Mul, RHS, CP1);
436 }
437
438 // X + X*C --> X * (C+1)
439 if (dyn_castFoldableMul(RHS) == LHS) {
Chris Lattner34428442003-05-27 16:40:51 +0000440 Constant *CP1 =
441 ConstantExpr::get(Instruction::Add,
442 cast<Constant>(cast<Instruction>(RHS)->getOperand(1)),
443 ConstantInt::get(I.getType(), 1));
Chris Lattner57c8d992003-02-18 19:57:07 +0000444 return BinaryOperator::create(Instruction::Mul, LHS, CP1);
445 }
446
Chris Lattnerb8b97502003-08-13 19:01:45 +0000447 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
448 if (Constant *C2 = dyn_castMaskingAnd(RHS))
449 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
Chris Lattner7fb29e12003-03-11 00:12:48 +0000450
Chris Lattnerb9cde762003-10-02 15:11:26 +0000451 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
452 if (Instruction *ILHS = dyn_cast<Instruction>(LHS)) {
453 switch (ILHS->getOpcode()) {
454 case Instruction::Xor:
455 // ~X + C --> (C-1) - X
456 if (ConstantInt *XorRHS = dyn_cast<ConstantInt>(ILHS->getOperand(1)))
457 if (XorRHS->isAllOnesValue())
458 return BinaryOperator::create(Instruction::Sub,
459 *CRHS - *ConstantInt::get(I.getType(), 1),
460 ILHS->getOperand(0));
461 break;
462 default: break;
463 }
464 }
465 }
466
Chris Lattner113f4f42002-06-25 16:13:24 +0000467 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +0000468}
469
Chris Lattnerbdb0ce02003-07-22 21:46:59 +0000470// isSignBit - Return true if the value represented by the constant only has the
471// highest order bit set.
472static bool isSignBit(ConstantInt *CI) {
473 unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
474 return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
475}
476
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000477static unsigned getTypeSizeInBits(const Type *Ty) {
478 return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
479}
480
Chris Lattner113f4f42002-06-25 16:13:24 +0000481Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +0000482 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000483
Chris Lattnere6794492002-08-12 21:17:25 +0000484 if (Op0 == Op1) // sub X, X -> 0
485 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner260ab202002-04-18 17:39:14 +0000486
Chris Lattnere6794492002-08-12 21:17:25 +0000487 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattnerbb74e222003-03-10 23:06:50 +0000488 if (Value *V = dyn_castNegVal(Op1))
Chris Lattner147e9752002-05-08 22:46:53 +0000489 return BinaryOperator::create(Instruction::Add, Op0, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +0000490
Chris Lattner3082c5a2003-02-18 19:28:33 +0000491 // Replace (-1 - A) with (~A)...
492 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0))
493 if (C->isAllOnesValue())
494 return BinaryOperator::createNot(Op1);
Chris Lattnerad3c4952002-05-09 01:29:19 +0000495
Chris Lattner3082c5a2003-02-18 19:28:33 +0000496 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000497 if (Op1I->hasOneUse()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +0000498 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
499 // is not used by anyone else...
500 //
501 if (Op1I->getOpcode() == Instruction::Sub) {
502 // Swap the two operands of the subexpr...
503 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
504 Op1I->setOperand(0, IIOp1);
505 Op1I->setOperand(1, IIOp0);
506
507 // Create the new top level add instruction...
508 return BinaryOperator::create(Instruction::Add, Op0, Op1);
509 }
510
511 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
512 //
513 if (Op1I->getOpcode() == Instruction::And &&
514 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
515 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
516
517 Instruction *NewNot = BinaryOperator::createNot(OtherOp, "B.not", &I);
518 return BinaryOperator::create(Instruction::And, Op0, NewNot);
519 }
Chris Lattner57c8d992003-02-18 19:57:07 +0000520
521 // X - X*C --> X * (1-C)
522 if (dyn_castFoldableMul(Op1I) == Op0) {
Chris Lattner34428442003-05-27 16:40:51 +0000523 Constant *CP1 =
524 ConstantExpr::get(Instruction::Sub,
525 ConstantInt::get(I.getType(), 1),
526 cast<Constant>(cast<Instruction>(Op1)->getOperand(1)));
Chris Lattner57c8d992003-02-18 19:57:07 +0000527 assert(CP1 && "Couldn't constant fold 1-C?");
528 return BinaryOperator::create(Instruction::Mul, Op0, CP1);
529 }
Chris Lattnerad3c4952002-05-09 01:29:19 +0000530 }
Chris Lattner3082c5a2003-02-18 19:28:33 +0000531
Chris Lattner57c8d992003-02-18 19:57:07 +0000532 // X*C - X --> X * (C-1)
533 if (dyn_castFoldableMul(Op0) == Op1) {
Chris Lattner34428442003-05-27 16:40:51 +0000534 Constant *CP1 =
535 ConstantExpr::get(Instruction::Sub,
536 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)),
537 ConstantInt::get(I.getType(), 1));
Chris Lattner57c8d992003-02-18 19:57:07 +0000538 assert(CP1 && "Couldn't constant fold C - 1?");
539 return BinaryOperator::create(Instruction::Mul, Op1, CP1);
540 }
541
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000542 return 0;
Chris Lattner260ab202002-04-18 17:39:14 +0000543}
544
Chris Lattner113f4f42002-06-25 16:13:24 +0000545Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000546 bool Changed = SimplifyCommutative(I);
Chris Lattner3082c5a2003-02-18 19:28:33 +0000547 Value *Op0 = I.getOperand(0);
Chris Lattner260ab202002-04-18 17:39:14 +0000548
Chris Lattnere6794492002-08-12 21:17:25 +0000549 // Simplify mul instructions with a constant RHS...
Chris Lattner3082c5a2003-02-18 19:28:33 +0000550 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
551 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerede3fe02003-08-13 04:18:28 +0000552
553 // ((X << C1)*C2) == (X * (C2 << C1))
554 if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
555 if (SI->getOpcode() == Instruction::Shl)
556 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
557 return BinaryOperator::create(Instruction::Mul, SI->getOperand(0),
558 *CI << *ShOp);
559
Chris Lattnercce81be2003-09-11 22:24:54 +0000560 if (CI->isNullValue())
561 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
562 if (CI->equalsInt(1)) // X * 1 == X
563 return ReplaceInstUsesWith(I, Op0);
564 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner35236d82003-06-25 17:09:20 +0000565 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner31ba1292002-04-29 22:24:47 +0000566
Chris Lattnercce81be2003-09-11 22:24:54 +0000567 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
Chris Lattner3082c5a2003-02-18 19:28:33 +0000568 if (uint64_t C = Log2(Val)) // Replace X*(2^C) with X << C
569 return new ShiftInst(Instruction::Shl, Op0,
570 ConstantUInt::get(Type::UByteTy, C));
571 } else {
572 ConstantFP *Op1F = cast<ConstantFP>(Op1);
573 if (Op1F->isNullValue())
574 return ReplaceInstUsesWith(I, Op1);
Chris Lattner31ba1292002-04-29 22:24:47 +0000575
Chris Lattner3082c5a2003-02-18 19:28:33 +0000576 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
577 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
578 if (Op1F->getValue() == 1.0)
579 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
580 }
Chris Lattner260ab202002-04-18 17:39:14 +0000581 }
582
Chris Lattner934a64cf2003-03-10 23:23:04 +0000583 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
584 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
585 return BinaryOperator::create(Instruction::Mul, Op0v, Op1v);
586
Chris Lattner113f4f42002-06-25 16:13:24 +0000587 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +0000588}
589
Chris Lattner113f4f42002-06-25 16:13:24 +0000590Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000591 // div X, 1 == X
Chris Lattner3082c5a2003-02-18 19:28:33 +0000592 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
Chris Lattnere6794492002-08-12 21:17:25 +0000593 if (RHS->equalsInt(1))
594 return ReplaceInstUsesWith(I, I.getOperand(0));
Chris Lattner3082c5a2003-02-18 19:28:33 +0000595
596 // Check to see if this is an unsigned division with an exact power of 2,
597 // if so, convert to a right shift.
598 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
599 if (uint64_t Val = C->getValue()) // Don't break X / 0
600 if (uint64_t C = Log2(Val))
601 return new ShiftInst(Instruction::Shr, I.getOperand(0),
602 ConstantUInt::get(Type::UByteTy, C));
603 }
604
605 // 0 / X == 0, we don't need to preserve faults!
606 if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
607 if (LHS->equalsInt(0))
608 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
609
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000610 return 0;
611}
612
613
Chris Lattner113f4f42002-06-25 16:13:24 +0000614Instruction *InstCombiner::visitRem(BinaryOperator &I) {
Chris Lattner3082c5a2003-02-18 19:28:33 +0000615 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
616 if (RHS->equalsInt(1)) // X % 1 == 0
617 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
618
619 // Check to see if this is an unsigned remainder with an exact power of 2,
620 // if so, convert to a bitwise and.
621 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
622 if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero)
623 if (Log2(Val))
624 return BinaryOperator::create(Instruction::And, I.getOperand(0),
625 ConstantUInt::get(I.getType(), Val-1));
626 }
627
628 // 0 % X == 0, we don't need to preserve faults!
629 if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
630 if (LHS->equalsInt(0))
Chris Lattnere6794492002-08-12 21:17:25 +0000631 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
632
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000633 return 0;
634}
635
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000636// isMaxValueMinusOne - return true if this is Max-1
Chris Lattnere6794492002-08-12 21:17:25 +0000637static bool isMaxValueMinusOne(const ConstantInt *C) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000638 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
639 // Calculate -1 casted to the right type...
640 unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
641 uint64_t Val = ~0ULL; // All ones
642 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
643 return CU->getValue() == Val-1;
644 }
645
646 const ConstantSInt *CS = cast<ConstantSInt>(C);
647
648 // Calculate 0111111111..11111
649 unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
650 int64_t Val = INT64_MAX; // All ones
651 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
652 return CS->getValue() == Val-1;
653}
654
655// isMinValuePlusOne - return true if this is Min+1
Chris Lattnere6794492002-08-12 21:17:25 +0000656static bool isMinValuePlusOne(const ConstantInt *C) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000657 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
658 return CU->getValue() == 1;
659
660 const ConstantSInt *CS = cast<ConstantSInt>(C);
661
662 // Calculate 1111111111000000000000
663 unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
664 int64_t Val = -1; // All ones
665 Val <<= TypeBits-1; // Shift over to the right spot
666 return CS->getValue() == Val+1;
667}
668
Chris Lattner3ac7c262003-08-13 20:16:26 +0000669/// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
670/// are carefully arranged to allow folding of expressions such as:
671///
672/// (A < B) | (A > B) --> (A != B)
673///
674/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
675/// represents that the comparison is true if A == B, and bit value '1' is true
676/// if A < B.
677///
678static unsigned getSetCondCode(const SetCondInst *SCI) {
679 switch (SCI->getOpcode()) {
680 // False -> 0
681 case Instruction::SetGT: return 1;
682 case Instruction::SetEQ: return 2;
683 case Instruction::SetGE: return 3;
684 case Instruction::SetLT: return 4;
685 case Instruction::SetNE: return 5;
686 case Instruction::SetLE: return 6;
687 // True -> 7
688 default:
689 assert(0 && "Invalid SetCC opcode!");
690 return 0;
691 }
692}
693
694/// getSetCCValue - This is the complement of getSetCondCode, which turns an
695/// opcode and two operands into either a constant true or false, or a brand new
696/// SetCC instruction.
697static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
698 switch (Opcode) {
699 case 0: return ConstantBool::False;
700 case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
701 case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
702 case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
703 case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
704 case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
705 case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
706 case 7: return ConstantBool::True;
707 default: assert(0 && "Illegal SetCCCode!"); return 0;
708 }
709}
710
711// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
712struct FoldSetCCLogical {
713 InstCombiner &IC;
714 Value *LHS, *RHS;
715 FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
716 : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
717 bool shouldApply(Value *V) const {
718 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
719 return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
720 SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
721 return false;
722 }
723 Instruction *apply(BinaryOperator &Log) const {
724 SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
725 if (SCI->getOperand(0) != LHS) {
726 assert(SCI->getOperand(1) == LHS);
727 SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
728 }
729
730 unsigned LHSCode = getSetCondCode(SCI);
731 unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
732 unsigned Code;
733 switch (Log.getOpcode()) {
734 case Instruction::And: Code = LHSCode & RHSCode; break;
735 case Instruction::Or: Code = LHSCode | RHSCode; break;
736 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner2caaaba2003-09-22 20:33:34 +0000737 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattner3ac7c262003-08-13 20:16:26 +0000738 }
739
740 Value *RV = getSetCCValue(Code, LHS, RHS);
741 if (Instruction *I = dyn_cast<Instruction>(RV))
742 return I;
743 // Otherwise, it's a constant boolean value...
744 return IC.ReplaceInstUsesWith(Log, RV);
745 }
746};
747
748
Chris Lattnerba1cb382003-09-19 17:17:26 +0000749// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
750// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
751// guaranteed to be either a shift instruction or a binary operator.
752Instruction *InstCombiner::OptAndOp(Instruction *Op,
753 ConstantIntegral *OpRHS,
754 ConstantIntegral *AndRHS,
755 BinaryOperator &TheAnd) {
756 Value *X = Op->getOperand(0);
757 switch (Op->getOpcode()) {
758 case Instruction::Xor:
759 if ((*AndRHS & *OpRHS)->isNullValue()) {
760 // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
761 return BinaryOperator::create(Instruction::And, X, AndRHS);
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000762 } else if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +0000763 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
764 std::string OpName = Op->getName(); Op->setName("");
765 Instruction *And = BinaryOperator::create(Instruction::And,
766 X, AndRHS, OpName);
767 InsertNewInstBefore(And, TheAnd);
768 return BinaryOperator::create(Instruction::Xor, And, *AndRHS & *OpRHS);
769 }
770 break;
771 case Instruction::Or:
772 // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
773 if ((*AndRHS & *OpRHS)->isNullValue())
774 return BinaryOperator::create(Instruction::And, X, AndRHS);
775 else {
776 Constant *Together = *AndRHS & *OpRHS;
777 if (Together == AndRHS) // (X | C) & C --> C
778 return ReplaceInstUsesWith(TheAnd, AndRHS);
779
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000780 if (Op->hasOneUse() && Together != OpRHS) {
Chris Lattnerba1cb382003-09-19 17:17:26 +0000781 // (X | C1) & C2 --> (X | (C1&C2)) & C2
782 std::string Op0Name = Op->getName(); Op->setName("");
783 Instruction *Or = BinaryOperator::create(Instruction::Or, X,
784 Together, Op0Name);
785 InsertNewInstBefore(Or, TheAnd);
786 return BinaryOperator::create(Instruction::And, Or, AndRHS);
787 }
788 }
789 break;
790 case Instruction::Add:
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000791 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +0000792 // Adding a one to a single bit bit-field should be turned into an XOR
793 // of the bit. First thing to check is to see if this AND is with a
794 // single bit constant.
795 unsigned long long AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
796
797 // Clear bits that are not part of the constant.
798 AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;
799
800 // If there is only one bit set...
801 if ((AndRHSV & (AndRHSV-1)) == 0) {
802 // Ok, at this point, we know that we are masking the result of the
803 // ADD down to exactly one bit. If the constant we are adding has
804 // no bits set below this bit, then we can eliminate the ADD.
805 unsigned long long AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
806
807 // Check to see if any bits below the one bit set in AndRHSV are set.
808 if ((AddRHS & (AndRHSV-1)) == 0) {
809 // If not, the only thing that can effect the output of the AND is
810 // the bit specified by AndRHSV. If that bit is set, the effect of
811 // the XOR is to toggle the bit. If it is clear, then the ADD has
812 // no effect.
813 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
814 TheAnd.setOperand(0, X);
815 return &TheAnd;
816 } else {
817 std::string Name = Op->getName(); Op->setName("");
818 // Pull the XOR out of the AND.
819 Instruction *NewAnd =
820 BinaryOperator::create(Instruction::And, X, AndRHS, Name);
821 InsertNewInstBefore(NewAnd, TheAnd);
822 return BinaryOperator::create(Instruction::Xor, NewAnd, AndRHS);
823 }
824 }
825 }
826 }
827 break;
Chris Lattner2da29172003-09-19 19:05:02 +0000828
829 case Instruction::Shl: {
830 // We know that the AND will not produce any of the bits shifted in, so if
831 // the anded constant includes them, clear them now!
832 //
833 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
834 Constant *CI = *AndRHS & *(*AllOne << *OpRHS);
835 if (CI != AndRHS) {
836 TheAnd.setOperand(1, CI);
837 return &TheAnd;
838 }
839 break;
840 }
841 case Instruction::Shr:
842 // We know that the AND will not produce any of the bits shifted in, so if
843 // the anded constant includes them, clear them now! This only applies to
844 // unsigned shifts, because a signed shr may bring in set bits!
845 //
846 if (AndRHS->getType()->isUnsigned()) {
847 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
848 Constant *CI = *AndRHS & *(*AllOne >> *OpRHS);
849 if (CI != AndRHS) {
850 TheAnd.setOperand(1, CI);
851 return &TheAnd;
852 }
853 }
854 break;
Chris Lattnerba1cb382003-09-19 17:17:26 +0000855 }
856 return 0;
857}
858
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000859
Chris Lattner113f4f42002-06-25 16:13:24 +0000860Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000861 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000862 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000863
864 // and X, X = X and X, 0 == 0
Chris Lattnere6794492002-08-12 21:17:25 +0000865 if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
866 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000867
868 // and X, -1 == X
Chris Lattner49b47ae2003-07-23 17:57:01 +0000869 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattnere6794492002-08-12 21:17:25 +0000870 if (RHS->isAllOnesValue())
871 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000872
Chris Lattnerba1cb382003-09-19 17:17:26 +0000873 // Optimize a variety of ((val OP C1) & C2) combinations...
874 if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
875 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner33217db2003-07-23 19:36:21 +0000876 Value *X = Op0I->getOperand(0);
Chris Lattner16464b32003-07-23 19:25:52 +0000877 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattnerba1cb382003-09-19 17:17:26 +0000878 if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I))
879 return Res;
Chris Lattner33217db2003-07-23 19:36:21 +0000880 }
Chris Lattner49b47ae2003-07-23 17:57:01 +0000881 }
882
Chris Lattnerbb74e222003-03-10 23:06:50 +0000883 Value *Op0NotVal = dyn_castNotVal(Op0);
884 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +0000885
886 // (~A & ~B) == (~(A | B)) - Demorgan's Law
Chris Lattnerbb74e222003-03-10 23:06:50 +0000887 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattner3082c5a2003-02-18 19:28:33 +0000888 Instruction *Or = BinaryOperator::create(Instruction::Or, Op0NotVal,
Chris Lattner49b47ae2003-07-23 17:57:01 +0000889 Op1NotVal,I.getName()+".demorgan");
890 InsertNewInstBefore(Or, I);
Chris Lattner3082c5a2003-02-18 19:28:33 +0000891 return BinaryOperator::createNot(Or);
892 }
893
894 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
895 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner65217ff2002-08-23 18:32:43 +0000896
Chris Lattner3ac7c262003-08-13 20:16:26 +0000897 // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
898 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
899 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
900 return R;
901
Chris Lattner113f4f42002-06-25 16:13:24 +0000902 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000903}
904
905
906
Chris Lattner113f4f42002-06-25 16:13:24 +0000907Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000908 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000909 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000910
911 // or X, X = X or X, 0 == X
Chris Lattnere6794492002-08-12 21:17:25 +0000912 if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
913 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000914
915 // or X, -1 == -1
Chris Lattner8f0d1562003-07-23 18:29:44 +0000916 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattnere6794492002-08-12 21:17:25 +0000917 if (RHS->isAllOnesValue())
918 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000919
Chris Lattner8f0d1562003-07-23 18:29:44 +0000920 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
921 // (X & C1) | C2 --> (X | C2) & (C1|C2)
922 if (Op0I->getOpcode() == Instruction::And && isOnlyUse(Op0))
923 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
924 std::string Op0Name = Op0I->getName(); Op0I->setName("");
925 Instruction *Or = BinaryOperator::create(Instruction::Or,
926 Op0I->getOperand(0), RHS,
927 Op0Name);
928 InsertNewInstBefore(Or, I);
929 return BinaryOperator::create(Instruction::And, Or, *RHS | *Op0CI);
930 }
931
932 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
933 if (Op0I->getOpcode() == Instruction::Xor && isOnlyUse(Op0))
934 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
935 std::string Op0Name = Op0I->getName(); Op0I->setName("");
936 Instruction *Or = BinaryOperator::create(Instruction::Or,
937 Op0I->getOperand(0), RHS,
938 Op0Name);
939 InsertNewInstBefore(Or, I);
940 return BinaryOperator::create(Instruction::Xor, Or, *Op0CI & *~*RHS);
941 }
942 }
943 }
944
Chris Lattner812aab72003-08-12 19:11:07 +0000945 // (A & C1)|(A & C2) == A & (C1|C2)
Chris Lattner01d56392003-08-12 19:17:27 +0000946 if (Instruction *LHS = dyn_cast<BinaryOperator>(Op0))
947 if (Instruction *RHS = dyn_cast<BinaryOperator>(Op1))
948 if (LHS->getOperand(0) == RHS->getOperand(0))
949 if (Constant *C0 = dyn_castMaskingAnd(LHS))
950 if (Constant *C1 = dyn_castMaskingAnd(RHS))
951 return BinaryOperator::create(Instruction::And, LHS->getOperand(0),
Chris Lattner812aab72003-08-12 19:11:07 +0000952 *C0 | *C1);
953
Chris Lattner3e327a42003-03-10 23:13:59 +0000954 Value *Op0NotVal = dyn_castNotVal(Op0);
955 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +0000956
Chris Lattner3e327a42003-03-10 23:13:59 +0000957 if (Op1 == Op0NotVal) // ~A | A == -1
958 return ReplaceInstUsesWith(I,
959 ConstantIntegral::getAllOnesValue(I.getType()));
960
961 if (Op0 == Op1NotVal) // A | ~A == -1
962 return ReplaceInstUsesWith(I,
963 ConstantIntegral::getAllOnesValue(I.getType()));
964
965 // (~A | ~B) == (~(A & B)) - Demorgan's Law
966 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
967 Instruction *And = BinaryOperator::create(Instruction::And, Op0NotVal,
968 Op1NotVal,I.getName()+".demorgan",
969 &I);
970 WorkList.push_back(And);
971 return BinaryOperator::createNot(And);
972 }
Chris Lattner3082c5a2003-02-18 19:28:33 +0000973
Chris Lattner3ac7c262003-08-13 20:16:26 +0000974 // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
975 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
976 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
977 return R;
978
Chris Lattner113f4f42002-06-25 16:13:24 +0000979 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000980}
981
982
983
Chris Lattner113f4f42002-06-25 16:13:24 +0000984Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000985 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000986 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000987
988 // xor X, X = 0
Chris Lattnere6794492002-08-12 21:17:25 +0000989 if (Op0 == Op1)
990 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerf4cdbf32002-05-06 16:14:14 +0000991
Chris Lattner97638592003-07-23 21:37:07 +0000992 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000993 // xor X, 0 == X
Chris Lattner97638592003-07-23 21:37:07 +0000994 if (RHS->isNullValue())
Chris Lattnere6794492002-08-12 21:17:25 +0000995 return ReplaceInstUsesWith(I, Op0);
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000996
Chris Lattner97638592003-07-23 21:37:07 +0000997 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattnerb8d6e402002-08-20 18:24:26 +0000998 // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
Chris Lattner97638592003-07-23 21:37:07 +0000999 if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001000 if (RHS == ConstantBool::True && SCI->hasOneUse())
Chris Lattnerb8d6e402002-08-20 18:24:26 +00001001 return new SetCondInst(SCI->getInverseCondition(),
1002 SCI->getOperand(0), SCI->getOperand(1));
Chris Lattner97638592003-07-23 21:37:07 +00001003
1004 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1005 if (Op0I->getOpcode() == Instruction::And) {
1006 // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
1007 if ((*RHS & *Op0CI)->isNullValue())
1008 return BinaryOperator::create(Instruction::Or, Op0, RHS);
1009 } else if (Op0I->getOpcode() == Instruction::Or) {
1010 // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1011 if ((*RHS & *Op0CI) == RHS)
1012 return BinaryOperator::create(Instruction::And, Op0, ~*RHS);
1013 }
Chris Lattnerb8d6e402002-08-20 18:24:26 +00001014 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001015 }
1016
Chris Lattnerbb74e222003-03-10 23:06:50 +00001017 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00001018 if (X == Op1)
1019 return ReplaceInstUsesWith(I,
1020 ConstantIntegral::getAllOnesValue(I.getType()));
1021
Chris Lattnerbb74e222003-03-10 23:06:50 +00001022 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00001023 if (X == Op0)
1024 return ReplaceInstUsesWith(I,
1025 ConstantIntegral::getAllOnesValue(I.getType()));
1026
Chris Lattner1bbb7b62003-03-10 18:24:17 +00001027 if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
1028 if (Op1I->getOpcode() == Instruction::Or)
1029 if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
1030 cast<BinaryOperator>(Op1I)->swapOperands();
1031 I.swapOperands();
1032 std::swap(Op0, Op1);
1033 } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
1034 I.swapOperands();
1035 std::swap(Op0, Op1);
1036 }
1037
1038 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001039 if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
Chris Lattner1bbb7b62003-03-10 18:24:17 +00001040 if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
1041 cast<BinaryOperator>(Op0I)->swapOperands();
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001042 if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
Chris Lattner1bbb7b62003-03-10 18:24:17 +00001043 Value *NotB = BinaryOperator::createNot(Op1, Op1->getName()+".not", &I);
1044 WorkList.push_back(cast<Instruction>(NotB));
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001045 return BinaryOperator::create(Instruction::And, Op0I->getOperand(0),
1046 NotB);
Chris Lattner1bbb7b62003-03-10 18:24:17 +00001047 }
1048 }
1049
Chris Lattner7fb29e12003-03-11 00:12:48 +00001050 // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0
1051 if (Constant *C1 = dyn_castMaskingAnd(Op0))
1052 if (Constant *C2 = dyn_castMaskingAnd(Op1))
Chris Lattner34428442003-05-27 16:40:51 +00001053 if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue())
Chris Lattner7fb29e12003-03-11 00:12:48 +00001054 return BinaryOperator::create(Instruction::Or, Op0, Op1);
1055
Chris Lattner3ac7c262003-08-13 20:16:26 +00001056 // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
1057 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
1058 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
1059 return R;
1060
Chris Lattner113f4f42002-06-25 16:13:24 +00001061 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001062}
1063
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001064// AddOne, SubOne - Add or subtract a constant one from an integer constant...
1065static Constant *AddOne(ConstantInt *C) {
Chris Lattner34428442003-05-27 16:40:51 +00001066 Constant *Result = ConstantExpr::get(Instruction::Add, C,
1067 ConstantInt::get(C->getType(), 1));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001068 assert(Result && "Constant folding integer addition failed!");
1069 return Result;
1070}
1071static Constant *SubOne(ConstantInt *C) {
Chris Lattner34428442003-05-27 16:40:51 +00001072 Constant *Result = ConstantExpr::get(Instruction::Sub, C,
1073 ConstantInt::get(C->getType(), 1));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001074 assert(Result && "Constant folding integer addition failed!");
1075 return Result;
1076}
1077
Chris Lattner1fc23f32002-05-09 20:11:54 +00001078// isTrueWhenEqual - Return true if the specified setcondinst instruction is
1079// true when both operands are equal...
1080//
Chris Lattner113f4f42002-06-25 16:13:24 +00001081static bool isTrueWhenEqual(Instruction &I) {
1082 return I.getOpcode() == Instruction::SetEQ ||
1083 I.getOpcode() == Instruction::SetGE ||
1084 I.getOpcode() == Instruction::SetLE;
Chris Lattner1fc23f32002-05-09 20:11:54 +00001085}
1086
Chris Lattner113f4f42002-06-25 16:13:24 +00001087Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001088 bool Changed = SimplifyCommutative(I);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001089 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1090 const Type *Ty = Op0->getType();
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001091
1092 // setcc X, X
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001093 if (Op0 == Op1)
1094 return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
Chris Lattner1fc23f32002-05-09 20:11:54 +00001095
Chris Lattnerd07283a2003-08-13 05:38:46 +00001096 // setcc <global/alloca*>, 0 - Global/Stack value addresses are never null!
1097 if (isa<ConstantPointerNull>(Op1) &&
1098 (isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0)))
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001099 return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
1100
Chris Lattnerd07283a2003-08-13 05:38:46 +00001101
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001102 // setcc's with boolean values can always be turned into bitwise operations
1103 if (Ty == Type::BoolTy) {
1104 // If this is <, >, or !=, we can change this into a simple xor instruction
1105 if (!isTrueWhenEqual(I))
Chris Lattner16930792003-11-03 04:25:02 +00001106 return BinaryOperator::create(Instruction::Xor, Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001107
1108 // Otherwise we need to make a temporary intermediate instruction and insert
1109 // it into the instruction stream. This is what we are after:
1110 //
1111 // seteq bool %A, %B -> ~(A^B)
1112 // setle bool %A, %B -> ~A | B
1113 // setge bool %A, %B -> A | ~B
1114 //
1115 if (I.getOpcode() == Instruction::SetEQ) { // seteq case
1116 Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1,
1117 I.getName()+"tmp");
1118 InsertNewInstBefore(Xor, I);
Chris Lattner16930792003-11-03 04:25:02 +00001119 return BinaryOperator::createNot(Xor);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001120 }
1121
1122 // Handle the setXe cases...
1123 assert(I.getOpcode() == Instruction::SetGE ||
1124 I.getOpcode() == Instruction::SetLE);
1125
1126 if (I.getOpcode() == Instruction::SetGE)
1127 std::swap(Op0, Op1); // Change setge -> setle
1128
1129 // Now we just have the SetLE case.
Chris Lattner31ae8632002-08-14 17:51:49 +00001130 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001131 InsertNewInstBefore(Not, I);
Chris Lattner16930792003-11-03 04:25:02 +00001132 return BinaryOperator::create(Instruction::Or, Not, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001133 }
1134
1135 // Check to see if we are doing one of many comparisons against constant
1136 // integers at the end of their ranges...
1137 //
1138 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd492a0b2003-07-23 17:02:11 +00001139 // Simplify seteq and setne instructions...
1140 if (I.getOpcode() == Instruction::SetEQ ||
1141 I.getOpcode() == Instruction::SetNE) {
1142 bool isSetNE = I.getOpcode() == Instruction::SetNE;
1143
Chris Lattnercfbce7c2003-07-23 17:26:36 +00001144 // If the first operand is (and|or|xor) with a constant, and the second
Chris Lattnerd492a0b2003-07-23 17:02:11 +00001145 // operand is a constant, simplify a bit.
Chris Lattnerc992add2003-08-13 05:33:12 +00001146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
1147 switch (BO->getOpcode()) {
1148 case Instruction::Add:
1149 if (CI->isNullValue()) {
1150 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1151 // efficiently invertible, or if the add has just this one use.
1152 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1153 if (Value *NegVal = dyn_castNegVal(BOp1))
1154 return new SetCondInst(I.getOpcode(), BOp0, NegVal);
1155 else if (Value *NegVal = dyn_castNegVal(BOp0))
1156 return new SetCondInst(I.getOpcode(), NegVal, BOp1);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001157 else if (BO->hasOneUse()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00001158 Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
1159 BO->setName("");
1160 InsertNewInstBefore(Neg, I);
1161 return new SetCondInst(I.getOpcode(), BOp0, Neg);
1162 }
1163 }
1164 break;
1165 case Instruction::Xor:
1166 // For the xor case, we can xor two constants together, eliminating
1167 // the explicit xor.
1168 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1169 return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
1170 *CI ^ *BOC);
1171
1172 // FALLTHROUGH
1173 case Instruction::Sub:
1174 // Replace (([sub|xor] A, B) != 0) with (A != B)
1175 if (CI->isNullValue())
1176 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
1177 BO->getOperand(1));
1178 break;
1179
1180 case Instruction::Or:
1181 // If bits are being or'd in that are not present in the constant we
1182 // are comparing against, then the comparison could never succeed!
1183 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
Chris Lattnerd492a0b2003-07-23 17:02:11 +00001184 if (!(*BOC & *~*CI)->isNullValue())
1185 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattnerc992add2003-08-13 05:33:12 +00001186 break;
1187
1188 case Instruction::And:
1189 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerd492a0b2003-07-23 17:02:11 +00001190 // If bits are being compared against that are and'd out, then the
1191 // comparison can never succeed!
1192 if (!(*CI & *~*BOC)->isNullValue())
1193 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattnerc992add2003-08-13 05:33:12 +00001194
1195 // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
1196 // to be a signed value as appropriate.
1197 if (isSignBit(BOC)) {
1198 Value *X = BO->getOperand(0);
1199 // If 'X' is not signed, insert a cast now...
1200 if (!BOC->getType()->isSigned()) {
1201 const Type *DestTy;
1202 switch (BOC->getType()->getPrimitiveID()) {
1203 case Type::UByteTyID: DestTy = Type::SByteTy; break;
1204 case Type::UShortTyID: DestTy = Type::ShortTy; break;
1205 case Type::UIntTyID: DestTy = Type::IntTy; break;
1206 case Type::ULongTyID: DestTy = Type::LongTy; break;
1207 default: assert(0 && "Invalid unsigned integer type!"); abort();
1208 }
1209 CastInst *NewCI = new CastInst(X,DestTy,X->getName()+".signed");
1210 InsertNewInstBefore(NewCI, I);
1211 X = NewCI;
1212 }
1213 return new SetCondInst(isSetNE ? Instruction::SetLT :
1214 Instruction::SetGE, X,
1215 Constant::getNullValue(X->getType()));
1216 }
Chris Lattnerd492a0b2003-07-23 17:02:11 +00001217 }
Chris Lattnerc992add2003-08-13 05:33:12 +00001218 default: break;
1219 }
1220 }
Chris Lattnere967b342003-06-04 05:10:11 +00001221 }
Chris Lattner791ac1a2003-06-01 03:35:25 +00001222
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001223 // Check to see if we are comparing against the minimum or maximum value...
Chris Lattnere6794492002-08-12 21:17:25 +00001224 if (CI->isMinValue()) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001225 if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
1226 return ReplaceInstUsesWith(I, ConstantBool::False);
1227 if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
1228 return ReplaceInstUsesWith(I, ConstantBool::True);
1229 if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
Chris Lattner16930792003-11-03 04:25:02 +00001230 return BinaryOperator::create(Instruction::SetEQ, Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001231 if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
Chris Lattner16930792003-11-03 04:25:02 +00001232 return BinaryOperator::create(Instruction::SetNE, Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001233
Chris Lattnere6794492002-08-12 21:17:25 +00001234 } else if (CI->isMaxValue()) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001235 if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
1236 return ReplaceInstUsesWith(I, ConstantBool::False);
1237 if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
1238 return ReplaceInstUsesWith(I, ConstantBool::True);
1239 if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
Chris Lattner16930792003-11-03 04:25:02 +00001240 return BinaryOperator::create(Instruction::SetEQ, Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001241 if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
Chris Lattner16930792003-11-03 04:25:02 +00001242 return BinaryOperator::create(Instruction::SetNE, Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001243
1244 // Comparing against a value really close to min or max?
1245 } else if (isMinValuePlusOne(CI)) {
1246 if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
Chris Lattner16930792003-11-03 04:25:02 +00001247 return BinaryOperator::create(Instruction::SetEQ, Op0, SubOne(CI));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001248 if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
Chris Lattner16930792003-11-03 04:25:02 +00001249 return BinaryOperator::create(Instruction::SetNE, Op0, SubOne(CI));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001250
1251 } else if (isMaxValueMinusOne(CI)) {
1252 if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
Chris Lattner16930792003-11-03 04:25:02 +00001253 return BinaryOperator::create(Instruction::SetEQ, Op0, AddOne(CI));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001254 if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
Chris Lattner16930792003-11-03 04:25:02 +00001255 return BinaryOperator::create(Instruction::SetNE, Op0, AddOne(CI));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001256 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001257 }
1258
Chris Lattner16930792003-11-03 04:25:02 +00001259 // Test to see if the operands of the setcc are casted versions of other
1260 // values. If the cast can be stripped off both arguments, we do so now.
Chris Lattner6444c372003-11-03 05:17:03 +00001261 if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
1262 Value *CastOp0 = CI->getOperand(0);
1263 if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
Chris Lattner16930792003-11-03 04:25:02 +00001264 !isa<Argument>(Op1) &&
1265 (I.getOpcode() == Instruction::SetEQ ||
1266 I.getOpcode() == Instruction::SetNE)) {
1267 // We keep moving the cast from the left operand over to the right
1268 // operand, where it can often be eliminated completely.
Chris Lattner6444c372003-11-03 05:17:03 +00001269 Op0 = CastOp0;
Chris Lattner16930792003-11-03 04:25:02 +00001270
1271 // If operand #1 is a cast instruction, see if we can eliminate it as
1272 // well.
Chris Lattner6444c372003-11-03 05:17:03 +00001273 if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
1274 if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
Chris Lattner16930792003-11-03 04:25:02 +00001275 Op0->getType()))
Chris Lattner6444c372003-11-03 05:17:03 +00001276 Op1 = CI2->getOperand(0);
Chris Lattner16930792003-11-03 04:25:02 +00001277
1278 // If Op1 is a constant, we can fold the cast into the constant.
1279 if (Op1->getType() != Op0->getType())
1280 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1281 Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
1282 } else {
1283 // Otherwise, cast the RHS right before the setcc
1284 Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
1285 InsertNewInstBefore(cast<Instruction>(Op1), I);
1286 }
1287 return BinaryOperator::create(I.getOpcode(), Op0, Op1);
1288 }
1289
Chris Lattner6444c372003-11-03 05:17:03 +00001290 // Handle the special case of: setcc (cast bool to X), <cst>
1291 // This comes up when you have code like
1292 // int X = A < B;
1293 // if (X) ...
1294 // For generality, we handle any zero-extension of any operand comparison
1295 // with a constant.
1296 if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
1297 const Type *SrcTy = CastOp0->getType();
1298 const Type *DestTy = Op0->getType();
1299 if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
1300 (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
1301 // Ok, we have an expansion of operand 0 into a new type. Get the
1302 // constant value, masink off bits which are not set in the RHS. These
1303 // could be set if the destination value is signed.
1304 uint64_t ConstVal = ConstantRHS->getRawValue();
1305 ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;
1306
1307 // If the constant we are comparing it with has high bits set, which
1308 // don't exist in the original value, the values could never be equal,
1309 // because the source would be zero extended.
1310 unsigned SrcBits =
1311 SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
1312 bool HasSignBit = 1ULL << (DestTy->getPrimitiveSize()*8-1);
1313 if (ConstVal & ((1ULL << SrcBits)-1)) {
1314 switch (I.getOpcode()) {
1315 default: assert(0 && "Unknown comparison type!");
1316 case Instruction::SetEQ:
1317 return ReplaceInstUsesWith(I, ConstantBool::False);
1318 case Instruction::SetNE:
1319 return ReplaceInstUsesWith(I, ConstantBool::True);
1320 case Instruction::SetLT:
1321 case Instruction::SetLE:
1322 if (DestTy->isSigned() && HasSignBit)
1323 return ReplaceInstUsesWith(I, ConstantBool::False);
1324 return ReplaceInstUsesWith(I, ConstantBool::True);
1325 case Instruction::SetGT:
1326 case Instruction::SetGE:
1327 if (DestTy->isSigned() && HasSignBit)
1328 return ReplaceInstUsesWith(I, ConstantBool::True);
1329 return ReplaceInstUsesWith(I, ConstantBool::False);
1330 }
1331 }
1332
1333 // Otherwise, we can replace the setcc with a setcc of the smaller
1334 // operand value.
1335 Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
1336 return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
1337 }
1338 }
1339 }
Chris Lattner113f4f42002-06-25 16:13:24 +00001340 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001341}
1342
1343
1344
Chris Lattnere8d6c602003-03-10 19:16:08 +00001345Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00001346 assert(I.getOperand(1)->getType() == Type::UByteTy);
1347 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001348 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001349
1350 // shl X, 0 == X and shr X, 0 == X
1351 // shl 0, X == 0 and shr 0, X == 0
1352 if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Chris Lattnere6794492002-08-12 21:17:25 +00001353 Op0 == Constant::getNullValue(Op0->getType()))
1354 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001355
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001356 // shr int -1, X = -1 (for any arithmetic shift rights of ~0)
1357 if (!isLeftShift)
1358 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
1359 if (CSI->isAllOnesValue())
1360 return ReplaceInstUsesWith(I, CSI);
1361
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001362 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
Chris Lattner3204d4e2003-07-24 17:52:58 +00001363 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
1364 // of a signed value.
1365 //
Chris Lattnere8d6c602003-03-10 19:16:08 +00001366 unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
1367 if (CUI->getValue() >= TypeBits &&
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001368 (!Op0->getType()->isSigned() || isLeftShift))
Chris Lattnere8d6c602003-03-10 19:16:08 +00001369 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
Chris Lattner55f3d942002-09-10 23:04:09 +00001370
Chris Lattnerede3fe02003-08-13 04:18:28 +00001371 // ((X*C1) << C2) == (X * (C1 << C2))
1372 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
1373 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
1374 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
1375 return BinaryOperator::create(Instruction::Mul, BO->getOperand(0),
1376 *BOOp << *CUI);
1377
1378
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001379 // If the operand is an bitwise operator with a constant RHS, and the
1380 // shift is the only use, we can pull it out of the shift.
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001381 if (Op0->hasOneUse())
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001382 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
1383 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
1384 bool isValid = true; // Valid only for And, Or, Xor
1385 bool highBitSet = false; // Transform if high bit of constant set?
1386
1387 switch (Op0BO->getOpcode()) {
1388 default: isValid = false; break; // Do not perform transform!
1389 case Instruction::Or:
1390 case Instruction::Xor:
1391 highBitSet = false;
1392 break;
1393 case Instruction::And:
1394 highBitSet = true;
1395 break;
1396 }
1397
1398 // If this is a signed shift right, and the high bit is modified
1399 // by the logical operation, do not perform the transformation.
1400 // The highBitSet boolean indicates the value of the high bit of
1401 // the constant which would cause it to be modified for this
1402 // operation.
1403 //
1404 if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
1405 uint64_t Val = Op0C->getRawValue();
1406 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
1407 }
1408
1409 if (isValid) {
1410 Constant *NewRHS =
1411 ConstantFoldShiftInstruction(I.getOpcode(), Op0C, CUI);
1412
1413 Instruction *NewShift =
1414 new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
1415 Op0BO->getName());
1416 Op0BO->setName("");
1417 InsertNewInstBefore(NewShift, I);
1418
1419 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
1420 NewRHS);
1421 }
1422 }
1423
Chris Lattner3204d4e2003-07-24 17:52:58 +00001424 // If this is a shift of a shift, see if we can fold the two together...
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001425 if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
Chris Lattnerab780df2003-07-24 18:38:56 +00001426 if (ConstantUInt *ShiftAmt1C =
1427 dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
Chris Lattner3204d4e2003-07-24 17:52:58 +00001428 unsigned ShiftAmt1 = ShiftAmt1C->getValue();
1429 unsigned ShiftAmt2 = CUI->getValue();
1430
1431 // Check for (A << c1) << c2 and (A >> c1) >> c2
1432 if (I.getOpcode() == Op0SI->getOpcode()) {
1433 unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift...
1434 return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
1435 ConstantUInt::get(Type::UByteTy, Amt));
1436 }
1437
Chris Lattnerab780df2003-07-24 18:38:56 +00001438 // Check for (A << c1) >> c2 or visaversa. If we are dealing with
1439 // signed types, we can only support the (A >> c1) << c2 configuration,
1440 // because it can not turn an arbitrary bit of A into a sign bit.
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001441 if (I.getType()->isUnsigned() || isLeftShift) {
Chris Lattner3204d4e2003-07-24 17:52:58 +00001442 // Calculate bitmask for what gets shifted off the edge...
1443 Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001444 if (isLeftShift)
Chris Lattner3204d4e2003-07-24 17:52:58 +00001445 C = ConstantExpr::getShift(Instruction::Shl, C, ShiftAmt1C);
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00001446 else
1447 C = ConstantExpr::getShift(Instruction::Shr, C, ShiftAmt1C);
Chris Lattner3204d4e2003-07-24 17:52:58 +00001448
1449 Instruction *Mask =
1450 BinaryOperator::create(Instruction::And, Op0SI->getOperand(0),
1451 C, Op0SI->getOperand(0)->getName()+".mask");
1452 InsertNewInstBefore(Mask, I);
1453
1454 // Figure out what flavor of shift we should use...
1455 if (ShiftAmt1 == ShiftAmt2)
1456 return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
1457 else if (ShiftAmt1 < ShiftAmt2) {
1458 return new ShiftInst(I.getOpcode(), Mask,
1459 ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
1460 } else {
1461 return new ShiftInst(Op0SI->getOpcode(), Mask,
1462 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
1463 }
1464 }
1465 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001466 }
Chris Lattner2e0fb392002-10-08 16:16:40 +00001467
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001468 return 0;
1469}
1470
1471
Chris Lattner48a44f72002-05-02 17:06:02 +00001472// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
1473// instruction.
1474//
Chris Lattnerdfae8be2003-07-24 17:35:25 +00001475static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
1476 const Type *DstTy) {
Chris Lattner48a44f72002-05-02 17:06:02 +00001477
Chris Lattner650b6da2002-08-02 20:00:25 +00001478 // It is legal to eliminate the instruction if casting A->B->A if the sizes
1479 // are identical and the bits don't get reinterpreted (for example
Chris Lattner0bb75912002-08-14 23:21:10 +00001480 // int->float->int would not be allowed)
Misha Brukmane5838c42003-05-20 18:45:36 +00001481 if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
Chris Lattner650b6da2002-08-02 20:00:25 +00001482 return true;
Chris Lattner48a44f72002-05-02 17:06:02 +00001483
1484 // Allow free casting and conversion of sizes as long as the sign doesn't
1485 // change...
Chris Lattnerb0b412e2002-09-03 01:08:28 +00001486 if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
Chris Lattner650b6da2002-08-02 20:00:25 +00001487 unsigned SrcSize = SrcTy->getPrimitiveSize();
1488 unsigned MidSize = MidTy->getPrimitiveSize();
1489 unsigned DstSize = DstTy->getPrimitiveSize();
Chris Lattner650b6da2002-08-02 20:00:25 +00001490
Chris Lattner3732aca2002-08-15 16:15:25 +00001491 // Cases where we are monotonically decreasing the size of the type are
1492 // always ok, regardless of what sign changes are going on.
1493 //
Chris Lattner0bb75912002-08-14 23:21:10 +00001494 if (SrcSize >= MidSize && MidSize >= DstSize)
Chris Lattner650b6da2002-08-02 20:00:25 +00001495 return true;
Chris Lattner3732aca2002-08-15 16:15:25 +00001496
Chris Lattner555518c2002-09-23 23:39:43 +00001497 // Cases where the source and destination type are the same, but the middle
1498 // type is bigger are noops.
1499 //
1500 if (SrcSize == DstSize && MidSize > SrcSize)
1501 return true;
1502
Chris Lattner3732aca2002-08-15 16:15:25 +00001503 // If we are monotonically growing, things are more complex.
1504 //
1505 if (SrcSize <= MidSize && MidSize <= DstSize) {
1506 // We have eight combinations of signedness to worry about. Here's the
1507 // table:
1508 static const int SignTable[8] = {
1509 // CODE, SrcSigned, MidSigned, DstSigned, Comment
1510 1, // U U U Always ok
1511 1, // U U S Always ok
1512 3, // U S U Ok iff SrcSize != MidSize
1513 3, // U S S Ok iff SrcSize != MidSize
1514 0, // S U U Never ok
1515 2, // S U S Ok iff MidSize == DstSize
1516 1, // S S U Always ok
1517 1, // S S S Always ok
1518 };
1519
1520 // Choose an action based on the current entry of the signtable that this
1521 // cast of cast refers to...
1522 unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned();
1523 switch (SignTable[Row]) {
1524 case 0: return false; // Never ok
1525 case 1: return true; // Always ok
1526 case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize
1527 case 3: // Ok iff SrcSize != MidSize
1528 return SrcSize != MidSize || SrcTy == Type::BoolTy;
1529 default: assert(0 && "Bad entry in sign table!");
1530 }
Chris Lattner3732aca2002-08-15 16:15:25 +00001531 }
Chris Lattner650b6da2002-08-02 20:00:25 +00001532 }
Chris Lattner48a44f72002-05-02 17:06:02 +00001533
1534 // Otherwise, we cannot succeed. Specifically we do not want to allow things
1535 // like: short -> ushort -> uint, because this can create wrong results if
1536 // the input short is negative!
1537 //
1538 return false;
1539}
1540
Chris Lattnerdfae8be2003-07-24 17:35:25 +00001541static bool ValueRequiresCast(const Value *V, const Type *Ty) {
1542 if (V->getType() == Ty || isa<Constant>(V)) return false;
1543 if (const CastInst *CI = dyn_cast<CastInst>(V))
1544 if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty))
1545 return false;
1546 return true;
1547}
1548
1549/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
1550/// InsertBefore instruction. This is specialized a bit to avoid inserting
1551/// casts that are known to not do anything...
1552///
1553Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
1554 Instruction *InsertBefore) {
1555 if (V->getType() == DestTy) return V;
1556 if (Constant *C = dyn_cast<Constant>(V))
1557 return ConstantExpr::getCast(C, DestTy);
1558
1559 CastInst *CI = new CastInst(V, DestTy, V->getName());
1560 InsertNewInstBefore(CI, *InsertBefore);
1561 return CI;
1562}
Chris Lattner48a44f72002-05-02 17:06:02 +00001563
1564// CastInst simplification
Chris Lattner260ab202002-04-18 17:39:14 +00001565//
Chris Lattner113f4f42002-06-25 16:13:24 +00001566Instruction *InstCombiner::visitCastInst(CastInst &CI) {
Chris Lattner55d4bda2003-06-23 21:59:52 +00001567 Value *Src = CI.getOperand(0);
1568
Chris Lattner48a44f72002-05-02 17:06:02 +00001569 // If the user is casting a value to the same type, eliminate this cast
1570 // instruction...
Chris Lattner55d4bda2003-06-23 21:59:52 +00001571 if (CI.getType() == Src->getType())
1572 return ReplaceInstUsesWith(CI, Src);
Chris Lattner48a44f72002-05-02 17:06:02 +00001573
Chris Lattner48a44f72002-05-02 17:06:02 +00001574 // If casting the result of another cast instruction, try to eliminate this
1575 // one!
1576 //
Chris Lattner55d4bda2003-06-23 21:59:52 +00001577 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
Chris Lattnerdfae8be2003-07-24 17:35:25 +00001578 if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
1579 CSrc->getType(), CI.getType())) {
Chris Lattner48a44f72002-05-02 17:06:02 +00001580 // This instruction now refers directly to the cast's src operand. This
1581 // has a good chance of making CSrc dead.
Chris Lattner113f4f42002-06-25 16:13:24 +00001582 CI.setOperand(0, CSrc->getOperand(0));
1583 return &CI;
Chris Lattner48a44f72002-05-02 17:06:02 +00001584 }
1585
Chris Lattner650b6da2002-08-02 20:00:25 +00001586 // If this is an A->B->A cast, and we are dealing with integral types, try
1587 // to convert this into a logical 'and' instruction.
1588 //
1589 if (CSrc->getOperand(0)->getType() == CI.getType() &&
Chris Lattnerb0b412e2002-09-03 01:08:28 +00001590 CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
Chris Lattner650b6da2002-08-02 20:00:25 +00001591 CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
1592 CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
1593 assert(CSrc->getType() != Type::ULongTy &&
1594 "Cannot have type bigger than ulong!");
Chris Lattner196897c2003-05-26 23:41:32 +00001595 uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
Chris Lattner650b6da2002-08-02 20:00:25 +00001596 Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
1597 return BinaryOperator::create(Instruction::And, CSrc->getOperand(0),
1598 AndOp);
1599 }
1600 }
1601
Chris Lattnerd0d51602003-06-21 23:12:02 +00001602 // If casting the result of a getelementptr instruction with no offset, turn
1603 // this into a cast of the original pointer!
1604 //
Chris Lattner55d4bda2003-06-23 21:59:52 +00001605 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattnerd0d51602003-06-21 23:12:02 +00001606 bool AllZeroOperands = true;
1607 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1608 if (!isa<Constant>(GEP->getOperand(i)) ||
1609 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
1610 AllZeroOperands = false;
1611 break;
1612 }
1613 if (AllZeroOperands) {
1614 CI.setOperand(0, GEP->getOperand(0));
1615 return &CI;
1616 }
1617 }
1618
Chris Lattnerf4ad1652003-11-02 05:57:39 +00001619 // If we are casting a malloc or alloca to a pointer to a type of the same
1620 // size, rewrite the allocation instruction to allocate the "right" type.
1621 //
1622 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattnerd4d987d2003-11-02 06:54:48 +00001623 if (AI->hasOneUse() && !AI->isArrayAllocation())
Chris Lattnerf4ad1652003-11-02 05:57:39 +00001624 if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
1625 // Get the type really allocated and the type casted to...
1626 const Type *AllocElTy = AI->getAllocatedType();
1627 unsigned AllocElTySize = TD->getTypeSize(AllocElTy);
1628 const Type *CastElTy = PTy->getElementType();
1629 unsigned CastElTySize = TD->getTypeSize(CastElTy);
1630
1631 // If the allocation is for an even multiple of the cast type size
Chris Lattneraf789322003-11-03 01:29:41 +00001632 if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
Chris Lattnerf4ad1652003-11-02 05:57:39 +00001633 Value *Amt = ConstantUInt::get(Type::UIntTy,
1634 AllocElTySize/CastElTySize);
1635 std::string Name = AI->getName(); AI->setName("");
1636 AllocationInst *New;
1637 if (isa<MallocInst>(AI))
1638 New = new MallocInst(CastElTy, Amt, Name);
1639 else
1640 New = new AllocaInst(CastElTy, Amt, Name);
1641 InsertNewInstBefore(New, CI);
1642 return ReplaceInstUsesWith(CI, New);
1643 }
1644 }
1645
Chris Lattnerdfae8be2003-07-24 17:35:25 +00001646 // If the source value is an instruction with only this use, we can attempt to
1647 // propagate the cast into the instruction. Also, only handle integral types
1648 // for now.
1649 if (Instruction *SrcI = dyn_cast<Instruction>(Src))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001650 if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
Chris Lattnerdfae8be2003-07-24 17:35:25 +00001651 CI.getType()->isInteger()) { // Don't mess with casts to bool here
1652 const Type *DestTy = CI.getType();
1653 unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
1654 unsigned DestBitSize = getTypeSizeInBits(DestTy);
1655
1656 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
1657 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
1658
1659 switch (SrcI->getOpcode()) {
1660 case Instruction::Add:
1661 case Instruction::Mul:
1662 case Instruction::And:
1663 case Instruction::Or:
1664 case Instruction::Xor:
1665 // If we are discarding information, or just changing the sign, rewrite.
1666 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
1667 // Don't insert two casts if they cannot be eliminated. We allow two
1668 // casts to be inserted if the sizes are the same. This could only be
1669 // converting signedness, which is a noop.
1670 if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy) ||
1671 !ValueRequiresCast(Op0, DestTy)) {
1672 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
1673 Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
1674 return BinaryOperator::create(cast<BinaryOperator>(SrcI)
1675 ->getOpcode(), Op0c, Op1c);
1676 }
1677 }
1678 break;
1679 case Instruction::Shl:
1680 // Allow changing the sign of the source operand. Do not allow changing
1681 // the size of the shift, UNLESS the shift amount is a constant. We
1682 // mush not change variable sized shifts to a smaller size, because it
1683 // is undefined to shift more bits out than exist in the value.
1684 if (DestBitSize == SrcBitSize ||
1685 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
1686 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
1687 return new ShiftInst(Instruction::Shl, Op0c, Op1);
1688 }
1689 break;
1690 }
1691 }
1692
Chris Lattner260ab202002-04-18 17:39:14 +00001693 return 0;
Chris Lattnerca081252001-12-14 16:52:21 +00001694}
1695
Chris Lattner970c33a2003-06-19 17:00:31 +00001696// CallInst simplification
1697//
1698Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattneraec3d942003-10-07 22:32:43 +00001699 return visitCallSite(&CI);
Chris Lattner970c33a2003-06-19 17:00:31 +00001700}
1701
1702// InvokeInst simplification
1703//
1704Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattneraec3d942003-10-07 22:32:43 +00001705 return visitCallSite(&II);
Chris Lattner970c33a2003-06-19 17:00:31 +00001706}
1707
1708// getPromotedType - Return the specified type promoted as it would be to pass
1709// though a va_arg area...
1710static const Type *getPromotedType(const Type *Ty) {
1711 switch (Ty->getPrimitiveID()) {
1712 case Type::SByteTyID:
1713 case Type::ShortTyID: return Type::IntTy;
1714 case Type::UByteTyID:
1715 case Type::UShortTyID: return Type::UIntTy;
1716 case Type::FloatTyID: return Type::DoubleTy;
1717 default: return Ty;
1718 }
1719}
1720
Chris Lattneraec3d942003-10-07 22:32:43 +00001721// visitCallSite - Improvements for call and invoke instructions.
1722//
1723Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00001724 bool Changed = false;
1725
1726 // If the callee is a constexpr cast of a function, attempt to move the cast
1727 // to the arguments of the call/invoke.
Chris Lattneraec3d942003-10-07 22:32:43 +00001728 if (transformConstExprCastCall(CS)) return 0;
1729
Chris Lattner75b4d1d2003-10-07 22:54:13 +00001730 Value *Callee = CS.getCalledValue();
1731 const PointerType *PTy = cast<PointerType>(Callee->getType());
1732 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1733 if (FTy->isVarArg()) {
1734 // See if we can optimize any arguments passed through the varargs area of
1735 // the call.
1736 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
1737 E = CS.arg_end(); I != E; ++I)
1738 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
1739 // If this cast does not effect the value passed through the varargs
1740 // area, we can eliminate the use of the cast.
1741 Value *Op = CI->getOperand(0);
1742 if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
1743 *I = Op;
1744 Changed = true;
1745 }
1746 }
1747 }
Chris Lattneraec3d942003-10-07 22:32:43 +00001748
Chris Lattner75b4d1d2003-10-07 22:54:13 +00001749 return Changed ? CS.getInstruction() : 0;
Chris Lattneraec3d942003-10-07 22:32:43 +00001750}
1751
Chris Lattner970c33a2003-06-19 17:00:31 +00001752// transformConstExprCastCall - If the callee is a constexpr cast of a function,
1753// attempt to move the cast to the arguments of the call/invoke.
1754//
1755bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1756 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
1757 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
1758 if (CE->getOpcode() != Instruction::Cast ||
1759 !isa<ConstantPointerRef>(CE->getOperand(0)))
1760 return false;
1761 ConstantPointerRef *CPR = cast<ConstantPointerRef>(CE->getOperand(0));
1762 if (!isa<Function>(CPR->getValue())) return false;
1763 Function *Callee = cast<Function>(CPR->getValue());
1764 Instruction *Caller = CS.getInstruction();
1765
1766 // Okay, this is a cast from a function to a different type. Unless doing so
1767 // would cause a type conversion of one of our arguments, change this call to
1768 // be a direct call with arguments casted to the appropriate types.
1769 //
1770 const FunctionType *FT = Callee->getFunctionType();
1771 const Type *OldRetTy = Caller->getType();
1772
1773 if (Callee->isExternal() &&
1774 !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()))
1775 return false; // Cannot transform this return value...
1776
1777 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1778 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1779
1780 CallSite::arg_iterator AI = CS.arg_begin();
1781 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1782 const Type *ParamTy = FT->getParamType(i);
1783 bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
1784 if (Callee->isExternal() && !isConvertible) return false;
1785 }
1786
1787 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
1788 Callee->isExternal())
1789 return false; // Do not delete arguments unless we have a function body...
1790
1791 // Okay, we decided that this is a safe thing to do: go ahead and start
1792 // inserting cast instructions as necessary...
1793 std::vector<Value*> Args;
1794 Args.reserve(NumActualArgs);
1795
1796 AI = CS.arg_begin();
1797 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1798 const Type *ParamTy = FT->getParamType(i);
1799 if ((*AI)->getType() == ParamTy) {
1800 Args.push_back(*AI);
1801 } else {
1802 Instruction *Cast = new CastInst(*AI, ParamTy, "tmp");
1803 InsertNewInstBefore(Cast, *Caller);
1804 Args.push_back(Cast);
1805 }
1806 }
1807
1808 // If the function takes more arguments than the call was taking, add them
1809 // now...
1810 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1811 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1812
1813 // If we are removing arguments to the function, emit an obnoxious warning...
1814 if (FT->getNumParams() < NumActualArgs)
1815 if (!FT->isVarArg()) {
1816 std::cerr << "WARNING: While resolving call to function '"
1817 << Callee->getName() << "' arguments were dropped!\n";
1818 } else {
1819 // Add all of the arguments in their promoted form to the arg list...
1820 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1821 const Type *PTy = getPromotedType((*AI)->getType());
1822 if (PTy != (*AI)->getType()) {
1823 // Must promote to pass through va_arg area!
1824 Instruction *Cast = new CastInst(*AI, PTy, "tmp");
1825 InsertNewInstBefore(Cast, *Caller);
1826 Args.push_back(Cast);
1827 } else {
1828 Args.push_back(*AI);
1829 }
1830 }
1831 }
1832
1833 if (FT->getReturnType() == Type::VoidTy)
1834 Caller->setName(""); // Void type should not have a name...
1835
1836 Instruction *NC;
1837 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1838 NC = new InvokeInst(Callee, II->getNormalDest(), II->getExceptionalDest(),
1839 Args, Caller->getName(), Caller);
1840 } else {
1841 NC = new CallInst(Callee, Args, Caller->getName(), Caller);
1842 }
1843
1844 // Insert a cast of the return type as necessary...
1845 Value *NV = NC;
1846 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
1847 if (NV->getType() != Type::VoidTy) {
1848 NV = NC = new CastInst(NC, Caller->getType(), "tmp");
Chris Lattner686767f2003-10-30 00:46:41 +00001849
1850 // If this is an invoke instruction, we should insert it after the first
1851 // non-phi, instruction in the normal successor block.
1852 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1853 BasicBlock::iterator I = II->getNormalDest()->begin();
1854 while (isa<PHINode>(I)) ++I;
1855 InsertNewInstBefore(NC, *I);
1856 } else {
1857 // Otherwise, it's a call, just insert cast right after the call instr
1858 InsertNewInstBefore(NC, *Caller);
1859 }
Chris Lattner970c33a2003-06-19 17:00:31 +00001860 AddUsesToWorkList(*Caller);
1861 } else {
1862 NV = Constant::getNullValue(Caller->getType());
1863 }
1864 }
1865
1866 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
1867 Caller->replaceAllUsesWith(NV);
1868 Caller->getParent()->getInstList().erase(Caller);
1869 removeFromWorkList(Caller);
1870 return true;
1871}
1872
1873
Chris Lattner48a44f72002-05-02 17:06:02 +00001874
Chris Lattnerbbbdd852002-05-06 18:06:38 +00001875// PHINode simplification
1876//
Chris Lattner113f4f42002-06-25 16:13:24 +00001877Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Chris Lattnerbbbdd852002-05-06 18:06:38 +00001878 // If the PHI node only has one incoming value, eliminate the PHI node...
Chris Lattnere6794492002-08-12 21:17:25 +00001879 if (PN.getNumIncomingValues() == 1)
1880 return ReplaceInstUsesWith(PN, PN.getIncomingValue(0));
Chris Lattner9cd1e662002-08-20 15:35:35 +00001881
1882 // Otherwise if all of the incoming values are the same for the PHI, replace
1883 // the PHI node with the incoming value.
1884 //
Chris Lattnerf6c0efa2002-08-22 20:22:01 +00001885 Value *InVal = 0;
1886 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1887 if (PN.getIncomingValue(i) != &PN) // Not the PHI node itself...
1888 if (InVal && PN.getIncomingValue(i) != InVal)
1889 return 0; // Not the same, bail out.
1890 else
1891 InVal = PN.getIncomingValue(i);
1892
1893 // The only case that could cause InVal to be null is if we have a PHI node
1894 // that only has entries for itself. In this case, there is no entry into the
1895 // loop, so kill the PHI.
1896 //
1897 if (InVal == 0) InVal = Constant::getNullValue(PN.getType());
Chris Lattnerbbbdd852002-05-06 18:06:38 +00001898
Chris Lattner9cd1e662002-08-20 15:35:35 +00001899 // All of the incoming values are the same, replace the PHI node now.
1900 return ReplaceInstUsesWith(PN, InVal);
Chris Lattnerbbbdd852002-05-06 18:06:38 +00001901}
1902
Chris Lattner48a44f72002-05-02 17:06:02 +00001903
Chris Lattner113f4f42002-06-25 16:13:24 +00001904Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner471bd762003-05-22 19:07:21 +00001905 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner113f4f42002-06-25 16:13:24 +00001906 // If so, eliminate the noop.
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001907 if ((GEP.getNumOperands() == 2 &&
Chris Lattner136dab72002-09-11 01:21:33 +00001908 GEP.getOperand(1) == Constant::getNullValue(Type::LongTy)) ||
Chris Lattnere6794492002-08-12 21:17:25 +00001909 GEP.getNumOperands() == 1)
1910 return ReplaceInstUsesWith(GEP, GEP.getOperand(0));
Chris Lattner48a44f72002-05-02 17:06:02 +00001911
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001912 // Combine Indices - If the source pointer to this getelementptr instruction
1913 // is a getelementptr instruction, combine the indices of the two
1914 // getelementptr instructions into a single instruction.
1915 //
Chris Lattnerc59af1d2002-08-17 22:21:59 +00001916 if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(GEP.getOperand(0))) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001917 std::vector<Value *> Indices;
Chris Lattnerca081252001-12-14 16:52:21 +00001918
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001919 // Can we combine the two pointer arithmetics offsets?
Chris Lattner471bd762003-05-22 19:07:21 +00001920 if (Src->getNumOperands() == 2 && isa<Constant>(Src->getOperand(1)) &&
1921 isa<Constant>(GEP.getOperand(1))) {
Chris Lattner235af562003-03-05 22:33:14 +00001922 // Replace: gep (gep %P, long C1), long C2, ...
1923 // With: gep %P, long (C1+C2), ...
Chris Lattner34428442003-05-27 16:40:51 +00001924 Value *Sum = ConstantExpr::get(Instruction::Add,
1925 cast<Constant>(Src->getOperand(1)),
1926 cast<Constant>(GEP.getOperand(1)));
Chris Lattner235af562003-03-05 22:33:14 +00001927 assert(Sum && "Constant folding of longs failed!?");
1928 GEP.setOperand(0, Src->getOperand(0));
1929 GEP.setOperand(1, Sum);
1930 AddUsesToWorkList(*Src); // Reduce use count of Src
1931 return &GEP;
Chris Lattner471bd762003-05-22 19:07:21 +00001932 } else if (Src->getNumOperands() == 2) {
Chris Lattner235af562003-03-05 22:33:14 +00001933 // Replace: gep (gep %P, long B), long A, ...
1934 // With: T = long A+B; gep %P, T, ...
1935 //
1936 Value *Sum = BinaryOperator::create(Instruction::Add, Src->getOperand(1),
1937 GEP.getOperand(1),
1938 Src->getName()+".sum", &GEP);
1939 GEP.setOperand(0, Src->getOperand(0));
1940 GEP.setOperand(1, Sum);
1941 WorkList.push_back(cast<Instruction>(Sum));
1942 return &GEP;
Chris Lattner5d606a02002-11-04 16:43:32 +00001943 } else if (*GEP.idx_begin() == Constant::getNullValue(Type::LongTy) &&
Chris Lattnera8339e32002-09-17 21:05:42 +00001944 Src->getNumOperands() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001945 // Otherwise we can do the fold if the first index of the GEP is a zero
1946 Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
1947 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
Chris Lattner5d606a02002-11-04 16:43:32 +00001948 } else if (Src->getOperand(Src->getNumOperands()-1) ==
1949 Constant::getNullValue(Type::LongTy)) {
1950 // If the src gep ends with a constant array index, merge this get into
1951 // it, even if we have a non-zero array index.
1952 Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()-1);
1953 Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001954 }
1955
1956 if (!Indices.empty())
1957 return new GetElementPtrInst(Src->getOperand(0), Indices, GEP.getName());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00001958
1959 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(GEP.getOperand(0))) {
1960 // GEP of global variable. If all of the indices for this GEP are
1961 // constants, we can promote this to a constexpr instead of an instruction.
1962
1963 // Scan for nonconstants...
1964 std::vector<Constant*> Indices;
1965 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
1966 for (; I != E && isa<Constant>(*I); ++I)
1967 Indices.push_back(cast<Constant>(*I));
1968
1969 if (I == E) { // If they are all constants...
Chris Lattner46b3d302003-04-16 22:40:51 +00001970 Constant *CE =
Chris Lattnerc59af1d2002-08-17 22:21:59 +00001971 ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices);
1972
1973 // Replace all uses of the GEP with the new constexpr...
1974 return ReplaceInstUsesWith(GEP, CE);
1975 }
Chris Lattnerca081252001-12-14 16:52:21 +00001976 }
1977
Chris Lattnerca081252001-12-14 16:52:21 +00001978 return 0;
1979}
1980
Chris Lattner1085bdf2002-11-04 16:18:53 +00001981Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
1982 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
1983 if (AI.isArrayAllocation()) // Check C != 1
1984 if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
1985 const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
Chris Lattnera2620ac2002-11-09 00:49:43 +00001986 AllocationInst *New = 0;
Chris Lattner1085bdf2002-11-04 16:18:53 +00001987
1988 // Create and insert the replacement instruction...
1989 if (isa<MallocInst>(AI))
1990 New = new MallocInst(NewTy, 0, AI.getName(), &AI);
Chris Lattnera2620ac2002-11-09 00:49:43 +00001991 else {
1992 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Chris Lattner1085bdf2002-11-04 16:18:53 +00001993 New = new AllocaInst(NewTy, 0, AI.getName(), &AI);
Chris Lattnera2620ac2002-11-09 00:49:43 +00001994 }
Chris Lattner1085bdf2002-11-04 16:18:53 +00001995
1996 // Scan to the end of the allocation instructions, to skip over a block of
1997 // allocas if possible...
1998 //
1999 BasicBlock::iterator It = New;
2000 while (isa<AllocationInst>(*It)) ++It;
2001
2002 // Now that I is pointing to the first non-allocation-inst in the block,
2003 // insert our getelementptr instruction...
2004 //
2005 std::vector<Value*> Idx(2, Constant::getNullValue(Type::LongTy));
2006 Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);
2007
2008 // Now make everything use the getelementptr instead of the original
2009 // allocation.
2010 ReplaceInstUsesWith(AI, V);
2011 return &AI;
2012 }
2013 return 0;
2014}
2015
Chris Lattner0f1d8a32003-06-26 05:06:25 +00002016/// GetGEPGlobalInitializer - Given a constant, and a getelementptr
2017/// constantexpr, return the constant value being addressed by the constant
2018/// expression, or null if something is funny.
2019///
2020static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
2021 if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy))
2022 return 0; // Do not allow stepping over the value!
2023
2024 // Loop over all of the operands, tracking down which value we are
2025 // addressing...
2026 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
2027 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
2028 ConstantStruct *CS = cast<ConstantStruct>(C);
2029 if (CU->getValue() >= CS->getValues().size()) return 0;
2030 C = cast<Constant>(CS->getValues()[CU->getValue()]);
2031 } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
2032 ConstantArray *CA = cast<ConstantArray>(C);
2033 if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
2034 C = cast<Constant>(CA->getValues()[CS->getValue()]);
2035 } else
2036 return 0;
2037 return C;
2038}
2039
2040Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
2041 Value *Op = LI.getOperand(0);
2042 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Op))
2043 Op = CPR->getValue();
2044
2045 // Instcombine load (constant global) into the value loaded...
2046 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00002047 if (GV->isConstant() && !GV->isExternal())
Chris Lattner0f1d8a32003-06-26 05:06:25 +00002048 return ReplaceInstUsesWith(LI, GV->getInitializer());
2049
2050 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded...
2051 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
2052 if (CE->getOpcode() == Instruction::GetElementPtr)
2053 if (ConstantPointerRef *G=dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
2054 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00002055 if (GV->isConstant() && !GV->isExternal())
Chris Lattner0f1d8a32003-06-26 05:06:25 +00002056 if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
2057 return ReplaceInstUsesWith(LI, V);
2058 return 0;
2059}
2060
2061
Chris Lattner9eef8a72003-06-04 04:46:00 +00002062Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2063 // Change br (not X), label True, label False to: br X, label False, True
Chris Lattner45789ac2003-06-05 20:12:51 +00002064 if (BI.isConditional() && !isa<Constant>(BI.getCondition()))
Chris Lattnere967b342003-06-04 05:10:11 +00002065 if (Value *V = dyn_castNotVal(BI.getCondition())) {
2066 BasicBlock *TrueDest = BI.getSuccessor(0);
2067 BasicBlock *FalseDest = BI.getSuccessor(1);
2068 // Swap Destinations and condition...
2069 BI.setCondition(V);
2070 BI.setSuccessor(0, FalseDest);
2071 BI.setSuccessor(1, TrueDest);
2072 return &BI;
2073 }
Chris Lattner9eef8a72003-06-04 04:46:00 +00002074 return 0;
2075}
Chris Lattner1085bdf2002-11-04 16:18:53 +00002076
Chris Lattnerca081252001-12-14 16:52:21 +00002077
Chris Lattner99f48c62002-09-02 04:59:56 +00002078void InstCombiner::removeFromWorkList(Instruction *I) {
2079 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
2080 WorkList.end());
2081}
2082
Chris Lattner113f4f42002-06-25 16:13:24 +00002083bool InstCombiner::runOnFunction(Function &F) {
Chris Lattner260ab202002-04-18 17:39:14 +00002084 bool Changed = false;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00002085 TD = &getAnalysis<TargetData>();
Chris Lattnerca081252001-12-14 16:52:21 +00002086
Chris Lattner260ab202002-04-18 17:39:14 +00002087 WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));
Chris Lattnerca081252001-12-14 16:52:21 +00002088
2089 while (!WorkList.empty()) {
2090 Instruction *I = WorkList.back(); // Get an instruction from the worklist
2091 WorkList.pop_back();
2092
Misha Brukman632df282002-10-29 23:06:16 +00002093 // Check to see if we can DCE or ConstantPropagate the instruction...
Chris Lattner99f48c62002-09-02 04:59:56 +00002094 // Check to see if we can DIE the instruction...
2095 if (isInstructionTriviallyDead(I)) {
2096 // Add operands to the worklist...
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002097 if (I->getNumOperands() < 4)
2098 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
2099 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
2100 WorkList.push_back(Op);
Chris Lattner99f48c62002-09-02 04:59:56 +00002101 ++NumDeadInst;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002102
2103 I->getParent()->getInstList().erase(I);
2104 removeFromWorkList(I);
2105 continue;
2106 }
Chris Lattner99f48c62002-09-02 04:59:56 +00002107
Misha Brukman632df282002-10-29 23:06:16 +00002108 // Instruction isn't dead, see if we can constant propagate it...
Chris Lattner99f48c62002-09-02 04:59:56 +00002109 if (Constant *C = ConstantFoldInstruction(I)) {
2110 // Add operands to the worklist...
2111 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
2112 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
2113 WorkList.push_back(Op);
Chris Lattnerc6509f42002-12-05 22:41:53 +00002114 ReplaceInstUsesWith(*I, C);
2115
Chris Lattner99f48c62002-09-02 04:59:56 +00002116 ++NumConstProp;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002117 I->getParent()->getInstList().erase(I);
Chris Lattner800aaaf2003-10-07 15:17:02 +00002118 removeFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002119 continue;
Chris Lattner99f48c62002-09-02 04:59:56 +00002120 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002121
Chris Lattnerca081252001-12-14 16:52:21 +00002122 // Now that we have an instruction, try combining it to simplify it...
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002123 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002124 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00002125 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00002126 if (Result != I) {
2127 // Instructions can end up on the worklist more than once. Make sure
2128 // we do not process an instruction that has been deleted.
Chris Lattner99f48c62002-09-02 04:59:56 +00002129 removeFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002130
2131 // Move the name to the new instruction first...
2132 std::string OldName = I->getName(); I->setName("");
Chris Lattner950fc782003-10-07 22:58:41 +00002133 Result->setName(OldName);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002134
2135 // Insert the new instruction into the basic block...
2136 BasicBlock *InstParent = I->getParent();
2137 InstParent->getInstList().insert(I, Result);
2138
2139 // Everything uses the new instruction now...
2140 I->replaceAllUsesWith(Result);
2141
2142 // Erase the old instruction.
2143 InstParent->getInstList().erase(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002144 } else {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002145 BasicBlock::iterator II = I;
2146
2147 // If the instruction was modified, it's possible that it is now dead.
2148 // if so, remove it.
2149 if (dceInstruction(II)) {
2150 // Instructions may end up in the worklist more than once. Erase them
2151 // all.
Chris Lattner99f48c62002-09-02 04:59:56 +00002152 removeFromWorkList(I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002153 Result = 0;
2154 }
Chris Lattner053c0932002-05-14 15:24:07 +00002155 }
Chris Lattner260ab202002-04-18 17:39:14 +00002156
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002157 if (Result) {
2158 WorkList.push_back(Result);
2159 AddUsesToWorkList(*Result);
2160 }
Chris Lattner260ab202002-04-18 17:39:14 +00002161 Changed = true;
Chris Lattnerca081252001-12-14 16:52:21 +00002162 }
2163 }
2164
Chris Lattner260ab202002-04-18 17:39:14 +00002165 return Changed;
Chris Lattner04805fa2002-02-26 21:46:54 +00002166}
2167
2168Pass *createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +00002169 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +00002170}