blob: 854a4e7932eb9c7cb374ade1bd2ec3fbff64f089 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000040#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000041#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Target/TargetOptions.h"
44using namespace llvm;
45
46namespace {
47
48class X86FastISel final : public FastISel {
49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50 /// make the right decision when generating code for different targets.
51 const X86Subtarget *Subtarget;
52
53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54 /// floating point ops.
55 /// When SSE is available, use it for f32 operations.
56 /// When SSE2 is available, use it for f64 operations.
57 bool X86ScalarSSEf64;
58 bool X86ScalarSSEf32;
59
60public:
61 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000063 : FastISel(funcInfo, libInfo) {
64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000065 X86ScalarSSEf64 = Subtarget->hasSSE2();
66 X86ScalarSSEf32 = Subtarget->hasSSE1();
67 }
68
69 bool fastSelectInstruction(const Instruction *I) override;
70
71 /// \brief The specified machine instr operand is a vreg, and that
72 /// vreg is being provided by the specified load instruction. If possible,
73 /// try to fold the load as an operand to the instruction, returning true if
74 /// possible.
75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76 const LoadInst *LI) override;
77
78 bool fastLowerArguments() override;
79 bool fastLowerCall(CallLoweringInfo &CLI) override;
80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82#include "X86GenFastISel.inc"
83
84private:
85 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
86
Pete Cooperd0dae3e2015-05-05 23:41:53 +000087 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000088 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000089
Pete Cooperd0dae3e2015-05-05 23:41:53 +000090 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000091 MachineMemOperand *MMO = nullptr, bool Aligned = false);
92 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000093 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000094 MachineMemOperand *MMO = nullptr, bool Aligned = false);
95
96 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97 unsigned &ResultReg);
98
99 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
101
102 bool X86SelectLoad(const Instruction *I);
103
104 bool X86SelectStore(const Instruction *I);
105
106 bool X86SelectRet(const Instruction *I);
107
108 bool X86SelectCmp(const Instruction *I);
109
110 bool X86SelectZExt(const Instruction *I);
111
112 bool X86SelectBranch(const Instruction *I);
113
114 bool X86SelectShift(const Instruction *I);
115
116 bool X86SelectDivRem(const Instruction *I);
117
118 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
119
120 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
121
122 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
123
124 bool X86SelectSelect(const Instruction *I);
125
126 bool X86SelectTrunc(const Instruction *I);
127
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000128 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
129 const TargetRegisterClass *RC);
130
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000131 bool X86SelectFPExt(const Instruction *I);
132 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000133 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000134
135 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000136 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000137 }
138 const X86TargetMachine *getTargetMachine() const {
139 return static_cast<const X86TargetMachine *>(&TM);
140 }
141
142 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
143
144 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
145 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
146 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
147 unsigned fastMaterializeConstant(const Constant *C) override;
148
149 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
150
151 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
152
153 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
154 /// computed in an SSE register, not on the X87 floating point stack.
155 bool isScalarFPTypeInSSEReg(EVT VT) const {
156 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
157 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
158 }
159
160 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
161
162 bool IsMemcpySmall(uint64_t Len);
163
164 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
165 X86AddressMode SrcAM, uint64_t Len);
166
167 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
168 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000169
170 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
171 X86AddressMode &AM);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000172};
173
174} // end anonymous namespace.
175
176static std::pair<X86::CondCode, bool>
177getX86ConditionCode(CmpInst::Predicate Predicate) {
178 X86::CondCode CC = X86::COND_INVALID;
179 bool NeedSwap = false;
180 switch (Predicate) {
181 default: break;
182 // Floating-point Predicates
183 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
184 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
185 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
186 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
187 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
188 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
189 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
190 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
191 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
192 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
193 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
194 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
195 case CmpInst::FCMP_OEQ: // fall-through
196 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
197
198 // Integer Predicates
199 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
200 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
201 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
202 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
203 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
204 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
205 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
206 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
207 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
208 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
209 }
210
211 return std::make_pair(CC, NeedSwap);
212}
213
214static std::pair<unsigned, bool>
215getX86SSEConditionCode(CmpInst::Predicate Predicate) {
216 unsigned CC;
217 bool NeedSwap = false;
218
219 // SSE Condition code mapping:
220 // 0 - EQ
221 // 1 - LT
222 // 2 - LE
223 // 3 - UNORD
224 // 4 - NEQ
225 // 5 - NLT
226 // 6 - NLE
227 // 7 - ORD
228 switch (Predicate) {
229 default: llvm_unreachable("Unexpected predicate");
230 case CmpInst::FCMP_OEQ: CC = 0; break;
231 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
232 case CmpInst::FCMP_OLT: CC = 1; break;
233 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
234 case CmpInst::FCMP_OLE: CC = 2; break;
235 case CmpInst::FCMP_UNO: CC = 3; break;
236 case CmpInst::FCMP_UNE: CC = 4; break;
237 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
238 case CmpInst::FCMP_UGE: CC = 5; break;
239 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
240 case CmpInst::FCMP_UGT: CC = 6; break;
241 case CmpInst::FCMP_ORD: CC = 7; break;
242 case CmpInst::FCMP_UEQ:
243 case CmpInst::FCMP_ONE: CC = 8; break;
244 }
245
246 return std::make_pair(CC, NeedSwap);
247}
248
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000249/// \brief Adds a complex addressing mode to the given machine instr builder.
250/// Note, this will constrain the index register. If its not possible to
251/// constrain the given index register, then a new one will be created. The
252/// IndexReg field of the addressing mode will be updated to match in this case.
253const MachineInstrBuilder &
254X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
255 X86AddressMode &AM) {
256 // First constrain the index register. It needs to be a GR64_NOSP.
257 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
258 MIB->getNumOperands() +
259 X86::AddrIndexReg);
260 return ::addFullAddress(MIB, AM);
261}
262
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000263/// \brief Check if it is possible to fold the condition from the XALU intrinsic
264/// into the user. The condition code will only be updated on success.
265bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
266 const Value *Cond) {
267 if (!isa<ExtractValueInst>(Cond))
268 return false;
269
270 const auto *EV = cast<ExtractValueInst>(Cond);
271 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
272 return false;
273
274 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
275 MVT RetVT;
276 const Function *Callee = II->getCalledFunction();
277 Type *RetTy =
278 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
279 if (!isTypeLegal(RetTy, RetVT))
280 return false;
281
282 if (RetVT != MVT::i32 && RetVT != MVT::i64)
283 return false;
284
285 X86::CondCode TmpCC;
286 switch (II->getIntrinsicID()) {
287 default: return false;
288 case Intrinsic::sadd_with_overflow:
289 case Intrinsic::ssub_with_overflow:
290 case Intrinsic::smul_with_overflow:
291 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
292 case Intrinsic::uadd_with_overflow:
293 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
294 }
295
296 // Check if both instructions are in the same basic block.
297 if (II->getParent() != I->getParent())
298 return false;
299
300 // Make sure nothing is in the way
Duncan P. N. Exon Smithd77de642015-10-19 21:48:29 +0000301 BasicBlock::const_iterator Start(I);
302 BasicBlock::const_iterator End(II);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000303 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
304 // We only expect extractvalue instructions between the intrinsic and the
305 // instruction to be selected.
306 if (!isa<ExtractValueInst>(Itr))
307 return false;
308
309 // Check that the extractvalue operand comes from the intrinsic.
310 const auto *EVI = cast<ExtractValueInst>(Itr);
311 if (EVI->getAggregateOperand() != II)
312 return false;
313 }
314
315 CC = TmpCC;
316 return true;
317}
318
319bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
Mehdi Amini44ede332015-07-09 02:09:04 +0000320 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000321 if (evt == MVT::Other || !evt.isSimple())
322 // Unhandled type. Halt "fast" selection and bail.
323 return false;
324
325 VT = evt.getSimpleVT();
326 // For now, require SSE/SSE2 for performing floating-point operations,
327 // since x87 requires additional work.
328 if (VT == MVT::f64 && !X86ScalarSSEf64)
329 return false;
330 if (VT == MVT::f32 && !X86ScalarSSEf32)
331 return false;
332 // Similarly, no f80 support yet.
333 if (VT == MVT::f80)
334 return false;
335 // We only handle legal types. For example, on x86-32 the instruction
336 // selector contains all of the 64-bit instructions from x86-64,
337 // under the assumption that i64 won't be used if the target doesn't
338 // support it.
339 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
340}
341
342#include "X86GenCallingConv.inc"
343
344/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
345/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
346/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000347bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000348 MachineMemOperand *MMO, unsigned &ResultReg,
349 unsigned Alignment) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000350 // Get opcode and regclass of the output for the given load instruction.
351 unsigned Opc = 0;
352 const TargetRegisterClass *RC = nullptr;
353 switch (VT.getSimpleVT().SimpleTy) {
354 default: return false;
355 case MVT::i1:
356 case MVT::i8:
357 Opc = X86::MOV8rm;
358 RC = &X86::GR8RegClass;
359 break;
360 case MVT::i16:
361 Opc = X86::MOV16rm;
362 RC = &X86::GR16RegClass;
363 break;
364 case MVT::i32:
365 Opc = X86::MOV32rm;
366 RC = &X86::GR32RegClass;
367 break;
368 case MVT::i64:
369 // Must be in x86-64 mode.
370 Opc = X86::MOV64rm;
371 RC = &X86::GR64RegClass;
372 break;
373 case MVT::f32:
374 if (X86ScalarSSEf32) {
375 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
376 RC = &X86::FR32RegClass;
377 } else {
378 Opc = X86::LD_Fp32m;
379 RC = &X86::RFP32RegClass;
380 }
381 break;
382 case MVT::f64:
383 if (X86ScalarSSEf64) {
384 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
385 RC = &X86::FR64RegClass;
386 } else {
387 Opc = X86::LD_Fp64m;
388 RC = &X86::RFP64RegClass;
389 }
390 break;
391 case MVT::f80:
392 // No f80 support yet.
393 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000394 case MVT::v4f32:
395 if (Alignment >= 16)
396 Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
397 else
398 Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
399 RC = &X86::VR128RegClass;
400 break;
401 case MVT::v2f64:
402 if (Alignment >= 16)
403 Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
404 else
405 Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
406 RC = &X86::VR128RegClass;
407 break;
408 case MVT::v4i32:
409 case MVT::v2i64:
410 case MVT::v8i16:
411 case MVT::v16i8:
412 if (Alignment >= 16)
413 Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
414 else
415 Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
416 RC = &X86::VR128RegClass;
417 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000418 }
419
420 ResultReg = createResultReg(RC);
421 MachineInstrBuilder MIB =
422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
423 addFullAddress(MIB, AM);
424 if (MMO)
425 MIB->addMemOperand(*FuncInfo.MF, MMO);
426 return true;
427}
428
429/// X86FastEmitStore - Emit a machine instruction to store a value Val of
430/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
431/// and a displacement offset, or a GlobalAddress,
432/// i.e. V. Return true if it is possible.
433bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000434 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000435 MachineMemOperand *MMO, bool Aligned) {
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000436 bool HasSSE2 = Subtarget->hasSSE2();
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000437 bool HasSSE4A = Subtarget->hasSSE4A();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000438 bool HasAVX = Subtarget->hasAVX();
439 bool IsNonTemporal = MMO && MMO->isNonTemporal();
440
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000441 // Get opcode and regclass of the output for the given store instruction.
442 unsigned Opc = 0;
443 switch (VT.getSimpleVT().SimpleTy) {
444 case MVT::f80: // No f80 support yet.
445 default: return false;
446 case MVT::i1: {
447 // Mask out all but lowest bit.
448 unsigned AndResult = createResultReg(&X86::GR8RegClass);
449 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
450 TII.get(X86::AND8ri), AndResult)
451 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
452 ValReg = AndResult;
453 }
454 // FALLTHROUGH, handling i1 as i8.
455 case MVT::i8: Opc = X86::MOV8mr; break;
456 case MVT::i16: Opc = X86::MOV16mr; break;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000457 case MVT::i32:
458 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
459 break;
460 case MVT::i64:
461 // Must be in x86-64 mode.
462 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
463 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000464 case MVT::f32:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000465 if (X86ScalarSSEf32) {
466 if (IsNonTemporal && HasSSE4A)
467 Opc = X86::MOVNTSS;
468 else
469 Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
470 } else
471 Opc = X86::ST_Fp32m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000472 break;
473 case MVT::f64:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000474 if (X86ScalarSSEf32) {
475 if (IsNonTemporal && HasSSE4A)
476 Opc = X86::MOVNTSD;
477 else
478 Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
479 } else
480 Opc = X86::ST_Fp64m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000481 break;
482 case MVT::v4f32:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000483 if (Aligned) {
484 if (IsNonTemporal)
485 Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
486 else
487 Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
488 } else
489 Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000490 break;
491 case MVT::v2f64:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000492 if (Aligned) {
493 if (IsNonTemporal)
494 Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
495 else
496 Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
497 } else
498 Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000499 break;
500 case MVT::v4i32:
501 case MVT::v2i64:
502 case MVT::v8i16:
503 case MVT::v16i8:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000504 if (Aligned) {
505 if (IsNonTemporal)
506 Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
507 else
508 Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
509 } else
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000510 Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
511 break;
512 }
513
514 MachineInstrBuilder MIB =
515 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
516 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
517 if (MMO)
518 MIB->addMemOperand(*FuncInfo.MF, MMO);
519
520 return true;
521}
522
523bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000524 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000525 MachineMemOperand *MMO, bool Aligned) {
526 // Handle 'null' like i32/i64 0.
527 if (isa<ConstantPointerNull>(Val))
528 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
529
530 // If this is a store of a simple constant, fold the constant into the store.
531 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
532 unsigned Opc = 0;
533 bool Signed = true;
534 switch (VT.getSimpleVT().SimpleTy) {
535 default: break;
536 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
537 case MVT::i8: Opc = X86::MOV8mi; break;
538 case MVT::i16: Opc = X86::MOV16mi; break;
539 case MVT::i32: Opc = X86::MOV32mi; break;
540 case MVT::i64:
541 // Must be a 32-bit sign extended value.
542 if (isInt<32>(CI->getSExtValue()))
543 Opc = X86::MOV64mi32;
544 break;
545 }
546
547 if (Opc) {
548 MachineInstrBuilder MIB =
549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
550 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
551 : CI->getZExtValue());
552 if (MMO)
553 MIB->addMemOperand(*FuncInfo.MF, MMO);
554 return true;
555 }
556 }
557
558 unsigned ValReg = getRegForValue(Val);
559 if (ValReg == 0)
560 return false;
561
562 bool ValKill = hasTrivialKill(Val);
563 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
564}
565
566/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
567/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
568/// ISD::SIGN_EXTEND).
569bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
570 unsigned Src, EVT SrcVT,
571 unsigned &ResultReg) {
572 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
573 Src, /*TODO: Kill=*/false);
574 if (RR == 0)
575 return false;
576
577 ResultReg = RR;
578 return true;
579}
580
581bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
582 // Handle constant address.
583 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
584 // Can't handle alternate code models yet.
585 if (TM.getCodeModel() != CodeModel::Small)
586 return false;
587
588 // Can't handle TLS yet.
589 if (GV->isThreadLocal())
590 return false;
591
592 // RIP-relative addresses can't have additional register operands, so if
593 // we've already folded stuff into the addressing mode, just force the
594 // global value into its own register, which we can use as the basereg.
595 if (!Subtarget->isPICStyleRIPRel() ||
596 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
597 // Okay, we've committed to selecting this global. Set up the address.
598 AM.GV = GV;
599
600 // Allow the subtarget to classify the global.
601 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
602
603 // If this reference is relative to the pic base, set it now.
604 if (isGlobalRelativeToPICBase(GVFlags)) {
605 // FIXME: How do we know Base.Reg is free??
606 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
607 }
608
609 // Unless the ABI requires an extra load, return a direct reference to
610 // the global.
611 if (!isGlobalStubReference(GVFlags)) {
612 if (Subtarget->isPICStyleRIPRel()) {
613 // Use rip-relative addressing if we can. Above we verified that the
614 // base and index registers are unused.
615 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
616 AM.Base.Reg = X86::RIP;
617 }
618 AM.GVOpFlags = GVFlags;
619 return true;
620 }
621
622 // Ok, we need to do a load from a stub. If we've already loaded from
623 // this stub, reuse the loaded pointer, otherwise emit the load now.
624 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
625 unsigned LoadReg;
626 if (I != LocalValueMap.end() && I->second != 0) {
627 LoadReg = I->second;
628 } else {
629 // Issue load from stub.
630 unsigned Opc = 0;
631 const TargetRegisterClass *RC = nullptr;
632 X86AddressMode StubAM;
633 StubAM.Base.Reg = AM.Base.Reg;
634 StubAM.GV = GV;
635 StubAM.GVOpFlags = GVFlags;
636
637 // Prepare for inserting code in the local-value area.
638 SavePoint SaveInsertPt = enterLocalValueArea();
639
Mehdi Amini44ede332015-07-09 02:09:04 +0000640 if (TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000641 Opc = X86::MOV64rm;
642 RC = &X86::GR64RegClass;
643
644 if (Subtarget->isPICStyleRIPRel())
645 StubAM.Base.Reg = X86::RIP;
646 } else {
647 Opc = X86::MOV32rm;
648 RC = &X86::GR32RegClass;
649 }
650
651 LoadReg = createResultReg(RC);
652 MachineInstrBuilder LoadMI =
653 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
654 addFullAddress(LoadMI, StubAM);
655
656 // Ok, back to normal mode.
657 leaveLocalValueArea(SaveInsertPt);
658
659 // Prevent loading GV stub multiple times in same MBB.
660 LocalValueMap[V] = LoadReg;
661 }
662
663 // Now construct the final address. Note that the Disp, Scale,
664 // and Index values may already be set here.
665 AM.Base.Reg = LoadReg;
666 AM.GV = nullptr;
667 return true;
668 }
669 }
670
671 // If all else fails, try to materialize the value in a register.
672 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
673 if (AM.Base.Reg == 0) {
674 AM.Base.Reg = getRegForValue(V);
675 return AM.Base.Reg != 0;
676 }
677 if (AM.IndexReg == 0) {
678 assert(AM.Scale == 1 && "Scale with no index!");
679 AM.IndexReg = getRegForValue(V);
680 return AM.IndexReg != 0;
681 }
682 }
683
684 return false;
685}
686
687/// X86SelectAddress - Attempt to fill in an address from the given value.
688///
689bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
690 SmallVector<const Value *, 32> GEPs;
691redo_gep:
692 const User *U = nullptr;
693 unsigned Opcode = Instruction::UserOp1;
694 if (const Instruction *I = dyn_cast<Instruction>(V)) {
695 // Don't walk into other basic blocks; it's possible we haven't
696 // visited them yet, so the instructions may not yet be assigned
697 // virtual registers.
698 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
699 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
700 Opcode = I->getOpcode();
701 U = I;
702 }
703 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
704 Opcode = C->getOpcode();
705 U = C;
706 }
707
708 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
709 if (Ty->getAddressSpace() > 255)
710 // Fast instruction selection doesn't support the special
711 // address spaces.
712 return false;
713
714 switch (Opcode) {
715 default: break;
716 case Instruction::BitCast:
717 // Look past bitcasts.
718 return X86SelectAddress(U->getOperand(0), AM);
719
720 case Instruction::IntToPtr:
721 // Look past no-op inttoptrs.
Mehdi Amini44ede332015-07-09 02:09:04 +0000722 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
723 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000724 return X86SelectAddress(U->getOperand(0), AM);
725 break;
726
727 case Instruction::PtrToInt:
728 // Look past no-op ptrtoints.
Mehdi Amini44ede332015-07-09 02:09:04 +0000729 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000730 return X86SelectAddress(U->getOperand(0), AM);
731 break;
732
733 case Instruction::Alloca: {
734 // Do static allocas.
735 const AllocaInst *A = cast<AllocaInst>(V);
736 DenseMap<const AllocaInst *, int>::iterator SI =
737 FuncInfo.StaticAllocaMap.find(A);
738 if (SI != FuncInfo.StaticAllocaMap.end()) {
739 AM.BaseType = X86AddressMode::FrameIndexBase;
740 AM.Base.FrameIndex = SI->second;
741 return true;
742 }
743 break;
744 }
745
746 case Instruction::Add: {
747 // Adds of constants are common and easy enough.
748 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
749 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
750 // They have to fit in the 32-bit signed displacement field though.
751 if (isInt<32>(Disp)) {
752 AM.Disp = (uint32_t)Disp;
753 return X86SelectAddress(U->getOperand(0), AM);
754 }
755 }
756 break;
757 }
758
759 case Instruction::GetElementPtr: {
760 X86AddressMode SavedAM = AM;
761
762 // Pattern-match simple GEPs.
763 uint64_t Disp = (int32_t)AM.Disp;
764 unsigned IndexReg = AM.IndexReg;
765 unsigned Scale = AM.Scale;
766 gep_type_iterator GTI = gep_type_begin(U);
767 // Iterate through the indices, folding what we can. Constants can be
768 // folded, and one dynamic index can be handled, if the scale is supported.
769 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
770 i != e; ++i, ++GTI) {
771 const Value *Op = *i;
772 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
773 const StructLayout *SL = DL.getStructLayout(STy);
774 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
775 continue;
776 }
777
778 // A array/variable index is always of the form i*S where S is the
779 // constant scale size. See if we can push the scale into immediates.
780 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
781 for (;;) {
782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
783 // Constant-offset addressing.
784 Disp += CI->getSExtValue() * S;
785 break;
786 }
787 if (canFoldAddIntoGEP(U, Op)) {
788 // A compatible add with a constant operand. Fold the constant.
789 ConstantInt *CI =
790 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
791 Disp += CI->getSExtValue() * S;
792 // Iterate on the other operand.
793 Op = cast<AddOperator>(Op)->getOperand(0);
794 continue;
795 }
796 if (IndexReg == 0 &&
797 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
798 (S == 1 || S == 2 || S == 4 || S == 8)) {
799 // Scaled-index addressing.
800 Scale = S;
801 IndexReg = getRegForGEPIndex(Op).first;
802 if (IndexReg == 0)
803 return false;
804 break;
805 }
806 // Unsupported.
807 goto unsupported_gep;
808 }
809 }
810
811 // Check for displacement overflow.
812 if (!isInt<32>(Disp))
813 break;
814
815 AM.IndexReg = IndexReg;
816 AM.Scale = Scale;
817 AM.Disp = (uint32_t)Disp;
818 GEPs.push_back(V);
819
820 if (const GetElementPtrInst *GEP =
821 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
822 // Ok, the GEP indices were covered by constant-offset and scaled-index
823 // addressing. Update the address state and move on to examining the base.
824 V = GEP;
825 goto redo_gep;
826 } else if (X86SelectAddress(U->getOperand(0), AM)) {
827 return true;
828 }
829
830 // If we couldn't merge the gep value into this addr mode, revert back to
831 // our address and just match the value instead of completely failing.
832 AM = SavedAM;
833
834 for (SmallVectorImpl<const Value *>::reverse_iterator
835 I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
836 if (handleConstantAddresses(*I, AM))
837 return true;
838
839 return false;
840 unsupported_gep:
841 // Ok, the GEP indices weren't all covered.
842 break;
843 }
844 }
845
846 return handleConstantAddresses(V, AM);
847}
848
849/// X86SelectCallAddress - Attempt to fill in an address from the given value.
850///
851bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
852 const User *U = nullptr;
853 unsigned Opcode = Instruction::UserOp1;
854 const Instruction *I = dyn_cast<Instruction>(V);
855 // Record if the value is defined in the same basic block.
856 //
857 // This information is crucial to know whether or not folding an
858 // operand is valid.
859 // Indeed, FastISel generates or reuses a virtual register for all
860 // operands of all instructions it selects. Obviously, the definition and
861 // its uses must use the same virtual register otherwise the produced
862 // code is incorrect.
863 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
864 // registers for values that are alive across basic blocks. This ensures
865 // that the values are consistently set between across basic block, even
866 // if different instruction selection mechanisms are used (e.g., a mix of
867 // SDISel and FastISel).
868 // For values local to a basic block, the instruction selection process
869 // generates these virtual registers with whatever method is appropriate
870 // for its needs. In particular, FastISel and SDISel do not share the way
871 // local virtual registers are set.
872 // Therefore, this is impossible (or at least unsafe) to share values
873 // between basic blocks unless they use the same instruction selection
874 // method, which is not guarantee for X86.
875 // Moreover, things like hasOneUse could not be used accurately, if we
876 // allow to reference values across basic blocks whereas they are not
877 // alive across basic blocks initially.
878 bool InMBB = true;
879 if (I) {
880 Opcode = I->getOpcode();
881 U = I;
882 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
883 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
884 Opcode = C->getOpcode();
885 U = C;
886 }
887
888 switch (Opcode) {
889 default: break;
890 case Instruction::BitCast:
891 // Look past bitcasts if its operand is in the same BB.
892 if (InMBB)
893 return X86SelectCallAddress(U->getOperand(0), AM);
894 break;
895
896 case Instruction::IntToPtr:
897 // Look past no-op inttoptrs if its operand is in the same BB.
898 if (InMBB &&
Mehdi Amini44ede332015-07-09 02:09:04 +0000899 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
900 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000901 return X86SelectCallAddress(U->getOperand(0), AM);
902 break;
903
904 case Instruction::PtrToInt:
905 // Look past no-op ptrtoints if its operand is in the same BB.
Mehdi Amini44ede332015-07-09 02:09:04 +0000906 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000907 return X86SelectCallAddress(U->getOperand(0), AM);
908 break;
909 }
910
911 // Handle constant address.
912 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
913 // Can't handle alternate code models yet.
914 if (TM.getCodeModel() != CodeModel::Small)
915 return false;
916
917 // RIP-relative addresses can't have additional register operands.
918 if (Subtarget->isPICStyleRIPRel() &&
919 (AM.Base.Reg != 0 || AM.IndexReg != 0))
920 return false;
921
922 // Can't handle DLL Import.
923 if (GV->hasDLLImportStorageClass())
924 return false;
925
926 // Can't handle TLS.
927 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
928 if (GVar->isThreadLocal())
929 return false;
930
931 // Okay, we've committed to selecting this global. Set up the basic address.
932 AM.GV = GV;
933
934 // No ABI requires an extra load for anything other than DLLImport, which
935 // we rejected above. Return a direct reference to the global.
936 if (Subtarget->isPICStyleRIPRel()) {
937 // Use rip-relative addressing if we can. Above we verified that the
938 // base and index registers are unused.
939 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
940 AM.Base.Reg = X86::RIP;
941 } else if (Subtarget->isPICStyleStubPIC()) {
942 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
943 } else if (Subtarget->isPICStyleGOT()) {
944 AM.GVOpFlags = X86II::MO_GOTOFF;
945 }
946
947 return true;
948 }
949
950 // If all else fails, try to materialize the value in a register.
951 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
952 if (AM.Base.Reg == 0) {
953 AM.Base.Reg = getRegForValue(V);
954 return AM.Base.Reg != 0;
955 }
956 if (AM.IndexReg == 0) {
957 assert(AM.Scale == 1 && "Scale with no index!");
958 AM.IndexReg = getRegForValue(V);
959 return AM.IndexReg != 0;
960 }
961 }
962
963 return false;
964}
965
966
967/// X86SelectStore - Select and emit code to implement store instructions.
968bool X86FastISel::X86SelectStore(const Instruction *I) {
969 // Atomic stores need special handling.
970 const StoreInst *S = cast<StoreInst>(I);
971
972 if (S->isAtomic())
973 return false;
974
975 const Value *Val = S->getValueOperand();
976 const Value *Ptr = S->getPointerOperand();
977
978 MVT VT;
979 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
980 return false;
981
982 unsigned Alignment = S->getAlignment();
983 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
984 if (Alignment == 0) // Ensure that codegen never sees alignment 0
985 Alignment = ABIAlignment;
986 bool Aligned = Alignment >= ABIAlignment;
987
988 X86AddressMode AM;
989 if (!X86SelectAddress(Ptr, AM))
990 return false;
991
992 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
993}
994
995/// X86SelectRet - Select and emit code to implement ret instructions.
996bool X86FastISel::X86SelectRet(const Instruction *I) {
997 const ReturnInst *Ret = cast<ReturnInst>(I);
998 const Function &F = *I->getParent()->getParent();
999 const X86MachineFunctionInfo *X86MFInfo =
1000 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1001
1002 if (!FuncInfo.CanLowerReturn)
1003 return false;
1004
Manman Rened967f32016-01-12 01:08:46 +00001005 if (TLI.supportSplitCSR(FuncInfo.MF))
1006 return false;
1007
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001008 CallingConv::ID CC = F.getCallingConv();
1009 if (CC != CallingConv::C &&
1010 CC != CallingConv::Fast &&
1011 CC != CallingConv::X86_FastCall &&
1012 CC != CallingConv::X86_64_SysV)
1013 return false;
1014
1015 if (Subtarget->isCallingConvWin64(CC))
1016 return false;
1017
1018 // Don't handle popping bytes on return for now.
1019 if (X86MFInfo->getBytesToPopOnReturn() != 0)
1020 return false;
1021
1022 // fastcc with -tailcallopt is intended to provide a guaranteed
1023 // tail call optimization. Fastisel doesn't know how to do that.
1024 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1025 return false;
1026
1027 // Let SDISel handle vararg functions.
1028 if (F.isVarArg())
1029 return false;
1030
1031 // Build a list of return value registers.
1032 SmallVector<unsigned, 4> RetRegs;
1033
1034 if (Ret->getNumOperands() > 0) {
1035 SmallVector<ISD::OutputArg, 4> Outs;
Mehdi Amini44ede332015-07-09 02:09:04 +00001036 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001037
1038 // Analyze operands of the call, assigning locations to each operand.
1039 SmallVector<CCValAssign, 16> ValLocs;
1040 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1041 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1042
1043 const Value *RV = Ret->getOperand(0);
1044 unsigned Reg = getRegForValue(RV);
1045 if (Reg == 0)
1046 return false;
1047
1048 // Only handle a single return value for now.
1049 if (ValLocs.size() != 1)
1050 return false;
1051
1052 CCValAssign &VA = ValLocs[0];
1053
1054 // Don't bother handling odd stuff for now.
1055 if (VA.getLocInfo() != CCValAssign::Full)
1056 return false;
1057 // Only handle register returns for now.
1058 if (!VA.isRegLoc())
1059 return false;
1060
1061 // The calling-convention tables for x87 returns don't tell
1062 // the whole story.
1063 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1064 return false;
1065
1066 unsigned SrcReg = Reg + VA.getValNo();
Mehdi Amini44ede332015-07-09 02:09:04 +00001067 EVT SrcVT = TLI.getValueType(DL, RV->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001068 EVT DstVT = VA.getValVT();
1069 // Special handling for extended integers.
1070 if (SrcVT != DstVT) {
1071 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1072 return false;
1073
1074 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1075 return false;
1076
1077 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1078
1079 if (SrcVT == MVT::i1) {
1080 if (Outs[0].Flags.isSExt())
1081 return false;
1082 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1083 SrcVT = MVT::i8;
1084 }
1085 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1086 ISD::SIGN_EXTEND;
1087 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1088 SrcReg, /*TODO: Kill=*/false);
1089 }
1090
1091 // Make the copy.
1092 unsigned DstReg = VA.getLocReg();
1093 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1094 // Avoid a cross-class copy. This is very unlikely.
1095 if (!SrcRC->contains(DstReg))
1096 return false;
1097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1098 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1099
1100 // Add register to return instruction.
1101 RetRegs.push_back(VA.getLocReg());
1102 }
1103
Dimitry Andric227b9282016-01-03 17:22:03 +00001104 // All x86 ABIs require that for returning structs by value we copy
1105 // the sret argument into %rax/%eax (depending on ABI) for the return.
1106 // We saved the argument into a virtual register in the entry block,
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00001107 // so now we copy the value out and into %rax/%eax.
1108 if (F.hasStructRetAttr()) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001109 unsigned Reg = X86MFInfo->getSRetReturnReg();
1110 assert(Reg &&
1111 "SRetReturnReg should have been set in LowerFormalArguments()!");
1112 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1113 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1114 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1115 RetRegs.push_back(RetReg);
1116 }
1117
1118 // Now emit the RET.
1119 MachineInstrBuilder MIB =
1120 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1121 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1122 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1123 MIB.addReg(RetRegs[i], RegState::Implicit);
1124 return true;
1125}
1126
1127/// X86SelectLoad - Select and emit code to implement load instructions.
1128///
1129bool X86FastISel::X86SelectLoad(const Instruction *I) {
1130 const LoadInst *LI = cast<LoadInst>(I);
1131
1132 // Atomic loads need special handling.
1133 if (LI->isAtomic())
1134 return false;
1135
1136 MVT VT;
1137 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1138 return false;
1139
1140 const Value *Ptr = LI->getPointerOperand();
1141
1142 X86AddressMode AM;
1143 if (!X86SelectAddress(Ptr, AM))
1144 return false;
1145
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001146 unsigned Alignment = LI->getAlignment();
1147 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1148 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1149 Alignment = ABIAlignment;
1150
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001151 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001152 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1153 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001154 return false;
1155
1156 updateValueMap(I, ResultReg);
1157 return true;
1158}
1159
1160static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1161 bool HasAVX = Subtarget->hasAVX();
1162 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1163 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1164
1165 switch (VT.getSimpleVT().SimpleTy) {
1166 default: return 0;
1167 case MVT::i8: return X86::CMP8rr;
1168 case MVT::i16: return X86::CMP16rr;
1169 case MVT::i32: return X86::CMP32rr;
1170 case MVT::i64: return X86::CMP64rr;
1171 case MVT::f32:
1172 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1173 case MVT::f64:
1174 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1175 }
1176}
1177
Rafael Espindola19141f22015-03-16 14:05:49 +00001178/// If we have a comparison with RHS as the RHS of the comparison, return an
1179/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001180static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001181 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001182 switch (VT.getSimpleVT().SimpleTy) {
1183 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001184 default:
1185 return 0;
1186 case MVT::i8:
1187 return X86::CMP8ri;
1188 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001189 if (isInt<8>(Val))
1190 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001191 return X86::CMP16ri;
1192 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001193 if (isInt<8>(Val))
1194 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001195 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001196 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001197 if (isInt<8>(Val))
1198 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001199 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1200 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001201 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001202 return X86::CMP64ri32;
1203 return 0;
1204 }
1205}
1206
1207bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1208 EVT VT, DebugLoc CurDbgLoc) {
1209 unsigned Op0Reg = getRegForValue(Op0);
1210 if (Op0Reg == 0) return false;
1211
1212 // Handle 'null' like i32/i64 0.
1213 if (isa<ConstantPointerNull>(Op1))
1214 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1215
1216 // We have two options: compare with register or immediate. If the RHS of
1217 // the compare is an immediate that we can fold into this compare, use
1218 // CMPri, otherwise use CMPrr.
1219 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1220 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1222 .addReg(Op0Reg)
1223 .addImm(Op1C->getSExtValue());
1224 return true;
1225 }
1226 }
1227
1228 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1229 if (CompareOpc == 0) return false;
1230
1231 unsigned Op1Reg = getRegForValue(Op1);
1232 if (Op1Reg == 0) return false;
1233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1234 .addReg(Op0Reg)
1235 .addReg(Op1Reg);
1236
1237 return true;
1238}
1239
1240bool X86FastISel::X86SelectCmp(const Instruction *I) {
1241 const CmpInst *CI = cast<CmpInst>(I);
1242
1243 MVT VT;
1244 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1245 return false;
1246
1247 // Try to optimize or fold the cmp.
1248 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1249 unsigned ResultReg = 0;
1250 switch (Predicate) {
1251 default: break;
1252 case CmpInst::FCMP_FALSE: {
1253 ResultReg = createResultReg(&X86::GR32RegClass);
1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1255 ResultReg);
1256 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1257 X86::sub_8bit);
1258 if (!ResultReg)
1259 return false;
1260 break;
1261 }
1262 case CmpInst::FCMP_TRUE: {
1263 ResultReg = createResultReg(&X86::GR8RegClass);
1264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1265 ResultReg).addImm(1);
1266 break;
1267 }
1268 }
1269
1270 if (ResultReg) {
1271 updateValueMap(I, ResultReg);
1272 return true;
1273 }
1274
1275 const Value *LHS = CI->getOperand(0);
1276 const Value *RHS = CI->getOperand(1);
1277
1278 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1279 // We don't have to materialize a zero constant for this case and can just use
1280 // %x again on the RHS.
1281 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1282 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1283 if (RHSC && RHSC->isNullValue())
1284 RHS = LHS;
1285 }
1286
1287 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1288 static unsigned SETFOpcTable[2][3] = {
1289 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1290 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1291 };
1292 unsigned *SETFOpc = nullptr;
1293 switch (Predicate) {
1294 default: break;
1295 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1296 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1297 }
1298
1299 ResultReg = createResultReg(&X86::GR8RegClass);
1300 if (SETFOpc) {
1301 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1302 return false;
1303
1304 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1305 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1306 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1307 FlagReg1);
1308 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1309 FlagReg2);
1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1311 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1312 updateValueMap(I, ResultReg);
1313 return true;
1314 }
1315
1316 X86::CondCode CC;
1317 bool SwapArgs;
1318 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1319 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1320 unsigned Opc = X86::getSETFromCond(CC);
1321
1322 if (SwapArgs)
1323 std::swap(LHS, RHS);
1324
1325 // Emit a compare of LHS/RHS.
1326 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1327 return false;
1328
1329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1330 updateValueMap(I, ResultReg);
1331 return true;
1332}
1333
1334bool X86FastISel::X86SelectZExt(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001335 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001336 if (!TLI.isTypeLegal(DstVT))
1337 return false;
1338
1339 unsigned ResultReg = getRegForValue(I->getOperand(0));
1340 if (ResultReg == 0)
1341 return false;
1342
1343 // Handle zero-extension from i1 to i8, which is common.
Mehdi Amini44ede332015-07-09 02:09:04 +00001344 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001345 if (SrcVT.SimpleTy == MVT::i1) {
1346 // Set the high bits to zero.
1347 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1348 SrcVT = MVT::i8;
1349
1350 if (ResultReg == 0)
1351 return false;
1352 }
1353
1354 if (DstVT == MVT::i64) {
1355 // Handle extension to 64-bits via sub-register shenanigans.
1356 unsigned MovInst;
1357
1358 switch (SrcVT.SimpleTy) {
1359 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1360 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1361 case MVT::i32: MovInst = X86::MOV32rr; break;
1362 default: llvm_unreachable("Unexpected zext to i64 source type");
1363 }
1364
1365 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1367 .addReg(ResultReg);
1368
1369 ResultReg = createResultReg(&X86::GR64RegClass);
1370 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1371 ResultReg)
1372 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1373 } else if (DstVT != MVT::i8) {
1374 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1375 ResultReg, /*Kill=*/true);
1376 if (ResultReg == 0)
1377 return false;
1378 }
1379
1380 updateValueMap(I, ResultReg);
1381 return true;
1382}
1383
1384bool X86FastISel::X86SelectBranch(const Instruction *I) {
1385 // Unconditional branches are selected by tablegen-generated code.
1386 // Handle a conditional branch.
1387 const BranchInst *BI = cast<BranchInst>(I);
1388 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1389 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1390
1391 // Fold the common case of a conditional branch with a comparison
1392 // in the same block (values defined on other blocks may not have
1393 // initialized registers).
1394 X86::CondCode CC;
1395 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1396 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001397 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001398
1399 // Try to optimize or fold the cmp.
1400 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1401 switch (Predicate) {
1402 default: break;
1403 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1404 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1405 }
1406
1407 const Value *CmpLHS = CI->getOperand(0);
1408 const Value *CmpRHS = CI->getOperand(1);
1409
1410 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1411 // 0.0.
1412 // We don't have to materialize a zero constant for this case and can just
1413 // use %x again on the RHS.
1414 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1415 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1416 if (CmpRHSC && CmpRHSC->isNullValue())
1417 CmpRHS = CmpLHS;
1418 }
1419
1420 // Try to take advantage of fallthrough opportunities.
1421 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1422 std::swap(TrueMBB, FalseMBB);
1423 Predicate = CmpInst::getInversePredicate(Predicate);
1424 }
1425
1426 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1427 // code check. Instead two branch instructions are required to check all
1428 // the flags. First we change the predicate to a supported condition code,
1429 // which will be the first branch. Later one we will emit the second
1430 // branch.
1431 bool NeedExtraBranch = false;
1432 switch (Predicate) {
1433 default: break;
1434 case CmpInst::FCMP_OEQ:
1435 std::swap(TrueMBB, FalseMBB); // fall-through
1436 case CmpInst::FCMP_UNE:
1437 NeedExtraBranch = true;
1438 Predicate = CmpInst::FCMP_ONE;
1439 break;
1440 }
1441
1442 bool SwapArgs;
1443 unsigned BranchOpc;
1444 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1445 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1446
1447 BranchOpc = X86::GetCondBranchFromCond(CC);
1448 if (SwapArgs)
1449 std::swap(CmpLHS, CmpRHS);
1450
1451 // Emit a compare of the LHS and RHS, setting the flags.
1452 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1453 return false;
1454
1455 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1456 .addMBB(TrueMBB);
1457
1458 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1459 // to UNE above).
1460 if (NeedExtraBranch) {
1461 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1462 .addMBB(TrueMBB);
1463 }
1464
Matthias Braun17af6072015-08-26 01:38:00 +00001465 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001466 return true;
1467 }
1468 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1469 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1470 // typically happen for _Bool and C++ bools.
1471 MVT SourceVT;
1472 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1473 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1474 unsigned TestOpc = 0;
1475 switch (SourceVT.SimpleTy) {
1476 default: break;
1477 case MVT::i8: TestOpc = X86::TEST8ri; break;
1478 case MVT::i16: TestOpc = X86::TEST16ri; break;
1479 case MVT::i32: TestOpc = X86::TEST32ri; break;
1480 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1481 }
1482 if (TestOpc) {
1483 unsigned OpReg = getRegForValue(TI->getOperand(0));
1484 if (OpReg == 0) return false;
1485 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1486 .addReg(OpReg).addImm(1);
1487
1488 unsigned JmpOpc = X86::JNE_1;
1489 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1490 std::swap(TrueMBB, FalseMBB);
1491 JmpOpc = X86::JE_1;
1492 }
1493
1494 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1495 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001496
1497 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001498 return true;
1499 }
1500 }
1501 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1502 // Fake request the condition, otherwise the intrinsic might be completely
1503 // optimized away.
1504 unsigned TmpReg = getRegForValue(BI->getCondition());
1505 if (TmpReg == 0)
1506 return false;
1507
1508 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1509
1510 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1511 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001512 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001513 return true;
1514 }
1515
1516 // Otherwise do a clumsy setcc and re-test it.
1517 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1518 // in an explicit cast, so make sure to handle that correctly.
1519 unsigned OpReg = getRegForValue(BI->getCondition());
1520 if (OpReg == 0) return false;
1521
1522 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1523 .addReg(OpReg).addImm(1);
1524 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1525 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001526 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001527 return true;
1528}
1529
1530bool X86FastISel::X86SelectShift(const Instruction *I) {
1531 unsigned CReg = 0, OpReg = 0;
1532 const TargetRegisterClass *RC = nullptr;
1533 if (I->getType()->isIntegerTy(8)) {
1534 CReg = X86::CL;
1535 RC = &X86::GR8RegClass;
1536 switch (I->getOpcode()) {
1537 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1538 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1539 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1540 default: return false;
1541 }
1542 } else if (I->getType()->isIntegerTy(16)) {
1543 CReg = X86::CX;
1544 RC = &X86::GR16RegClass;
1545 switch (I->getOpcode()) {
1546 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1547 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1548 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1549 default: return false;
1550 }
1551 } else if (I->getType()->isIntegerTy(32)) {
1552 CReg = X86::ECX;
1553 RC = &X86::GR32RegClass;
1554 switch (I->getOpcode()) {
1555 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1556 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1557 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1558 default: return false;
1559 }
1560 } else if (I->getType()->isIntegerTy(64)) {
1561 CReg = X86::RCX;
1562 RC = &X86::GR64RegClass;
1563 switch (I->getOpcode()) {
1564 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1565 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1566 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1567 default: return false;
1568 }
1569 } else {
1570 return false;
1571 }
1572
1573 MVT VT;
1574 if (!isTypeLegal(I->getType(), VT))
1575 return false;
1576
1577 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1578 if (Op0Reg == 0) return false;
1579
1580 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1581 if (Op1Reg == 0) return false;
1582 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1583 CReg).addReg(Op1Reg);
1584
1585 // The shift instruction uses X86::CL. If we defined a super-register
1586 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1587 if (CReg != X86::CL)
1588 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1589 TII.get(TargetOpcode::KILL), X86::CL)
1590 .addReg(CReg, RegState::Kill);
1591
1592 unsigned ResultReg = createResultReg(RC);
1593 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1594 .addReg(Op0Reg);
1595 updateValueMap(I, ResultReg);
1596 return true;
1597}
1598
1599bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1600 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1601 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1602 const static bool S = true; // IsSigned
1603 const static bool U = false; // !IsSigned
1604 const static unsigned Copy = TargetOpcode::COPY;
1605 // For the X86 DIV/IDIV instruction, in most cases the dividend
1606 // (numerator) must be in a specific register pair highreg:lowreg,
1607 // producing the quotient in lowreg and the remainder in highreg.
1608 // For most data types, to set up the instruction, the dividend is
1609 // copied into lowreg, and lowreg is sign-extended or zero-extended
1610 // into highreg. The exception is i8, where the dividend is defined
1611 // as a single register rather than a register pair, and we
1612 // therefore directly sign-extend or zero-extend the dividend into
1613 // lowreg, instead of copying, and ignore the highreg.
1614 const static struct DivRemEntry {
1615 // The following portion depends only on the data type.
1616 const TargetRegisterClass *RC;
1617 unsigned LowInReg; // low part of the register pair
1618 unsigned HighInReg; // high part of the register pair
1619 // The following portion depends on both the data type and the operation.
1620 struct DivRemResult {
1621 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1622 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1623 // highreg, or copying a zero into highreg.
1624 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1625 // zero/sign-extending into lowreg for i8.
1626 unsigned DivRemResultReg; // Register containing the desired result.
1627 bool IsOpSigned; // Whether to use signed or unsigned form.
1628 } ResultTable[NumOps];
1629 } OpTable[NumTypes] = {
1630 { &X86::GR8RegClass, X86::AX, 0, {
1631 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1632 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1633 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1634 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1635 }
1636 }, // i8
1637 { &X86::GR16RegClass, X86::AX, X86::DX, {
1638 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1639 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1640 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1641 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1642 }
1643 }, // i16
1644 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1645 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1646 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1647 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1648 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1649 }
1650 }, // i32
1651 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1652 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1653 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1654 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1655 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1656 }
1657 }, // i64
1658 };
1659
1660 MVT VT;
1661 if (!isTypeLegal(I->getType(), VT))
1662 return false;
1663
1664 unsigned TypeIndex, OpIndex;
1665 switch (VT.SimpleTy) {
1666 default: return false;
1667 case MVT::i8: TypeIndex = 0; break;
1668 case MVT::i16: TypeIndex = 1; break;
1669 case MVT::i32: TypeIndex = 2; break;
1670 case MVT::i64: TypeIndex = 3;
1671 if (!Subtarget->is64Bit())
1672 return false;
1673 break;
1674 }
1675
1676 switch (I->getOpcode()) {
1677 default: llvm_unreachable("Unexpected div/rem opcode");
1678 case Instruction::SDiv: OpIndex = 0; break;
1679 case Instruction::SRem: OpIndex = 1; break;
1680 case Instruction::UDiv: OpIndex = 2; break;
1681 case Instruction::URem: OpIndex = 3; break;
1682 }
1683
1684 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1685 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1686 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1687 if (Op0Reg == 0)
1688 return false;
1689 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1690 if (Op1Reg == 0)
1691 return false;
1692
1693 // Move op0 into low-order input register.
1694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1695 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1696 // Zero-extend or sign-extend into high-order input register.
1697 if (OpEntry.OpSignExtend) {
1698 if (OpEntry.IsOpSigned)
1699 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1700 TII.get(OpEntry.OpSignExtend));
1701 else {
1702 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1704 TII.get(X86::MOV32r0), Zero32);
1705
1706 // Copy the zero into the appropriate sub/super/identical physical
1707 // register. Unfortunately the operations needed are not uniform enough
1708 // to fit neatly into the table above.
1709 if (VT.SimpleTy == MVT::i16) {
1710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1711 TII.get(Copy), TypeEntry.HighInReg)
1712 .addReg(Zero32, 0, X86::sub_16bit);
1713 } else if (VT.SimpleTy == MVT::i32) {
1714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1715 TII.get(Copy), TypeEntry.HighInReg)
1716 .addReg(Zero32);
1717 } else if (VT.SimpleTy == MVT::i64) {
1718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1719 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1720 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1721 }
1722 }
1723 }
1724 // Generate the DIV/IDIV instruction.
1725 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1726 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1727 // For i8 remainder, we can't reference AH directly, as we'll end
1728 // up with bogus copies like %R9B = COPY %AH. Reference AX
1729 // instead to prevent AH references in a REX instruction.
1730 //
1731 // The current assumption of the fast register allocator is that isel
1732 // won't generate explicit references to the GPR8_NOREX registers. If
1733 // the allocator and/or the backend get enhanced to be more robust in
1734 // that regard, this can be, and should be, removed.
1735 unsigned ResultReg = 0;
1736 if ((I->getOpcode() == Instruction::SRem ||
1737 I->getOpcode() == Instruction::URem) &&
1738 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1739 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1740 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1741 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1742 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1743
1744 // Shift AX right by 8 bits instead of using AH.
1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1746 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1747
1748 // Now reference the 8-bit subreg of the result.
1749 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1750 /*Kill=*/true, X86::sub_8bit);
1751 }
1752 // Copy the result out of the physreg if we haven't already.
1753 if (!ResultReg) {
1754 ResultReg = createResultReg(TypeEntry.RC);
1755 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1756 .addReg(OpEntry.DivRemResultReg);
1757 }
1758 updateValueMap(I, ResultReg);
1759
1760 return true;
1761}
1762
1763/// \brief Emit a conditional move instruction (if the are supported) to lower
1764/// the select.
1765bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1766 // Check if the subtarget supports these instructions.
1767 if (!Subtarget->hasCMov())
1768 return false;
1769
1770 // FIXME: Add support for i8.
1771 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1772 return false;
1773
1774 const Value *Cond = I->getOperand(0);
1775 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1776 bool NeedTest = true;
1777 X86::CondCode CC = X86::COND_NE;
1778
1779 // Optimize conditions coming from a compare if both instructions are in the
1780 // same basic block (values defined in other basic blocks may not have
1781 // initialized registers).
1782 const auto *CI = dyn_cast<CmpInst>(Cond);
1783 if (CI && (CI->getParent() == I->getParent())) {
1784 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1785
1786 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1787 static unsigned SETFOpcTable[2][3] = {
1788 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1789 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1790 };
1791 unsigned *SETFOpc = nullptr;
1792 switch (Predicate) {
1793 default: break;
1794 case CmpInst::FCMP_OEQ:
1795 SETFOpc = &SETFOpcTable[0][0];
1796 Predicate = CmpInst::ICMP_NE;
1797 break;
1798 case CmpInst::FCMP_UNE:
1799 SETFOpc = &SETFOpcTable[1][0];
1800 Predicate = CmpInst::ICMP_NE;
1801 break;
1802 }
1803
1804 bool NeedSwap;
1805 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1806 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1807
1808 const Value *CmpLHS = CI->getOperand(0);
1809 const Value *CmpRHS = CI->getOperand(1);
1810 if (NeedSwap)
1811 std::swap(CmpLHS, CmpRHS);
1812
Mehdi Amini44ede332015-07-09 02:09:04 +00001813 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001814 // Emit a compare of the LHS and RHS, setting the flags.
1815 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1816 return false;
1817
1818 if (SETFOpc) {
1819 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1820 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1821 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1822 FlagReg1);
1823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1824 FlagReg2);
1825 auto const &II = TII.get(SETFOpc[2]);
1826 if (II.getNumDefs()) {
1827 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1829 .addReg(FlagReg2).addReg(FlagReg1);
1830 } else {
1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1832 .addReg(FlagReg2).addReg(FlagReg1);
1833 }
1834 }
1835 NeedTest = false;
1836 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1837 // Fake request the condition, otherwise the intrinsic might be completely
1838 // optimized away.
1839 unsigned TmpReg = getRegForValue(Cond);
1840 if (TmpReg == 0)
1841 return false;
1842
1843 NeedTest = false;
1844 }
1845
1846 if (NeedTest) {
1847 // Selects operate on i1, however, CondReg is 8 bits width and may contain
1848 // garbage. Indeed, only the less significant bit is supposed to be
1849 // accurate. If we read more than the lsb, we may see non-zero values
1850 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1851 // the select. This is achieved by performing TEST against 1.
1852 unsigned CondReg = getRegForValue(Cond);
1853 if (CondReg == 0)
1854 return false;
1855 bool CondIsKill = hasTrivialKill(Cond);
1856
1857 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1858 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1859 }
1860
1861 const Value *LHS = I->getOperand(1);
1862 const Value *RHS = I->getOperand(2);
1863
1864 unsigned RHSReg = getRegForValue(RHS);
1865 bool RHSIsKill = hasTrivialKill(RHS);
1866
1867 unsigned LHSReg = getRegForValue(LHS);
1868 bool LHSIsKill = hasTrivialKill(LHS);
1869
1870 if (!LHSReg || !RHSReg)
1871 return false;
1872
1873 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
1874 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
1875 LHSReg, LHSIsKill);
1876 updateValueMap(I, ResultReg);
1877 return true;
1878}
1879
Sanjay Patel302404b2015-03-05 21:46:54 +00001880/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001881///
1882/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
1883/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00001884/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001885bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
1886 // Optimize conditions coming from a compare if both instructions are in the
1887 // same basic block (values defined in other basic blocks may not have
1888 // initialized registers).
1889 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
1890 if (!CI || (CI->getParent() != I->getParent()))
1891 return false;
1892
1893 if (I->getType() != CI->getOperand(0)->getType() ||
1894 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
1895 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
1896 return false;
1897
1898 const Value *CmpLHS = CI->getOperand(0);
1899 const Value *CmpRHS = CI->getOperand(1);
1900 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1901
1902 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1903 // We don't have to materialize a zero constant for this case and can just use
1904 // %x again on the RHS.
1905 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1906 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1907 if (CmpRHSC && CmpRHSC->isNullValue())
1908 CmpRHS = CmpLHS;
1909 }
1910
1911 unsigned CC;
1912 bool NeedSwap;
1913 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
1914 if (CC > 7)
1915 return false;
1916
1917 if (NeedSwap)
1918 std::swap(CmpLHS, CmpRHS);
1919
Sanjay Patel302404b2015-03-05 21:46:54 +00001920 // Choose the SSE instruction sequence based on data type (float or double).
1921 static unsigned OpcTable[2][4] = {
1922 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
1923 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001924 };
1925
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001926 unsigned *Opc = nullptr;
1927 switch (RetVT.SimpleTy) {
1928 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00001929 case MVT::f32: Opc = &OpcTable[0][0]; break;
1930 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001931 }
1932
1933 const Value *LHS = I->getOperand(1);
1934 const Value *RHS = I->getOperand(2);
1935
1936 unsigned LHSReg = getRegForValue(LHS);
1937 bool LHSIsKill = hasTrivialKill(LHS);
1938
1939 unsigned RHSReg = getRegForValue(RHS);
1940 bool RHSIsKill = hasTrivialKill(RHS);
1941
1942 unsigned CmpLHSReg = getRegForValue(CmpLHS);
1943 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
1944
1945 unsigned CmpRHSReg = getRegForValue(CmpRHS);
1946 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
1947
1948 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
1949 return false;
1950
1951 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00001952 unsigned ResultReg;
1953
1954 if (Subtarget->hasAVX()) {
Matthias Braun818c78d2015-08-31 18:25:11 +00001955 const TargetRegisterClass *FR32 = &X86::FR32RegClass;
1956 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
1957
Sanjay Patel302404b2015-03-05 21:46:54 +00001958 // If we have AVX, create 1 blendv instead of 3 logic instructions.
1959 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
1960 // uses XMM0 as the selection register. That may need just as many
1961 // instructions as the AND/ANDN/OR sequence due to register moves, so
1962 // don't bother.
1963 unsigned CmpOpcode =
1964 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
1965 unsigned BlendOpcode =
1966 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
1967
Matthias Braun818c78d2015-08-31 18:25:11 +00001968 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
Sanjay Patel302404b2015-03-05 21:46:54 +00001969 CmpRHSReg, CmpRHSIsKill, CC);
Matthias Braun818c78d2015-08-31 18:25:11 +00001970 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
1971 LHSReg, LHSIsKill, CmpReg, true);
1972 ResultReg = createResultReg(RC);
1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1974 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00001975 } else {
1976 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
1977 CmpRHSReg, CmpRHSIsKill, CC);
1978 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
1979 LHSReg, LHSIsKill);
1980 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
1981 RHSReg, RHSIsKill);
1982 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
1983 AndReg, /*IsKill=*/true);
1984 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001985 updateValueMap(I, ResultReg);
1986 return true;
1987}
1988
1989bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
1990 // These are pseudo CMOV instructions and will be later expanded into control-
1991 // flow.
1992 unsigned Opc;
1993 switch (RetVT.SimpleTy) {
1994 default: return false;
1995 case MVT::i8: Opc = X86::CMOV_GR8; break;
1996 case MVT::i16: Opc = X86::CMOV_GR16; break;
1997 case MVT::i32: Opc = X86::CMOV_GR32; break;
1998 case MVT::f32: Opc = X86::CMOV_FR32; break;
1999 case MVT::f64: Opc = X86::CMOV_FR64; break;
2000 }
2001
2002 const Value *Cond = I->getOperand(0);
2003 X86::CondCode CC = X86::COND_NE;
2004
2005 // Optimize conditions coming from a compare if both instructions are in the
2006 // same basic block (values defined in other basic blocks may not have
2007 // initialized registers).
2008 const auto *CI = dyn_cast<CmpInst>(Cond);
2009 if (CI && (CI->getParent() == I->getParent())) {
2010 bool NeedSwap;
2011 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2012 if (CC > X86::LAST_VALID_COND)
2013 return false;
2014
2015 const Value *CmpLHS = CI->getOperand(0);
2016 const Value *CmpRHS = CI->getOperand(1);
2017
2018 if (NeedSwap)
2019 std::swap(CmpLHS, CmpRHS);
2020
Mehdi Amini44ede332015-07-09 02:09:04 +00002021 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002022 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2023 return false;
2024 } else {
2025 unsigned CondReg = getRegForValue(Cond);
2026 if (CondReg == 0)
2027 return false;
2028 bool CondIsKill = hasTrivialKill(Cond);
2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2030 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2031 }
2032
2033 const Value *LHS = I->getOperand(1);
2034 const Value *RHS = I->getOperand(2);
2035
2036 unsigned LHSReg = getRegForValue(LHS);
2037 bool LHSIsKill = hasTrivialKill(LHS);
2038
2039 unsigned RHSReg = getRegForValue(RHS);
2040 bool RHSIsKill = hasTrivialKill(RHS);
2041
2042 if (!LHSReg || !RHSReg)
2043 return false;
2044
2045 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2046
2047 unsigned ResultReg =
2048 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2049 updateValueMap(I, ResultReg);
2050 return true;
2051}
2052
2053bool X86FastISel::X86SelectSelect(const Instruction *I) {
2054 MVT RetVT;
2055 if (!isTypeLegal(I->getType(), RetVT))
2056 return false;
2057
2058 // Check if we can fold the select.
2059 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2060 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2061 const Value *Opnd = nullptr;
2062 switch (Predicate) {
2063 default: break;
2064 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2065 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2066 }
2067 // No need for a select anymore - this is an unconditional move.
2068 if (Opnd) {
2069 unsigned OpReg = getRegForValue(Opnd);
2070 if (OpReg == 0)
2071 return false;
2072 bool OpIsKill = hasTrivialKill(Opnd);
2073 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2074 unsigned ResultReg = createResultReg(RC);
2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2076 TII.get(TargetOpcode::COPY), ResultReg)
2077 .addReg(OpReg, getKillRegState(OpIsKill));
2078 updateValueMap(I, ResultReg);
2079 return true;
2080 }
2081 }
2082
2083 // First try to use real conditional move instructions.
2084 if (X86FastEmitCMoveSelect(RetVT, I))
2085 return true;
2086
2087 // Try to use a sequence of SSE instructions to simulate a conditional move.
2088 if (X86FastEmitSSESelect(RetVT, I))
2089 return true;
2090
2091 // Fall-back to pseudo conditional move instructions, which will be later
2092 // converted to control-flow.
2093 if (X86FastEmitPseudoSelect(RetVT, I))
2094 return true;
2095
2096 return false;
2097}
2098
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002099bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002100 // The target-independent selection algorithm in FastISel already knows how
2101 // to select a SINT_TO_FP if the target is SSE but not AVX.
2102 // Early exit if the subtarget doesn't have AVX.
2103 if (!Subtarget->hasAVX())
2104 return false;
2105
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002106 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2107 return false;
2108
2109 // Select integer to float/double conversion.
2110 unsigned OpReg = getRegForValue(I->getOperand(0));
2111 if (OpReg == 0)
2112 return false;
2113
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002114 const TargetRegisterClass *RC = nullptr;
2115 unsigned Opcode;
2116
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002117 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002118 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002119 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002120 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002121 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002122 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002123 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002124 RC = &X86::FR32RegClass;
2125 } else
2126 return false;
2127
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002128 unsigned ImplicitDefReg = createResultReg(RC);
2129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2130 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2131 unsigned ResultReg =
2132 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002133 updateValueMap(I, ResultReg);
2134 return true;
2135}
2136
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002137// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2138bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2139 unsigned TargetOpc,
2140 const TargetRegisterClass *RC) {
2141 assert((I->getOpcode() == Instruction::FPExt ||
2142 I->getOpcode() == Instruction::FPTrunc) &&
2143 "Instruction must be an FPExt or FPTrunc!");
2144
2145 unsigned OpReg = getRegForValue(I->getOperand(0));
2146 if (OpReg == 0)
2147 return false;
2148
2149 unsigned ResultReg = createResultReg(RC);
2150 MachineInstrBuilder MIB;
2151 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2152 ResultReg);
2153 if (Subtarget->hasAVX())
2154 MIB.addReg(OpReg);
2155 MIB.addReg(OpReg);
2156 updateValueMap(I, ResultReg);
2157 return true;
2158}
2159
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002160bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002161 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2162 I->getOperand(0)->getType()->isFloatTy()) {
2163 // fpext from float to double.
2164 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2165 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002166 }
2167
2168 return false;
2169}
2170
2171bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002172 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2173 I->getOperand(0)->getType()->isDoubleTy()) {
2174 // fptrunc from double to float.
2175 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2176 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002177 }
2178
2179 return false;
2180}
2181
2182bool X86FastISel::X86SelectTrunc(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002183 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2184 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002185
2186 // This code only handles truncation to byte.
2187 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2188 return false;
2189 if (!TLI.isTypeLegal(SrcVT))
2190 return false;
2191
2192 unsigned InputReg = getRegForValue(I->getOperand(0));
2193 if (!InputReg)
2194 // Unhandled operand. Halt "fast" selection and bail.
2195 return false;
2196
2197 if (SrcVT == MVT::i8) {
2198 // Truncate from i8 to i1; no code needed.
2199 updateValueMap(I, InputReg);
2200 return true;
2201 }
2202
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002203 bool KillInputReg = false;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002204 if (!Subtarget->is64Bit()) {
2205 // If we're on x86-32; we can't extract an i8 from a general register.
2206 // First issue a copy to GR16_ABCD or GR32_ABCD.
2207 const TargetRegisterClass *CopyRC =
2208 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2209 unsigned CopyReg = createResultReg(CopyRC);
2210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2211 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2212 InputReg = CopyReg;
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002213 KillInputReg = true;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002214 }
2215
2216 // Issue an extract_subreg.
2217 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002218 InputReg, KillInputReg,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002219 X86::sub_8bit);
2220 if (!ResultReg)
2221 return false;
2222
2223 updateValueMap(I, ResultReg);
2224 return true;
2225}
2226
2227bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2228 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2229}
2230
2231bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2232 X86AddressMode SrcAM, uint64_t Len) {
2233
2234 // Make sure we don't bloat code by inlining very large memcpy's.
2235 if (!IsMemcpySmall(Len))
2236 return false;
2237
2238 bool i64Legal = Subtarget->is64Bit();
2239
2240 // We don't care about alignment here since we just emit integer accesses.
2241 while (Len) {
2242 MVT VT;
2243 if (Len >= 8 && i64Legal)
2244 VT = MVT::i64;
2245 else if (Len >= 4)
2246 VT = MVT::i32;
2247 else if (Len >= 2)
2248 VT = MVT::i16;
2249 else
2250 VT = MVT::i8;
2251
2252 unsigned Reg;
2253 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2254 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2255 assert(RV && "Failed to emit load or store??");
2256
2257 unsigned Size = VT.getSizeInBits()/8;
2258 Len -= Size;
2259 DestAM.Disp += Size;
2260 SrcAM.Disp += Size;
2261 }
2262
2263 return true;
2264}
2265
2266bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2267 // FIXME: Handle more intrinsics.
2268 switch (II->getIntrinsicID()) {
2269 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002270 case Intrinsic::convert_from_fp16:
2271 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002272 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002273 return false;
2274
2275 const Value *Op = II->getArgOperand(0);
2276 unsigned InputReg = getRegForValue(Op);
2277 if (InputReg == 0)
2278 return false;
2279
2280 // F16C only allows converting from float to half and from half to float.
2281 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2282 if (IsFloatToHalf) {
2283 if (!Op->getType()->isFloatTy())
2284 return false;
2285 } else {
2286 if (!II->getType()->isFloatTy())
2287 return false;
2288 }
2289
2290 unsigned ResultReg = 0;
2291 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2292 if (IsFloatToHalf) {
2293 // 'InputReg' is implicitly promoted from register class FR32 to
2294 // register class VR128 by method 'constrainOperandRegClass' which is
2295 // directly called by 'fastEmitInst_ri'.
2296 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
Ahmed Bougacha68a8efa2016-02-02 01:44:03 +00002297 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2298 // It's consistent with the other FP instructions, which are usually
2299 // controlled by MXCSR.
2300 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
Andrea Di Biagio70351782015-02-20 19:37:14 +00002301
2302 // Move the lower 32-bits of ResultReg to another register of class GR32.
2303 ResultReg = createResultReg(&X86::GR32RegClass);
2304 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2305 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2306 .addReg(InputReg, RegState::Kill);
2307
2308 // The result value is in the lower 16-bits of ResultReg.
2309 unsigned RegIdx = X86::sub_16bit;
2310 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2311 } else {
2312 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2313 // Explicitly sign-extend the input to 32-bit.
2314 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2315 /*Kill=*/false);
2316
2317 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2318 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2319 InputReg, /*Kill=*/true);
2320
2321 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2322
2323 // The result value is in the lower 32-bits of ResultReg.
2324 // Emit an explicit copy from register class VR128 to register class FR32.
2325 ResultReg = createResultReg(&X86::FR32RegClass);
2326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2327 TII.get(TargetOpcode::COPY), ResultReg)
2328 .addReg(InputReg, RegState::Kill);
2329 }
2330
2331 updateValueMap(II, ResultReg);
2332 return true;
2333 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002334 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002335 MachineFunction *MF = FuncInfo.MF;
2336 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2337 return false;
2338
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002339 Type *RetTy = II->getCalledFunction()->getReturnType();
2340
2341 MVT VT;
2342 if (!isTypeLegal(RetTy, VT))
2343 return false;
2344
2345 unsigned Opc;
2346 const TargetRegisterClass *RC = nullptr;
2347
2348 switch (VT.SimpleTy) {
2349 default: llvm_unreachable("Invalid result type for frameaddress.");
2350 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2351 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2352 }
2353
2354 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2355 // we get the wrong frame register.
David Majnemerca194852015-02-10 22:00:34 +00002356 MachineFrameInfo *MFI = MF->getFrameInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002357 MFI->setFrameAddressIsTaken(true);
2358
Eric Christophera1c535b2015-02-02 23:03:45 +00002359 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002360 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002361 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2362 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2363 "Invalid Frame Register!");
2364
2365 // Always make a copy of the frame register to to a vreg first, so that we
2366 // never directly reference the frame register (the TwoAddressInstruction-
2367 // Pass doesn't like that).
2368 unsigned SrcReg = createResultReg(RC);
2369 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2370 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2371
2372 // Now recursively load from the frame address.
2373 // movq (%rbp), %rax
2374 // movq (%rax), %rax
2375 // movq (%rax), %rax
2376 // ...
2377 unsigned DestReg;
2378 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2379 while (Depth--) {
2380 DestReg = createResultReg(RC);
2381 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2382 TII.get(Opc), DestReg), SrcReg);
2383 SrcReg = DestReg;
2384 }
2385
2386 updateValueMap(II, SrcReg);
2387 return true;
2388 }
2389 case Intrinsic::memcpy: {
2390 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2391 // Don't handle volatile or variable length memcpys.
2392 if (MCI->isVolatile())
2393 return false;
2394
2395 if (isa<ConstantInt>(MCI->getLength())) {
2396 // Small memcpy's are common enough that we want to do them
2397 // without a call if possible.
2398 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2399 if (IsMemcpySmall(Len)) {
2400 X86AddressMode DestAM, SrcAM;
2401 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2402 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2403 return false;
2404 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2405 return true;
2406 }
2407 }
2408
2409 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2410 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2411 return false;
2412
2413 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2414 return false;
2415
Pete Cooper67cf9a72015-11-19 05:56:52 +00002416 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002417 }
2418 case Intrinsic::memset: {
2419 const MemSetInst *MSI = cast<MemSetInst>(II);
2420
2421 if (MSI->isVolatile())
2422 return false;
2423
2424 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2425 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2426 return false;
2427
2428 if (MSI->getDestAddressSpace() > 255)
2429 return false;
2430
Pete Cooper67cf9a72015-11-19 05:56:52 +00002431 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002432 }
2433 case Intrinsic::stackprotector: {
2434 // Emit code to store the stack guard onto the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002435 EVT PtrTy = TLI.getPointerTy(DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002436
2437 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2438 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2439
2440 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2441
2442 // Grab the frame index.
2443 X86AddressMode AM;
2444 if (!X86SelectAddress(Slot, AM)) return false;
2445 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2446 return true;
2447 }
2448 case Intrinsic::dbg_declare: {
2449 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2450 X86AddressMode AM;
2451 assert(DI->getAddress() && "Null address should be checked earlier!");
2452 if (!X86SelectAddress(DI->getAddress(), AM))
2453 return false;
2454 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2455 // FIXME may need to add RegState::Debug to any registers produced,
2456 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002457 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2458 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002459 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2460 .addImm(0)
2461 .addMetadata(DI->getVariable())
2462 .addMetadata(DI->getExpression());
2463 return true;
2464 }
2465 case Intrinsic::trap: {
2466 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2467 return true;
2468 }
2469 case Intrinsic::sqrt: {
2470 if (!Subtarget->hasSSE1())
2471 return false;
2472
2473 Type *RetTy = II->getCalledFunction()->getReturnType();
2474
2475 MVT VT;
2476 if (!isTypeLegal(RetTy, VT))
2477 return false;
2478
2479 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2480 // is not generated by FastISel yet.
2481 // FIXME: Update this code once tablegen can handle it.
2482 static const unsigned SqrtOpc[2][2] = {
2483 {X86::SQRTSSr, X86::VSQRTSSr},
2484 {X86::SQRTSDr, X86::VSQRTSDr}
2485 };
2486 bool HasAVX = Subtarget->hasAVX();
2487 unsigned Opc;
2488 const TargetRegisterClass *RC;
2489 switch (VT.SimpleTy) {
2490 default: return false;
2491 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2492 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2493 }
2494
2495 const Value *SrcVal = II->getArgOperand(0);
2496 unsigned SrcReg = getRegForValue(SrcVal);
2497
2498 if (SrcReg == 0)
2499 return false;
2500
2501 unsigned ImplicitDefReg = 0;
2502 if (HasAVX) {
2503 ImplicitDefReg = createResultReg(RC);
2504 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2505 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2506 }
2507
2508 unsigned ResultReg = createResultReg(RC);
2509 MachineInstrBuilder MIB;
2510 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2511 ResultReg);
2512
2513 if (ImplicitDefReg)
2514 MIB.addReg(ImplicitDefReg);
2515
2516 MIB.addReg(SrcReg);
2517
2518 updateValueMap(II, ResultReg);
2519 return true;
2520 }
2521 case Intrinsic::sadd_with_overflow:
2522 case Intrinsic::uadd_with_overflow:
2523 case Intrinsic::ssub_with_overflow:
2524 case Intrinsic::usub_with_overflow:
2525 case Intrinsic::smul_with_overflow:
2526 case Intrinsic::umul_with_overflow: {
2527 // This implements the basic lowering of the xalu with overflow intrinsics
2528 // into add/sub/mul followed by either seto or setb.
2529 const Function *Callee = II->getCalledFunction();
2530 auto *Ty = cast<StructType>(Callee->getReturnType());
2531 Type *RetTy = Ty->getTypeAtIndex(0U);
2532 Type *CondTy = Ty->getTypeAtIndex(1);
2533
2534 MVT VT;
2535 if (!isTypeLegal(RetTy, VT))
2536 return false;
2537
2538 if (VT < MVT::i8 || VT > MVT::i64)
2539 return false;
2540
2541 const Value *LHS = II->getArgOperand(0);
2542 const Value *RHS = II->getArgOperand(1);
2543
2544 // Canonicalize immediate to the RHS.
2545 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2546 isCommutativeIntrinsic(II))
2547 std::swap(LHS, RHS);
2548
2549 bool UseIncDec = false;
2550 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2551 UseIncDec = true;
2552
2553 unsigned BaseOpc, CondOpc;
2554 switch (II->getIntrinsicID()) {
2555 default: llvm_unreachable("Unexpected intrinsic!");
2556 case Intrinsic::sadd_with_overflow:
2557 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2558 CondOpc = X86::SETOr;
2559 break;
2560 case Intrinsic::uadd_with_overflow:
2561 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2562 case Intrinsic::ssub_with_overflow:
2563 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2564 CondOpc = X86::SETOr;
2565 break;
2566 case Intrinsic::usub_with_overflow:
2567 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2568 case Intrinsic::smul_with_overflow:
2569 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2570 case Intrinsic::umul_with_overflow:
2571 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2572 }
2573
2574 unsigned LHSReg = getRegForValue(LHS);
2575 if (LHSReg == 0)
2576 return false;
2577 bool LHSIsKill = hasTrivialKill(LHS);
2578
2579 unsigned ResultReg = 0;
2580 // Check if we have an immediate version.
2581 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2582 static const unsigned Opc[2][4] = {
2583 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2584 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2585 };
2586
2587 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2588 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2589 bool IsDec = BaseOpc == X86ISD::DEC;
2590 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2591 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2592 .addReg(LHSReg, getKillRegState(LHSIsKill));
2593 } else
2594 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2595 CI->getZExtValue());
2596 }
2597
2598 unsigned RHSReg;
2599 bool RHSIsKill;
2600 if (!ResultReg) {
2601 RHSReg = getRegForValue(RHS);
2602 if (RHSReg == 0)
2603 return false;
2604 RHSIsKill = hasTrivialKill(RHS);
2605 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2606 RHSIsKill);
2607 }
2608
2609 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2610 // it manually.
2611 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2612 static const unsigned MULOpc[] =
2613 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2614 static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2615 // First copy the first operand into RAX, which is an implicit input to
2616 // the X86::MUL*r instruction.
2617 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2618 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2619 .addReg(LHSReg, getKillRegState(LHSIsKill));
2620 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2621 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2622 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2623 static const unsigned MULOpc[] =
2624 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2625 if (VT == MVT::i8) {
2626 // Copy the first operand into AL, which is an implicit input to the
2627 // X86::IMUL8r instruction.
2628 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2629 TII.get(TargetOpcode::COPY), X86::AL)
2630 .addReg(LHSReg, getKillRegState(LHSIsKill));
2631 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2632 RHSIsKill);
2633 } else
2634 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2635 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2636 RHSReg, RHSIsKill);
2637 }
2638
2639 if (!ResultReg)
2640 return false;
2641
2642 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2643 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2645 ResultReg2);
2646
2647 updateValueMap(II, ResultReg, 2);
2648 return true;
2649 }
2650 case Intrinsic::x86_sse_cvttss2si:
2651 case Intrinsic::x86_sse_cvttss2si64:
2652 case Intrinsic::x86_sse2_cvttsd2si:
2653 case Intrinsic::x86_sse2_cvttsd2si64: {
2654 bool IsInputDouble;
2655 switch (II->getIntrinsicID()) {
2656 default: llvm_unreachable("Unexpected intrinsic.");
2657 case Intrinsic::x86_sse_cvttss2si:
2658 case Intrinsic::x86_sse_cvttss2si64:
2659 if (!Subtarget->hasSSE1())
2660 return false;
2661 IsInputDouble = false;
2662 break;
2663 case Intrinsic::x86_sse2_cvttsd2si:
2664 case Intrinsic::x86_sse2_cvttsd2si64:
2665 if (!Subtarget->hasSSE2())
2666 return false;
2667 IsInputDouble = true;
2668 break;
2669 }
2670
2671 Type *RetTy = II->getCalledFunction()->getReturnType();
2672 MVT VT;
2673 if (!isTypeLegal(RetTy, VT))
2674 return false;
2675
2676 static const unsigned CvtOpc[2][2][2] = {
2677 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2678 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2679 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2680 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2681 };
2682 bool HasAVX = Subtarget->hasAVX();
2683 unsigned Opc;
2684 switch (VT.SimpleTy) {
2685 default: llvm_unreachable("Unexpected result type.");
2686 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2687 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2688 }
2689
2690 // Check if we can fold insertelement instructions into the convert.
2691 const Value *Op = II->getArgOperand(0);
2692 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2693 const Value *Index = IE->getOperand(2);
2694 if (!isa<ConstantInt>(Index))
2695 break;
2696 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2697
2698 if (Idx == 0) {
2699 Op = IE->getOperand(1);
2700 break;
2701 }
2702 Op = IE->getOperand(0);
2703 }
2704
2705 unsigned Reg = getRegForValue(Op);
2706 if (Reg == 0)
2707 return false;
2708
2709 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2711 .addReg(Reg);
2712
2713 updateValueMap(II, ResultReg);
2714 return true;
2715 }
2716 }
2717}
2718
2719bool X86FastISel::fastLowerArguments() {
2720 if (!FuncInfo.CanLowerReturn)
2721 return false;
2722
2723 const Function *F = FuncInfo.Fn;
2724 if (F->isVarArg())
2725 return false;
2726
2727 CallingConv::ID CC = F->getCallingConv();
2728 if (CC != CallingConv::C)
2729 return false;
2730
2731 if (Subtarget->isCallingConvWin64(CC))
2732 return false;
2733
2734 if (!Subtarget->is64Bit())
2735 return false;
2736
2737 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2738 unsigned GPRCnt = 0;
2739 unsigned FPRCnt = 0;
2740 unsigned Idx = 0;
2741 for (auto const &Arg : F->args()) {
2742 // The first argument is at index 1.
2743 ++Idx;
2744 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2745 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2746 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2747 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2748 return false;
2749
2750 Type *ArgTy = Arg.getType();
2751 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2752 return false;
2753
Mehdi Amini44ede332015-07-09 02:09:04 +00002754 EVT ArgVT = TLI.getValueType(DL, ArgTy);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002755 if (!ArgVT.isSimple()) return false;
2756 switch (ArgVT.getSimpleVT().SimpleTy) {
2757 default: return false;
2758 case MVT::i32:
2759 case MVT::i64:
2760 ++GPRCnt;
2761 break;
2762 case MVT::f32:
2763 case MVT::f64:
2764 if (!Subtarget->hasSSE1())
2765 return false;
2766 ++FPRCnt;
2767 break;
2768 }
2769
2770 if (GPRCnt > 6)
2771 return false;
2772
2773 if (FPRCnt > 8)
2774 return false;
2775 }
2776
2777 static const MCPhysReg GPR32ArgRegs[] = {
2778 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2779 };
2780 static const MCPhysReg GPR64ArgRegs[] = {
2781 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2782 };
2783 static const MCPhysReg XMMArgRegs[] = {
2784 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2785 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2786 };
2787
2788 unsigned GPRIdx = 0;
2789 unsigned FPRIdx = 0;
2790 for (auto const &Arg : F->args()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002791 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002792 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2793 unsigned SrcReg;
2794 switch (VT.SimpleTy) {
2795 default: llvm_unreachable("Unexpected value type.");
2796 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2797 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2798 case MVT::f32: // fall-through
2799 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2800 }
2801 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2802 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2803 // Without this, EmitLiveInCopies may eliminate the livein if its only
2804 // use is a bitcast (which isn't turned into an instruction).
2805 unsigned ResultReg = createResultReg(RC);
2806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2807 TII.get(TargetOpcode::COPY), ResultReg)
2808 .addReg(DstReg, getKillRegState(true));
2809 updateValueMap(&Arg, ResultReg);
2810 }
2811 return true;
2812}
2813
2814static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2815 CallingConv::ID CC,
2816 ImmutableCallSite *CS) {
2817 if (Subtarget->is64Bit())
2818 return 0;
2819 if (Subtarget->getTargetTriple().isOSMSVCRT())
2820 return 0;
2821 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2822 CC == CallingConv::HiPE)
2823 return 0;
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002824
2825 if (CS)
2826 if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00002827 CS->paramHasAttr(1, Attribute::InReg) || Subtarget->isTargetMCU())
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002828 return 0;
2829
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002830 return 4;
2831}
2832
2833bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2834 auto &OutVals = CLI.OutVals;
2835 auto &OutFlags = CLI.OutFlags;
2836 auto &OutRegs = CLI.OutRegs;
2837 auto &Ins = CLI.Ins;
2838 auto &InRegs = CLI.InRegs;
2839 CallingConv::ID CC = CLI.CallConv;
2840 bool &IsTailCall = CLI.IsTailCall;
2841 bool IsVarArg = CLI.IsVarArg;
2842 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00002843 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002844
2845 bool Is64Bit = Subtarget->is64Bit();
2846 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
2847
2848 // Handle only C, fastcc, and webkit_js calling conventions for now.
2849 switch (CC) {
2850 default: return false;
2851 case CallingConv::C:
2852 case CallingConv::Fast:
2853 case CallingConv::WebKit_JS:
2854 case CallingConv::X86_FastCall:
2855 case CallingConv::X86_64_Win64:
2856 case CallingConv::X86_64_SysV:
2857 break;
2858 }
2859
2860 // Allow SelectionDAG isel to handle tail calls.
2861 if (IsTailCall)
2862 return false;
2863
2864 // fastcc with -tailcallopt is intended to provide a guaranteed
2865 // tail call optimization. Fastisel doesn't know how to do that.
2866 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
2867 return false;
2868
2869 // Don't know how to handle Win64 varargs yet. Nothing special needed for
2870 // x86-32. Special handling for x86-64 is implemented.
2871 if (IsVarArg && IsWin64)
2872 return false;
2873
2874 // Don't know about inalloca yet.
2875 if (CLI.CS && CLI.CS->hasInAllocaArgument())
2876 return false;
2877
2878 // Fast-isel doesn't know about callee-pop yet.
2879 if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
2880 TM.Options.GuaranteedTailCallOpt))
2881 return false;
2882
2883 SmallVector<MVT, 16> OutVTs;
2884 SmallVector<unsigned, 16> ArgRegs;
2885
2886 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
2887 // instruction. This is safe because it is common to all FastISel supported
2888 // calling conventions on x86.
2889 for (int i = 0, e = OutVals.size(); i != e; ++i) {
2890 Value *&Val = OutVals[i];
2891 ISD::ArgFlagsTy Flags = OutFlags[i];
2892 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
2893 if (CI->getBitWidth() < 32) {
2894 if (Flags.isSExt())
2895 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
2896 else
2897 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
2898 }
2899 }
2900
2901 // Passing bools around ends up doing a trunc to i1 and passing it.
2902 // Codegen this as an argument + "and 1".
2903 MVT VT;
2904 auto *TI = dyn_cast<TruncInst>(Val);
2905 unsigned ResultReg;
2906 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
2907 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
2908 TI->hasOneUse()) {
2909 Value *PrevVal = TI->getOperand(0);
2910 ResultReg = getRegForValue(PrevVal);
2911
2912 if (!ResultReg)
2913 return false;
2914
2915 if (!isTypeLegal(PrevVal->getType(), VT))
2916 return false;
2917
2918 ResultReg =
2919 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
2920 } else {
2921 if (!isTypeLegal(Val->getType(), VT))
2922 return false;
2923 ResultReg = getRegForValue(Val);
2924 }
2925
2926 if (!ResultReg)
2927 return false;
2928
2929 ArgRegs.push_back(ResultReg);
2930 OutVTs.push_back(VT);
2931 }
2932
2933 // Analyze operands of the call, assigning locations to each operand.
2934 SmallVector<CCValAssign, 16> ArgLocs;
2935 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
2936
2937 // Allocate shadow area for Win64
2938 if (IsWin64)
2939 CCInfo.AllocateStack(32, 8);
2940
2941 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
2942
2943 // Get a count of how many bytes are to be pushed on the stack.
Jeroen Ketema740f9d72015-09-29 10:12:57 +00002944 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002945
2946 // Issue CALLSEQ_START
2947 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002949 .addImm(NumBytes).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002950
2951 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00002952 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002953 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2954 CCValAssign const &VA = ArgLocs[i];
2955 const Value *ArgVal = OutVals[VA.getValNo()];
2956 MVT ArgVT = OutVTs[VA.getValNo()];
2957
2958 if (ArgVT == MVT::x86mmx)
2959 return false;
2960
2961 unsigned ArgReg = ArgRegs[VA.getValNo()];
2962
2963 // Promote the value if needed.
2964 switch (VA.getLocInfo()) {
2965 case CCValAssign::Full: break;
2966 case CCValAssign::SExt: {
2967 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2968 "Unexpected extend");
2969 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2970 ArgVT, ArgReg);
2971 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
2972 ArgVT = VA.getLocVT();
2973 break;
2974 }
2975 case CCValAssign::ZExt: {
2976 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2977 "Unexpected extend");
2978 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2979 ArgVT, ArgReg);
2980 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
2981 ArgVT = VA.getLocVT();
2982 break;
2983 }
2984 case CCValAssign::AExt: {
2985 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2986 "Unexpected extend");
2987 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
2988 ArgVT, ArgReg);
2989 if (!Emitted)
2990 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2991 ArgVT, ArgReg);
2992 if (!Emitted)
2993 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2994 ArgVT, ArgReg);
2995
2996 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
2997 ArgVT = VA.getLocVT();
2998 break;
2999 }
3000 case CCValAssign::BCvt: {
3001 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3002 /*TODO: Kill=*/false);
3003 assert(ArgReg && "Failed to emit a bitcast!");
3004 ArgVT = VA.getLocVT();
3005 break;
3006 }
3007 case CCValAssign::VExt:
3008 // VExt has not been implemented, so this should be impossible to reach
3009 // for now. However, fallback to Selection DAG isel once implemented.
3010 return false;
3011 case CCValAssign::AExtUpper:
3012 case CCValAssign::SExtUpper:
3013 case CCValAssign::ZExtUpper:
3014 case CCValAssign::FPExt:
3015 llvm_unreachable("Unexpected loc info!");
3016 case CCValAssign::Indirect:
3017 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3018 // support this.
3019 return false;
3020 }
3021
3022 if (VA.isRegLoc()) {
3023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3024 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3025 OutRegs.push_back(VA.getLocReg());
3026 } else {
3027 assert(VA.isMemLoc());
3028
3029 // Don't emit stores for undef values.
3030 if (isa<UndefValue>(ArgVal))
3031 continue;
3032
3033 unsigned LocMemOffset = VA.getLocMemOffset();
3034 X86AddressMode AM;
3035 AM.Base.Reg = RegInfo->getStackRegister();
3036 AM.Disp = LocMemOffset;
3037 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3038 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3039 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003040 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3041 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003042 if (Flags.isByVal()) {
3043 X86AddressMode SrcAM;
3044 SrcAM.Base.Reg = ArgReg;
3045 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3046 return false;
3047 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3048 // If this is a really simple value, emit this with the Value* version
3049 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3050 // as it can cause us to reevaluate the argument.
3051 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3052 return false;
3053 } else {
3054 bool ValIsKill = hasTrivialKill(ArgVal);
3055 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3056 return false;
3057 }
3058 }
3059 }
3060
3061 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3062 // GOT pointer.
3063 if (Subtarget->isPICStyleGOT()) {
3064 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3066 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3067 }
3068
3069 if (Is64Bit && IsVarArg && !IsWin64) {
3070 // From AMD64 ABI document:
3071 // For calls that may call functions that use varargs or stdargs
3072 // (prototype-less calls or calls to functions containing ellipsis (...) in
3073 // the declaration) %al is used as hidden argument to specify the number
3074 // of SSE registers used. The contents of %al do not need to match exactly
3075 // the number of registers, but must be an ubound on the number of SSE
3076 // registers used and is in the range 0 - 8 inclusive.
3077
3078 // Count the number of XMM registers allocated.
3079 static const MCPhysReg XMMArgRegs[] = {
3080 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3081 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3082 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003083 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003084 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3085 && "SSE registers cannot be used when SSE is disabled");
3086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3087 X86::AL).addImm(NumXMMRegs);
3088 }
3089
3090 // Materialize callee address in a register. FIXME: GV address can be
3091 // handled with a CALLpcrel32 instead.
3092 X86AddressMode CalleeAM;
3093 if (!X86SelectCallAddress(Callee, CalleeAM))
3094 return false;
3095
3096 unsigned CalleeOp = 0;
3097 const GlobalValue *GV = nullptr;
3098 if (CalleeAM.GV != nullptr) {
3099 GV = CalleeAM.GV;
3100 } else if (CalleeAM.Base.Reg != 0) {
3101 CalleeOp = CalleeAM.Base.Reg;
3102 } else
3103 return false;
3104
3105 // Issue the call.
3106 MachineInstrBuilder MIB;
3107 if (CalleeOp) {
3108 // Register-indirect call.
3109 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3110 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3111 .addReg(CalleeOp);
3112 } else {
3113 // Direct call.
3114 assert(GV && "Not a direct call");
3115 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3116
3117 // See if we need any target-specific flags on the GV operand.
3118 unsigned char OpFlags = 0;
3119
3120 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3121 // external symbols most go through the PLT in PIC mode. If the symbol
3122 // has hidden or protected visibility, or if it is static or local, then
3123 // we don't need to use the PLT - we can directly call it.
3124 if (Subtarget->isTargetELF() &&
3125 TM.getRelocationModel() == Reloc::PIC_ &&
3126 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3127 OpFlags = X86II::MO_PLT;
3128 } else if (Subtarget->isPICStyleStubAny() &&
Peter Collingbourne6a9d1772015-07-05 20:52:35 +00003129 !GV->isStrongDefinitionForLinker() &&
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003130 (!Subtarget->getTargetTriple().isMacOSX() ||
3131 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3132 // PC-relative references to external symbols should go through $stub,
3133 // unless we're building with the leopard linker or later, which
3134 // automatically synthesizes these stubs.
3135 OpFlags = X86II::MO_DARWIN_STUB;
3136 }
3137
3138 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003139 if (Symbol)
3140 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003141 else
3142 MIB.addGlobalAddress(GV, 0, OpFlags);
3143 }
3144
3145 // Add a register mask operand representing the call-preserved registers.
3146 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003147 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003148
3149 // Add an implicit use GOT pointer in EBX.
3150 if (Subtarget->isPICStyleGOT())
3151 MIB.addReg(X86::EBX, RegState::Implicit);
3152
3153 if (Is64Bit && IsVarArg && !IsWin64)
3154 MIB.addReg(X86::AL, RegState::Implicit);
3155
3156 // Add implicit physical register uses to the call.
3157 for (auto Reg : OutRegs)
3158 MIB.addReg(Reg, RegState::Implicit);
3159
3160 // Issue CALLSEQ_END
3161 unsigned NumBytesForCalleeToPop =
3162 computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3163 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3164 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3165 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3166
3167 // Now handle call return values.
3168 SmallVector<CCValAssign, 16> RVLocs;
3169 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3170 CLI.RetTy->getContext());
3171 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3172
3173 // Copy all of the result registers out of their specified physreg.
3174 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3175 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3176 CCValAssign &VA = RVLocs[i];
3177 EVT CopyVT = VA.getValVT();
3178 unsigned CopyReg = ResultReg + i;
3179
3180 // If this is x86-64, and we disabled SSE, we can't return FP values
3181 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3182 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3183 report_fatal_error("SSE register return with SSE disabled");
3184 }
3185
3186 // If we prefer to use the value in xmm registers, copy it out as f80 and
3187 // use a truncate to move it from fp stack reg to xmm reg.
3188 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3189 isScalarFPTypeInSSEReg(VA.getValVT())) {
3190 CopyVT = MVT::f80;
3191 CopyReg = createResultReg(&X86::RFP80RegClass);
3192 }
3193
3194 // Copy out the result.
3195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3196 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3197 InRegs.push_back(VA.getLocReg());
3198
3199 // Round the f80 to the right size, which also moves it to the appropriate
3200 // xmm register. This is accomplished by storing the f80 value in memory
3201 // and then loading it back.
3202 if (CopyVT != VA.getValVT()) {
3203 EVT ResVT = VA.getValVT();
3204 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3205 unsigned MemSize = ResVT.getSizeInBits()/8;
3206 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3207 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3208 TII.get(Opc)), FI)
3209 .addReg(CopyReg);
3210 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3211 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3212 TII.get(Opc), ResultReg + i), FI);
3213 }
3214 }
3215
3216 CLI.ResultReg = ResultReg;
3217 CLI.NumResultRegs = RVLocs.size();
3218 CLI.Call = MIB;
3219
3220 return true;
3221}
3222
3223bool
3224X86FastISel::fastSelectInstruction(const Instruction *I) {
3225 switch (I->getOpcode()) {
3226 default: break;
3227 case Instruction::Load:
3228 return X86SelectLoad(I);
3229 case Instruction::Store:
3230 return X86SelectStore(I);
3231 case Instruction::Ret:
3232 return X86SelectRet(I);
3233 case Instruction::ICmp:
3234 case Instruction::FCmp:
3235 return X86SelectCmp(I);
3236 case Instruction::ZExt:
3237 return X86SelectZExt(I);
3238 case Instruction::Br:
3239 return X86SelectBranch(I);
3240 case Instruction::LShr:
3241 case Instruction::AShr:
3242 case Instruction::Shl:
3243 return X86SelectShift(I);
3244 case Instruction::SDiv:
3245 case Instruction::UDiv:
3246 case Instruction::SRem:
3247 case Instruction::URem:
3248 return X86SelectDivRem(I);
3249 case Instruction::Select:
3250 return X86SelectSelect(I);
3251 case Instruction::Trunc:
3252 return X86SelectTrunc(I);
3253 case Instruction::FPExt:
3254 return X86SelectFPExt(I);
3255 case Instruction::FPTrunc:
3256 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003257 case Instruction::SIToFP:
3258 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003259 case Instruction::IntToPtr: // Deliberate fall-through.
3260 case Instruction::PtrToInt: {
Mehdi Amini44ede332015-07-09 02:09:04 +00003261 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3262 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003263 if (DstVT.bitsGT(SrcVT))
3264 return X86SelectZExt(I);
3265 if (DstVT.bitsLT(SrcVT))
3266 return X86SelectTrunc(I);
3267 unsigned Reg = getRegForValue(I->getOperand(0));
3268 if (Reg == 0) return false;
3269 updateValueMap(I, Reg);
3270 return true;
3271 }
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003272 case Instruction::BitCast: {
3273 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3274 if (!Subtarget->hasSSE2())
3275 return false;
3276
3277 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3278 EVT DstVT = TLI.getValueType(DL, I->getType());
3279
3280 if (!SrcVT.isSimple() || !DstVT.isSimple())
3281 return false;
3282
3283 if (!SrcVT.is128BitVector() &&
3284 !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3285 return false;
3286
3287 unsigned Reg = getRegForValue(I->getOperand(0));
3288 if (Reg == 0)
3289 return false;
3290
3291 // No instruction is needed for conversion. Reuse the register used by
3292 // the fist operand.
3293 updateValueMap(I, Reg);
3294 return true;
3295 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003296 }
3297
3298 return false;
3299}
3300
3301unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3302 if (VT > MVT::i64)
3303 return 0;
3304
3305 uint64_t Imm = CI->getZExtValue();
3306 if (Imm == 0) {
3307 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3308 switch (VT.SimpleTy) {
3309 default: llvm_unreachable("Unexpected value type");
3310 case MVT::i1:
3311 case MVT::i8:
3312 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3313 X86::sub_8bit);
3314 case MVT::i16:
3315 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3316 X86::sub_16bit);
3317 case MVT::i32:
3318 return SrcReg;
3319 case MVT::i64: {
3320 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3321 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3322 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3323 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3324 return ResultReg;
3325 }
3326 }
3327 }
3328
3329 unsigned Opc = 0;
3330 switch (VT.SimpleTy) {
3331 default: llvm_unreachable("Unexpected value type");
3332 case MVT::i1: VT = MVT::i8; // fall-through
3333 case MVT::i8: Opc = X86::MOV8ri; break;
3334 case MVT::i16: Opc = X86::MOV16ri; break;
3335 case MVT::i32: Opc = X86::MOV32ri; break;
3336 case MVT::i64: {
3337 if (isUInt<32>(Imm))
3338 Opc = X86::MOV32ri;
3339 else if (isInt<32>(Imm))
3340 Opc = X86::MOV64ri32;
3341 else
3342 Opc = X86::MOV64ri;
3343 break;
3344 }
3345 }
3346 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3347 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3348 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3349 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3350 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3351 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3352 return ResultReg;
3353 }
3354 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3355}
3356
3357unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3358 if (CFP->isNullValue())
3359 return fastMaterializeFloatZero(CFP);
3360
3361 // Can't handle alternate code models yet.
3362 CodeModel::Model CM = TM.getCodeModel();
3363 if (CM != CodeModel::Small && CM != CodeModel::Large)
3364 return 0;
3365
3366 // Get opcode and regclass of the output for the given load instruction.
3367 unsigned Opc = 0;
3368 const TargetRegisterClass *RC = nullptr;
3369 switch (VT.SimpleTy) {
3370 default: return 0;
3371 case MVT::f32:
3372 if (X86ScalarSSEf32) {
3373 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3374 RC = &X86::FR32RegClass;
3375 } else {
3376 Opc = X86::LD_Fp32m;
3377 RC = &X86::RFP32RegClass;
3378 }
3379 break;
3380 case MVT::f64:
3381 if (X86ScalarSSEf64) {
3382 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3383 RC = &X86::FR64RegClass;
3384 } else {
3385 Opc = X86::LD_Fp64m;
3386 RC = &X86::RFP64RegClass;
3387 }
3388 break;
3389 case MVT::f80:
3390 // No f80 support yet.
3391 return 0;
3392 }
3393
3394 // MachineConstantPool wants an explicit alignment.
3395 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3396 if (Align == 0) {
3397 // Alignment of vector types. FIXME!
3398 Align = DL.getTypeAllocSize(CFP->getType());
3399 }
3400
3401 // x86-32 PIC requires a PIC base register for constant pools.
3402 unsigned PICBase = 0;
3403 unsigned char OpFlag = 0;
3404 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
3405 OpFlag = X86II::MO_PIC_BASE_OFFSET;
3406 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3407 } else if (Subtarget->isPICStyleGOT()) {
3408 OpFlag = X86II::MO_GOTOFF;
3409 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3410 } else if (Subtarget->isPICStyleRIPRel() &&
3411 TM.getCodeModel() == CodeModel::Small) {
3412 PICBase = X86::RIP;
3413 }
3414
3415 // Create the load from the constant pool.
3416 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3417 unsigned ResultReg = createResultReg(RC);
3418
3419 if (CM == CodeModel::Large) {
3420 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3421 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3422 AddrReg)
3423 .addConstantPoolIndex(CPI, 0, OpFlag);
3424 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3425 TII.get(Opc), ResultReg);
3426 addDirectMem(MIB, AddrReg);
3427 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003428 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3429 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003430 MIB->addMemOperand(*FuncInfo.MF, MMO);
3431 return ResultReg;
3432 }
3433
3434 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3435 TII.get(Opc), ResultReg),
3436 CPI, PICBase, OpFlag);
3437 return ResultReg;
3438}
3439
3440unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3441 // Can't handle alternate code models yet.
3442 if (TM.getCodeModel() != CodeModel::Small)
3443 return 0;
3444
3445 // Materialize addresses with LEA/MOV instructions.
3446 X86AddressMode AM;
3447 if (X86SelectAddress(GV, AM)) {
3448 // If the expression is just a basereg, then we're done, otherwise we need
3449 // to emit an LEA.
3450 if (AM.BaseType == X86AddressMode::RegBase &&
3451 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3452 return AM.Base.Reg;
3453
3454 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3455 if (TM.getRelocationModel() == Reloc::Static &&
Mehdi Amini44ede332015-07-09 02:09:04 +00003456 TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003457 // The displacement code could be more than 32 bits away so we need to use
3458 // an instruction with a 64 bit immediate
3459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3460 ResultReg)
3461 .addGlobalAddress(GV);
3462 } else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003463 unsigned Opc =
3464 TLI.getPointerTy(DL) == MVT::i32
3465 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3466 : X86::LEA64r;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003467 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3468 TII.get(Opc), ResultReg), AM);
3469 }
3470 return ResultReg;
3471 }
3472 return 0;
3473}
3474
3475unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003476 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003477
3478 // Only handle simple types.
3479 if (!CEVT.isSimple())
3480 return 0;
3481 MVT VT = CEVT.getSimpleVT();
3482
3483 if (const auto *CI = dyn_cast<ConstantInt>(C))
3484 return X86MaterializeInt(CI, VT);
3485 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3486 return X86MaterializeFP(CFP, VT);
3487 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3488 return X86MaterializeGV(GV, VT);
3489
3490 return 0;
3491}
3492
3493unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3494 // Fail on dynamic allocas. At this point, getRegForValue has already
3495 // checked its CSE maps, so if we're here trying to handle a dynamic
3496 // alloca, we're not going to succeed. X86SelectAddress has a
3497 // check for dynamic allocas, because it's called directly from
3498 // various places, but targetMaterializeAlloca also needs a check
3499 // in order to avoid recursion between getRegForValue,
3500 // X86SelectAddrss, and targetMaterializeAlloca.
3501 if (!FuncInfo.StaticAllocaMap.count(C))
3502 return 0;
3503 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3504
3505 X86AddressMode AM;
3506 if (!X86SelectAddress(C, AM))
3507 return 0;
Mehdi Amini44ede332015-07-09 02:09:04 +00003508 unsigned Opc =
3509 TLI.getPointerTy(DL) == MVT::i32
3510 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3511 : X86::LEA64r;
3512 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003513 unsigned ResultReg = createResultReg(RC);
3514 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3515 TII.get(Opc), ResultReg), AM);
3516 return ResultReg;
3517}
3518
3519unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3520 MVT VT;
3521 if (!isTypeLegal(CF->getType(), VT))
3522 return 0;
3523
3524 // Get opcode and regclass for the given zero.
3525 unsigned Opc = 0;
3526 const TargetRegisterClass *RC = nullptr;
3527 switch (VT.SimpleTy) {
3528 default: return 0;
3529 case MVT::f32:
3530 if (X86ScalarSSEf32) {
3531 Opc = X86::FsFLD0SS;
3532 RC = &X86::FR32RegClass;
3533 } else {
3534 Opc = X86::LD_Fp032;
3535 RC = &X86::RFP32RegClass;
3536 }
3537 break;
3538 case MVT::f64:
3539 if (X86ScalarSSEf64) {
3540 Opc = X86::FsFLD0SD;
3541 RC = &X86::FR64RegClass;
3542 } else {
3543 Opc = X86::LD_Fp064;
3544 RC = &X86::RFP64RegClass;
3545 }
3546 break;
3547 case MVT::f80:
3548 // No f80 support yet.
3549 return 0;
3550 }
3551
3552 unsigned ResultReg = createResultReg(RC);
3553 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3554 return ResultReg;
3555}
3556
3557
3558bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3559 const LoadInst *LI) {
3560 const Value *Ptr = LI->getPointerOperand();
3561 X86AddressMode AM;
3562 if (!X86SelectAddress(Ptr, AM))
3563 return false;
3564
3565 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3566
3567 unsigned Size = DL.getTypeAllocSize(LI->getType());
3568 unsigned Alignment = LI->getAlignment();
3569
3570 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3571 Alignment = DL.getABITypeAlignment(LI->getType());
3572
3573 SmallVector<MachineOperand, 8> AddrOps;
3574 AM.getFullAddress(AddrOps);
3575
Keno Fischere70b31f2015-06-08 20:09:58 +00003576 MachineInstr *Result = XII.foldMemoryOperandImpl(
3577 *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3578 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003579 if (!Result)
3580 return false;
3581
Pete Cooperd31583d2015-05-06 21:37:19 +00003582 // The index register could be in the wrong register class. Unfortunately,
3583 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3584 // to just look at OpNo + the offset to the index reg. We actually need to
3585 // scan the instruction to find the index reg and see if its the correct reg
3586 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003587 unsigned OperandNo = 0;
3588 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3589 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3590 MachineOperand &MO = *I;
3591 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003592 continue;
3593 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003594 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003595 MO.getReg(), OperandNo);
3596 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003597 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003598 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003599 }
3600
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003601 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003602 MI->eraseFromParent();
3603 return true;
3604}
3605
3606
3607namespace llvm {
3608 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3609 const TargetLibraryInfo *libInfo) {
3610 return new X86FastISel(funcInfo, libInfo);
3611 }
3612}