blob: 4ac5292190ce49a015d3351094a4293a06f54c45 [file] [log] [blame]
Chris Lattner5a945e32004-01-12 21:13:12 +00001//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner2f7c9632001-06-06 20:29:01 +00009//
Chris Lattner5a945e32004-01-12 21:13:12 +000010// This file implements folding of constants for LLVM. This implements the
11// (internal) ConstantFolding.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
Chris Lattner2f7c9632001-06-06 20:29:01 +000013//
Chris Lattner1dd054c2004-01-12 22:07:24 +000014// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
Chris Lattner2f7c9632001-06-06 20:29:01 +000019//===----------------------------------------------------------------------===//
20
Chris Lattner5a945e32004-01-12 21:13:12 +000021#include "ConstantFolding.h"
Chris Lattner6ff6cea2004-01-12 21:02:29 +000022#include "llvm/Constants.h"
Chris Lattnera9eddae2004-02-22 06:25:38 +000023#include "llvm/Instructions.h"
Chris Lattner1f0049c2003-04-17 19:24:18 +000024#include "llvm/DerivedTypes.h"
Chris Lattnerea0789c2004-03-08 06:17:35 +000025#include "llvm/Function.h"
Chris Lattnerad70d4a2003-11-25 21:21:46 +000026#include "llvm/Support/GetElementPtrTypeIterator.h"
Jeff Cohen4e3aede2005-05-03 03:13:01 +000027#include <limits>
Chris Lattner0a144ad2002-05-03 21:41:07 +000028#include <cmath>
Chris Lattner9d9cbcf2003-11-17 19:05:17 +000029using namespace llvm;
Chris Lattner61607ee2001-09-09 21:01:20 +000030
Chris Lattner5a945e32004-01-12 21:13:12 +000031namespace {
32 struct ConstRules {
33 ConstRules() {}
Reid Spencer9c47b252005-04-24 22:27:20 +000034 virtual ~ConstRules() {}
Misha Brukmanb1c93172005-04-21 23:48:37 +000035
Chris Lattner5a945e32004-01-12 21:13:12 +000036 // Binary Operators...
37 virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
38 virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
39 virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
40 virtual Constant *div(const Constant *V1, const Constant *V2) const = 0;
41 virtual Constant *rem(const Constant *V1, const Constant *V2) const = 0;
42 virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
43 virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
44 virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
45 virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
46 virtual Constant *shr(const Constant *V1, const Constant *V2) const = 0;
47 virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
48 virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
49
50 // Casting operators.
51 virtual Constant *castToBool (const Constant *V) const = 0;
52 virtual Constant *castToSByte (const Constant *V) const = 0;
53 virtual Constant *castToUByte (const Constant *V) const = 0;
54 virtual Constant *castToShort (const Constant *V) const = 0;
55 virtual Constant *castToUShort(const Constant *V) const = 0;
56 virtual Constant *castToInt (const Constant *V) const = 0;
57 virtual Constant *castToUInt (const Constant *V) const = 0;
58 virtual Constant *castToLong (const Constant *V) const = 0;
59 virtual Constant *castToULong (const Constant *V) const = 0;
60 virtual Constant *castToFloat (const Constant *V) const = 0;
61 virtual Constant *castToDouble(const Constant *V) const = 0;
62 virtual Constant *castToPointer(const Constant *V,
63 const PointerType *Ty) const = 0;
Misha Brukmanb1c93172005-04-21 23:48:37 +000064
Chris Lattner5a945e32004-01-12 21:13:12 +000065 // ConstRules::get - Return an instance of ConstRules for the specified
66 // constant operands.
67 //
68 static ConstRules &get(const Constant *V1, const Constant *V2);
69 private:
70 ConstRules(const ConstRules &); // Do not implement
71 ConstRules &operator=(const ConstRules &); // Do not implement
72 };
73}
74
75
Chris Lattner2f7c9632001-06-06 20:29:01 +000076//===----------------------------------------------------------------------===//
77// TemplateRules Class
78//===----------------------------------------------------------------------===//
79//
Misha Brukmanb1c93172005-04-21 23:48:37 +000080// TemplateRules - Implement a subclass of ConstRules that provides all
81// operations as noops. All other rules classes inherit from this class so
82// that if functionality is needed in the future, it can simply be added here
Chris Lattner2f7c9632001-06-06 20:29:01 +000083// and to ConstRules without changing anything else...
Misha Brukmanb1c93172005-04-21 23:48:37 +000084//
Chris Lattner2f7c9632001-06-06 20:29:01 +000085// This class also provides subclasses with typesafe implementations of methods
86// so that don't have to do type casting.
87//
88template<class ArgType, class SubClassName>
89class TemplateRules : public ConstRules {
90
Reid Spencer9c47b252005-04-24 22:27:20 +000091
Chris Lattner2f7c9632001-06-06 20:29:01 +000092 //===--------------------------------------------------------------------===//
93 // Redirecting functions that cast to the appropriate types
94 //===--------------------------------------------------------------------===//
95
Misha Brukmanb1c93172005-04-21 23:48:37 +000096 virtual Constant *add(const Constant *V1, const Constant *V2) const {
97 return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner2f7c9632001-06-06 20:29:01 +000098 }
Misha Brukmanb1c93172005-04-21 23:48:37 +000099 virtual Constant *sub(const Constant *V1, const Constant *V2) const {
100 return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner2f7c9632001-06-06 20:29:01 +0000101 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000102 virtual Constant *mul(const Constant *V1, const Constant *V2) const {
103 return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner4f6031f2001-07-20 19:15:36 +0000104 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000105 virtual Constant *div(const Constant *V1, const Constant *V2) const {
106 return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2);
Chris Lattneraf259a72002-04-07 08:10:14 +0000107 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000108 virtual Constant *rem(const Constant *V1, const Constant *V2) const {
109 return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner0a144ad2002-05-03 21:41:07 +0000110 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000111 virtual Constant *op_and(const Constant *V1, const Constant *V2) const {
112 return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);
Chris Lattnere87f65e2002-07-30 16:24:28 +0000113 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000114 virtual Constant *op_or(const Constant *V1, const Constant *V2) const {
115 return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);
Chris Lattnere87f65e2002-07-30 16:24:28 +0000116 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000117 virtual Constant *op_xor(const Constant *V1, const Constant *V2) const {
118 return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);
Chris Lattnere87f65e2002-07-30 16:24:28 +0000119 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000120 virtual Constant *shl(const Constant *V1, const Constant *V2) const {
121 return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner6670d862002-05-06 03:00:54 +0000122 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000123 virtual Constant *shr(const Constant *V1, const Constant *V2) const {
124 return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2);
Chris Lattner6670d862002-05-06 03:00:54 +0000125 }
Chris Lattner4f6031f2001-07-20 19:15:36 +0000126
Misha Brukmanb1c93172005-04-21 23:48:37 +0000127 virtual Constant *lessthan(const Constant *V1, const Constant *V2) const {
Chris Lattner2f7c9632001-06-06 20:29:01 +0000128 return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
129 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000130 virtual Constant *equalto(const Constant *V1, const Constant *V2) const {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000131 return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
132 }
Chris Lattner2f7c9632001-06-06 20:29:01 +0000133
Chris Lattner55406842001-07-21 19:10:49 +0000134 // Casting operators. ick
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000135 virtual Constant *castToBool(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000136 return SubClassName::CastToBool((const ArgType*)V);
137 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000138 virtual Constant *castToSByte(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000139 return SubClassName::CastToSByte((const ArgType*)V);
140 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000141 virtual Constant *castToUByte(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000142 return SubClassName::CastToUByte((const ArgType*)V);
143 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000144 virtual Constant *castToShort(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000145 return SubClassName::CastToShort((const ArgType*)V);
146 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000147 virtual Constant *castToUShort(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000148 return SubClassName::CastToUShort((const ArgType*)V);
149 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000150 virtual Constant *castToInt(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000151 return SubClassName::CastToInt((const ArgType*)V);
152 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000153 virtual Constant *castToUInt(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000154 return SubClassName::CastToUInt((const ArgType*)V);
155 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000156 virtual Constant *castToLong(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000157 return SubClassName::CastToLong((const ArgType*)V);
158 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000159 virtual Constant *castToULong(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000160 return SubClassName::CastToULong((const ArgType*)V);
161 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000162 virtual Constant *castToFloat(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000163 return SubClassName::CastToFloat((const ArgType*)V);
164 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000165 virtual Constant *castToDouble(const Constant *V) const {
Chris Lattner55406842001-07-21 19:10:49 +0000166 return SubClassName::CastToDouble((const ArgType*)V);
167 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000168 virtual Constant *castToPointer(const Constant *V,
Chris Lattner1f0049c2003-04-17 19:24:18 +0000169 const PointerType *Ty) const {
Chris Lattner977f0042001-11-01 05:55:13 +0000170 return SubClassName::CastToPointer((const ArgType*)V, Ty);
171 }
Chris Lattner55406842001-07-21 19:10:49 +0000172
Chris Lattner2f7c9632001-06-06 20:29:01 +0000173 //===--------------------------------------------------------------------===//
174 // Default "noop" implementations
175 //===--------------------------------------------------------------------===//
176
Chris Lattnere87f65e2002-07-30 16:24:28 +0000177 static Constant *Add(const ArgType *V1, const ArgType *V2) { return 0; }
178 static Constant *Sub(const ArgType *V1, const ArgType *V2) { return 0; }
179 static Constant *Mul(const ArgType *V1, const ArgType *V2) { return 0; }
180 static Constant *Div(const ArgType *V1, const ArgType *V2) { return 0; }
181 static Constant *Rem(const ArgType *V1, const ArgType *V2) { return 0; }
182 static Constant *And(const ArgType *V1, const ArgType *V2) { return 0; }
183 static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
184 static Constant *Xor(const ArgType *V1, const ArgType *V2) { return 0; }
185 static Constant *Shl(const ArgType *V1, const ArgType *V2) { return 0; }
186 static Constant *Shr(const ArgType *V1, const ArgType *V2) { return 0; }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000187 static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
Chris Lattner2f7c9632001-06-06 20:29:01 +0000188 return 0;
189 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000190 static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000191 return 0;
192 }
Chris Lattner55406842001-07-21 19:10:49 +0000193
194 // Casting operators. ick
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000195 static Constant *CastToBool (const Constant *V) { return 0; }
196 static Constant *CastToSByte (const Constant *V) { return 0; }
197 static Constant *CastToUByte (const Constant *V) { return 0; }
198 static Constant *CastToShort (const Constant *V) { return 0; }
199 static Constant *CastToUShort(const Constant *V) { return 0; }
200 static Constant *CastToInt (const Constant *V) { return 0; }
201 static Constant *CastToUInt (const Constant *V) { return 0; }
202 static Constant *CastToLong (const Constant *V) { return 0; }
203 static Constant *CastToULong (const Constant *V) { return 0; }
204 static Constant *CastToFloat (const Constant *V) { return 0; }
205 static Constant *CastToDouble(const Constant *V) { return 0; }
206 static Constant *CastToPointer(const Constant *,
207 const PointerType *) {return 0;}
Reid Spencer9c47b252005-04-24 22:27:20 +0000208
209public:
210 virtual ~TemplateRules() {}
Chris Lattner2f7c9632001-06-06 20:29:01 +0000211};
212
213
214
215//===----------------------------------------------------------------------===//
216// EmptyRules Class
217//===----------------------------------------------------------------------===//
218//
219// EmptyRules provides a concrete base class of ConstRules that does nothing
220//
Chris Lattner3462ae32001-12-03 22:26:30 +0000221struct EmptyRules : public TemplateRules<Constant, EmptyRules> {
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000222 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000223 if (V1 == V2) return ConstantBool::True;
224 return 0;
225 }
Chris Lattner61607ee2001-09-09 21:01:20 +0000226};
Chris Lattner2f7c9632001-06-06 20:29:01 +0000227
228
229
230//===----------------------------------------------------------------------===//
231// BoolRules Class
232//===----------------------------------------------------------------------===//
233//
234// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
235//
Chris Lattner3462ae32001-12-03 22:26:30 +0000236struct BoolRules : public TemplateRules<ConstantBool, BoolRules> {
Chris Lattner2f7c9632001-06-06 20:29:01 +0000237
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000238 static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2){
Chris Lattner07507a42002-09-03 20:09:49 +0000239 return ConstantBool::get(V1->getValue() < V2->getValue());
240 }
241
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000242 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000243 return ConstantBool::get(V1 == V2);
244 }
245
Chris Lattnere87f65e2002-07-30 16:24:28 +0000246 static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
247 return ConstantBool::get(V1->getValue() & V2->getValue());
248 }
249
250 static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
Chris Lattner3462ae32001-12-03 22:26:30 +0000251 return ConstantBool::get(V1->getValue() | V2->getValue());
Chris Lattner2f7c9632001-06-06 20:29:01 +0000252 }
253
Chris Lattnere87f65e2002-07-30 16:24:28 +0000254 static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
255 return ConstantBool::get(V1->getValue() ^ V2->getValue());
Chris Lattner2f7c9632001-06-06 20:29:01 +0000256 }
Chris Lattnercea4d8c2003-08-13 15:52:25 +0000257
258 // Casting operators. ick
259#define DEF_CAST(TYPE, CLASS, CTYPE) \
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000260 static Constant *CastTo##TYPE (const ConstantBool *V) { \
Chris Lattnercea4d8c2003-08-13 15:52:25 +0000261 return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
262 }
263
264 DEF_CAST(Bool , ConstantBool, bool)
265 DEF_CAST(SByte , ConstantSInt, signed char)
266 DEF_CAST(UByte , ConstantUInt, unsigned char)
267 DEF_CAST(Short , ConstantSInt, signed short)
268 DEF_CAST(UShort, ConstantUInt, unsigned short)
269 DEF_CAST(Int , ConstantSInt, signed int)
270 DEF_CAST(UInt , ConstantUInt, unsigned int)
271 DEF_CAST(Long , ConstantSInt, int64_t)
272 DEF_CAST(ULong , ConstantUInt, uint64_t)
273 DEF_CAST(Float , ConstantFP , float)
274 DEF_CAST(Double, ConstantFP , double)
275#undef DEF_CAST
Chris Lattner61607ee2001-09-09 21:01:20 +0000276};
Chris Lattner2f7c9632001-06-06 20:29:01 +0000277
278
279//===----------------------------------------------------------------------===//
Chris Lattner4b6addf2003-11-17 19:19:32 +0000280// NullPointerRules Class
Chris Lattner977f0042001-11-01 05:55:13 +0000281//===----------------------------------------------------------------------===//
282//
Chris Lattner4b6addf2003-11-17 19:19:32 +0000283// NullPointerRules provides a concrete base class of ConstRules for null
284// pointers.
Chris Lattner977f0042001-11-01 05:55:13 +0000285//
Chris Lattner77f20dc2003-11-17 19:21:04 +0000286struct NullPointerRules : public TemplateRules<ConstantPointerNull,
Chris Lattner4b6addf2003-11-17 19:19:32 +0000287 NullPointerRules> {
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000288 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000289 return ConstantBool::True; // Null pointers are always equal
290 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000291 static Constant *CastToBool(const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000292 return ConstantBool::False;
Chris Lattner977f0042001-11-01 05:55:13 +0000293 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000294 static Constant *CastToSByte (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000295 return ConstantSInt::get(Type::SByteTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000296 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000297 static Constant *CastToUByte (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000298 return ConstantUInt::get(Type::UByteTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000299 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000300 static Constant *CastToShort (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000301 return ConstantSInt::get(Type::ShortTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000302 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000303 static Constant *CastToUShort(const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000304 return ConstantUInt::get(Type::UShortTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000305 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000306 static Constant *CastToInt (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000307 return ConstantSInt::get(Type::IntTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000308 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000309 static Constant *CastToUInt (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000310 return ConstantUInt::get(Type::UIntTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000311 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000312 static Constant *CastToLong (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000313 return ConstantSInt::get(Type::LongTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000314 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000315 static Constant *CastToULong (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000316 return ConstantUInt::get(Type::ULongTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000317 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000318 static Constant *CastToFloat (const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000319 return ConstantFP::get(Type::FloatTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000320 }
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000321 static Constant *CastToDouble(const Constant *V) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000322 return ConstantFP::get(Type::DoubleTy, 0);
Chris Lattner977f0042001-11-01 05:55:13 +0000323 }
324
Chris Lattner77f20dc2003-11-17 19:21:04 +0000325 static Constant *CastToPointer(const ConstantPointerNull *V,
Chris Lattner1f0049c2003-04-17 19:24:18 +0000326 const PointerType *PTy) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000327 return ConstantPointerNull::get(PTy);
Chris Lattner977f0042001-11-01 05:55:13 +0000328 }
329};
330
Chris Lattner1171d952006-01-04 02:03:29 +0000331//===----------------------------------------------------------------------===//
332// ConstantPackedRules Class
333//===----------------------------------------------------------------------===//
334
Chris Lattnerf0f40682006-01-04 02:15:02 +0000335/// DoVectorOp - Given two packed constants and a function pointer, apply the
336/// function pointer to each element pair, producing a new ConstantPacked
337/// constant.
338static Constant *EvalVectorOp(const ConstantPacked *V1,
339 const ConstantPacked *V2,
340 Constant *(*FP)(Constant*, Constant*)) {
341 std::vector<Constant*> Res;
342 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
343 Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
344 const_cast<Constant*>(V2->getOperand(i))));
345 return ConstantPacked::get(Res);
346}
347
Chris Lattner1171d952006-01-04 02:03:29 +0000348/// PackedTypeRules provides a concrete base class of ConstRules for
349/// ConstantPacked operands.
350///
351struct ConstantPackedRules
352 : public TemplateRules<ConstantPacked, ConstantPackedRules> {
Chris Lattnerf0f40682006-01-04 02:15:02 +0000353
354 static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) {
355 return EvalVectorOp(V1, V2, ConstantExpr::getAdd);
356 }
357 static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) {
358 return EvalVectorOp(V1, V2, ConstantExpr::getSub);
359 }
360 static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) {
361 return EvalVectorOp(V1, V2, ConstantExpr::getMul);
362 }
363 static Constant *Div(const ConstantPacked *V1, const ConstantPacked *V2) {
364 return EvalVectorOp(V1, V2, ConstantExpr::getDiv);
365 }
366 static Constant *Rem(const ConstantPacked *V1, const ConstantPacked *V2) {
367 return EvalVectorOp(V1, V2, ConstantExpr::getRem);
368 }
369 static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) {
370 return EvalVectorOp(V1, V2, ConstantExpr::getAnd);
371 }
372 static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) {
373 return EvalVectorOp(V1, V2, ConstantExpr::getOr);
374 }
375 static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) {
376 return EvalVectorOp(V1, V2, ConstantExpr::getXor);
377 }
378 static Constant *Shl(const ConstantPacked *V1, const ConstantPacked *V2) {
379 return EvalVectorOp(V1, V2, ConstantExpr::getShl);
380 }
381 static Constant *Shr(const ConstantPacked *V1, const ConstantPacked *V2) {
382 return EvalVectorOp(V1, V2, ConstantExpr::getShr);
383 }
384 static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){
385 return 0;
386 }
387 static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) {
Chris Lattner6b52be62006-01-04 02:20:54 +0000388 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) {
389 Constant *C =
390 ConstantExpr::getSetEQ(const_cast<Constant*>(V1->getOperand(i)),
391 const_cast<Constant*>(V2->getOperand(i)));
392 if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
393 return CB;
394 }
395 // Otherwise, could not decide from any element pairs.
Chris Lattnerf0f40682006-01-04 02:15:02 +0000396 return 0;
397 }
Chris Lattner1171d952006-01-04 02:03:29 +0000398};
399
400
401//===----------------------------------------------------------------------===//
402// GeneralPackedRules Class
403//===----------------------------------------------------------------------===//
404
405/// GeneralPackedRules provides a concrete base class of ConstRules for
406/// PackedType operands, where both operands are not ConstantPacked. The usual
407/// cause for this is that one operand is a ConstantAggregateZero.
408///
409struct GeneralPackedRules : public TemplateRules<Constant, GeneralPackedRules> {
410};
411
Chris Lattner977f0042001-11-01 05:55:13 +0000412
413//===----------------------------------------------------------------------===//
Chris Lattner2f7c9632001-06-06 20:29:01 +0000414// DirectRules Class
415//===----------------------------------------------------------------------===//
416//
417// DirectRules provides a concrete base classes of ConstRules for a variety of
418// different types. This allows the C++ compiler to automatically generate our
419// constant handling operations in a typesafe and accurate manner.
420//
Chris Lattner0a144ad2002-05-03 21:41:07 +0000421template<class ConstantClass, class BuiltinType, Type **Ty, class SuperClass>
422struct DirectRules : public TemplateRules<ConstantClass, SuperClass> {
Chris Lattnere87f65e2002-07-30 16:24:28 +0000423 static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) {
424 BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue();
425 return ConstantClass::get(*Ty, R);
Chris Lattner2f7c9632001-06-06 20:29:01 +0000426 }
427
Chris Lattnere87f65e2002-07-30 16:24:28 +0000428 static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) {
429 BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
430 return ConstantClass::get(*Ty, R);
Chris Lattner2f7c9632001-06-06 20:29:01 +0000431 }
432
Chris Lattnere87f65e2002-07-30 16:24:28 +0000433 static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) {
434 BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
435 return ConstantClass::get(*Ty, R);
Chris Lattner4f6031f2001-07-20 19:15:36 +0000436 }
437
Chris Lattnere87f65e2002-07-30 16:24:28 +0000438 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattner0a144ad2002-05-03 21:41:07 +0000439 if (V2->isNullValue()) return 0;
Chris Lattnere87f65e2002-07-30 16:24:28 +0000440 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
441 return ConstantClass::get(*Ty, R);
Chris Lattneraf259a72002-04-07 08:10:14 +0000442 }
443
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000444 static Constant *LessThan(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattnere87f65e2002-07-30 16:24:28 +0000445 bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
446 return ConstantBool::get(R);
Misha Brukmanb1c93172005-04-21 23:48:37 +0000447 }
Chris Lattner55406842001-07-21 19:10:49 +0000448
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000449 static Constant *EqualTo(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattnerdc2e3912003-11-17 20:19:35 +0000450 bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
451 return ConstantBool::get(R);
452 }
453
Chris Lattner1f0049c2003-04-17 19:24:18 +0000454 static Constant *CastToPointer(const ConstantClass *V,
455 const PointerType *PTy) {
Chris Lattner977f0042001-11-01 05:55:13 +0000456 if (V->isNullValue()) // Is it a FP or Integral null value?
Chris Lattner3462ae32001-12-03 22:26:30 +0000457 return ConstantPointerNull::get(PTy);
Chris Lattner977f0042001-11-01 05:55:13 +0000458 return 0; // Can't const prop other types of pointers
459 }
460
Chris Lattner55406842001-07-21 19:10:49 +0000461 // Casting operators. ick
462#define DEF_CAST(TYPE, CLASS, CTYPE) \
Chris Lattner6ff6cea2004-01-12 21:02:29 +0000463 static Constant *CastTo##TYPE (const ConstantClass *V) { \
Chris Lattnerbbb22962001-09-07 16:40:34 +0000464 return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
Chris Lattner55406842001-07-21 19:10:49 +0000465 }
466
Chris Lattner3462ae32001-12-03 22:26:30 +0000467 DEF_CAST(Bool , ConstantBool, bool)
468 DEF_CAST(SByte , ConstantSInt, signed char)
469 DEF_CAST(UByte , ConstantUInt, unsigned char)
470 DEF_CAST(Short , ConstantSInt, signed short)
471 DEF_CAST(UShort, ConstantUInt, unsigned short)
472 DEF_CAST(Int , ConstantSInt, signed int)
473 DEF_CAST(UInt , ConstantUInt, unsigned int)
474 DEF_CAST(Long , ConstantSInt, int64_t)
475 DEF_CAST(ULong , ConstantUInt, uint64_t)
476 DEF_CAST(Float , ConstantFP , float)
477 DEF_CAST(Double, ConstantFP , double)
Chris Lattner55406842001-07-21 19:10:49 +0000478#undef DEF_CAST
Chris Lattner2f7c9632001-06-06 20:29:01 +0000479};
480
Chris Lattner62af86e2002-05-03 20:09:52 +0000481
482//===----------------------------------------------------------------------===//
483// DirectIntRules Class
484//===----------------------------------------------------------------------===//
485//
486// DirectIntRules provides implementations of functions that are valid on
487// integer types, but not all types in general.
488//
489template <class ConstantClass, class BuiltinType, Type **Ty>
Chris Lattner0a144ad2002-05-03 21:41:07 +0000490struct DirectIntRules
491 : public DirectRules<ConstantClass, BuiltinType, Ty,
492 DirectIntRules<ConstantClass, BuiltinType, Ty> > {
Chris Lattner0a144ad2002-05-03 21:41:07 +0000493
Chris Lattner268916262003-05-12 15:26:25 +0000494 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
495 if (V2->isNullValue()) return 0;
496 if (V2->isAllOnesValue() && // MIN_INT / -1
497 (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
498 return 0;
499 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
500 return ConstantClass::get(*Ty, R);
501 }
502
Chris Lattnere87f65e2002-07-30 16:24:28 +0000503 static Constant *Rem(const ConstantClass *V1,
504 const ConstantClass *V2) {
Chris Lattner268916262003-05-12 15:26:25 +0000505 if (V2->isNullValue()) return 0; // X / 0
506 if (V2->isAllOnesValue() && // MIN_INT / -1
507 (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
508 return 0;
Chris Lattnere87f65e2002-07-30 16:24:28 +0000509 BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue();
510 return ConstantClass::get(*Ty, R);
Chris Lattner0a144ad2002-05-03 21:41:07 +0000511 }
Chris Lattner6670d862002-05-06 03:00:54 +0000512
Chris Lattnere87f65e2002-07-30 16:24:28 +0000513 static Constant *And(const ConstantClass *V1, const ConstantClass *V2) {
514 BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue();
515 return ConstantClass::get(*Ty, R);
516 }
517 static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) {
518 BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue();
519 return ConstantClass::get(*Ty, R);
520 }
521 static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) {
522 BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue();
523 return ConstantClass::get(*Ty, R);
Chris Lattner6670d862002-05-06 03:00:54 +0000524 }
525
Chris Lattnere87f65e2002-07-30 16:24:28 +0000526 static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) {
527 BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue();
528 return ConstantClass::get(*Ty, R);
529 }
530
531 static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) {
532 BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue();
533 return ConstantClass::get(*Ty, R);
Chris Lattner6670d862002-05-06 03:00:54 +0000534 }
Chris Lattner0a144ad2002-05-03 21:41:07 +0000535};
536
537
538//===----------------------------------------------------------------------===//
539// DirectFPRules Class
540//===----------------------------------------------------------------------===//
541//
Chris Lattner1dd054c2004-01-12 22:07:24 +0000542/// DirectFPRules provides implementations of functions that are valid on
543/// floating point types, but not all types in general.
544///
Chris Lattner0a144ad2002-05-03 21:41:07 +0000545template <class ConstantClass, class BuiltinType, Type **Ty>
546struct DirectFPRules
547 : public DirectRules<ConstantClass, BuiltinType, Ty,
548 DirectFPRules<ConstantClass, BuiltinType, Ty> > {
Chris Lattnere87f65e2002-07-30 16:24:28 +0000549 static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) {
Chris Lattner0a144ad2002-05-03 21:41:07 +0000550 if (V2->isNullValue()) return 0;
551 BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
552 (BuiltinType)V2->getValue());
553 return ConstantClass::get(*Ty, Result);
554 }
Andrew Lenharthc73e6332005-05-02 21:25:47 +0000555 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
Jeff Cohen4e3aede2005-05-03 03:13:01 +0000556 BuiltinType inf = std::numeric_limits<BuiltinType>::infinity();
557 if (V2->isExactlyValue(0.0)) return ConstantClass::get(*Ty, inf);
558 if (V2->isExactlyValue(-0.0)) return ConstantClass::get(*Ty, -inf);
Andrew Lenharthc73e6332005-05-02 21:25:47 +0000559 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
560 return ConstantClass::get(*Ty, R);
561 }
Chris Lattner62af86e2002-05-03 20:09:52 +0000562};
563
Chris Lattner1dd054c2004-01-12 22:07:24 +0000564
565/// ConstRules::get - This method returns the constant rules implementation that
566/// implements the semantics of the two specified constants.
Chris Lattnerf8348c32004-01-12 20:41:05 +0000567ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
Chris Lattner4b6addf2003-11-17 19:19:32 +0000568 static EmptyRules EmptyR;
569 static BoolRules BoolR;
570 static NullPointerRules NullPointerR;
Chris Lattner1171d952006-01-04 02:03:29 +0000571 static ConstantPackedRules ConstantPackedR;
572 static GeneralPackedRules GeneralPackedR;
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000573 static DirectIntRules<ConstantSInt, signed char , &Type::SByteTy> SByteR;
574 static DirectIntRules<ConstantUInt, unsigned char , &Type::UByteTy> UByteR;
575 static DirectIntRules<ConstantSInt, signed short, &Type::ShortTy> ShortR;
576 static DirectIntRules<ConstantUInt, unsigned short, &Type::UShortTy> UShortR;
577 static DirectIntRules<ConstantSInt, signed int , &Type::IntTy> IntR;
578 static DirectIntRules<ConstantUInt, unsigned int , &Type::UIntTy> UIntR;
579 static DirectIntRules<ConstantSInt, int64_t , &Type::LongTy> LongR;
580 static DirectIntRules<ConstantUInt, uint64_t , &Type::ULongTy> ULongR;
581 static DirectFPRules <ConstantFP , float , &Type::FloatTy> FloatR;
582 static DirectFPRules <ConstantFP , double , &Type::DoubleTy> DoubleR;
Chris Lattner2f7c9632001-06-06 20:29:01 +0000583
Chris Lattner4b6addf2003-11-17 19:19:32 +0000584 if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000585 isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
586 isa<UndefValue>(V1) || isa<UndefValue>(V2))
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000587 return EmptyR;
588
Chris Lattner6b727592004-06-17 18:19:28 +0000589 switch (V1->getType()->getTypeID()) {
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000590 default: assert(0 && "Unknown value type for constant folding!");
591 case Type::BoolTyID: return BoolR;
Chris Lattner4b6addf2003-11-17 19:19:32 +0000592 case Type::PointerTyID: return NullPointerR;
Chris Lattner9d9cbcf2003-11-17 19:05:17 +0000593 case Type::SByteTyID: return SByteR;
594 case Type::UByteTyID: return UByteR;
595 case Type::ShortTyID: return ShortR;
596 case Type::UShortTyID: return UShortR;
597 case Type::IntTyID: return IntR;
598 case Type::UIntTyID: return UIntR;
599 case Type::LongTyID: return LongR;
600 case Type::ULongTyID: return ULongR;
601 case Type::FloatTyID: return FloatR;
602 case Type::DoubleTyID: return DoubleR;
Chris Lattner1171d952006-01-04 02:03:29 +0000603 case Type::PackedTyID:
604 if (isa<ConstantPacked>(V1) && isa<ConstantPacked>(V2))
605 return ConstantPackedR;
606 return GeneralPackedR; // Constant folding rules for ConstantAggregateZero.
Chris Lattner2f7c9632001-06-06 20:29:01 +0000607 }
Chris Lattner2f7c9632001-06-06 20:29:01 +0000608}
Chris Lattner1dd054c2004-01-12 22:07:24 +0000609
610
611//===----------------------------------------------------------------------===//
612// ConstantFold*Instruction Implementations
613//===----------------------------------------------------------------------===//
614//
615// These methods contain the special case hackery required to symbolically
616// evaluate some constant expression cases, and use the ConstantRules class to
617// evaluate normal constants.
618//
619static unsigned getSize(const Type *Ty) {
620 unsigned S = Ty->getPrimitiveSize();
621 return S ? S : 8; // Treat pointers at 8 bytes
622}
623
624Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
625 const Type *DestTy) {
626 if (V->getType() == DestTy) return (Constant*)V;
627
Chris Lattnerea0789c2004-03-08 06:17:35 +0000628 // Cast of a global address to boolean is always true.
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000629 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Chris Lattnerea0789c2004-03-08 06:17:35 +0000630 if (DestTy == Type::BoolTy)
631 // FIXME: When we support 'external weak' references, we have to prevent
Chris Lattnercd4003e2005-01-06 16:26:38 +0000632 // this transformation from happening. This code will need to be updated
633 // to ignore external weak symbols when we support it.
634 return ConstantBool::True;
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000635 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Chris Lattner1dd054c2004-01-12 22:07:24 +0000636 if (CE->getOpcode() == Instruction::Cast) {
637 Constant *Op = const_cast<Constant*>(CE->getOperand(0));
638 // Try to not produce a cast of a cast, which is almost always redundant.
639 if (!Op->getType()->isFloatingPoint() &&
640 !CE->getType()->isFloatingPoint() &&
Reid Spencer8eb06df2004-05-30 01:19:48 +0000641 !DestTy->isFloatingPoint()) {
Chris Lattner1dd054c2004-01-12 22:07:24 +0000642 unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
643 unsigned S3 = getSize(DestTy);
644 if (Op->getType() == DestTy && S3 >= S2)
645 return Op;
646 if (S1 >= S2 && S2 >= S3)
647 return ConstantExpr::getCast(Op, DestTy);
648 if (S1 <= S2 && S2 >= S3 && S1 <= S3)
649 return ConstantExpr::getCast(Op, DestTy);
650 }
651 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
652 // If all of the indexes in the GEP are null values, there is no pointer
653 // adjustment going on. We might as well cast the source pointer.
654 bool isAllNull = true;
655 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
656 if (!CE->getOperand(i)->isNullValue()) {
657 isAllNull = false;
658 break;
659 }
660 if (isAllNull)
661 return ConstantExpr::getCast(CE->getOperand(0), DestTy);
662 }
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000663 } else if (isa<UndefValue>(V)) {
664 return UndefValue::get(DestTy);
665 }
Chris Lattner1dd054c2004-01-12 22:07:24 +0000666
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000667 // Check to see if we are casting an pointer to an aggregate to a pointer to
668 // the first element. If so, return the appropriate GEP instruction.
Chris Lattnerb2b7f902004-10-11 03:57:30 +0000669 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000670 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
671 std::vector<Value*> IdxList;
672 IdxList.push_back(Constant::getNullValue(Type::IntTy));
673 const Type *ElTy = PTy->getElementType();
674 while (ElTy != DPTy->getElementType()) {
675 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
Chris Lattner9e907202004-11-22 19:15:27 +0000676 if (STy->getNumElements() == 0) break;
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000677 ElTy = STy->getElementType(0);
678 IdxList.push_back(Constant::getNullValue(Type::UIntTy));
679 } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
680 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
681 ElTy = STy->getElementType();
682 IdxList.push_back(IdxList[0]);
683 } else {
684 break;
Chris Lattnerb2b7f902004-10-11 03:57:30 +0000685 }
Chris Lattnerba18b9a2004-11-17 17:59:35 +0000686 }
687
688 if (ElTy == DPTy->getElementType())
689 return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
690 }
Chris Lattnerb2b7f902004-10-11 03:57:30 +0000691
Chris Lattner1dd054c2004-01-12 22:07:24 +0000692 ConstRules &Rules = ConstRules::get(V, V);
693
Chris Lattner6b727592004-06-17 18:19:28 +0000694 switch (DestTy->getTypeID()) {
Chris Lattner1dd054c2004-01-12 22:07:24 +0000695 case Type::BoolTyID: return Rules.castToBool(V);
696 case Type::UByteTyID: return Rules.castToUByte(V);
697 case Type::SByteTyID: return Rules.castToSByte(V);
698 case Type::UShortTyID: return Rules.castToUShort(V);
699 case Type::ShortTyID: return Rules.castToShort(V);
700 case Type::UIntTyID: return Rules.castToUInt(V);
701 case Type::IntTyID: return Rules.castToInt(V);
702 case Type::ULongTyID: return Rules.castToULong(V);
703 case Type::LongTyID: return Rules.castToLong(V);
704 case Type::FloatTyID: return Rules.castToFloat(V);
705 case Type::DoubleTyID: return Rules.castToDouble(V);
706 case Type::PointerTyID:
707 return Rules.castToPointer(V, cast<PointerType>(DestTy));
708 default: return 0;
709 }
710}
711
Chris Lattner6ea4b522004-03-12 05:53:32 +0000712Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
713 const Constant *V1,
714 const Constant *V2) {
715 if (Cond == ConstantBool::True)
716 return const_cast<Constant*>(V1);
717 else if (Cond == ConstantBool::False)
718 return const_cast<Constant*>(V2);
Chris Lattnerfd7bf722004-10-16 23:31:32 +0000719
720 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
721 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
722 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
Chris Lattner6ea4b522004-03-12 05:53:32 +0000723 return 0;
724}
725
Chris Lattner60c47262005-01-28 19:09:51 +0000726/// isZeroSizedType - This type is zero sized if its an array or structure of
727/// zero sized types. The only leaf zero sized type is an empty structure.
728static bool isMaybeZeroSizedType(const Type *Ty) {
729 if (isa<OpaqueType>(Ty)) return true; // Can't say.
730 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
731
732 // If all of elements have zero size, this does too.
733 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Chris Lattnerfeaf92f2005-01-28 23:17:27 +0000734 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
Chris Lattner60c47262005-01-28 19:09:51 +0000735 return true;
736
737 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
738 return isMaybeZeroSizedType(ATy->getElementType());
739 }
740 return false;
741}
Chris Lattner6ea4b522004-03-12 05:53:32 +0000742
Chris Lattner061da2f2004-01-13 05:51:55 +0000743/// IdxCompare - Compare the two constants as though they were getelementptr
744/// indices. This allows coersion of the types to be the same thing.
745///
746/// If the two constants are the "same" (after coersion), return 0. If the
747/// first is less than the second, return -1, if the second is less than the
748/// first, return 1. If the constants are not integral, return -2.
749///
Chris Lattner60c47262005-01-28 19:09:51 +0000750static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000751 if (C1 == C2) return 0;
752
753 // Ok, we found a different index. Are either of the operands
754 // ConstantExprs? If so, we can't do anything with them.
755 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
756 return -2; // don't know!
Misha Brukmanb1c93172005-04-21 23:48:37 +0000757
Chris Lattner69193f92004-04-05 01:30:19 +0000758 // Ok, we have two differing integer indices. Sign extend them to be the same
759 // type. Long is always big enough, so we use it.
760 C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
761 C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
Chris Lattner061da2f2004-01-13 05:51:55 +0000762 if (C1 == C2) return 0; // Are they just differing types?
763
Chris Lattner60c47262005-01-28 19:09:51 +0000764 // If the type being indexed over is really just a zero sized type, there is
765 // no pointer difference being made here.
766 if (isMaybeZeroSizedType(ElTy))
767 return -2; // dunno.
768
Chris Lattner061da2f2004-01-13 05:51:55 +0000769 // If they are really different, now that they are the same type, then we
770 // found a difference!
771 if (cast<ConstantSInt>(C1)->getValue() < cast<ConstantSInt>(C2)->getValue())
772 return -1;
773 else
774 return 1;
775}
776
777/// evaluateRelation - This function determines if there is anything we can
778/// decide about the two constants provided. This doesn't need to handle simple
Reid Spenceraccd7c72004-07-17 23:47:01 +0000779/// things like integer comparisons, but should instead handle ConstantExprs
780/// and GlobalValuess. If we can determine that the two constants have a
Chris Lattner061da2f2004-01-13 05:51:55 +0000781/// particular relation to each other, we should return the corresponding SetCC
782/// code, otherwise return Instruction::BinaryOpsEnd.
783///
784/// To simplify this code we canonicalize the relation so that the first
785/// operand is always the most "complex" of the two. We consider simple
786/// constants (like ConstantInt) to be the simplest, followed by
Reid Spenceraccd7c72004-07-17 23:47:01 +0000787/// GlobalValues, followed by ConstantExpr's (the most complex).
Chris Lattner061da2f2004-01-13 05:51:55 +0000788///
789static Instruction::BinaryOps evaluateRelation(const Constant *V1,
790 const Constant *V2) {
791 assert(V1->getType() == V2->getType() &&
792 "Cannot compare different types of values!");
793 if (V1 == V2) return Instruction::SetEQ;
794
Reid Spenceraccd7c72004-07-17 23:47:01 +0000795 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000796 // If the first operand is simple, swap operands.
Reid Spenceraccd7c72004-07-17 23:47:01 +0000797 assert((isa<GlobalValue>(V2) || isa<ConstantExpr>(V2)) &&
Chris Lattner061da2f2004-01-13 05:51:55 +0000798 "Simple cases should have been handled by caller!");
Chris Lattner125ed542004-02-01 01:23:19 +0000799 Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
800 if (SwappedRelation != Instruction::BinaryOpsEnd)
801 return SetCondInst::getSwappedCondition(SwappedRelation);
Chris Lattner061da2f2004-01-13 05:51:55 +0000802
Reid Spenceraccd7c72004-07-17 23:47:01 +0000803 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)){
Chris Lattner125ed542004-02-01 01:23:19 +0000804 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
805 Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
806 if (SwappedRelation != Instruction::BinaryOpsEnd)
807 return SetCondInst::getSwappedCondition(SwappedRelation);
808 else
809 return Instruction::BinaryOpsEnd;
810 }
Chris Lattner061da2f2004-01-13 05:51:55 +0000811
Reid Spenceraccd7c72004-07-17 23:47:01 +0000812 // Now we know that the RHS is a GlobalValue or simple constant,
Chris Lattner061da2f2004-01-13 05:51:55 +0000813 // which (since the types must match) means that it's a ConstantPointerNull.
Reid Spenceraccd7c72004-07-17 23:47:01 +0000814 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
815 assert(CPR1 != CPR2 &&
816 "GVs for the same value exist at different addresses??");
Chris Lattner061da2f2004-01-13 05:51:55 +0000817 // FIXME: If both globals are external weak, they might both be null!
818 return Instruction::SetNE;
819 } else {
820 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
821 // Global can never be null. FIXME: if we implement external weak
822 // linkage, this is not necessarily true!
823 return Instruction::SetNE;
824 }
825
826 } else {
827 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
828 // constantexpr, a CPR, or a simple constant.
829 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
830 Constant *CE1Op0 = CE1->getOperand(0);
831
832 switch (CE1->getOpcode()) {
833 case Instruction::Cast:
834 // If the cast is not actually changing bits, and the second operand is a
835 // null pointer, do the comparison with the pre-casted value.
836 if (V2->isNullValue() &&
837 CE1->getType()->isLosslesslyConvertibleTo(CE1Op0->getType()))
838 return evaluateRelation(CE1Op0,
839 Constant::getNullValue(CE1Op0->getType()));
Chris Lattner192e3262004-04-11 01:29:30 +0000840 break;
Chris Lattner061da2f2004-01-13 05:51:55 +0000841
842 case Instruction::GetElementPtr:
843 // Ok, since this is a getelementptr, we know that the constant has a
844 // pointer type. Check the various cases.
845 if (isa<ConstantPointerNull>(V2)) {
846 // If we are comparing a GEP to a null pointer, check to see if the base
847 // of the GEP equals the null pointer.
Reid Spenceraccd7c72004-07-17 23:47:01 +0000848 if (isa<GlobalValue>(CE1Op0)) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000849 // FIXME: this is not true when we have external weak references!
850 // No offset can go from a global to a null pointer.
851 return Instruction::SetGT;
852 } else if (isa<ConstantPointerNull>(CE1Op0)) {
853 // If we are indexing from a null pointer, check to see if we have any
854 // non-zero indices.
855 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
856 if (!CE1->getOperand(i)->isNullValue())
857 // Offsetting from null, must not be equal.
858 return Instruction::SetGT;
859 // Only zero indexes from null, must still be zero.
860 return Instruction::SetEQ;
861 }
862 // Otherwise, we can't really say if the first operand is null or not.
Reid Spenceraccd7c72004-07-17 23:47:01 +0000863 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000864 if (isa<ConstantPointerNull>(CE1Op0)) {
865 // FIXME: This is not true with external weak references.
866 return Instruction::SetLT;
Reid Spenceraccd7c72004-07-17 23:47:01 +0000867 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000868 if (CPR1 == CPR2) {
869 // If this is a getelementptr of the same global, then it must be
870 // different. Because the types must match, the getelementptr could
871 // only have at most one index, and because we fold getelementptr's
872 // with a single zero index, it must be nonzero.
873 assert(CE1->getNumOperands() == 2 &&
874 !CE1->getOperand(1)->isNullValue() &&
875 "Suprising getelementptr!");
876 return Instruction::SetGT;
877 } else {
878 // If they are different globals, we don't know what the value is,
879 // but they can't be equal.
880 return Instruction::SetNE;
881 }
882 }
883 } else {
884 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
885 const Constant *CE2Op0 = CE2->getOperand(0);
886
887 // There are MANY other foldings that we could perform here. They will
888 // probably be added on demand, as they seem needed.
889 switch (CE2->getOpcode()) {
890 default: break;
891 case Instruction::GetElementPtr:
892 // By far the most common case to handle is when the base pointers are
893 // obviously to the same or different globals.
Reid Spenceraccd7c72004-07-17 23:47:01 +0000894 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000895 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
896 return Instruction::SetNE;
897 // Ok, we know that both getelementptr instructions are based on the
898 // same global. From this, we can precisely determine the relative
899 // ordering of the resultant pointers.
900 unsigned i = 1;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000901
Chris Lattner061da2f2004-01-13 05:51:55 +0000902 // Compare all of the operands the GEP's have in common.
Chris Lattner60c47262005-01-28 19:09:51 +0000903 gep_type_iterator GTI = gep_type_begin(CE1);
904 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
905 ++i, ++GTI)
906 switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
907 GTI.getIndexedType())) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000908 case -1: return Instruction::SetLT;
909 case 1: return Instruction::SetGT;
910 case -2: return Instruction::BinaryOpsEnd;
911 }
912
913 // Ok, we ran out of things they have in common. If any leftovers
914 // are non-zero then we have a difference, otherwise we are equal.
915 for (; i < CE1->getNumOperands(); ++i)
916 if (!CE1->getOperand(i)->isNullValue())
Chris Lattner60c47262005-01-28 19:09:51 +0000917 if (isa<ConstantIntegral>(CE1->getOperand(i)))
918 return Instruction::SetGT;
919 else
920 return Instruction::BinaryOpsEnd; // Might be equal.
Misha Brukmanb1c93172005-04-21 23:48:37 +0000921
Chris Lattner061da2f2004-01-13 05:51:55 +0000922 for (; i < CE2->getNumOperands(); ++i)
923 if (!CE2->getOperand(i)->isNullValue())
Chris Lattner60c47262005-01-28 19:09:51 +0000924 if (isa<ConstantIntegral>(CE2->getOperand(i)))
925 return Instruction::SetLT;
926 else
927 return Instruction::BinaryOpsEnd; // Might be equal.
Chris Lattner061da2f2004-01-13 05:51:55 +0000928 return Instruction::SetEQ;
929 }
930 }
931 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000932
Chris Lattner061da2f2004-01-13 05:51:55 +0000933 default:
934 break;
935 }
936 }
937
938 return Instruction::BinaryOpsEnd;
939}
940
Chris Lattner1dd054c2004-01-12 22:07:24 +0000941Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
942 const Constant *V1,
943 const Constant *V2) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000944 Constant *C = 0;
Chris Lattner1dd054c2004-01-12 22:07:24 +0000945 switch (Opcode) {
Chris Lattner061da2f2004-01-13 05:51:55 +0000946 default: break;
947 case Instruction::Add: C = ConstRules::get(V1, V2).add(V1, V2); break;
948 case Instruction::Sub: C = ConstRules::get(V1, V2).sub(V1, V2); break;
949 case Instruction::Mul: C = ConstRules::get(V1, V2).mul(V1, V2); break;
950 case Instruction::Div: C = ConstRules::get(V1, V2).div(V1, V2); break;
951 case Instruction::Rem: C = ConstRules::get(V1, V2).rem(V1, V2); break;
952 case Instruction::And: C = ConstRules::get(V1, V2).op_and(V1, V2); break;
953 case Instruction::Or: C = ConstRules::get(V1, V2).op_or (V1, V2); break;
954 case Instruction::Xor: C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
955 case Instruction::Shl: C = ConstRules::get(V1, V2).shl(V1, V2); break;
956 case Instruction::Shr: C = ConstRules::get(V1, V2).shr(V1, V2); break;
957 case Instruction::SetEQ: C = ConstRules::get(V1, V2).equalto(V1, V2); break;
958 case Instruction::SetLT: C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
959 case Instruction::SetGT: C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
Chris Lattner1dd054c2004-01-12 22:07:24 +0000960 case Instruction::SetNE: // V1 != V2 === !(V1 == V2)
961 C = ConstRules::get(V1, V2).equalto(V1, V2);
Chris Lattner6b52be62006-01-04 02:20:54 +0000962 if (C) return ConstantExpr::getNot(C);
Chris Lattner1dd054c2004-01-12 22:07:24 +0000963 break;
964 case Instruction::SetLE: // V1 <= V2 === !(V2 < V1)
965 C = ConstRules::get(V1, V2).lessthan(V2, V1);
Chris Lattner6b52be62006-01-04 02:20:54 +0000966 if (C) return ConstantExpr::getNot(C);
Chris Lattner1dd054c2004-01-12 22:07:24 +0000967 break;
968 case Instruction::SetGE: // V1 >= V2 === !(V1 < V2)
969 C = ConstRules::get(V1, V2).lessthan(V1, V2);
Chris Lattner6b52be62006-01-04 02:20:54 +0000970 if (C) return ConstantExpr::getNot(C);
Chris Lattner1dd054c2004-01-12 22:07:24 +0000971 break;
972 }
973
Chris Lattner061da2f2004-01-13 05:51:55 +0000974 // If we successfully folded the expression, return it now.
975 if (C) return C;
976
Chris Lattner192eacc2004-10-17 04:01:51 +0000977 if (SetCondInst::isRelational(Opcode)) {
978 if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
979 return UndefValue::get(Type::BoolTy);
Chris Lattner061da2f2004-01-13 05:51:55 +0000980 switch (evaluateRelation(V1, V2)) {
981 default: assert(0 && "Unknown relational!");
982 case Instruction::BinaryOpsEnd:
983 break; // Couldn't determine anything about these constants.
984 case Instruction::SetEQ: // We know the constants are equal!
985 // If we know the constants are equal, we can decide the result of this
986 // computation precisely.
987 return ConstantBool::get(Opcode == Instruction::SetEQ ||
988 Opcode == Instruction::SetLE ||
989 Opcode == Instruction::SetGE);
990 case Instruction::SetLT:
991 // If we know that V1 < V2, we can decide the result of this computation
992 // precisely.
993 return ConstantBool::get(Opcode == Instruction::SetLT ||
994 Opcode == Instruction::SetNE ||
995 Opcode == Instruction::SetLE);
996 case Instruction::SetGT:
997 // If we know that V1 > V2, we can decide the result of this computation
998 // precisely.
999 return ConstantBool::get(Opcode == Instruction::SetGT ||
1000 Opcode == Instruction::SetNE ||
1001 Opcode == Instruction::SetGE);
1002 case Instruction::SetLE:
1003 // If we know that V1 <= V2, we can only partially decide this relation.
1004 if (Opcode == Instruction::SetGT) return ConstantBool::False;
1005 if (Opcode == Instruction::SetLT) return ConstantBool::True;
1006 break;
1007
1008 case Instruction::SetGE:
1009 // If we know that V1 >= V2, we can only partially decide this relation.
1010 if (Opcode == Instruction::SetLT) return ConstantBool::False;
1011 if (Opcode == Instruction::SetGT) return ConstantBool::True;
1012 break;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001013
Chris Lattner061da2f2004-01-13 05:51:55 +00001014 case Instruction::SetNE:
1015 // If we know that V1 != V2, we can only partially decide this relation.
1016 if (Opcode == Instruction::SetEQ) return ConstantBool::False;
1017 if (Opcode == Instruction::SetNE) return ConstantBool::True;
1018 break;
1019 }
Chris Lattner192eacc2004-10-17 04:01:51 +00001020 }
Chris Lattner061da2f2004-01-13 05:51:55 +00001021
Chris Lattnerfd7bf722004-10-16 23:31:32 +00001022 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
1023 switch (Opcode) {
1024 case Instruction::Add:
1025 case Instruction::Sub:
Chris Lattnerfd7bf722004-10-16 23:31:32 +00001026 case Instruction::Xor:
1027 return UndefValue::get(V1->getType());
1028
1029 case Instruction::Mul:
1030 case Instruction::And:
1031 return Constant::getNullValue(V1->getType());
1032 case Instruction::Div:
1033 case Instruction::Rem:
1034 if (!isa<UndefValue>(V2)) // undef/X -> 0
1035 return Constant::getNullValue(V1->getType());
1036 return const_cast<Constant*>(V2); // X/undef -> undef
1037 case Instruction::Or: // X|undef -> -1
1038 return ConstantInt::getAllOnesValue(V1->getType());
1039 case Instruction::Shr:
1040 if (!isa<UndefValue>(V2)) {
1041 if (V1->getType()->isSigned())
1042 return const_cast<Constant*>(V1); // undef >>s X -> undef
1043 // undef >>u X -> 0
1044 } else if (isa<UndefValue>(V1)) {
1045 return const_cast<Constant*>(V1); // undef >> undef -> undef
1046 } else {
1047 if (V1->getType()->isSigned())
1048 return const_cast<Constant*>(V1); // X >>s undef -> X
1049 // X >>u undef -> 0
1050 }
1051 return Constant::getNullValue(V1->getType());
1052
1053 case Instruction::Shl:
1054 // undef << X -> 0 X << undef -> 0
1055 return Constant::getNullValue(V1->getType());
1056 }
1057 }
1058
Chris Lattner061da2f2004-01-13 05:51:55 +00001059 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
1060 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
1061 // There are many possible foldings we could do here. We should probably
1062 // at least fold add of a pointer with an integer into the appropriate
1063 // getelementptr. This will improve alias analysis a bit.
1064
1065
1066
1067
1068 } else {
1069 // Just implement a couple of simple identities.
1070 switch (Opcode) {
1071 case Instruction::Add:
1072 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X + 0 == X
1073 break;
1074 case Instruction::Sub:
1075 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X - 0 == X
1076 break;
1077 case Instruction::Mul:
1078 if (V2->isNullValue()) return const_cast<Constant*>(V2); // X * 0 == 0
1079 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1080 if (CI->getRawValue() == 1)
1081 return const_cast<Constant*>(V1); // X * 1 == X
1082 break;
1083 case Instruction::Div:
1084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1085 if (CI->getRawValue() == 1)
1086 return const_cast<Constant*>(V1); // X / 1 == X
1087 break;
1088 case Instruction::Rem:
1089 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1090 if (CI->getRawValue() == 1)
1091 return Constant::getNullValue(CI->getType()); // X % 1 == 0
1092 break;
1093 case Instruction::And:
1094 if (cast<ConstantIntegral>(V2)->isAllOnesValue())
1095 return const_cast<Constant*>(V1); // X & -1 == X
1096 if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
Chris Lattnerea0789c2004-03-08 06:17:35 +00001097 if (CE1->getOpcode() == Instruction::Cast &&
Reid Spenceraccd7c72004-07-17 23:47:01 +00001098 isa<GlobalValue>(CE1->getOperand(0))) {
Chris Lattner13128ab2004-10-11 22:52:25 +00001099 GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
Chris Lattnerea0789c2004-03-08 06:17:35 +00001100
1101 // Functions are at least 4-byte aligned. If and'ing the address of a
1102 // function with a constant < 4, fold it to zero.
1103 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
Reid Spenceraccd7c72004-07-17 23:47:01 +00001104 if (CI->getRawValue() < 4 && isa<Function>(CPR))
Chris Lattnerea0789c2004-03-08 06:17:35 +00001105 return Constant::getNullValue(CI->getType());
1106 }
Chris Lattner061da2f2004-01-13 05:51:55 +00001107 break;
1108 case Instruction::Or:
1109 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X | 0 == X
1110 if (cast<ConstantIntegral>(V2)->isAllOnesValue())
1111 return const_cast<Constant*>(V2); // X | -1 == -1
1112 break;
1113 case Instruction::Xor:
1114 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X ^ 0 == X
1115 break;
1116 }
1117 }
1118
1119 } else if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
1120 // If V2 is a constant expr and V1 isn't, flop them around and fold the
1121 // other way if possible.
1122 switch (Opcode) {
1123 case Instruction::Add:
1124 case Instruction::Mul:
1125 case Instruction::And:
1126 case Instruction::Or:
1127 case Instruction::Xor:
1128 case Instruction::SetEQ:
1129 case Instruction::SetNE:
1130 // No change of opcode required.
1131 return ConstantFoldBinaryInstruction(Opcode, V2, V1);
1132
1133 case Instruction::SetLT:
1134 case Instruction::SetGT:
1135 case Instruction::SetLE:
1136 case Instruction::SetGE:
1137 // Change the opcode as necessary to swap the operands.
1138 Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
1139 return ConstantFoldBinaryInstruction(Opcode, V2, V1);
1140
1141 case Instruction::Shl:
1142 case Instruction::Shr:
1143 case Instruction::Sub:
1144 case Instruction::Div:
1145 case Instruction::Rem:
1146 default: // These instructions cannot be flopped around.
1147 break;
1148 }
1149 }
1150 return 0;
Chris Lattner1dd054c2004-01-12 22:07:24 +00001151}
1152
1153Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
Chris Lattner13128ab2004-10-11 22:52:25 +00001154 const std::vector<Value*> &IdxList) {
Chris Lattner1dd054c2004-01-12 22:07:24 +00001155 if (IdxList.size() == 0 ||
Chris Lattner13128ab2004-10-11 22:52:25 +00001156 (IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
Chris Lattner1dd054c2004-01-12 22:07:24 +00001157 return const_cast<Constant*>(C);
1158
Chris Lattnerf6013752004-10-17 21:54:55 +00001159 if (isa<UndefValue>(C)) {
1160 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
1161 true);
1162 assert(Ty != 0 && "Invalid indices for GEP!");
1163 return UndefValue::get(PointerType::get(Ty));
1164 }
1165
1166 Constant *Idx0 = cast<Constant>(IdxList[0]);
Chris Lattner04b60fe2004-02-16 20:46:13 +00001167 if (C->isNullValue()) {
1168 bool isNull = true;
1169 for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
Chris Lattner13128ab2004-10-11 22:52:25 +00001170 if (!cast<Constant>(IdxList[i])->isNullValue()) {
Chris Lattner04b60fe2004-02-16 20:46:13 +00001171 isNull = false;
1172 break;
1173 }
1174 if (isNull) {
Chris Lattner13128ab2004-10-11 22:52:25 +00001175 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
Chris Lattner04b60fe2004-02-16 20:46:13 +00001176 true);
1177 assert(Ty != 0 && "Invalid indices for GEP!");
1178 return ConstantPointerNull::get(PointerType::get(Ty));
1179 }
Chris Lattner4bbd4092004-07-15 01:16:59 +00001180
1181 if (IdxList.size() == 1) {
1182 const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
1183 if (unsigned ElSize = ElTy->getPrimitiveSize()) {
1184 // gep null, C is equal to C*sizeof(nullty). If nullty is a known llvm
1185 // type, we can statically fold this.
1186 Constant *R = ConstantUInt::get(Type::UIntTy, ElSize);
Chris Lattner13128ab2004-10-11 22:52:25 +00001187 R = ConstantExpr::getCast(R, Idx0->getType());
1188 R = ConstantExpr::getMul(R, Idx0);
Chris Lattner4bbd4092004-07-15 01:16:59 +00001189 return ConstantExpr::getCast(R, C->getType());
1190 }
1191 }
Chris Lattner04b60fe2004-02-16 20:46:13 +00001192 }
Chris Lattner1dd054c2004-01-12 22:07:24 +00001193
1194 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1195 // Combine Indices - If the source pointer to this getelementptr instruction
1196 // is a getelementptr instruction, combine the indices of the two
1197 // getelementptr instructions into a single instruction.
1198 //
1199 if (CE->getOpcode() == Instruction::GetElementPtr) {
1200 const Type *LastTy = 0;
1201 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1202 I != E; ++I)
1203 LastTy = *I;
1204
Chris Lattner13128ab2004-10-11 22:52:25 +00001205 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1206 std::vector<Value*> NewIndices;
Chris Lattner1dd054c2004-01-12 22:07:24 +00001207 NewIndices.reserve(IdxList.size() + CE->getNumOperands());
1208 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
Chris Lattner13128ab2004-10-11 22:52:25 +00001209 NewIndices.push_back(CE->getOperand(i));
Chris Lattner1dd054c2004-01-12 22:07:24 +00001210
1211 // Add the last index of the source with the first index of the new GEP.
1212 // Make sure to handle the case when they are actually different types.
1213 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
Chris Lattner13128ab2004-10-11 22:52:25 +00001214 // Otherwise it must be an array.
1215 if (!Idx0->isNullValue()) {
Chris Lattner71068a02004-07-07 04:45:13 +00001216 const Type *IdxTy = Combined->getType();
Chris Lattner13128ab2004-10-11 22:52:25 +00001217 if (IdxTy != Idx0->getType()) IdxTy = Type::LongTy;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001218 Combined =
Chris Lattner1dd054c2004-01-12 22:07:24 +00001219 ConstantExpr::get(Instruction::Add,
Chris Lattner13128ab2004-10-11 22:52:25 +00001220 ConstantExpr::getCast(Idx0, IdxTy),
Chris Lattner71068a02004-07-07 04:45:13 +00001221 ConstantExpr::getCast(Combined, IdxTy));
1222 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001223
Chris Lattner1dd054c2004-01-12 22:07:24 +00001224 NewIndices.push_back(Combined);
1225 NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
1226 return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
1227 }
1228 }
1229
1230 // Implement folding of:
1231 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1232 // long 0, long 0)
1233 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1234 //
1235 if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
Chris Lattner13128ab2004-10-11 22:52:25 +00001236 Idx0->isNullValue())
Misha Brukmanb1c93172005-04-21 23:48:37 +00001237 if (const PointerType *SPT =
Chris Lattner1dd054c2004-01-12 22:07:24 +00001238 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1239 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1240 if (const ArrayType *CAT =
1241 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1242 if (CAT->getElementType() == SAT->getElementType())
1243 return ConstantExpr::getGetElementPtr(
1244 (Constant*)CE->getOperand(0), IdxList);
1245 }
1246 return 0;
1247}
1248