Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 1 | //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the MemorySSAUpdater class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------===// |
Daniel Berlin | 554dcd8 | 2017-04-11 20:06:36 +0000 | [diff] [blame] | 13 | #include "llvm/Analysis/MemorySSAUpdater.h" |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/ADT/SmallPtrSet.h" |
| 16 | #include "llvm/ADT/SmallSet.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame^] | 17 | #include "llvm/Analysis/MemorySSA.h" |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 18 | #include "llvm/IR/DataLayout.h" |
| 19 | #include "llvm/IR/Dominators.h" |
| 20 | #include "llvm/IR/GlobalVariable.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/IntrinsicInst.h" |
| 23 | #include "llvm/IR/LLVMContext.h" |
| 24 | #include "llvm/IR/Metadata.h" |
| 25 | #include "llvm/IR/Module.h" |
| 26 | #include "llvm/Support/Debug.h" |
| 27 | #include "llvm/Support/FormattedStream.h" |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 28 | #include <algorithm> |
| 29 | |
| 30 | #define DEBUG_TYPE "memoryssa" |
| 31 | using namespace llvm; |
George Burgess IV | 56169ed | 2017-04-21 04:54:52 +0000 | [diff] [blame] | 32 | |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 33 | // This is the marker algorithm from "Simple and Efficient Construction of |
| 34 | // Static Single Assignment Form" |
| 35 | // The simple, non-marker algorithm places phi nodes at any join |
| 36 | // Here, we place markers, and only place phi nodes if they end up necessary. |
| 37 | // They are only necessary if they break a cycle (IE we recursively visit |
| 38 | // ourselves again), or we discover, while getting the value of the operands, |
| 39 | // that there are two or more definitions needing to be merged. |
| 40 | // This still will leave non-minimal form in the case of irreducible control |
| 41 | // flow, where phi nodes may be in cycles with themselves, but unnecessary. |
| 42 | MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) { |
| 43 | // Single predecessor case, just recurse, we can only have one definition. |
| 44 | if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
| 45 | return getPreviousDefFromEnd(Pred); |
| 46 | } else if (VisitedBlocks.count(BB)) { |
| 47 | // We hit our node again, meaning we had a cycle, we must insert a phi |
| 48 | // node to break it so we have an operand. The only case this will |
| 49 | // insert useless phis is if we have irreducible control flow. |
| 50 | return MSSA->createMemoryPhi(BB); |
| 51 | } else if (VisitedBlocks.insert(BB).second) { |
| 52 | // Mark us visited so we can detect a cycle |
| 53 | SmallVector<MemoryAccess *, 8> PhiOps; |
| 54 | |
| 55 | // Recurse to get the values in our predecessors for placement of a |
| 56 | // potential phi node. This will insert phi nodes if we cycle in order to |
| 57 | // break the cycle and have an operand. |
| 58 | for (auto *Pred : predecessors(BB)) |
| 59 | PhiOps.push_back(getPreviousDefFromEnd(Pred)); |
| 60 | |
| 61 | // Now try to simplify the ops to avoid placing a phi. |
| 62 | // This may return null if we never created a phi yet, that's okay |
| 63 | MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); |
| 64 | bool PHIExistsButNeedsUpdate = false; |
| 65 | // See if the existing phi operands match what we need. |
| 66 | // Unlike normal SSA, we only allow one phi node per block, so we can't just |
| 67 | // create a new one. |
| 68 | if (Phi && Phi->getNumOperands() != 0) |
| 69 | if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { |
| 70 | PHIExistsButNeedsUpdate = true; |
| 71 | } |
| 72 | |
| 73 | // See if we can avoid the phi by simplifying it. |
| 74 | auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); |
| 75 | // If we couldn't simplify, we may have to create a phi |
| 76 | if (Result == Phi) { |
| 77 | if (!Phi) |
| 78 | Phi = MSSA->createMemoryPhi(BB); |
| 79 | |
| 80 | // These will have been filled in by the recursive read we did above. |
| 81 | if (PHIExistsButNeedsUpdate) { |
| 82 | std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); |
| 83 | std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); |
| 84 | } else { |
| 85 | unsigned i = 0; |
| 86 | for (auto *Pred : predecessors(BB)) |
| 87 | Phi->addIncoming(PhiOps[i++], Pred); |
| 88 | } |
| 89 | |
| 90 | Result = Phi; |
| 91 | } |
| 92 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result)) |
| 93 | InsertedPHIs.push_back(MP); |
| 94 | // Set ourselves up for the next variable by resetting visited state. |
| 95 | VisitedBlocks.erase(BB); |
| 96 | return Result; |
| 97 | } |
| 98 | llvm_unreachable("Should have hit one of the three cases above"); |
| 99 | } |
| 100 | |
| 101 | // This starts at the memory access, and goes backwards in the block to find the |
| 102 | // previous definition. If a definition is not found the block of the access, |
| 103 | // it continues globally, creating phi nodes to ensure we have a single |
| 104 | // definition. |
| 105 | MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { |
| 106 | auto *LocalResult = getPreviousDefInBlock(MA); |
| 107 | |
| 108 | return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock()); |
| 109 | } |
| 110 | |
| 111 | // This starts at the memory access, and goes backwards in the block to the find |
| 112 | // the previous definition. If the definition is not found in the block of the |
| 113 | // access, it returns nullptr. |
| 114 | MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { |
| 115 | auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); |
| 116 | |
| 117 | // It's possible there are no defs, or we got handed the first def to start. |
| 118 | if (Defs) { |
| 119 | // If this is a def, we can just use the def iterators. |
| 120 | if (!isa<MemoryUse>(MA)) { |
| 121 | auto Iter = MA->getReverseDefsIterator(); |
| 122 | ++Iter; |
| 123 | if (Iter != Defs->rend()) |
| 124 | return &*Iter; |
| 125 | } else { |
| 126 | // Otherwise, have to walk the all access iterator. |
| 127 | auto Iter = MA->getReverseIterator(); |
| 128 | ++Iter; |
| 129 | while (&*Iter != &*Defs->begin()) { |
| 130 | if (!isa<MemoryUse>(*Iter)) |
| 131 | return &*Iter; |
| 132 | --Iter; |
| 133 | } |
| 134 | // At this point it must be pointing at firstdef |
| 135 | assert(&*Iter == &*Defs->begin() && |
| 136 | "Should have hit first def walking backwards"); |
| 137 | return &*Iter; |
| 138 | } |
| 139 | } |
| 140 | return nullptr; |
| 141 | } |
| 142 | |
| 143 | // This starts at the end of block |
| 144 | MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) { |
| 145 | auto *Defs = MSSA->getWritableBlockDefs(BB); |
| 146 | |
| 147 | if (Defs) |
| 148 | return &*Defs->rbegin(); |
| 149 | |
| 150 | return getPreviousDefRecursive(BB); |
| 151 | } |
| 152 | // Recurse over a set of phi uses to eliminate the trivial ones |
| 153 | MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { |
| 154 | if (!Phi) |
| 155 | return nullptr; |
| 156 | TrackingVH<MemoryAccess> Res(Phi); |
| 157 | SmallVector<TrackingVH<Value>, 8> Uses; |
| 158 | std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); |
| 159 | for (auto &U : Uses) { |
| 160 | if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { |
| 161 | auto OperRange = UsePhi->operands(); |
| 162 | tryRemoveTrivialPhi(UsePhi, OperRange); |
| 163 | } |
| 164 | } |
| 165 | return Res; |
| 166 | } |
| 167 | |
| 168 | // Eliminate trivial phis |
| 169 | // Phis are trivial if they are defined either by themselves, or all the same |
| 170 | // argument. |
| 171 | // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) |
| 172 | // We recursively try to remove them. |
| 173 | template <class RangeType> |
| 174 | MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, |
| 175 | RangeType &Operands) { |
| 176 | // Detect equal or self arguments |
| 177 | MemoryAccess *Same = nullptr; |
| 178 | for (auto &Op : Operands) { |
| 179 | // If the same or self, good so far |
| 180 | if (Op == Phi || Op == Same) |
| 181 | continue; |
| 182 | // not the same, return the phi since it's not eliminatable by us |
| 183 | if (Same) |
| 184 | return Phi; |
| 185 | Same = cast<MemoryAccess>(Op); |
| 186 | } |
| 187 | // Never found a non-self reference, the phi is undef |
| 188 | if (Same == nullptr) |
| 189 | return MSSA->getLiveOnEntryDef(); |
| 190 | if (Phi) { |
| 191 | Phi->replaceAllUsesWith(Same); |
Daniel Berlin | 17e8d0e | 2017-02-22 22:19:55 +0000 | [diff] [blame] | 192 | removeMemoryAccess(Phi); |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 193 | } |
| 194 | |
| 195 | // We should only end up recursing in case we replaced something, in which |
| 196 | // case, we may have made other Phis trivial. |
| 197 | return recursePhi(Same); |
| 198 | } |
| 199 | |
| 200 | void MemorySSAUpdater::insertUse(MemoryUse *MU) { |
| 201 | InsertedPHIs.clear(); |
| 202 | MU->setDefiningAccess(getPreviousDef(MU)); |
| 203 | // Unlike for defs, there is no extra work to do. Because uses do not create |
| 204 | // new may-defs, there are only two cases: |
| 205 | // |
| 206 | // 1. There was a def already below us, and therefore, we should not have |
| 207 | // created a phi node because it was already needed for the def. |
| 208 | // |
| 209 | // 2. There is no def below us, and therefore, there is no extra renaming work |
| 210 | // to do. |
| 211 | } |
| 212 | |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 213 | // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. |
George Burgess IV | 56169ed | 2017-04-21 04:54:52 +0000 | [diff] [blame] | 214 | static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, |
| 215 | MemoryAccess *NewDef) { |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 216 | // Replace any operand with us an incoming block with the new defining |
| 217 | // access. |
| 218 | int i = MP->getBasicBlockIndex(BB); |
| 219 | assert(i != -1 && "Should have found the basic block in the phi"); |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 220 | // We can't just compare i against getNumOperands since one is signed and the |
| 221 | // other not. So use it to index into the block iterator. |
| 222 | for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); |
| 223 | ++BBIter) { |
| 224 | if (*BBIter != BB) |
| 225 | break; |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 226 | MP->setIncomingValue(i, NewDef); |
| 227 | ++i; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // A brief description of the algorithm: |
| 232 | // First, we compute what should define the new def, using the SSA |
| 233 | // construction algorithm. |
| 234 | // Then, we update the defs below us (and any new phi nodes) in the graph to |
| 235 | // point to the correct new defs, to ensure we only have one variable, and no |
| 236 | // disconnected stores. |
Daniel Berlin | 78cbd28 | 2017-02-20 22:26:03 +0000 | [diff] [blame] | 237 | void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 238 | InsertedPHIs.clear(); |
| 239 | |
| 240 | // See if we had a local def, and if not, go hunting. |
| 241 | MemoryAccess *DefBefore = getPreviousDefInBlock(MD); |
| 242 | bool DefBeforeSameBlock = DefBefore != nullptr; |
| 243 | if (!DefBefore) |
| 244 | DefBefore = getPreviousDefRecursive(MD->getBlock()); |
| 245 | |
| 246 | // There is a def before us, which means we can replace any store/phi uses |
| 247 | // of that thing with us, since we are in the way of whatever was there |
| 248 | // before. |
| 249 | // We now define that def's memorydefs and memoryphis |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 250 | if (DefBeforeSameBlock) { |
| 251 | for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); |
| 252 | UI != UE;) { |
| 253 | Use &U = *UI++; |
| 254 | // Leave the uses alone |
| 255 | if (isa<MemoryUse>(U.getUser())) |
| 256 | continue; |
| 257 | U.set(MD); |
| 258 | } |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 259 | } |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 260 | |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 261 | // and that def is now our defining access. |
| 262 | // We change them in this order otherwise we will appear in the use list |
| 263 | // above and reset ourselves. |
| 264 | MD->setDefiningAccess(DefBefore); |
| 265 | |
| 266 | SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(), |
| 267 | InsertedPHIs.end()); |
| 268 | if (!DefBeforeSameBlock) { |
| 269 | // If there was a local def before us, we must have the same effect it |
| 270 | // did. Because every may-def is the same, any phis/etc we would create, it |
| 271 | // would also have created. If there was no local def before us, we |
| 272 | // performed a global update, and have to search all successors and make |
| 273 | // sure we update the first def in each of them (following all paths until |
| 274 | // we hit the first def along each path). This may also insert phi nodes. |
| 275 | // TODO: There are other cases we can skip this work, such as when we have a |
| 276 | // single successor, and only used a straight line of single pred blocks |
| 277 | // backwards to find the def. To make that work, we'd have to track whether |
| 278 | // getDefRecursive only ever used the single predecessor case. These types |
| 279 | // of paths also only exist in between CFG simplifications. |
| 280 | FixupList.push_back(MD); |
| 281 | } |
| 282 | |
| 283 | while (!FixupList.empty()) { |
| 284 | unsigned StartingPHISize = InsertedPHIs.size(); |
| 285 | fixupDefs(FixupList); |
| 286 | FixupList.clear(); |
| 287 | // Put any new phis on the fixup list, and process them |
| 288 | FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end()); |
| 289 | } |
Daniel Berlin | 78cbd28 | 2017-02-20 22:26:03 +0000 | [diff] [blame] | 290 | // Now that all fixups are done, rename all uses if we are asked. |
| 291 | if (RenameUses) { |
| 292 | SmallPtrSet<BasicBlock *, 16> Visited; |
| 293 | BasicBlock *StartBlock = MD->getBlock(); |
| 294 | // We are guaranteed there is a def in the block, because we just got it |
| 295 | // handed to us in this function. |
| 296 | MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); |
| 297 | // Convert to incoming value if it's a memorydef. A phi *is* already an |
| 298 | // incoming value. |
| 299 | if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) |
| 300 | FirstDef = MD->getDefiningAccess(); |
| 301 | |
| 302 | MSSA->renamePass(MD->getBlock(), FirstDef, Visited); |
| 303 | // We just inserted a phi into this block, so the incoming value will become |
| 304 | // the phi anyway, so it does not matter what we pass. |
| 305 | for (auto *MP : InsertedPHIs) |
| 306 | MSSA->renamePass(MP->getBlock(), nullptr, Visited); |
| 307 | } |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 308 | } |
| 309 | |
| 310 | void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) { |
| 311 | SmallPtrSet<const BasicBlock *, 8> Seen; |
| 312 | SmallVector<const BasicBlock *, 16> Worklist; |
| 313 | for (auto *NewDef : Vars) { |
| 314 | // First, see if there is a local def after the operand. |
| 315 | auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); |
| 316 | auto DefIter = NewDef->getDefsIterator(); |
| 317 | |
| 318 | // If there is a local def after us, we only have to rename that. |
| 319 | if (++DefIter != Defs->end()) { |
| 320 | cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); |
| 321 | continue; |
| 322 | } |
| 323 | |
| 324 | // Otherwise, we need to search down through the CFG. |
| 325 | // For each of our successors, handle it directly if their is a phi, or |
| 326 | // place on the fixup worklist. |
| 327 | for (const auto *S : successors(NewDef->getBlock())) { |
| 328 | if (auto *MP = MSSA->getMemoryAccess(S)) |
| 329 | setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); |
| 330 | else |
| 331 | Worklist.push_back(S); |
| 332 | } |
| 333 | |
| 334 | while (!Worklist.empty()) { |
| 335 | const BasicBlock *FixupBlock = Worklist.back(); |
| 336 | Worklist.pop_back(); |
| 337 | |
| 338 | // Get the first def in the block that isn't a phi node. |
| 339 | if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { |
| 340 | auto *FirstDef = &*Defs->begin(); |
| 341 | // The loop above and below should have taken care of phi nodes |
| 342 | assert(!isa<MemoryPhi>(FirstDef) && |
| 343 | "Should have already handled phi nodes!"); |
| 344 | // We are now this def's defining access, make sure we actually dominate |
| 345 | // it |
| 346 | assert(MSSA->dominates(NewDef, FirstDef) && |
| 347 | "Should have dominated the new access"); |
| 348 | |
| 349 | // This may insert new phi nodes, because we are not guaranteed the |
| 350 | // block we are processing has a single pred, and depending where the |
| 351 | // store was inserted, it may require phi nodes below it. |
| 352 | cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); |
| 353 | return; |
| 354 | } |
| 355 | // We didn't find a def, so we must continue. |
| 356 | for (const auto *S : successors(FixupBlock)) { |
| 357 | // If there is a phi node, handle it. |
| 358 | // Otherwise, put the block on the worklist |
| 359 | if (auto *MP = MSSA->getMemoryAccess(S)) |
| 360 | setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); |
| 361 | else { |
| 362 | // If we cycle, we should have ended up at a phi node that we already |
| 363 | // processed. FIXME: Double check this |
| 364 | if (!Seen.insert(S).second) |
| 365 | continue; |
| 366 | Worklist.push_back(S); |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | // Move What before Where in the MemorySSA IR. |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 374 | template <class WhereType> |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 375 | void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 376 | WhereType Where) { |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 377 | // Replace all our users with our defining access. |
| 378 | What->replaceAllUsesWith(What->getDefiningAccess()); |
| 379 | |
| 380 | // Let MemorySSA take care of moving it around in the lists. |
| 381 | MSSA->moveTo(What, BB, Where); |
| 382 | |
| 383 | // Now reinsert it into the IR and do whatever fixups needed. |
| 384 | if (auto *MD = dyn_cast<MemoryDef>(What)) |
| 385 | insertDef(MD); |
| 386 | else |
| 387 | insertUse(cast<MemoryUse>(What)); |
| 388 | } |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 389 | |
Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame] | 390 | // Move What before Where in the MemorySSA IR. |
| 391 | void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| 392 | moveTo(What, Where->getBlock(), Where->getIterator()); |
| 393 | } |
| 394 | |
| 395 | // Move What after Where in the MemorySSA IR. |
| 396 | void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| 397 | moveTo(What, Where->getBlock(), ++Where->getIterator()); |
| 398 | } |
| 399 | |
Daniel Berlin | 9d8a335 | 2017-01-30 11:35:39 +0000 | [diff] [blame] | 400 | void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, |
| 401 | MemorySSA::InsertionPlace Where) { |
| 402 | return moveTo(What, BB, Where); |
| 403 | } |
Daniel Berlin | 17e8d0e | 2017-02-22 22:19:55 +0000 | [diff] [blame] | 404 | |
| 405 | /// \brief If all arguments of a MemoryPHI are defined by the same incoming |
| 406 | /// argument, return that argument. |
| 407 | static MemoryAccess *onlySingleValue(MemoryPhi *MP) { |
| 408 | MemoryAccess *MA = nullptr; |
| 409 | |
| 410 | for (auto &Arg : MP->operands()) { |
| 411 | if (!MA) |
| 412 | MA = cast<MemoryAccess>(Arg); |
| 413 | else if (MA != Arg) |
| 414 | return nullptr; |
| 415 | } |
| 416 | return MA; |
| 417 | } |
George Burgess IV | 56169ed | 2017-04-21 04:54:52 +0000 | [diff] [blame] | 418 | |
Daniel Berlin | 17e8d0e | 2017-02-22 22:19:55 +0000 | [diff] [blame] | 419 | void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { |
| 420 | assert(!MSSA->isLiveOnEntryDef(MA) && |
| 421 | "Trying to remove the live on entry def"); |
| 422 | // We can only delete phi nodes if they have no uses, or we can replace all |
| 423 | // uses with a single definition. |
| 424 | MemoryAccess *NewDefTarget = nullptr; |
| 425 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { |
| 426 | // Note that it is sufficient to know that all edges of the phi node have |
| 427 | // the same argument. If they do, by the definition of dominance frontiers |
| 428 | // (which we used to place this phi), that argument must dominate this phi, |
| 429 | // and thus, must dominate the phi's uses, and so we will not hit the assert |
| 430 | // below. |
| 431 | NewDefTarget = onlySingleValue(MP); |
| 432 | assert((NewDefTarget || MP->use_empty()) && |
| 433 | "We can't delete this memory phi"); |
| 434 | } else { |
| 435 | NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); |
| 436 | } |
| 437 | |
| 438 | // Re-point the uses at our defining access |
| 439 | if (!isa<MemoryUse>(MA) && !MA->use_empty()) { |
| 440 | // Reset optimized on users of this store, and reset the uses. |
| 441 | // A few notes: |
| 442 | // 1. This is a slightly modified version of RAUW to avoid walking the |
| 443 | // uses twice here. |
| 444 | // 2. If we wanted to be complete, we would have to reset the optimized |
| 445 | // flags on users of phi nodes if doing the below makes a phi node have all |
| 446 | // the same arguments. Instead, we prefer users to removeMemoryAccess those |
| 447 | // phi nodes, because doing it here would be N^3. |
| 448 | if (MA->hasValueHandle()) |
| 449 | ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); |
| 450 | // Note: We assume MemorySSA is not used in metadata since it's not really |
| 451 | // part of the IR. |
| 452 | |
| 453 | while (!MA->use_empty()) { |
| 454 | Use &U = *MA->use_begin(); |
Daniel Berlin | e33bc31 | 2017-04-04 23:43:10 +0000 | [diff] [blame] | 455 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) |
| 456 | MUD->resetOptimized(); |
Daniel Berlin | 17e8d0e | 2017-02-22 22:19:55 +0000 | [diff] [blame] | 457 | U.set(NewDefTarget); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | // The call below to erase will destroy MA, so we can't change the order we |
| 462 | // are doing things here |
| 463 | MSSA->removeFromLookups(MA); |
| 464 | MSSA->removeFromLists(MA); |
| 465 | } |
| 466 | |
| 467 | MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( |
| 468 | Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, |
| 469 | MemorySSA::InsertionPlace Point) { |
| 470 | MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); |
| 471 | MSSA->insertIntoListsForBlock(NewAccess, BB, Point); |
| 472 | return NewAccess; |
| 473 | } |
| 474 | |
| 475 | MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( |
| 476 | Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { |
| 477 | assert(I->getParent() == InsertPt->getBlock() && |
| 478 | "New and old access must be in the same block"); |
| 479 | MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); |
| 480 | MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), |
| 481 | InsertPt->getIterator()); |
| 482 | return NewAccess; |
| 483 | } |
| 484 | |
| 485 | MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( |
| 486 | Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { |
| 487 | assert(I->getParent() == InsertPt->getBlock() && |
| 488 | "New and old access must be in the same block"); |
| 489 | MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); |
| 490 | MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), |
| 491 | ++InsertPt->getIterator()); |
| 492 | return NewAccess; |
| 493 | } |