blob: 0e8518108da980c6a6bdafff016274fcaef5501b [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohmand78c4002008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000036#include "llvm/Transforms/Scalar.h"
Chris Lattner35522b72010-01-04 07:12:23 +000037#include "InstCombine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000038#include "llvm-c/Initialization.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/StringSwitch.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerc1f19072009-11-09 23:28:39 +000043#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf390e042009-10-27 20:05:49 +000044#include "llvm/Analysis/MemoryBuiltins.h"
Sanjay Patel58814442014-07-09 16:34:54 +000045#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000046#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/DataLayout.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000048#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000050#include "llvm/IR/PatternMatch.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000051#include "llvm/IR/ValueHandle.h"
Meador Inge193e0352012-11-13 04:16:17 +000052#include "llvm/Support/CommandLine.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000053#include "llvm/Support/Debug.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000054#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
Chris Lattner053c0932002-05-14 15:24:07 +000056#include <algorithm>
Torok Edwinab207842008-04-20 08:33:11 +000057#include <climits>
Chris Lattner8427bff2003-12-07 01:24:23 +000058using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000059using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000060
Chandler Carruth964daaa2014-04-22 02:55:47 +000061#define DEBUG_TYPE "instcombine"
62
Chris Lattner79a42ac2006-12-19 21:40:18 +000063STATISTIC(NumCombined , "Number of insts combined");
64STATISTIC(NumConstProp, "Number of constant folds");
65STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner79a42ac2006-12-19 21:40:18 +000066STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sandsfbb9ac32010-12-22 13:36:08 +000067STATISTIC(NumExpand, "Number of expansions");
Duncan Sands3547d2e2010-12-22 09:40:51 +000068STATISTIC(NumFactor , "Number of factorizations");
69STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000070
Meador Inge193e0352012-11-13 04:16:17 +000071static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
72 cl::init(false),
73 cl::desc("Enable unsafe double to float "
74 "shrinking for math lib calls"));
75
Owen Andersonf7ef5df2010-10-07 20:04:55 +000076// Initialization Routines
77void llvm::initializeInstCombine(PassRegistry &Registry) {
78 initializeInstCombinerPass(Registry);
79}
80
81void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
82 initializeInstCombine(*unwrap(R));
83}
Chris Lattner260ab202002-04-18 17:39:14 +000084
Dan Gohmand78c4002008-05-13 00:00:25 +000085char InstCombiner::ID = 0;
Chad Rosiere6de63d2011-12-01 21:29:16 +000086INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
87 "Combine redundant instructions", false, false)
88INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
89INITIALIZE_PASS_END(InstCombiner, "instcombine",
Owen Andersondf7a4f22010-10-07 22:25:06 +000090 "Combine redundant instructions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +000091
Chris Lattner7e044912010-01-04 07:17:19 +000092void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner7e044912010-01-04 07:17:19 +000093 AU.setPreservesCFG();
Chad Rosier82e1bd82011-11-29 23:57:10 +000094 AU.addRequired<TargetLibraryInfo>();
Chris Lattner7e044912010-01-04 07:17:19 +000095}
96
97
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000098Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +000099 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopesa2f6cec2012-05-22 17:19:09 +0000100}
101
Chris Lattner1559bed2009-11-10 07:23:37 +0000102/// ShouldChangeType - Return true if it is desirable to convert a computation
103/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
104/// type for example, or from a smaller to a larger illegal type.
Chris Lattner229907c2011-07-18 04:54:35 +0000105bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands19d0b472010-02-16 11:11:14 +0000106 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000107
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000108 // If we don't have DL, we don't know if the source/dest are legal.
109 if (!DL) return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000110
Chris Lattner1559bed2009-11-10 07:23:37 +0000111 unsigned FromWidth = From->getPrimitiveSizeInBits();
112 unsigned ToWidth = To->getPrimitiveSizeInBits();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000113 bool FromLegal = DL->isLegalInteger(FromWidth);
114 bool ToLegal = DL->isLegalInteger(ToWidth);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000115
Chris Lattner1559bed2009-11-10 07:23:37 +0000116 // If this is a legal integer from type, and the result would be an illegal
117 // type, don't do the transformation.
118 if (FromLegal && !ToLegal)
119 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000120
Chris Lattner1559bed2009-11-10 07:23:37 +0000121 // Otherwise, if both are illegal, do not increase the size of the result. We
122 // do allow things like i160 -> i64, but not i64 -> i160.
123 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
124 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000125
Chris Lattner1559bed2009-11-10 07:23:37 +0000126 return true;
127}
128
Nick Lewyckyde492782011-08-14 01:45:19 +0000129// Return true, if No Signed Wrap should be maintained for I.
130// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
131// where both B and C should be ConstantInts, results in a constant that does
132// not overflow. This function only handles the Add and Sub opcodes. For
133// all other opcodes, the function conservatively returns false.
134static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
135 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
136 if (!OBO || !OBO->hasNoSignedWrap()) {
137 return false;
138 }
139
140 // We reason about Add and Sub Only.
141 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000142 if (Opcode != Instruction::Add &&
Nick Lewyckyde492782011-08-14 01:45:19 +0000143 Opcode != Instruction::Sub) {
144 return false;
145 }
146
147 ConstantInt *CB = dyn_cast<ConstantInt>(B);
148 ConstantInt *CC = dyn_cast<ConstantInt>(C);
149
150 if (!CB || !CC) {
151 return false;
152 }
153
154 const APInt &BVal = CB->getValue();
155 const APInt &CVal = CC->getValue();
156 bool Overflow = false;
157
158 if (Opcode == Instruction::Add) {
159 BVal.sadd_ov(CVal, Overflow);
160 } else {
161 BVal.ssub_ov(CVal, Overflow);
162 }
163
164 return !Overflow;
165}
166
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000167/// Conservatively clears subclassOptionalData after a reassociation or
168/// commutation. We preserve fast-math flags when applicable as they can be
169/// preserved.
170static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
171 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
172 if (!FPMO) {
173 I.clearSubclassOptionalData();
174 return;
175 }
176
177 FastMathFlags FMF = I.getFastMathFlags();
178 I.clearSubclassOptionalData();
179 I.setFastMathFlags(FMF);
180}
181
Duncan Sands641baf12010-11-13 15:10:37 +0000182/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
183/// operators which are associative or commutative:
184//
185// Commutative operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000186//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000187// 1. Order operands such that they are listed from right (least complex) to
188// left (most complex). This puts constants before unary operators before
189// binary operators.
190//
Duncan Sands641baf12010-11-13 15:10:37 +0000191// Associative operators:
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000192//
Duncan Sands641baf12010-11-13 15:10:37 +0000193// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
194// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
195//
196// Associative and commutative operators:
197//
198// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
199// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
200// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
201// if C1 and C2 are constants.
202//
203bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000204 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands641baf12010-11-13 15:10:37 +0000205 bool Changed = false;
Chris Lattner7fb29e12003-03-11 00:12:48 +0000206
Duncan Sands641baf12010-11-13 15:10:37 +0000207 do {
208 // Order operands such that they are listed from right (least complex) to
209 // left (most complex). This puts constants before unary operators before
210 // binary operators.
211 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
212 getComplexity(I.getOperand(1)))
213 Changed = !I.swapOperands();
214
215 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
216 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
217
218 if (I.isAssociative()) {
219 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
220 if (Op0 && Op0->getOpcode() == Opcode) {
221 Value *A = Op0->getOperand(0);
222 Value *B = Op0->getOperand(1);
223 Value *C = I.getOperand(1);
224
225 // Does "B op C" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000226 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000227 // It simplifies to V. Form "A op V".
228 I.setOperand(0, A);
229 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000230 // Conservatively clear the optional flags, since they may not be
231 // preserved by the reassociation.
Nick Lewyckyae13df62011-08-14 03:41:33 +0000232 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendlingea6397f2012-07-19 00:11:40 +0000233 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewyckyae13df62011-08-14 03:41:33 +0000234 // Note: this is only valid because SimplifyBinOp doesn't look at
235 // the operands to Op0.
Nick Lewyckyde492782011-08-14 01:45:19 +0000236 I.clearSubclassOptionalData();
237 I.setHasNoSignedWrap(true);
238 } else {
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000239 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000240 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000241
Duncan Sands641baf12010-11-13 15:10:37 +0000242 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000243 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000244 continue;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000245 }
Duncan Sands641baf12010-11-13 15:10:37 +0000246 }
247
248 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
249 if (Op1 && Op1->getOpcode() == Opcode) {
250 Value *A = I.getOperand(0);
251 Value *B = Op1->getOperand(0);
252 Value *C = Op1->getOperand(1);
253
254 // Does "A op B" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000255 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000256 // It simplifies to V. Form "V op C".
257 I.setOperand(0, V);
258 I.setOperand(1, C);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000259 // Conservatively clear the optional flags, since they may not be
260 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000261 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000262 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000263 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000264 continue;
265 }
266 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000267 }
Duncan Sands641baf12010-11-13 15:10:37 +0000268
269 if (I.isAssociative() && I.isCommutative()) {
270 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
271 if (Op0 && Op0->getOpcode() == Opcode) {
272 Value *A = Op0->getOperand(0);
273 Value *B = Op0->getOperand(1);
274 Value *C = I.getOperand(1);
275
276 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000277 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000278 // It simplifies to V. Form "V op B".
279 I.setOperand(0, V);
280 I.setOperand(1, B);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000281 // Conservatively clear the optional flags, since they may not be
282 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000283 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000284 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000285 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000286 continue;
287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = I.getOperand(0);
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000297 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000298 // It simplifies to V. Form "B op V".
299 I.setOperand(0, B);
300 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000301 // Conservatively clear the optional flags, since they may not be
302 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000303 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000304 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000305 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000306 continue;
307 }
308 }
309
310 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
311 // if C1 and C2 are constants.
312 if (Op0 && Op1 &&
313 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
314 isa<Constant>(Op0->getOperand(1)) &&
315 isa<Constant>(Op1->getOperand(1)) &&
316 Op0->hasOneUse() && Op1->hasOneUse()) {
317 Value *A = Op0->getOperand(0);
318 Constant *C1 = cast<Constant>(Op0->getOperand(1));
319 Value *B = Op1->getOperand(0);
320 Constant *C2 = cast<Constant>(Op1->getOperand(1));
321
322 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckyde492782011-08-14 01:45:19 +0000323 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Owen Anderson1664dc82014-01-20 07:44:53 +0000324 if (isa<FPMathOperator>(New)) {
325 FastMathFlags Flags = I.getFastMathFlags();
326 Flags &= Op0->getFastMathFlags();
327 Flags &= Op1->getFastMathFlags();
328 New->setFastMathFlags(Flags);
329 }
Eli Friedman35211c62011-05-27 00:19:40 +0000330 InsertNewInstWith(New, I);
Eli Friedman41e509a2011-05-18 23:58:37 +0000331 New->takeName(Op1);
Duncan Sands641baf12010-11-13 15:10:37 +0000332 I.setOperand(0, New);
333 I.setOperand(1, Folded);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000334 // Conservatively clear the optional flags, since they may not be
335 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000336 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000337
Duncan Sands641baf12010-11-13 15:10:37 +0000338 Changed = true;
339 continue;
340 }
341 }
342
343 // No further simplifications.
344 return Changed;
345 } while (1);
Chris Lattner260ab202002-04-18 17:39:14 +0000346}
Chris Lattnerca081252001-12-14 16:52:21 +0000347
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000348/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sands22df7412010-11-23 15:25:34 +0000349/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000350static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
351 Instruction::BinaryOps ROp) {
352 switch (LOp) {
353 default:
354 return false;
355
356 case Instruction::And:
357 // And distributes over Or and Xor.
358 switch (ROp) {
359 default:
360 return false;
361 case Instruction::Or:
362 case Instruction::Xor:
363 return true;
364 }
365
366 case Instruction::Mul:
367 // Multiplication distributes over addition and subtraction.
368 switch (ROp) {
369 default:
370 return false;
371 case Instruction::Add:
372 case Instruction::Sub:
373 return true;
374 }
375
376 case Instruction::Or:
377 // Or distributes over And.
378 switch (ROp) {
379 default:
380 return false;
381 case Instruction::And:
382 return true;
383 }
384 }
385}
386
387/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
388/// "(X ROp Z) LOp (Y ROp Z)".
389static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
390 Instruction::BinaryOps ROp) {
391 if (Instruction::isCommutative(ROp))
392 return LeftDistributesOverRight(ROp, LOp);
393 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
394 // but this requires knowing that the addition does not overflow and other
395 // such subtleties.
396 return false;
397}
398
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000399/// This function returns identity value for given opcode, which can be used to
400/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
401static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
402 if (isa<Constant>(V))
403 return nullptr;
404
405 if (OpCode == Instruction::Mul)
406 return ConstantInt::get(V->getType(), 1);
407
408 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
409
410 return nullptr;
411}
412
413/// This function factors binary ops which can be combined using distributive
414/// laws. This also factor SHL as MUL e.g. SHL(X, 2) ==> MUL(X, 4).
Benjamin Kramer6cbe6702014-07-07 14:47:51 +0000415static Instruction::BinaryOps
416getBinOpsForFactorization(BinaryOperator *Op, Value *&LHS, Value *&RHS) {
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000417 if (!Op)
418 return Instruction::BinaryOpsEnd;
419
420 if (Op->getOpcode() == Instruction::Shl) {
421 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
422 // The multiplier is really 1 << CST.
423 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
424 LHS = Op->getOperand(0);
425 return Instruction::Mul;
426 }
427 }
428
429 // TODO: We can add other conversions e.g. shr => div etc.
430
431 LHS = Op->getOperand(0);
432 RHS = Op->getOperand(1);
433 return Op->getOpcode();
434}
435
436/// This tries to simplify binary operations by factorizing out common terms
437/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
438static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
439 const DataLayout *DL, BinaryOperator &I,
440 Instruction::BinaryOps InnerOpcode, Value *A,
441 Value *B, Value *C, Value *D) {
442
443 // If any of A, B, C, D are null, we can not factor I, return early.
444 // Checking A and C should be enough.
445 if (!A || !C || !B || !D)
446 return nullptr;
447
448 Value *SimplifiedInst = nullptr;
449 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
450 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
451
452 // Does "X op' Y" always equal "Y op' X"?
453 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
454
455 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
456 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
457 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
458 // commutative case, "(A op' B) op (C op' A)"?
459 if (A == C || (InnerCommutative && A == D)) {
460 if (A != C)
461 std::swap(C, D);
462 // Consider forming "A op' (B op D)".
463 // If "B op D" simplifies then it can be formed with no cost.
464 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
465 // If "B op D" doesn't simplify then only go on if both of the existing
466 // operations "A op' B" and "C op' D" will be zapped as no longer used.
467 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
468 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
469 if (V) {
470 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
471 }
472 }
473
474 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
475 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
476 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
477 // commutative case, "(A op' B) op (B op' D)"?
478 if (B == D || (InnerCommutative && B == C)) {
479 if (B != D)
480 std::swap(C, D);
481 // Consider forming "(A op C) op' B".
482 // If "A op C" simplifies then it can be formed with no cost.
483 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
484
485 // If "A op C" doesn't simplify then only go on if both of the existing
486 // operations "A op' B" and "C op' D" will be zapped as no longer used.
487 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
488 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
489 if (V) {
490 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
491 }
492 }
493
494 if (SimplifiedInst) {
495 ++NumFactor;
496 SimplifiedInst->takeName(&I);
497
498 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
499 // TODO: Check for NUW.
500 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
501 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
502 bool HasNSW = false;
503 if (isa<OverflowingBinaryOperator>(&I))
504 HasNSW = I.hasNoSignedWrap();
505
506 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
507 if (isa<OverflowingBinaryOperator>(Op0))
508 HasNSW &= Op0->hasNoSignedWrap();
509
510 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
511 if (isa<OverflowingBinaryOperator>(Op1))
512 HasNSW &= Op1->hasNoSignedWrap();
513 BO->setHasNoSignedWrap(HasNSW);
514 }
515 }
516 }
517 return SimplifiedInst;
518}
519
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000520/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
521/// which some other binary operation distributes over either by factorizing
522/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
523/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
524/// a win). Returns the simplified value, or null if it didn't simplify.
525Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
526 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
527 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
528 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000529
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000530 // Factorization.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000531 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
532 Instruction::BinaryOps LHSOpcode = getBinOpsForFactorization(Op0, A, B);
533 Instruction::BinaryOps RHSOpcode = getBinOpsForFactorization(Op1, C, D);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000534
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000535 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
536 // a common term.
537 if (LHSOpcode == RHSOpcode) {
538 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
539 return V;
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000540 }
541
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000542 // The instruction has the form "(A op' B) op (C)". Try to factorize common
543 // term.
544 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
545 getIdentityValue(LHSOpcode, RHS)))
546 return V;
547
548 // The instruction has the form "(B) op (C op' D)". Try to factorize common
549 // term.
550 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
551 getIdentityValue(RHSOpcode, LHS), C, D))
552 return V;
553
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000554 // Expansion.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000555 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000556 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
557 // The instruction has the form "(A op' B) op C". See if expanding it out
558 // to "(A op C) op' (B op C)" results in simplifications.
559 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
560 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
561
562 // Do "A op C" and "B op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000563 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
564 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000565 // They do! Return "L op' R".
566 ++NumExpand;
567 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
568 if ((L == A && R == B) ||
569 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
570 return Op0;
571 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000572 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000573 return V;
574 // Otherwise, create a new instruction.
575 C = Builder->CreateBinOp(InnerOpcode, L, R);
576 C->takeName(&I);
577 return C;
578 }
579 }
580
581 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
582 // The instruction has the form "A op (B op' C)". See if expanding it out
583 // to "(A op B) op' (A op C)" results in simplifications.
584 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
585 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
586
587 // Do "A op B" and "A op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000588 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
589 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000590 // They do! Return "L op' R".
591 ++NumExpand;
592 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
593 if ((L == B && R == C) ||
594 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
595 return Op1;
596 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000597 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000598 return V;
599 // Otherwise, create a new instruction.
600 A = Builder->CreateBinOp(InnerOpcode, L, R);
601 A->takeName(&I);
602 return A;
603 }
604 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000605
Craig Topperf40110f2014-04-25 05:29:35 +0000606 return nullptr;
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000607}
608
Chris Lattnerbb74e222003-03-10 23:06:50 +0000609// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
610// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000611//
Chris Lattner2188e402010-01-04 07:37:31 +0000612Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonbb2501b2009-07-13 22:18:28 +0000613 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000614 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000615
Chris Lattner9ad0d552004-12-14 20:08:06 +0000616 // Constants can be considered to be negated values if they can be folded.
617 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000618 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000619
Chris Lattner8213c8a2012-02-06 21:56:39 +0000620 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
621 if (C->getType()->getElementType()->isIntegerTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000622 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000623
Craig Topperf40110f2014-04-25 05:29:35 +0000624 return nullptr;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000625}
626
Dan Gohmana5b96452009-06-04 22:49:04 +0000627// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
628// instruction if the LHS is a constant negative zero (which is the 'negate'
629// form).
630//
Shuxin Yangf0537ab2013-01-09 00:13:41 +0000631Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
632 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmana5b96452009-06-04 22:49:04 +0000633 return BinaryOperator::getFNegArgument(V);
634
635 // Constants can be considered to be negated values if they can be folded.
636 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000637 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000638
Chris Lattner8213c8a2012-02-06 21:56:39 +0000639 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
640 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000641 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000642
Craig Topperf40110f2014-04-25 05:29:35 +0000643 return nullptr;
Dan Gohmana5b96452009-06-04 22:49:04 +0000644}
645
Chris Lattner86102b82005-01-01 16:22:27 +0000646static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +0000647 InstCombiner *IC) {
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000648 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattnerc8565392009-08-30 20:01:10 +0000649 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000650 }
Chris Lattner86102b82005-01-01 16:22:27 +0000651
Chris Lattner183b3362004-04-09 19:05:30 +0000652 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +0000653 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
654 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +0000655
Chris Lattner183b3362004-04-09 19:05:30 +0000656 if (Constant *SOC = dyn_cast<Constant>(SO)) {
657 if (ConstIsRHS)
Owen Anderson487375e2009-07-29 18:55:55 +0000658 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
659 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +0000660 }
661
662 Value *Op0 = SO, *Op1 = ConstOperand;
663 if (!ConstIsRHS)
664 std::swap(Op0, Op1);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000665
Owen Anderson1664dc82014-01-20 07:44:53 +0000666 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
667 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner022a5822009-08-30 07:44:24 +0000668 SO->getName()+".op");
Owen Anderson1664dc82014-01-20 07:44:53 +0000669 Instruction *FPInst = dyn_cast<Instruction>(RI);
670 if (FPInst && isa<FPMathOperator>(FPInst))
671 FPInst->copyFastMathFlags(BO);
672 return RI;
673 }
Chris Lattner022a5822009-08-30 07:44:24 +0000674 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
675 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
676 SO->getName()+".cmp");
677 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
678 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
679 SO->getName()+".cmp");
680 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner86102b82005-01-01 16:22:27 +0000681}
682
683// FoldOpIntoSelect - Given an instruction with a select as one operand and a
684// constant as the other operand, try to fold the binary operator into the
685// select arguments. This also works for Cast instructions, which obviously do
686// not have a second operand.
Chris Lattner2b295a02010-01-04 07:53:58 +0000687Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner86102b82005-01-01 16:22:27 +0000688 // Don't modify shared select instructions
Craig Topperf40110f2014-04-25 05:29:35 +0000689 if (!SI->hasOneUse()) return nullptr;
Chris Lattner86102b82005-01-01 16:22:27 +0000690 Value *TV = SI->getOperand(1);
691 Value *FV = SI->getOperand(2);
692
693 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +0000694 // Bool selects with constant operands can be folded to logical ops.
Craig Topperf40110f2014-04-25 05:29:35 +0000695 if (SI->getType()->isIntegerTy(1)) return nullptr;
Chris Lattner374e6592005-04-21 05:43:13 +0000696
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000697 // If it's a bitcast involving vectors, make sure it has the same number of
698 // elements on both sides.
699 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000700 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
701 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000702
703 // Verify that either both or neither are vectors.
Craig Topperf40110f2014-04-25 05:29:35 +0000704 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000705 // If vectors, verify that they have the same number of elements.
706 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
Craig Topperf40110f2014-04-25 05:29:35 +0000707 return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000708 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000709
Chris Lattner2b295a02010-01-04 07:53:58 +0000710 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
711 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner86102b82005-01-01 16:22:27 +0000712
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000713 return SelectInst::Create(SI->getCondition(),
714 SelectTrueVal, SelectFalseVal);
Chris Lattner86102b82005-01-01 16:22:27 +0000715 }
Craig Topperf40110f2014-04-25 05:29:35 +0000716 return nullptr;
Chris Lattner183b3362004-04-09 19:05:30 +0000717}
718
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000719
Chris Lattnerfacb8672009-09-27 19:57:57 +0000720/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
721/// has a PHI node as operand #0, see if we can fold the instruction into the
722/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattnerb391e872009-09-27 20:46:36 +0000723///
Chris Lattnerea7131a2011-01-16 05:14:26 +0000724Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000725 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +0000726 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner25ce2802011-01-16 04:37:29 +0000727 if (NumPHIValues == 0)
Craig Topperf40110f2014-04-25 05:29:35 +0000728 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000729
Chris Lattnerf4ca47b2011-01-21 05:08:26 +0000730 // We normally only transform phis with a single use. However, if a PHI has
731 // multiple uses and they are all the same operation, we can fold *all* of the
732 // uses into the PHI.
Chris Lattnerd55581d2011-01-16 05:28:59 +0000733 if (!PN->hasOneUse()) {
734 // Walk the use list for the instruction, comparing them to I.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000735 for (User *U : PN->users()) {
736 Instruction *UI = cast<Instruction>(U);
737 if (UI != &I && !I.isIdenticalTo(UI))
Craig Topperf40110f2014-04-25 05:29:35 +0000738 return nullptr;
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000739 }
Chris Lattnerd55581d2011-01-16 05:28:59 +0000740 // Otherwise, we can replace *all* users with the new PHI we form.
741 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000742
Chris Lattnerfacb8672009-09-27 19:57:57 +0000743 // Check to see if all of the operands of the PHI are simple constants
744 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerae289632009-09-27 20:18:49 +0000745 // remember the BB it is in. If there is more than one or if *it* is a PHI,
746 // bail out. We don't do arbitrary constant expressions here because moving
747 // their computation can be expensive without a cost model.
Craig Topperf40110f2014-04-25 05:29:35 +0000748 BasicBlock *NonConstBB = nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000749 for (unsigned i = 0; i != NumPHIValues; ++i) {
750 Value *InVal = PN->getIncomingValue(i);
751 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
752 continue;
753
Craig Topperf40110f2014-04-25 05:29:35 +0000754 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
755 if (NonConstBB) return nullptr; // More than one non-const value.
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000756
Chris Lattner25ce2802011-01-16 04:37:29 +0000757 NonConstBB = PN->getIncomingBlock(i);
Chris Lattnerff2e7372011-01-16 05:08:00 +0000758
759 // If the InVal is an invoke at the end of the pred block, then we can't
760 // insert a computation after it without breaking the edge.
761 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
762 if (II->getParent() == NonConstBB)
Craig Topperf40110f2014-04-25 05:29:35 +0000763 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000764
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000765 // If the incoming non-constant value is in I's block, we will remove one
766 // instruction, but insert another equivalent one, leading to infinite
767 // instcombine.
768 if (NonConstBB == I.getParent())
Craig Topperf40110f2014-04-25 05:29:35 +0000769 return nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000770 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000771
Chris Lattner04689872006-09-09 22:02:56 +0000772 // If there is exactly one non-constant value, we can insert a copy of the
773 // operation in that block. However, if this is a critical edge, we would be
774 // inserting the computation one some other paths (e.g. inside a loop). Only
775 // do this if the pred block is unconditionally branching into the phi block.
Craig Topperf40110f2014-04-25 05:29:35 +0000776 if (NonConstBB != nullptr) {
Chris Lattner04689872006-09-09 22:02:56 +0000777 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
Craig Topperf40110f2014-04-25 05:29:35 +0000778 if (!BI || !BI->isUnconditional()) return nullptr;
Chris Lattner04689872006-09-09 22:02:56 +0000779 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000780
781 // Okay, we can do the transformation: create the new PHI node.
Eli Friedman41e509a2011-05-18 23:58:37 +0000782 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner966526c2009-10-21 23:41:58 +0000783 InsertNewInstBefore(NewPN, *PN);
784 NewPN->takeName(PN);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000785
Chris Lattnerff2e7372011-01-16 05:08:00 +0000786 // If we are going to have to insert a new computation, do so right before the
787 // predecessors terminator.
788 if (NonConstBB)
789 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000790
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000791 // Next, add all of the operands to the PHI.
Chris Lattnerfacb8672009-09-27 19:57:57 +0000792 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
793 // We only currently try to fold the condition of a select when it is a phi,
794 // not the true/false values.
Chris Lattnerae289632009-09-27 20:18:49 +0000795 Value *TrueV = SI->getTrueValue();
796 Value *FalseV = SI->getFalseValue();
Chris Lattner0261b5d2009-09-28 06:49:44 +0000797 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattnerfacb8672009-09-27 19:57:57 +0000798 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerae289632009-09-27 20:18:49 +0000799 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner0261b5d2009-09-28 06:49:44 +0000800 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
801 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Craig Topperf40110f2014-04-25 05:29:35 +0000802 Value *InV = nullptr;
Duncan P. N. Exon Smithce5f93e2013-12-06 21:48:36 +0000803 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
804 // even if currently isNullValue gives false.
805 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
806 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerae289632009-09-27 20:18:49 +0000807 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000808 else
809 InV = Builder->CreateSelect(PN->getIncomingValue(i),
810 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerae289632009-09-27 20:18:49 +0000811 NewPN->addIncoming(InV, ThisBB);
Chris Lattnerfacb8672009-09-27 19:57:57 +0000812 }
Chris Lattnerff2e7372011-01-16 05:08:00 +0000813 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
814 Constant *C = cast<Constant>(I.getOperand(1));
815 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000816 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000817 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
818 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
819 else if (isa<ICmpInst>(CI))
820 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
821 C, "phitmp");
822 else
823 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
824 C, "phitmp");
825 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
826 }
Chris Lattnerfacb8672009-09-27 19:57:57 +0000827 } else if (I.getNumOperands() == 2) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000828 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +0000829 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000830 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000831 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
832 InV = ConstantExpr::get(I.getOpcode(), InC, C);
833 else
834 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
835 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000836 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000837 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000838 } else {
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000839 CastInst *CI = cast<CastInst>(&I);
Chris Lattner229907c2011-07-18 04:54:35 +0000840 Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +0000841 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +0000842 Value *InV;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000843 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Anderson487375e2009-07-29 18:55:55 +0000844 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000845 else
Chris Lattnerff2e7372011-01-16 05:08:00 +0000846 InV = Builder->CreateCast(CI->getOpcode(),
847 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000848 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000849 }
850 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000851
Chandler Carruthcdf47882014-03-09 03:16:01 +0000852 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Chris Lattnerd55581d2011-01-16 05:28:59 +0000853 Instruction *User = cast<Instruction>(*UI++);
854 if (User == &I) continue;
855 ReplaceInstUsesWith(*User, NewPN);
856 EraseInstFromFunction(*User);
857 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000858 return ReplaceInstUsesWith(I, NewPN);
859}
860
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000861/// FindElementAtOffset - Given a pointer type and a constant offset, determine
862/// whether or not there is a sequence of GEP indices into the pointed type that
863/// will land us at the specified offset. If so, fill them into NewIndices and
864/// return the resultant element type, otherwise return null.
865Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
866 SmallVectorImpl<Value*> &NewIndices) {
867 assert(PtrTy->isPtrOrPtrVectorTy());
868
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000869 if (!DL)
Craig Topperf40110f2014-04-25 05:29:35 +0000870 return nullptr;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000871
872 Type *Ty = PtrTy->getPointerElementType();
873 if (!Ty->isSized())
Craig Topperf40110f2014-04-25 05:29:35 +0000874 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000875
Chris Lattnerfef138b2009-01-09 05:44:56 +0000876 // Start with the index over the outer type. Note that the type size
877 // might be zero (even if the offset isn't zero) if the indexed type
878 // is something like [0 x {int, int}]
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000879 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
Chris Lattnerfef138b2009-01-09 05:44:56 +0000880 int64_t FirstIdx = 0;
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000881 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +0000882 FirstIdx = Offset/TySize;
Chris Lattnerbd3c7c82009-01-11 20:41:36 +0000883 Offset -= FirstIdx*TySize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000884
Benjamin Kramere4c46fe2013-01-23 17:52:29 +0000885 // Handle hosts where % returns negative instead of values [0..TySize).
886 if (Offset < 0) {
887 --FirstIdx;
888 Offset += TySize;
889 assert(Offset >= 0);
890 }
Chris Lattnerfef138b2009-01-09 05:44:56 +0000891 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
892 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000893
Owen Andersonedb4a702009-07-24 23:12:02 +0000894 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000895
Chris Lattnerfef138b2009-01-09 05:44:56 +0000896 // Index into the types. If we fail, set OrigBase to null.
897 while (Offset) {
Chris Lattner171d2d42009-01-11 20:15:20 +0000898 // Indexing into tail padding between struct/array elements.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000899 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
Craig Topperf40110f2014-04-25 05:29:35 +0000900 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000901
Chris Lattner229907c2011-07-18 04:54:35 +0000902 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000903 const StructLayout *SL = DL->getStructLayout(STy);
Chris Lattner171d2d42009-01-11 20:15:20 +0000904 assert(Offset < (int64_t)SL->getSizeInBytes() &&
905 "Offset must stay within the indexed type");
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000906
Chris Lattnerfef138b2009-01-09 05:44:56 +0000907 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattnerb8906bd2010-01-04 07:02:48 +0000908 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
909 Elt));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000910
Chris Lattnerfef138b2009-01-09 05:44:56 +0000911 Offset -= SL->getElementOffset(Elt);
912 Ty = STy->getElementType(Elt);
Chris Lattner229907c2011-07-18 04:54:35 +0000913 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000914 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
Chris Lattner171d2d42009-01-11 20:15:20 +0000915 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersonedb4a702009-07-24 23:12:02 +0000916 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattner171d2d42009-01-11 20:15:20 +0000917 Offset %= EltSize;
Chris Lattnerb1915162009-01-11 20:23:52 +0000918 Ty = AT->getElementType();
Chris Lattnerfef138b2009-01-09 05:44:56 +0000919 } else {
Chris Lattner171d2d42009-01-11 20:15:20 +0000920 // Otherwise, we can't index into the middle of this atomic type, bail.
Craig Topperf40110f2014-04-25 05:29:35 +0000921 return nullptr;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000922 }
923 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000924
Chris Lattner72cd68f2009-01-24 01:00:13 +0000925 return Ty;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000926}
927
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +0000928static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
929 // If this GEP has only 0 indices, it is the same pointer as
930 // Src. If Src is not a trivial GEP too, don't combine
931 // the indices.
932 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
933 !Src.hasOneUse())
934 return false;
935 return true;
936}
Chris Lattnerbbbdd852002-05-06 18:06:38 +0000937
Duncan Sands533c8ae2012-10-23 08:28:26 +0000938/// Descale - Return a value X such that Val = X * Scale, or null if none. If
939/// the multiplication is known not to overflow then NoSignedWrap is set.
940Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
941 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
942 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
943 Scale.getBitWidth() && "Scale not compatible with value!");
944
945 // If Val is zero or Scale is one then Val = Val * Scale.
946 if (match(Val, m_Zero()) || Scale == 1) {
947 NoSignedWrap = true;
948 return Val;
949 }
950
951 // If Scale is zero then it does not divide Val.
952 if (Scale.isMinValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000953 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +0000954
955 // Look through chains of multiplications, searching for a constant that is
956 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
957 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
958 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
959 // down from Val:
960 //
961 // Val = M1 * X || Analysis starts here and works down
962 // M1 = M2 * Y || Doesn't descend into terms with more
963 // M2 = Z * 4 \/ than one use
964 //
965 // Then to modify a term at the bottom:
966 //
967 // Val = M1 * X
968 // M1 = Z * Y || Replaced M2 with Z
969 //
970 // Then to work back up correcting nsw flags.
971
972 // Op - the term we are currently analyzing. Starts at Val then drills down.
973 // Replaced with its descaled value before exiting from the drill down loop.
974 Value *Op = Val;
975
976 // Parent - initially null, but after drilling down notes where Op came from.
977 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
978 // 0'th operand of Val.
979 std::pair<Instruction*, unsigned> Parent;
980
981 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
982 // levels that doesn't overflow.
983 bool RequireNoSignedWrap = false;
984
985 // logScale - log base 2 of the scale. Negative if not a power of 2.
986 int32_t logScale = Scale.exactLogBase2();
987
988 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
989
990 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
991 // If Op is a constant divisible by Scale then descale to the quotient.
992 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
993 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
994 if (!Remainder.isMinValue())
995 // Not divisible by Scale.
Craig Topperf40110f2014-04-25 05:29:35 +0000996 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +0000997 // Replace with the quotient in the parent.
998 Op = ConstantInt::get(CI->getType(), Quotient);
999 NoSignedWrap = true;
1000 break;
1001 }
1002
1003 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1004
1005 if (BO->getOpcode() == Instruction::Mul) {
1006 // Multiplication.
1007 NoSignedWrap = BO->hasNoSignedWrap();
1008 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001009 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001010
1011 // There are three cases for multiplication: multiplication by exactly
1012 // the scale, multiplication by a constant different to the scale, and
1013 // multiplication by something else.
1014 Value *LHS = BO->getOperand(0);
1015 Value *RHS = BO->getOperand(1);
1016
1017 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1018 // Multiplication by a constant.
1019 if (CI->getValue() == Scale) {
1020 // Multiplication by exactly the scale, replace the multiplication
1021 // by its left-hand side in the parent.
1022 Op = LHS;
1023 break;
1024 }
1025
1026 // Otherwise drill down into the constant.
1027 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001028 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001029
1030 Parent = std::make_pair(BO, 1);
1031 continue;
1032 }
1033
1034 // Multiplication by something else. Drill down into the left-hand side
1035 // since that's where the reassociate pass puts the good stuff.
1036 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001037 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001038
1039 Parent = std::make_pair(BO, 0);
1040 continue;
1041 }
1042
1043 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1044 isa<ConstantInt>(BO->getOperand(1))) {
1045 // Multiplication by a power of 2.
1046 NoSignedWrap = BO->hasNoSignedWrap();
1047 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001048 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001049
1050 Value *LHS = BO->getOperand(0);
1051 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1052 getLimitedValue(Scale.getBitWidth());
1053 // Op = LHS << Amt.
1054
1055 if (Amt == logScale) {
1056 // Multiplication by exactly the scale, replace the multiplication
1057 // by its left-hand side in the parent.
1058 Op = LHS;
1059 break;
1060 }
1061 if (Amt < logScale || !Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001062 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001063
1064 // Multiplication by more than the scale. Reduce the multiplying amount
1065 // by the scale in the parent.
1066 Parent = std::make_pair(BO, 1);
1067 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1068 break;
1069 }
1070 }
1071
1072 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001073 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001074
1075 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1076 if (Cast->getOpcode() == Instruction::SExt) {
1077 // Op is sign-extended from a smaller type, descale in the smaller type.
1078 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1079 APInt SmallScale = Scale.trunc(SmallSize);
1080 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1081 // descale Op as (sext Y) * Scale. In order to have
1082 // sext (Y * SmallScale) = (sext Y) * Scale
1083 // some conditions need to hold however: SmallScale must sign-extend to
1084 // Scale and the multiplication Y * SmallScale should not overflow.
1085 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1086 // SmallScale does not sign-extend to Scale.
Craig Topperf40110f2014-04-25 05:29:35 +00001087 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001088 assert(SmallScale.exactLogBase2() == logScale);
1089 // Require that Y * SmallScale must not overflow.
1090 RequireNoSignedWrap = true;
1091
1092 // Drill down through the cast.
1093 Parent = std::make_pair(Cast, 0);
1094 Scale = SmallScale;
1095 continue;
1096 }
1097
Duncan Sands5ed39002012-10-23 09:07:02 +00001098 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001099 // Op is truncated from a larger type, descale in the larger type.
1100 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1101 // trunc (Y * sext Scale) = (trunc Y) * Scale
1102 // always holds. However (trunc Y) * Scale may overflow even if
1103 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1104 // from this point up in the expression (see later).
1105 if (RequireNoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001106 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001107
1108 // Drill down through the cast.
1109 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1110 Parent = std::make_pair(Cast, 0);
1111 Scale = Scale.sext(LargeSize);
1112 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1113 logScale = -1;
1114 assert(Scale.exactLogBase2() == logScale);
1115 continue;
1116 }
1117 }
1118
1119 // Unsupported expression, bail out.
Craig Topperf40110f2014-04-25 05:29:35 +00001120 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001121 }
1122
Duncan P. N. Exon Smith04934b02014-07-10 17:13:27 +00001123 // If Op is zero then Val = Op * Scale.
1124 if (match(Op, m_Zero())) {
1125 NoSignedWrap = true;
1126 return Op;
1127 }
1128
Duncan Sands533c8ae2012-10-23 08:28:26 +00001129 // We know that we can successfully descale, so from here on we can safely
1130 // modify the IR. Op holds the descaled version of the deepest term in the
1131 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1132 // not to overflow.
1133
1134 if (!Parent.first)
1135 // The expression only had one term.
1136 return Op;
1137
1138 // Rewrite the parent using the descaled version of its operand.
1139 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1140 assert(Op != Parent.first->getOperand(Parent.second) &&
1141 "Descaling was a no-op?");
1142 Parent.first->setOperand(Parent.second, Op);
1143 Worklist.Add(Parent.first);
1144
1145 // Now work back up the expression correcting nsw flags. The logic is based
1146 // on the following observation: if X * Y is known not to overflow as a signed
1147 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1148 // then X * Z will not overflow as a signed multiplication either. As we work
1149 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1150 // current level has strictly smaller absolute value than the original.
1151 Instruction *Ancestor = Parent.first;
1152 do {
1153 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1154 // If the multiplication wasn't nsw then we can't say anything about the
1155 // value of the descaled multiplication, and we have to clear nsw flags
1156 // from this point on up.
1157 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1158 NoSignedWrap &= OpNoSignedWrap;
1159 if (NoSignedWrap != OpNoSignedWrap) {
1160 BO->setHasNoSignedWrap(NoSignedWrap);
1161 Worklist.Add(Ancestor);
1162 }
1163 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1164 // The fact that the descaled input to the trunc has smaller absolute
1165 // value than the original input doesn't tell us anything useful about
1166 // the absolute values of the truncations.
1167 NoSignedWrap = false;
1168 }
1169 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1170 "Failed to keep proper track of nsw flags while drilling down?");
1171
1172 if (Ancestor == Val)
1173 // Got to the top, all done!
1174 return Val;
1175
1176 // Move up one level in the expression.
1177 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Chandler Carruthcdf47882014-03-09 03:16:01 +00001178 Ancestor = Ancestor->user_back();
Duncan Sands533c8ae2012-10-23 08:28:26 +00001179 } while (1);
1180}
1181
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001182/// \brief Creates node of binary operation with the same attributes as the
1183/// specified one but with other operands.
Serge Pavlove6de9e32014-05-14 09:05:09 +00001184static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1185 InstCombiner::BuilderTy *B) {
1186 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1187 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1188 if (isa<OverflowingBinaryOperator>(NewBO)) {
1189 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1190 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1191 }
1192 if (isa<PossiblyExactOperator>(NewBO))
1193 NewBO->setIsExact(Inst.isExact());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001194 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001195 return BORes;
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001196}
1197
1198/// \brief Makes transformation of binary operation specific for vector types.
1199/// \param Inst Binary operator to transform.
1200/// \return Pointer to node that must replace the original binary operator, or
1201/// null pointer if no transformation was made.
1202Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1203 if (!Inst.getType()->isVectorTy()) return nullptr;
1204
Sanjay Patel58814442014-07-09 16:34:54 +00001205 // It may not be safe to reorder shuffles and things like div, urem, etc.
1206 // because we may trap when executing those ops on unknown vector elements.
1207 // See PR20059.
Hal Finkela995f922014-07-10 14:41:31 +00001208 if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
Sanjay Patel58814442014-07-09 16:34:54 +00001209
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001210 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1211 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1212 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1213 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1214
1215 // If both arguments of binary operation are shuffles, which use the same
1216 // mask and shuffle within a single vector, it is worthwhile to move the
1217 // shuffle after binary operation:
1218 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1219 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1220 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1221 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1222 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1223 isa<UndefValue>(RShuf->getOperand(1)) &&
Serge Pavlov05811092014-05-12 05:44:53 +00001224 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001225 LShuf->getMask() == RShuf->getMask()) {
Serge Pavlove6de9e32014-05-14 09:05:09 +00001226 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001227 RShuf->getOperand(0), Builder);
1228 Value *Res = Builder->CreateShuffleVector(NewBO,
Serge Pavlov02ff6202014-05-12 10:11:27 +00001229 UndefValue::get(NewBO->getType()), LShuf->getMask());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001230 return Res;
1231 }
1232 }
1233
1234 // If one argument is a shuffle within one vector, the other is a constant,
1235 // try moving the shuffle after the binary operation.
1236 ShuffleVectorInst *Shuffle = nullptr;
1237 Constant *C1 = nullptr;
1238 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1239 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1240 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1241 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
Benjamin Kramer6de78662014-06-24 10:38:10 +00001242 if (Shuffle && C1 &&
1243 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1244 isa<UndefValue>(Shuffle->getOperand(1)) &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001245 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1246 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1247 // Find constant C2 that has property:
1248 // shuffle(C2, ShMask) = C1
1249 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1250 // reorder is not possible.
1251 SmallVector<Constant*, 16> C2M(VWidth,
1252 UndefValue::get(C1->getType()->getScalarType()));
1253 bool MayChange = true;
1254 for (unsigned I = 0; I < VWidth; ++I) {
1255 if (ShMask[I] >= 0) {
1256 assert(ShMask[I] < (int)VWidth);
1257 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1258 MayChange = false;
1259 break;
1260 }
1261 C2M[ShMask[I]] = C1->getAggregateElement(I);
1262 }
1263 }
1264 if (MayChange) {
1265 Constant *C2 = ConstantVector::get(C2M);
1266 Value *NewLHS, *NewRHS;
1267 if (isa<Constant>(LHS)) {
1268 NewLHS = C2;
1269 NewRHS = Shuffle->getOperand(0);
1270 } else {
1271 NewLHS = Shuffle->getOperand(0);
1272 NewRHS = C2;
1273 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001274 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001275 Value *Res = Builder->CreateShuffleVector(NewBO,
1276 UndefValue::get(Inst.getType()), Shuffle->getMask());
1277 return Res;
1278 }
1279 }
1280
1281 return nullptr;
1282}
1283
Chris Lattner113f4f42002-06-25 16:13:24 +00001284Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001285 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1286
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001287 if (Value *V = SimplifyGEPInst(Ops, DL))
Chris Lattner8574aba2009-11-27 00:29:05 +00001288 return ReplaceInstUsesWith(GEP, V);
1289
Chris Lattner5f667a62004-05-07 22:09:22 +00001290 Value *PtrOp = GEP.getOperand(0);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001291
Duncan Sandsc133c542010-11-22 16:32:50 +00001292 // Eliminate unneeded casts for indices, and replace indices which displace
1293 // by multiples of a zero size type with zero.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001294 if (DL) {
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001295 bool MadeChange = false;
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001296 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsc133c542010-11-22 16:32:50 +00001297
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001298 gep_type_iterator GTI = gep_type_begin(GEP);
1299 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1300 I != E; ++I, ++GTI) {
Duncan Sandsc133c542010-11-22 16:32:50 +00001301 // Skip indices into struct types.
Chris Lattner229907c2011-07-18 04:54:35 +00001302 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsc133c542010-11-22 16:32:50 +00001303 if (!SeqTy) continue;
1304
1305 // If the element type has zero size then any index over it is equivalent
1306 // to an index of zero, so replace it with zero if it is not zero already.
1307 if (SeqTy->getElementType()->isSized() &&
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001308 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
Duncan Sandsc133c542010-11-22 16:32:50 +00001309 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1310 *I = Constant::getNullValue(IntPtrTy);
1311 MadeChange = true;
1312 }
1313
Nadav Rotem3924cb02011-12-05 06:29:09 +00001314 Type *IndexTy = (*I)->getType();
Duncan Sandsa318ef62012-11-03 11:44:17 +00001315 if (IndexTy != IntPtrTy) {
Duncan Sandsc133c542010-11-22 16:32:50 +00001316 // If we are using a wider index than needed for this platform, shrink
1317 // it to what we need. If narrower, sign-extend it to what we need.
1318 // This explicit cast can make subsequent optimizations more obvious.
1319 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1320 MadeChange = true;
1321 }
Chris Lattner69193f92004-04-05 01:30:19 +00001322 }
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001323 if (MadeChange) return &GEP;
Chris Lattner9bf53ff2007-03-25 20:43:09 +00001324 }
Chris Lattner69193f92004-04-05 01:30:19 +00001325
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001326 // Check to see if the inputs to the PHI node are getelementptr instructions.
1327 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1328 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1329 if (!Op1)
1330 return nullptr;
1331
1332 signed DI = -1;
1333
1334 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1335 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1336 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1337 return nullptr;
1338
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001339 // Keep track of the type as we walk the GEP.
1340 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1341
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001342 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1343 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1344 return nullptr;
1345
1346 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1347 if (DI == -1) {
1348 // We have not seen any differences yet in the GEPs feeding the
1349 // PHI yet, so we record this one if it is allowed to be a
1350 // variable.
1351
1352 // The first two arguments can vary for any GEP, the rest have to be
1353 // static for struct slots
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001354 if (J > 1 && CurTy->isStructTy())
1355 return nullptr;
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001356
1357 DI = J;
1358 } else {
1359 // The GEP is different by more than one input. While this could be
1360 // extended to support GEPs that vary by more than one variable it
1361 // doesn't make sense since it greatly increases the complexity and
1362 // would result in an R+R+R addressing mode which no backend
1363 // directly supports and would need to be broken into several
1364 // simpler instructions anyway.
1365 return nullptr;
1366 }
1367 }
Chandler Carruthfdc0e0b2014-05-29 23:21:12 +00001368
1369 // Sink down a layer of the type for the next iteration.
1370 if (J > 0) {
1371 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1372 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1373 } else {
1374 CurTy = nullptr;
1375 }
1376 }
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001377 }
1378 }
1379
1380 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1381
1382 if (DI == -1) {
1383 // All the GEPs feeding the PHI are identical. Clone one down into our
1384 // BB so that it can be merged with the current GEP.
1385 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1386 NewGEP);
1387 } else {
1388 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1389 // into the current block so it can be merged, and create a new PHI to
1390 // set that index.
1391 Instruction *InsertPt = Builder->GetInsertPoint();
1392 Builder->SetInsertPoint(PN);
1393 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1394 PN->getNumOperands());
1395 Builder->SetInsertPoint(InsertPt);
1396
1397 for (auto &I : PN->operands())
1398 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1399 PN->getIncomingBlock(I));
1400
1401 NewGEP->setOperand(DI, NewPN);
1402 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1403 NewGEP);
1404 NewGEP->setOperand(DI, NewPN);
1405 }
1406
1407 GEP.setOperand(0, NewGEP);
1408 PtrOp = NewGEP;
1409 }
1410
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001411 // Combine Indices - If the source pointer to this getelementptr instruction
1412 // is a getelementptr instruction, combine the indices of the two
1413 // getelementptr instructions into a single instruction.
1414 //
Dan Gohman31a9b982009-07-28 01:40:03 +00001415 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001416 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Craig Topperf40110f2014-04-25 05:29:35 +00001417 return nullptr;
Rafael Espindola40325672011-07-11 03:43:47 +00001418
Duncan Sands533c8ae2012-10-23 08:28:26 +00001419 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner5f667a62004-05-07 22:09:22 +00001420 // chain to be resolved before we perform this transformation. This
1421 // avoids us creating a TON of code in some cases.
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001422 if (GEPOperator *SrcGEP =
1423 dyn_cast<GEPOperator>(Src->getOperand(0)))
1424 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Craig Topperf40110f2014-04-25 05:29:35 +00001425 return nullptr; // Wait until our source is folded to completion.
Chris Lattner5f667a62004-05-07 22:09:22 +00001426
Chris Lattneraf6094f2007-02-15 22:48:32 +00001427 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00001428
1429 // Find out whether the last index in the source GEP is a sequential idx.
1430 bool EndsWithSequential = false;
Chris Lattnerb2995e12009-08-30 05:30:55 +00001431 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1432 I != E; ++I)
Duncan Sands19d0b472010-02-16 11:11:14 +00001433 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001434
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001435 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00001436 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00001437 // Replace: gep (gep %P, long B), long A, ...
1438 // With: T = long A+B; gep %P, T, ...
1439 //
Chris Lattner06c687b2009-08-30 05:08:50 +00001440 Value *Sum;
1441 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1442 Value *GO1 = GEP.getOperand(1);
Owen Anderson5a1acd92009-07-31 20:28:14 +00001443 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001444 Sum = GO1;
Owen Anderson5a1acd92009-07-31 20:28:14 +00001445 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001446 Sum = SO1;
1447 } else {
Chris Lattnerb2995e12009-08-30 05:30:55 +00001448 // If they aren't the same type, then the input hasn't been processed
1449 // by the loop above yet (which canonicalizes sequential index types to
1450 // intptr_t). Just avoid transforming this until the input has been
1451 // normalized.
1452 if (SO1->getType() != GO1->getType())
Craig Topperf40110f2014-04-25 05:29:35 +00001453 return nullptr;
Chris Lattner59663412009-08-30 18:50:58 +00001454 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner69193f92004-04-05 01:30:19 +00001455 }
Chris Lattner5f667a62004-05-07 22:09:22 +00001456
Chris Lattnerb2995e12009-08-30 05:30:55 +00001457 // Update the GEP in place if possible.
Chris Lattner06c687b2009-08-30 05:08:50 +00001458 if (Src->getNumOperands() == 2) {
1459 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner5f667a62004-05-07 22:09:22 +00001460 GEP.setOperand(1, Sum);
1461 return &GEP;
Chris Lattner5f667a62004-05-07 22:09:22 +00001462 }
Chris Lattnerb2995e12009-08-30 05:30:55 +00001463 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001464 Indices.push_back(Sum);
Chris Lattnerb2995e12009-08-30 05:30:55 +00001465 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001466 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00001467 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattner06c687b2009-08-30 05:08:50 +00001468 Src->getNumOperands() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001469 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerb2995e12009-08-30 05:30:55 +00001470 Indices.append(Src->op_begin()+1, Src->op_end());
1471 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001472 }
1473
Dan Gohman1b849082009-09-07 23:54:19 +00001474 if (!Indices.empty())
Chris Lattnere903f382010-01-05 07:42:10 +00001475 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foadd1b78492011-07-25 09:48:08 +00001476 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1477 GEP.getName()) :
1478 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattnere26bf172009-08-30 05:00:50 +00001479 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001480
Benjamin Kramere6461e32013-09-20 14:38:44 +00001481 // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1482 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1483 // pointer arithmetic.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001484 if (DL && GEP.getNumIndices() == 1 &&
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001485 match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1486 unsigned AS = GEP.getPointerAddressSpace();
1487 if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1488 GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001489 DL->getPointerSizeInBits(AS)) {
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001490 Operator *Index = cast<Operator>(GEP.getOperand(1));
1491 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1492 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1493 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1494 }
Benjamin Kramere6461e32013-09-20 14:38:44 +00001495 }
1496
Chris Lattner06c687b2009-08-30 05:08:50 +00001497 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattnere903f382010-01-05 07:42:10 +00001498 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Roteme63e59c2012-03-26 20:39:18 +00001499 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1500
Nadav Rotema8f35622012-03-26 21:00:53 +00001501 // We do not handle pointer-vector geps here.
1502 if (!StrippedPtrTy)
Craig Topperf40110f2014-04-25 05:29:35 +00001503 return nullptr;
Nadav Rotema8f35622012-03-26 21:00:53 +00001504
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001505 if (StrippedPtr != PtrOp) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001506 bool HasZeroPointerIndex = false;
1507 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1508 HasZeroPointerIndex = C->isZero();
Nadav Rotema069c6c2011-04-05 14:29:52 +00001509
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001510 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1511 // into : GEP [10 x i8]* X, i32 0, ...
1512 //
1513 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1514 // into : GEP i8* X, ...
Nadav Rotema069c6c2011-04-05 14:29:52 +00001515 //
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001516 // This occurs when the program declares an array extern like "int X[];"
Chris Lattnere26bf172009-08-30 05:00:50 +00001517 if (HasZeroPointerIndex) {
Chris Lattner229907c2011-07-18 04:54:35 +00001518 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1519 if (ArrayType *CATy =
Duncan Sands5795a602009-03-02 09:18:21 +00001520 dyn_cast<ArrayType>(CPTy->getElementType())) {
1521 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattnere903f382010-01-05 07:42:10 +00001522 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001523 // -> GEP i8* X, ...
Chris Lattnere903f382010-01-05 07:42:10 +00001524 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1525 GetElementPtrInst *Res =
Jay Foadd1b78492011-07-25 09:48:08 +00001526 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattnere903f382010-01-05 07:42:10 +00001527 Res->setIsInBounds(GEP.isInBounds());
Eli Bendersky9966b262014-04-03 17:51:58 +00001528 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1529 return Res;
1530 // Insert Res, and create an addrspacecast.
1531 // e.g.,
1532 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1533 // ->
1534 // %0 = GEP i8 addrspace(1)* X, ...
1535 // addrspacecast i8 addrspace(1)* %0 to i8*
1536 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001537 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001538
Chris Lattner229907c2011-07-18 04:54:35 +00001539 if (ArrayType *XATy =
Chris Lattnere903f382010-01-05 07:42:10 +00001540 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5795a602009-03-02 09:18:21 +00001541 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattner567b81f2005-09-13 00:40:14 +00001542 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001543 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattner567b81f2005-09-13 00:40:14 +00001544 // At this point, we know that the cast source type is a pointer
1545 // to an array of the same type as the destination pointer
1546 // array. Because the array type is never stepped over (there
1547 // is a leading zero) we can fold the cast into this GEP.
Eli Bendersky9966b262014-04-03 17:51:58 +00001548 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1549 GEP.setOperand(0, StrippedPtr);
1550 return &GEP;
1551 }
1552 // Cannot replace the base pointer directly because StrippedPtr's
1553 // address space is different. Instead, create a new GEP followed by
1554 // an addrspacecast.
1555 // e.g.,
1556 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1557 // i32 0, ...
1558 // ->
1559 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1560 // addrspacecast i8 addrspace(1)* %0 to i8*
1561 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1562 Value *NewGEP = GEP.isInBounds() ?
1563 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1564 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1565 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner567b81f2005-09-13 00:40:14 +00001566 }
Duncan Sands5795a602009-03-02 09:18:21 +00001567 }
1568 }
Chris Lattner567b81f2005-09-13 00:40:14 +00001569 } else if (GEP.getNumOperands() == 2) {
1570 // Transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001571 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1572 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattner229907c2011-07-18 04:54:35 +00001573 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001574 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001575 if (DL && SrcElTy->isArrayTy() &&
1576 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1577 DL->getTypeAllocSize(ResElTy)) {
1578 Type *IdxType = DL->getIntPtrType(GEP.getType());
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001579 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattnere903f382010-01-05 07:42:10 +00001580 Value *NewGEP = GEP.isInBounds() ?
Jay Foad040dd822011-07-22 08:16:57 +00001581 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1582 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001583
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001584 // V and GEP are both pointer types --> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001585 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1586 GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001587 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001588
Chris Lattner2a893292005-09-13 18:36:04 +00001589 // Transform things like:
Duncan Sands533c8ae2012-10-23 08:28:26 +00001590 // %V = mul i64 %N, 4
1591 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1592 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001593 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001594 // Check that changing the type amounts to dividing the index by a scale
1595 // factor.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001596 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1597 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
Duncan Sands533c8ae2012-10-23 08:28:26 +00001598 if (ResSize && SrcSize % ResSize == 0) {
1599 Value *Idx = GEP.getOperand(1);
1600 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1601 uint64_t Scale = SrcSize / ResSize;
1602
1603 // Earlier transforms ensure that the index has type IntPtrType, which
1604 // considerably simplifies the logic by eliminating implicit casts.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001605 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001606 "Index not cast to pointer width?");
1607
1608 bool NSW;
1609 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1610 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1611 // If the multiplication NewIdx * Scale may overflow then the new
1612 // GEP may not be "inbounds".
1613 Value *NewGEP = GEP.isInBounds() && NSW ?
1614 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1615 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001616
Duncan Sands533c8ae2012-10-23 08:28:26 +00001617 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001618 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1619 GEP.getType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001620 }
1621 }
1622 }
1623
1624 // Similarly, transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001625 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner2a893292005-09-13 18:36:04 +00001626 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001627 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001628 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001629 SrcElTy->isArrayTy()) {
1630 // Check that changing to the array element type amounts to dividing the
1631 // index by a scale factor.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001632 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001633 uint64_t ArrayEltSize
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001634 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001635 if (ResSize && ArrayEltSize % ResSize == 0) {
1636 Value *Idx = GEP.getOperand(1);
1637 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1638 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001639
Duncan Sands533c8ae2012-10-23 08:28:26 +00001640 // Earlier transforms ensure that the index has type IntPtrType, which
1641 // considerably simplifies the logic by eliminating implicit casts.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001642 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001643 "Index not cast to pointer width?");
1644
1645 bool NSW;
1646 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1647 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1648 // If the multiplication NewIdx * Scale may overflow then the new
1649 // GEP may not be "inbounds".
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001650 Value *Off[2] = {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001651 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001652 NewIdx
1653 };
1654
Duncan Sands533c8ae2012-10-23 08:28:26 +00001655 Value *NewGEP = GEP.isInBounds() && NSW ?
1656 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1657 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1658 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001659 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1660 GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00001661 }
1662 }
Chris Lattner2a893292005-09-13 18:36:04 +00001663 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001664 }
Chris Lattnerca081252001-12-14 16:52:21 +00001665 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001666
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001667 if (!DL)
Craig Topperf40110f2014-04-25 05:29:35 +00001668 return nullptr;
Matt Arsenault98f34e32013-08-19 22:17:34 +00001669
Chris Lattnerfef138b2009-01-09 05:44:56 +00001670 /// See if we can simplify:
Chris Lattner97fd3592009-08-30 05:55:36 +00001671 /// X = bitcast A* to B*
Chris Lattnerfef138b2009-01-09 05:44:56 +00001672 /// Y = gep X, <...constant indices...>
1673 /// into a gep of the original struct. This is important for SROA and alias
1674 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattnera784a2c2009-01-09 04:53:57 +00001675 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenault98f34e32013-08-19 22:17:34 +00001676 Value *Operand = BCI->getOperand(0);
1677 PointerType *OpType = cast<PointerType>(Operand->getType());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001678 unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
Matt Arsenault98f34e32013-08-19 22:17:34 +00001679 APInt Offset(OffsetBits, 0);
1680 if (!isa<BitCastInst>(Operand) &&
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001681 GEP.accumulateConstantOffset(*DL, Offset) &&
Nadav Rotema069c6c2011-04-05 14:29:52 +00001682 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1683
Chris Lattnerfef138b2009-01-09 05:44:56 +00001684 // If this GEP instruction doesn't move the pointer, just replace the GEP
1685 // with a bitcast of the real input to the dest type.
Nuno Lopesb6ad9822012-12-30 16:25:48 +00001686 if (!Offset) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001687 // If the bitcast is of an allocation, and the allocation will be
1688 // converted to match the type of the cast, don't touch this.
Matt Arsenault98f34e32013-08-19 22:17:34 +00001689 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001690 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1691 if (Instruction *I = visitBitCast(*BCI)) {
1692 if (I != BCI) {
1693 I->takeName(BCI);
1694 BCI->getParent()->getInstList().insert(BCI, I);
1695 ReplaceInstUsesWith(*BCI, I);
1696 }
1697 return &GEP;
Chris Lattnera784a2c2009-01-09 04:53:57 +00001698 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001699 }
Matt Arsenault98f34e32013-08-19 22:17:34 +00001700 return new BitCastInst(Operand, GEP.getType());
Chris Lattnera784a2c2009-01-09 04:53:57 +00001701 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001702
Chris Lattnerfef138b2009-01-09 05:44:56 +00001703 // Otherwise, if the offset is non-zero, we need to find out if there is a
1704 // field at Offset in 'A's type. If so, we can pull the cast through the
1705 // GEP.
1706 SmallVector<Value*, 8> NewIndices;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +00001707 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattnere903f382010-01-05 07:42:10 +00001708 Value *NGEP = GEP.isInBounds() ?
Matt Arsenault98f34e32013-08-19 22:17:34 +00001709 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1710 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001711
Chris Lattner59663412009-08-30 18:50:58 +00001712 if (NGEP->getType() == GEP.getType())
1713 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattnerfef138b2009-01-09 05:44:56 +00001714 NGEP->takeName(&GEP);
1715 return new BitCastInst(NGEP, GEP.getType());
1716 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001717 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001718 }
1719
Craig Topperf40110f2014-04-25 05:29:35 +00001720 return nullptr;
Chris Lattnerca081252001-12-14 16:52:21 +00001721}
1722
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001723static bool
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001724isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1725 const TargetLibraryInfo *TLI) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001726 SmallVector<Instruction*, 4> Worklist;
1727 Worklist.push_back(AI);
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001728
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001729 do {
1730 Instruction *PI = Worklist.pop_back_val();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001731 for (User *U : PI->users()) {
1732 Instruction *I = cast<Instruction>(U);
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001733 switch (I->getOpcode()) {
1734 default:
1735 // Give up the moment we see something we can't handle.
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001736 return false;
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001737
1738 case Instruction::BitCast:
1739 case Instruction::GetElementPtr:
1740 Users.push_back(I);
1741 Worklist.push_back(I);
1742 continue;
1743
1744 case Instruction::ICmp: {
1745 ICmpInst *ICI = cast<ICmpInst>(I);
1746 // We can fold eq/ne comparisons with null to false/true, respectively.
1747 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1748 return false;
1749 Users.push_back(I);
1750 continue;
1751 }
1752
1753 case Instruction::Call:
1754 // Ignore no-op and store intrinsics.
1755 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1756 switch (II->getIntrinsicID()) {
1757 default:
1758 return false;
1759
1760 case Intrinsic::memmove:
1761 case Intrinsic::memcpy:
1762 case Intrinsic::memset: {
1763 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1764 if (MI->isVolatile() || MI->getRawDest() != PI)
1765 return false;
1766 }
1767 // fall through
1768 case Intrinsic::dbg_declare:
1769 case Intrinsic::dbg_value:
1770 case Intrinsic::invariant_start:
1771 case Intrinsic::invariant_end:
1772 case Intrinsic::lifetime_start:
1773 case Intrinsic::lifetime_end:
1774 case Intrinsic::objectsize:
1775 Users.push_back(I);
1776 continue;
1777 }
1778 }
1779
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001780 if (isFreeCall(I, TLI)) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001781 Users.push_back(I);
1782 continue;
1783 }
1784 return false;
1785
1786 case Instruction::Store: {
1787 StoreInst *SI = cast<StoreInst>(I);
1788 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1789 return false;
1790 Users.push_back(I);
1791 continue;
1792 }
1793 }
1794 llvm_unreachable("missing a return?");
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001795 }
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001796 } while (!Worklist.empty());
Duncan Sandsf162eac2010-05-27 19:09:06 +00001797 return true;
1798}
1799
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001800Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sandsf162eac2010-05-27 19:09:06 +00001801 // If we have a malloc call which is only used in any amount of comparisons
1802 // to null and free calls, delete the calls and replace the comparisons with
1803 // true or false as appropriate.
Nick Lewycky50f49662011-08-03 00:43:35 +00001804 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001805 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewycky50f49662011-08-03 00:43:35 +00001806 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1807 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1808 if (!I) continue;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001809
Nick Lewycky50f49662011-08-03 00:43:35 +00001810 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001811 ReplaceInstUsesWith(*C,
1812 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1813 C->isFalseWhenEqual()));
Nick Lewycky50f49662011-08-03 00:43:35 +00001814 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001815 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001816 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1817 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1818 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1819 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1820 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1821 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001822 }
Nick Lewycky50f49662011-08-03 00:43:35 +00001823 EraseInstFromFunction(*I);
Duncan Sandsf162eac2010-05-27 19:09:06 +00001824 }
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001825
1826 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopes9ac46612012-06-28 22:31:24 +00001827 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes07594cb2012-06-25 17:11:47 +00001828 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopes9ac46612012-06-28 22:31:24 +00001829 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1830 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko3238fb72013-05-05 00:40:33 +00001831 None, "", II->getParent());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001832 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001833 return EraseInstFromFunction(MI);
1834 }
Craig Topperf40110f2014-04-25 05:29:35 +00001835 return nullptr;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001836}
1837
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001838/// \brief Move the call to free before a NULL test.
1839///
1840/// Check if this free is accessed after its argument has been test
1841/// against NULL (property 0).
1842/// If yes, it is legal to move this call in its predecessor block.
1843///
1844/// The move is performed only if the block containing the call to free
1845/// will be removed, i.e.:
1846/// 1. it has only one predecessor P, and P has two successors
1847/// 2. it contains the call and an unconditional branch
1848/// 3. its successor is the same as its predecessor's successor
1849///
1850/// The profitability is out-of concern here and this function should
1851/// be called only if the caller knows this transformation would be
1852/// profitable (e.g., for code size).
1853static Instruction *
1854tryToMoveFreeBeforeNullTest(CallInst &FI) {
1855 Value *Op = FI.getArgOperand(0);
1856 BasicBlock *FreeInstrBB = FI.getParent();
1857 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1858
1859 // Validate part of constraint #1: Only one predecessor
1860 // FIXME: We can extend the number of predecessor, but in that case, we
1861 // would duplicate the call to free in each predecessor and it may
1862 // not be profitable even for code size.
1863 if (!PredBB)
Craig Topperf40110f2014-04-25 05:29:35 +00001864 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001865
1866 // Validate constraint #2: Does this block contains only the call to
1867 // free and an unconditional branch?
1868 // FIXME: We could check if we can speculate everything in the
1869 // predecessor block
1870 if (FreeInstrBB->size() != 2)
Craig Topperf40110f2014-04-25 05:29:35 +00001871 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001872 BasicBlock *SuccBB;
1873 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001874 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001875
1876 // Validate the rest of constraint #1 by matching on the pred branch.
1877 TerminatorInst *TI = PredBB->getTerminator();
1878 BasicBlock *TrueBB, *FalseBB;
1879 ICmpInst::Predicate Pred;
1880 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001881 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001882 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
Craig Topperf40110f2014-04-25 05:29:35 +00001883 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001884
1885 // Validate constraint #3: Ensure the null case just falls through.
1886 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
Craig Topperf40110f2014-04-25 05:29:35 +00001887 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001888 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1889 "Broken CFG: missing edge from predecessor to successor");
1890
1891 FI.moveBefore(TI);
1892 return &FI;
1893}
Duncan Sandsf162eac2010-05-27 19:09:06 +00001894
1895
Gabor Greif75f69432010-06-24 12:21:15 +00001896Instruction *InstCombiner::visitFree(CallInst &FI) {
1897 Value *Op = FI.getArgOperand(0);
Victor Hernandeze2971492009-10-24 04:23:03 +00001898
1899 // free undef -> unreachable.
1900 if (isa<UndefValue>(Op)) {
1901 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedman41e509a2011-05-18 23:58:37 +00001902 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1903 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandeze2971492009-10-24 04:23:03 +00001904 return EraseInstFromFunction(FI);
1905 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001906
Victor Hernandeze2971492009-10-24 04:23:03 +00001907 // If we have 'free null' delete the instruction. This can happen in stl code
1908 // when lots of inlining happens.
1909 if (isa<ConstantPointerNull>(Op))
1910 return EraseInstFromFunction(FI);
1911
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001912 // If we optimize for code size, try to move the call to free before the null
1913 // test so that simplify cfg can remove the empty block and dead code
1914 // elimination the branch. I.e., helps to turn something like:
1915 // if (foo) free(foo);
1916 // into
1917 // free(foo);
1918 if (MinimizeSize)
1919 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1920 return I;
1921
Craig Topperf40110f2014-04-25 05:29:35 +00001922 return nullptr;
Victor Hernandeze2971492009-10-24 04:23:03 +00001923}
Chris Lattner8427bff2003-12-07 01:24:23 +00001924
Chris Lattner14a251b2007-04-15 00:07:55 +00001925
Chris Lattner31f486c2005-01-31 05:36:43 +00001926
Chris Lattner9eef8a72003-06-04 04:46:00 +00001927Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1928 // Change br (not X), label True, label False to: br X, label False, True
Craig Topperf40110f2014-04-25 05:29:35 +00001929 Value *X = nullptr;
Chris Lattnerd4252a72004-07-30 07:50:03 +00001930 BasicBlock *TrueDest;
1931 BasicBlock *FalseDest;
Dan Gohman5476cfd2009-08-12 16:23:25 +00001932 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00001933 !isa<Constant>(X)) {
1934 // Swap Destinations and condition...
1935 BI.setCondition(X);
Chandler Carruth3e8aa652011-10-17 01:11:57 +00001936 BI.swapSuccessors();
Chris Lattnerd4252a72004-07-30 07:50:03 +00001937 return &BI;
1938 }
1939
Alp Tokercb402912014-01-24 17:20:08 +00001940 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencer266e42b2006-12-23 06:05:41 +00001941 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001942 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00001943 TrueDest, FalseDest)) &&
1944 BI.getCondition()->hasOneUse())
1945 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1946 FPred == FCmpInst::FCMP_OGE) {
1947 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1948 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001949
Chris Lattner905976b2009-08-30 06:13:40 +00001950 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00001951 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00001952 Worklist.Add(Cond);
Reid Spencer266e42b2006-12-23 06:05:41 +00001953 return &BI;
1954 }
1955
Alp Tokercb402912014-01-24 17:20:08 +00001956 // Canonicalize icmp_ne -> icmp_eq
Reid Spencer266e42b2006-12-23 06:05:41 +00001957 ICmpInst::Predicate IPred;
1958 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00001959 TrueDest, FalseDest)) &&
1960 BI.getCondition()->hasOneUse())
1961 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1962 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1963 IPred == ICmpInst::ICMP_SGE) {
1964 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1965 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1966 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00001967 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00001968 Worklist.Add(Cond);
Chris Lattnere967b342003-06-04 05:10:11 +00001969 return &BI;
1970 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001971
Craig Topperf40110f2014-04-25 05:29:35 +00001972 return nullptr;
Chris Lattner9eef8a72003-06-04 04:46:00 +00001973}
Chris Lattner1085bdf2002-11-04 16:18:53 +00001974
Chris Lattner4c9c20a2004-07-03 00:26:11 +00001975Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1976 Value *Cond = SI.getCondition();
1977 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1978 if (I->getOpcode() == Instruction::Add)
1979 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1980 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedman95031ed2011-09-29 20:21:17 +00001981 // Skip the first item since that's the default case.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00001982 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00001983 i != e; ++i) {
1984 ConstantInt* CaseVal = i.getCaseValue();
Eli Friedman95031ed2011-09-29 20:21:17 +00001985 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1986 AddRHS);
1987 assert(isa<ConstantInt>(NewCaseVal) &&
1988 "Result of expression should be constant");
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00001989 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedman95031ed2011-09-29 20:21:17 +00001990 }
1991 SI.setCondition(I->getOperand(0));
Chris Lattner905976b2009-08-30 06:13:40 +00001992 Worklist.Add(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00001993 return &SI;
1994 }
1995 }
Craig Topperf40110f2014-04-25 05:29:35 +00001996 return nullptr;
Chris Lattner4c9c20a2004-07-03 00:26:11 +00001997}
1998
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00001999Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002000 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002001
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002002 if (!EV.hasIndices())
2003 return ReplaceInstUsesWith(EV, Agg);
2004
2005 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerfa775002012-01-26 02:32:04 +00002006 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2007 if (EV.getNumIndices() == 0)
2008 return ReplaceInstUsesWith(EV, C2);
2009 // Extract the remaining indices out of the constant indexed by the
2010 // first index
2011 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002012 }
Craig Topperf40110f2014-04-25 05:29:35 +00002013 return nullptr; // Can't handle other constants
Chris Lattnerfa775002012-01-26 02:32:04 +00002014 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002015
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002016 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2017 // We're extracting from an insertvalue instruction, compare the indices
2018 const unsigned *exti, *exte, *insi, *inse;
2019 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2020 exte = EV.idx_end(), inse = IV->idx_end();
2021 exti != exte && insi != inse;
2022 ++exti, ++insi) {
2023 if (*insi != *exti)
2024 // The insert and extract both reference distinctly different elements.
2025 // This means the extract is not influenced by the insert, and we can
2026 // replace the aggregate operand of the extract with the aggregate
2027 // operand of the insert. i.e., replace
2028 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2029 // %E = extractvalue { i32, { i32 } } %I, 0
2030 // with
2031 // %E = extractvalue { i32, { i32 } } %A, 0
2032 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002033 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002034 }
2035 if (exti == exte && insi == inse)
2036 // Both iterators are at the end: Index lists are identical. Replace
2037 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2038 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2039 // with "i32 42"
2040 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2041 if (exti == exte) {
2042 // The extract list is a prefix of the insert list. i.e. replace
2043 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2044 // %E = extractvalue { i32, { i32 } } %I, 1
2045 // with
2046 // %X = extractvalue { i32, { i32 } } %A, 1
2047 // %E = insertvalue { i32 } %X, i32 42, 0
2048 // by switching the order of the insert and extract (though the
2049 // insertvalue should be left in, since it may have other uses).
Chris Lattner59663412009-08-30 18:50:58 +00002050 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002051 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002052 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002053 makeArrayRef(insi, inse));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002054 }
2055 if (insi == inse)
2056 // The insert list is a prefix of the extract list
2057 // We can simply remove the common indices from the extract and make it
2058 // operate on the inserted value instead of the insertvalue result.
2059 // i.e., replace
2060 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2061 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2062 // with
2063 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002064 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002065 makeArrayRef(exti, exte));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002066 }
Chris Lattner39c07b22009-11-09 07:07:56 +00002067 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2068 // We're extracting from an intrinsic, see if we're the only user, which
2069 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif75f69432010-06-24 12:21:15 +00002070 // just get one value.
Chris Lattner39c07b22009-11-09 07:07:56 +00002071 if (II->hasOneUse()) {
2072 // Check if we're grabbing the overflow bit or the result of a 'with
2073 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2074 // and replace it with a traditional binary instruction.
2075 switch (II->getIntrinsicID()) {
2076 case Intrinsic::uadd_with_overflow:
2077 case Intrinsic::sadd_with_overflow:
2078 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002079 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002080 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002081 EraseInstFromFunction(*II);
2082 return BinaryOperator::CreateAdd(LHS, RHS);
2083 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002084
Chris Lattner3e635d22010-12-19 19:43:52 +00002085 // If the normal result of the add is dead, and the RHS is a constant,
2086 // we can transform this into a range comparison.
2087 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattner4fb9dd42010-12-19 23:24:04 +00002088 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2089 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2090 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2091 ConstantExpr::getNot(CI));
Chris Lattner39c07b22009-11-09 07:07:56 +00002092 break;
2093 case Intrinsic::usub_with_overflow:
2094 case Intrinsic::ssub_with_overflow:
2095 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002096 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002097 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002098 EraseInstFromFunction(*II);
2099 return BinaryOperator::CreateSub(LHS, RHS);
2100 }
2101 break;
2102 case Intrinsic::umul_with_overflow:
2103 case Intrinsic::smul_with_overflow:
2104 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002105 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002106 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002107 EraseInstFromFunction(*II);
2108 return BinaryOperator::CreateMul(LHS, RHS);
2109 }
2110 break;
2111 default:
2112 break;
2113 }
2114 }
2115 }
Frits van Bommel28218aa2010-11-29 21:56:20 +00002116 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2117 // If the (non-volatile) load only has one use, we can rewrite this to a
2118 // load from a GEP. This reduces the size of the load.
2119 // FIXME: If a load is used only by extractvalue instructions then this
2120 // could be done regardless of having multiple uses.
Eli Friedman8bc586e2011-08-15 22:09:40 +00002121 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel28218aa2010-11-29 21:56:20 +00002122 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2123 SmallVector<Value*, 4> Indices;
2124 // Prefix an i32 0 since we need the first element.
2125 Indices.push_back(Builder->getInt32(0));
2126 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2127 I != E; ++I)
2128 Indices.push_back(Builder->getInt32(*I));
2129
2130 // We need to insert these at the location of the old load, not at that of
2131 // the extractvalue.
2132 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad040dd822011-07-22 08:16:57 +00002133 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel28218aa2010-11-29 21:56:20 +00002134 // Returning the load directly will cause the main loop to insert it in
2135 // the wrong spot, so use ReplaceInstUsesWith().
2136 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2137 }
2138 // We could simplify extracts from other values. Note that nested extracts may
2139 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002140 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel28218aa2010-11-29 21:56:20 +00002141 // the value inserted, if appropriate. Similarly for extracts from single-use
2142 // loads: extract (extract (load)) will be translated to extract (load (gep))
2143 // and if again single-use then via load (gep (gep)) to load (gep).
2144 // However, double extracts from e.g. function arguments or return values
2145 // aren't handled yet.
Craig Topperf40110f2014-04-25 05:29:35 +00002146 return nullptr;
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002147}
2148
Duncan Sands5c055792011-09-30 13:12:16 +00002149enum Personality_Type {
2150 Unknown_Personality,
2151 GNU_Ada_Personality,
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00002152 GNU_CXX_Personality,
2153 GNU_ObjC_Personality
Duncan Sands5c055792011-09-30 13:12:16 +00002154};
2155
2156/// RecognizePersonality - See if the given exception handling personality
2157/// function is one that we understand. If so, return a description of it;
2158/// otherwise return Unknown_Personality.
2159static Personality_Type RecognizePersonality(Value *Pers) {
2160 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
2161 if (!F)
2162 return Unknown_Personality;
2163 return StringSwitch<Personality_Type>(F->getName())
2164 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00002165 .Case("__gxx_personality_v0", GNU_CXX_Personality)
2166 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands5c055792011-09-30 13:12:16 +00002167 .Default(Unknown_Personality);
2168}
2169
2170/// isCatchAll - Return 'true' if the given typeinfo will match anything.
2171static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
2172 switch (Personality) {
2173 case Unknown_Personality:
2174 return false;
2175 case GNU_Ada_Personality:
2176 // While __gnat_all_others_value will match any Ada exception, it doesn't
2177 // match foreign exceptions (or didn't, before gcc-4.7).
2178 return false;
2179 case GNU_CXX_Personality:
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00002180 case GNU_ObjC_Personality:
Duncan Sands5c055792011-09-30 13:12:16 +00002181 return TypeInfo->isNullValue();
2182 }
2183 llvm_unreachable("Unknown personality!");
2184}
2185
2186static bool shorter_filter(const Value *LHS, const Value *RHS) {
2187 return
2188 cast<ArrayType>(LHS->getType())->getNumElements()
2189 <
2190 cast<ArrayType>(RHS->getType())->getNumElements();
2191}
2192
2193Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2194 // The logic here should be correct for any real-world personality function.
2195 // However if that turns out not to be true, the offending logic can always
2196 // be conditioned on the personality function, like the catch-all logic is.
2197 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
2198
2199 // Simplify the list of clauses, eg by removing repeated catch clauses
2200 // (these are often created by inlining).
2201 bool MakeNewInstruction = false; // If true, recreate using the following:
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002202 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
Duncan Sands5c055792011-09-30 13:12:16 +00002203 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2204
2205 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2206 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2207 bool isLastClause = i + 1 == e;
2208 if (LI.isCatch(i)) {
2209 // A catch clause.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002210 Constant *CatchClause = LI.getClause(i);
Rafael Espindola78598d92014-06-04 19:01:48 +00002211 Constant *TypeInfo = CatchClause->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002212
2213 // If we already saw this clause, there is no point in having a second
2214 // copy of it.
2215 if (AlreadyCaught.insert(TypeInfo)) {
2216 // This catch clause was not already seen.
2217 NewClauses.push_back(CatchClause);
2218 } else {
2219 // Repeated catch clause - drop the redundant copy.
2220 MakeNewInstruction = true;
2221 }
2222
2223 // If this is a catch-all then there is no point in keeping any following
2224 // clauses or marking the landingpad as having a cleanup.
2225 if (isCatchAll(Personality, TypeInfo)) {
2226 if (!isLastClause)
2227 MakeNewInstruction = true;
2228 CleanupFlag = false;
2229 break;
2230 }
2231 } else {
2232 // A filter clause. If any of the filter elements were already caught
2233 // then they can be dropped from the filter. It is tempting to try to
2234 // exploit the filter further by saying that any typeinfo that does not
2235 // occur in the filter can't be caught later (and thus can be dropped).
2236 // However this would be wrong, since typeinfos can match without being
2237 // equal (for example if one represents a C++ class, and the other some
2238 // class derived from it).
2239 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002240 Constant *FilterClause = LI.getClause(i);
Duncan Sands5c055792011-09-30 13:12:16 +00002241 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2242 unsigned NumTypeInfos = FilterType->getNumElements();
2243
2244 // An empty filter catches everything, so there is no point in keeping any
2245 // following clauses or marking the landingpad as having a cleanup. By
2246 // dealing with this case here the following code is made a bit simpler.
2247 if (!NumTypeInfos) {
2248 NewClauses.push_back(FilterClause);
2249 if (!isLastClause)
2250 MakeNewInstruction = true;
2251 CleanupFlag = false;
2252 break;
2253 }
2254
2255 bool MakeNewFilter = false; // If true, make a new filter.
2256 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2257 if (isa<ConstantAggregateZero>(FilterClause)) {
2258 // Not an empty filter - it contains at least one null typeinfo.
2259 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2260 Constant *TypeInfo =
2261 Constant::getNullValue(FilterType->getElementType());
2262 // If this typeinfo is a catch-all then the filter can never match.
2263 if (isCatchAll(Personality, TypeInfo)) {
2264 // Throw the filter away.
2265 MakeNewInstruction = true;
2266 continue;
2267 }
2268
2269 // There is no point in having multiple copies of this typeinfo, so
2270 // discard all but the first copy if there is more than one.
2271 NewFilterElts.push_back(TypeInfo);
2272 if (NumTypeInfos > 1)
2273 MakeNewFilter = true;
2274 } else {
2275 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2276 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2277 NewFilterElts.reserve(NumTypeInfos);
2278
2279 // Remove any filter elements that were already caught or that already
2280 // occurred in the filter. While there, see if any of the elements are
2281 // catch-alls. If so, the filter can be discarded.
2282 bool SawCatchAll = false;
2283 for (unsigned j = 0; j != NumTypeInfos; ++j) {
Rafael Espindola78598d92014-06-04 19:01:48 +00002284 Constant *Elt = Filter->getOperand(j);
2285 Constant *TypeInfo = Elt->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002286 if (isCatchAll(Personality, TypeInfo)) {
2287 // This element is a catch-all. Bail out, noting this fact.
2288 SawCatchAll = true;
2289 break;
2290 }
2291 if (AlreadyCaught.count(TypeInfo))
2292 // Already caught by an earlier clause, so having it in the filter
2293 // is pointless.
2294 continue;
2295 // There is no point in having multiple copies of the same typeinfo in
2296 // a filter, so only add it if we didn't already.
2297 if (SeenInFilter.insert(TypeInfo))
2298 NewFilterElts.push_back(cast<Constant>(Elt));
2299 }
2300 // A filter containing a catch-all cannot match anything by definition.
2301 if (SawCatchAll) {
2302 // Throw the filter away.
2303 MakeNewInstruction = true;
2304 continue;
2305 }
2306
2307 // If we dropped something from the filter, make a new one.
2308 if (NewFilterElts.size() < NumTypeInfos)
2309 MakeNewFilter = true;
2310 }
2311 if (MakeNewFilter) {
2312 FilterType = ArrayType::get(FilterType->getElementType(),
2313 NewFilterElts.size());
2314 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2315 MakeNewInstruction = true;
2316 }
2317
2318 NewClauses.push_back(FilterClause);
2319
2320 // If the new filter is empty then it will catch everything so there is
2321 // no point in keeping any following clauses or marking the landingpad
2322 // as having a cleanup. The case of the original filter being empty was
2323 // already handled above.
2324 if (MakeNewFilter && !NewFilterElts.size()) {
2325 assert(MakeNewInstruction && "New filter but not a new instruction!");
2326 CleanupFlag = false;
2327 break;
2328 }
2329 }
2330 }
2331
2332 // If several filters occur in a row then reorder them so that the shortest
2333 // filters come first (those with the smallest number of elements). This is
2334 // advantageous because shorter filters are more likely to match, speeding up
2335 // unwinding, but mostly because it increases the effectiveness of the other
2336 // filter optimizations below.
2337 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2338 unsigned j;
2339 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2340 for (j = i; j != e; ++j)
2341 if (!isa<ArrayType>(NewClauses[j]->getType()))
2342 break;
2343
2344 // Check whether the filters are already sorted by length. We need to know
2345 // if sorting them is actually going to do anything so that we only make a
2346 // new landingpad instruction if it does.
2347 for (unsigned k = i; k + 1 < j; ++k)
2348 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2349 // Not sorted, so sort the filters now. Doing an unstable sort would be
2350 // correct too but reordering filters pointlessly might confuse users.
2351 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2352 shorter_filter);
2353 MakeNewInstruction = true;
2354 break;
2355 }
2356
2357 // Look for the next batch of filters.
2358 i = j + 1;
2359 }
2360
2361 // If typeinfos matched if and only if equal, then the elements of a filter L
2362 // that occurs later than a filter F could be replaced by the intersection of
2363 // the elements of F and L. In reality two typeinfos can match without being
2364 // equal (for example if one represents a C++ class, and the other some class
2365 // derived from it) so it would be wrong to perform this transform in general.
2366 // However the transform is correct and useful if F is a subset of L. In that
2367 // case L can be replaced by F, and thus removed altogether since repeating a
2368 // filter is pointless. So here we look at all pairs of filters F and L where
2369 // L follows F in the list of clauses, and remove L if every element of F is
2370 // an element of L. This can occur when inlining C++ functions with exception
2371 // specifications.
2372 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2373 // Examine each filter in turn.
2374 Value *Filter = NewClauses[i];
2375 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2376 if (!FTy)
2377 // Not a filter - skip it.
2378 continue;
2379 unsigned FElts = FTy->getNumElements();
2380 // Examine each filter following this one. Doing this backwards means that
2381 // we don't have to worry about filters disappearing under us when removed.
2382 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2383 Value *LFilter = NewClauses[j];
2384 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2385 if (!LTy)
2386 // Not a filter - skip it.
2387 continue;
2388 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2389 // an element of LFilter, then discard LFilter.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002390 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
Duncan Sands5c055792011-09-30 13:12:16 +00002391 // If Filter is empty then it is a subset of LFilter.
2392 if (!FElts) {
2393 // Discard LFilter.
2394 NewClauses.erase(J);
2395 MakeNewInstruction = true;
2396 // Move on to the next filter.
2397 continue;
2398 }
2399 unsigned LElts = LTy->getNumElements();
2400 // If Filter is longer than LFilter then it cannot be a subset of it.
2401 if (FElts > LElts)
2402 // Move on to the next filter.
2403 continue;
2404 // At this point we know that LFilter has at least one element.
2405 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002406 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands5c055792011-09-30 13:12:16 +00002407 // already know that Filter is not longer than LFilter).
2408 if (isa<ConstantAggregateZero>(Filter)) {
2409 assert(FElts <= LElts && "Should have handled this case earlier!");
2410 // Discard LFilter.
2411 NewClauses.erase(J);
2412 MakeNewInstruction = true;
2413 }
2414 // Move on to the next filter.
2415 continue;
2416 }
2417 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2418 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2419 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002420 // LFilter iff LFilter contains a zero.
Duncan Sands5c055792011-09-30 13:12:16 +00002421 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2422 for (unsigned l = 0; l != LElts; ++l)
2423 if (LArray->getOperand(l)->isNullValue()) {
2424 // LFilter contains a zero - discard it.
2425 NewClauses.erase(J);
2426 MakeNewInstruction = true;
2427 break;
2428 }
2429 // Move on to the next filter.
2430 continue;
2431 }
2432 // At this point we know that both filters are ConstantArrays. Loop over
2433 // operands to see whether every element of Filter is also an element of
2434 // LFilter. Since filters tend to be short this is probably faster than
2435 // using a method that scales nicely.
2436 ConstantArray *FArray = cast<ConstantArray>(Filter);
2437 bool AllFound = true;
2438 for (unsigned f = 0; f != FElts; ++f) {
2439 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2440 AllFound = false;
2441 for (unsigned l = 0; l != LElts; ++l) {
2442 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2443 if (LTypeInfo == FTypeInfo) {
2444 AllFound = true;
2445 break;
2446 }
2447 }
2448 if (!AllFound)
2449 break;
2450 }
2451 if (AllFound) {
2452 // Discard LFilter.
2453 NewClauses.erase(J);
2454 MakeNewInstruction = true;
2455 }
2456 // Move on to the next filter.
2457 }
2458 }
2459
2460 // If we changed any of the clauses, replace the old landingpad instruction
2461 // with a new one.
2462 if (MakeNewInstruction) {
2463 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2464 LI.getPersonalityFn(),
2465 NewClauses.size());
2466 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2467 NLI->addClause(NewClauses[i]);
2468 // A landing pad with no clauses must have the cleanup flag set. It is
2469 // theoretically possible, though highly unlikely, that we eliminated all
2470 // clauses. If so, force the cleanup flag to true.
2471 if (NewClauses.empty())
2472 CleanupFlag = true;
2473 NLI->setCleanup(CleanupFlag);
2474 return NLI;
2475 }
2476
2477 // Even if none of the clauses changed, we may nonetheless have understood
2478 // that the cleanup flag is pointless. Clear it if so.
2479 if (LI.isCleanup() != CleanupFlag) {
2480 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2481 LI.setCleanup(CleanupFlag);
2482 return &LI;
2483 }
2484
Craig Topperf40110f2014-04-25 05:29:35 +00002485 return nullptr;
Duncan Sands5c055792011-09-30 13:12:16 +00002486}
2487
Chris Lattnerfbb77a42006-04-10 22:45:52 +00002488
Robert Bocchinoa8352962006-01-13 22:48:06 +00002489
Chris Lattner39c98bb2004-12-08 23:43:58 +00002490
2491/// TryToSinkInstruction - Try to move the specified instruction from its
2492/// current block into the beginning of DestBlock, which can only happen if it's
2493/// safe to move the instruction past all of the instructions between it and the
2494/// end of its block.
2495static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2496 assert(I->hasOneUse() && "Invariants didn't hold!");
2497
Bill Wendlinge86965e2011-08-15 21:14:31 +00002498 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlinga9ee09f2011-08-17 20:36:44 +00002499 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2500 isa<TerminatorInst>(I))
Chris Lattnera4ee1f52008-05-09 15:07:33 +00002501 return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002502
Chris Lattner39c98bb2004-12-08 23:43:58 +00002503 // Do not sink alloca instructions out of the entry block.
Dan Gohmandcb291f2007-03-22 16:38:57 +00002504 if (isa<AllocaInst>(I) && I->getParent() ==
2505 &DestBlock->getParent()->getEntryBlock())
Chris Lattner39c98bb2004-12-08 23:43:58 +00002506 return false;
2507
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002508 // We can only sink load instructions if there is nothing between the load and
2509 // the end of block that could change the value.
Chris Lattner49a594e2008-05-08 17:37:37 +00002510 if (I->mayReadFromMemory()) {
2511 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002512 Scan != E; ++Scan)
2513 if (Scan->mayWriteToMemory())
2514 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002515 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002516
Bill Wendling8ddfc092011-08-16 20:45:24 +00002517 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner9f269e42005-08-08 19:11:57 +00002518 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00002519 ++NumSunkInst;
2520 return true;
2521}
2522
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002523
2524/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2525/// all reachable code to the worklist.
2526///
2527/// This has a couple of tricks to make the code faster and more powerful. In
2528/// particular, we constant fold and DCE instructions as we go, to avoid adding
2529/// them to the worklist (this significantly speeds up instcombine on code where
2530/// many instructions are dead or constant). Additionally, if we find a branch
2531/// whose condition is a known constant, we only visit the reachable successors.
2532///
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002533static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner7907e5f2007-02-15 19:41:52 +00002534 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002535 InstCombiner &IC,
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002536 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00002537 const TargetLibraryInfo *TLI) {
Chris Lattnerc855b452009-10-15 04:59:28 +00002538 bool MadeIRChange = false;
Chris Lattner1d239152008-08-15 04:03:01 +00002539 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner12b89cc2007-03-23 19:17:18 +00002540 Worklist.push_back(BB);
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002541
Benjamin Kramer76229bc2010-10-23 17:10:24 +00002542 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedman68aab452011-05-24 18:52:07 +00002543 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2544
Dan Gohman28943872010-01-05 16:27:25 +00002545 do {
2546 BB = Worklist.pop_back_val();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002547
Chris Lattner12b89cc2007-03-23 19:17:18 +00002548 // We have now visited this block! If we've already been here, ignore it.
2549 if (!Visited.insert(BB)) continue;
Devang Patel7ed6c532008-11-19 18:56:50 +00002550
Chris Lattner12b89cc2007-03-23 19:17:18 +00002551 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2552 Instruction *Inst = BBI++;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002553
Chris Lattner12b89cc2007-03-23 19:17:18 +00002554 // DCE instruction if trivially dead.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002555 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner12b89cc2007-03-23 19:17:18 +00002556 ++NumDeadInst;
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002557 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner12b89cc2007-03-23 19:17:18 +00002558 Inst->eraseFromParent();
2559 continue;
2560 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002561
Chris Lattner12b89cc2007-03-23 19:17:18 +00002562 // ConstantProp instruction if trivially constant.
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002563 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002564 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002565 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002566 << *Inst << '\n');
2567 Inst->replaceAllUsesWith(C);
2568 ++NumConstProp;
2569 Inst->eraseFromParent();
2570 continue;
2571 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002572
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002573 if (DL) {
Chris Lattnerc855b452009-10-15 04:59:28 +00002574 // See if we can constant fold its operands.
2575 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2576 i != e; ++i) {
2577 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
Craig Topperf40110f2014-04-25 05:29:35 +00002578 if (CE == nullptr) continue;
Eli Friedman68aab452011-05-24 18:52:07 +00002579
2580 Constant*& FoldRes = FoldedConstants[CE];
2581 if (!FoldRes)
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002582 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
Eli Friedman68aab452011-05-24 18:52:07 +00002583 if (!FoldRes)
2584 FoldRes = CE;
2585
2586 if (FoldRes != CE) {
2587 *i = FoldRes;
Chris Lattnerc855b452009-10-15 04:59:28 +00002588 MadeIRChange = true;
2589 }
2590 }
2591 }
Devang Patel7ed6c532008-11-19 18:56:50 +00002592
Chris Lattner8abd5722009-10-12 03:58:40 +00002593 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002594 }
Chris Lattner12b89cc2007-03-23 19:17:18 +00002595
2596 // Recursively visit successors. If this is a branch or switch on a
2597 // constant, only visit the reachable successor.
2598 TerminatorInst *TI = BB->getTerminator();
2599 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2600 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2601 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky271506f2008-03-09 08:50:23 +00002602 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky4d43d3c2008-04-25 16:53:59 +00002603 Worklist.push_back(ReachableBB);
Chris Lattner12b89cc2007-03-23 19:17:18 +00002604 continue;
2605 }
2606 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2607 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2608 // See if this is an explicit destination.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00002609 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002610 i != e; ++i)
2611 if (i.getCaseValue() == Cond) {
2612 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky4d43d3c2008-04-25 16:53:59 +00002613 Worklist.push_back(ReachableBB);
Chris Lattner12b89cc2007-03-23 19:17:18 +00002614 continue;
2615 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002616
Chris Lattner12b89cc2007-03-23 19:17:18 +00002617 // Otherwise it is the default destination.
Stepan Dyatkovskiy513aaa52012-02-01 07:49:51 +00002618 Worklist.push_back(SI->getDefaultDest());
Chris Lattner12b89cc2007-03-23 19:17:18 +00002619 continue;
2620 }
2621 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002622
Chris Lattner12b89cc2007-03-23 19:17:18 +00002623 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2624 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman28943872010-01-05 16:27:25 +00002625 } while (!Worklist.empty());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002626
Chris Lattner8abd5722009-10-12 03:58:40 +00002627 // Once we've found all of the instructions to add to instcombine's worklist,
2628 // add them in reverse order. This way instcombine will visit from the top
2629 // of the function down. This jives well with the way that it adds all uses
2630 // of instructions to the worklist after doing a transformation, thus avoiding
2631 // some N^2 behavior in pathological cases.
2632 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2633 InstrsForInstCombineWorklist.size());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002634
Chris Lattnerc855b452009-10-15 04:59:28 +00002635 return MadeIRChange;
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002636}
2637
Chris Lattner960a5432007-03-03 02:04:50 +00002638bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002639 MadeIRChange = false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002640
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002641 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramer1f97a5a2011-11-15 16:27:03 +00002642 << F.getName() << "\n");
Chris Lattnerca081252001-12-14 16:52:21 +00002643
Chris Lattner4ed40f72005-07-07 20:40:38 +00002644 {
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002645 // Do a depth-first traversal of the function, populate the worklist with
2646 // the reachable instructions. Ignore blocks that are not reachable. Keep
2647 // track of which blocks we visit.
Chris Lattner7907e5f2007-02-15 19:41:52 +00002648 SmallPtrSet<BasicBlock*, 64> Visited;
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002649 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00002650 TLI);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00002651
Chris Lattner4ed40f72005-07-07 20:40:38 +00002652 // Do a quick scan over the function. If we find any blocks that are
2653 // unreachable, remove any instructions inside of them. This prevents
2654 // the instcombine code from having to deal with some bad special cases.
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002655 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2656 if (Visited.count(BB)) continue;
2657
Bill Wendling321fb372011-09-04 09:43:36 +00002658 // Delete the instructions backwards, as it has a reduced likelihood of
2659 // having to update as many def-use and use-def chains.
2660 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2661 while (EndInst != BB->begin()) {
2662 // Delete the next to last instruction.
2663 BasicBlock::iterator I = EndInst;
2664 Instruction *Inst = --I;
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002665 if (!Inst->use_empty())
2666 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendling321fb372011-09-04 09:43:36 +00002667 if (isa<LandingPadInst>(Inst)) {
2668 EndInst = Inst;
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002669 continue;
Bill Wendling321fb372011-09-04 09:43:36 +00002670 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002671 if (!isa<DbgInfoIntrinsic>(Inst)) {
2672 ++NumDeadInst;
2673 MadeIRChange = true;
Chris Lattner4ed40f72005-07-07 20:40:38 +00002674 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002675 Inst->eraseFromParent();
Chris Lattner4ed40f72005-07-07 20:40:38 +00002676 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002677 }
Chris Lattner4ed40f72005-07-07 20:40:38 +00002678 }
Chris Lattnerca081252001-12-14 16:52:21 +00002679
Chris Lattner97fd3592009-08-30 05:55:36 +00002680 while (!Worklist.isEmpty()) {
2681 Instruction *I = Worklist.RemoveOne();
Craig Topperf40110f2014-04-25 05:29:35 +00002682 if (I == nullptr) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +00002683
Chris Lattner1443bc52006-05-11 17:11:52 +00002684 // Check to see if we can DCE the instruction.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002685 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002686 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner905976b2009-08-30 06:13:40 +00002687 EraseInstFromFunction(*I);
2688 ++NumDeadInst;
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002689 MadeIRChange = true;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002690 continue;
2691 }
Chris Lattner99f48c62002-09-02 04:59:56 +00002692
Chris Lattner1443bc52006-05-11 17:11:52 +00002693 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002694 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002695 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002696 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnercd517ff2005-01-28 19:32:01 +00002697
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002698 // Add operands to the worklist.
2699 ReplaceInstUsesWith(*I, C);
2700 ++NumConstProp;
2701 EraseInstFromFunction(*I);
2702 MadeIRChange = true;
2703 continue;
2704 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002705
Chris Lattner39c98bb2004-12-08 23:43:58 +00002706 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfa1211f2008-07-23 00:34:11 +00002707 if (I->hasOneUse()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002708 BasicBlock *BB = I->getParent();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002709 Instruction *UserInst = cast<Instruction>(*I->user_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002710 BasicBlock *UserParent;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002711
Chris Lattner6b9044d2009-10-14 15:21:58 +00002712 // Get the block the use occurs in.
2713 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
Chandler Carruthcdf47882014-03-09 03:16:01 +00002714 UserParent = PN->getIncomingBlock(*I->use_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002715 else
2716 UserParent = UserInst->getParent();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002717
Chris Lattner39c98bb2004-12-08 23:43:58 +00002718 if (UserParent != BB) {
2719 bool UserIsSuccessor = false;
2720 // See if the user is one of our successors.
Manuel Jacobd11beff2014-07-20 09:10:11 +00002721 for (BasicBlock *Succ : successors(BB))
2722 if (Succ == UserParent) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002723 UserIsSuccessor = true;
2724 break;
2725 }
2726
2727 // If the user is one of our immediate successors, and if that successor
2728 // only has us as a predecessors (we'd have to split the critical edge
2729 // otherwise), we can keep going.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002730 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002731 // Okay, the CFG is simple enough, try to sink this instruction.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002732 if (TryToSinkInstruction(I, UserParent)) {
2733 MadeIRChange = true;
2734 // We'll add uses of the sunk instruction below, but since sinking
2735 // can expose opportunities for it's *operands* add them to the
2736 // worklist
2737 for (Use &U : I->operands())
2738 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2739 Worklist.Add(OpI);
2740 }
2741 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002742 }
2743 }
2744
Chris Lattner022a5822009-08-30 07:44:24 +00002745 // Now that we have an instruction, try combining it to simplify it.
2746 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedman96254a02011-05-18 01:28:27 +00002747 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002748
Reid Spencer755d0e72007-03-26 17:44:01 +00002749#ifndef NDEBUG
2750 std::string OrigI;
2751#endif
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002752 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002753 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskindafd08e2009-10-08 00:12:24 +00002754
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002755 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002756 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00002757 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00002758 if (Result != I) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002759 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002760 << " New = " << *Result << '\n');
2761
Eli Friedman35211c62011-05-27 00:19:40 +00002762 if (!I->getDebugLoc().isUnknown())
2763 Result->setDebugLoc(I->getDebugLoc());
Chris Lattner396dbfe2004-06-09 05:08:07 +00002764 // Everything uses the new instruction now.
2765 I->replaceAllUsesWith(Result);
2766
Jim Grosbache7abae02011-10-05 20:53:43 +00002767 // Move the name to the new instruction first.
2768 Result->takeName(I);
2769
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002770 // Push the new instruction and any users onto the worklist.
2771 Worklist.Add(Result);
2772 Worklist.AddUsersToWorkList(*Result);
2773
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002774 // Insert the new instruction into the basic block...
2775 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00002776 BasicBlock::iterator InsertPos = I;
2777
Eli Friedmana49b8282011-11-01 04:49:29 +00002778 // If we replace a PHI with something that isn't a PHI, fix up the
2779 // insertion point.
2780 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2781 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattner7515cab2004-11-14 19:13:23 +00002782
2783 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002784
Chris Lattner905976b2009-08-30 06:13:40 +00002785 EraseInstFromFunction(*I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002786 } else {
Evan Chenga4ed8a52007-03-27 16:44:48 +00002787#ifndef NDEBUG
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002788 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002789 << " New = " << *I << '\n');
Evan Chenga4ed8a52007-03-27 16:44:48 +00002790#endif
Chris Lattner7d2a5392004-03-13 23:54:27 +00002791
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002792 // If the instruction was modified, it's possible that it is now dead.
2793 // if so, remove it.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002794 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner905976b2009-08-30 06:13:40 +00002795 EraseInstFromFunction(*I);
Chris Lattner396dbfe2004-06-09 05:08:07 +00002796 } else {
Chris Lattner905976b2009-08-30 06:13:40 +00002797 Worklist.Add(I);
Chris Lattnerbacd05c2009-08-30 06:22:51 +00002798 Worklist.AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002799 }
Chris Lattner053c0932002-05-14 15:24:07 +00002800 }
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002801 MadeIRChange = true;
Chris Lattnerca081252001-12-14 16:52:21 +00002802 }
2803 }
2804
Chris Lattner97fd3592009-08-30 05:55:36 +00002805 Worklist.Zap();
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002806 return MadeIRChange;
Chris Lattner04805fa2002-02-26 21:46:54 +00002807}
2808
Meador Inge76fc1a42012-11-11 03:51:43 +00002809namespace {
2810class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2811 InstCombiner *IC;
2812public:
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002813 InstCombinerLibCallSimplifier(const DataLayout *DL,
Meador Inge76fc1a42012-11-11 03:51:43 +00002814 const TargetLibraryInfo *TLI,
2815 InstCombiner *IC)
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002816 : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
Meador Inge76fc1a42012-11-11 03:51:43 +00002817 this->IC = IC;
2818 }
2819
2820 /// replaceAllUsesWith - override so that instruction replacement
2821 /// can be defined in terms of the instruction combiner framework.
Craig Topper3e4c6972014-03-05 09:10:37 +00002822 void replaceAllUsesWith(Instruction *I, Value *With) const override {
Meador Inge76fc1a42012-11-11 03:51:43 +00002823 IC->ReplaceInstUsesWith(*I, With);
2824 }
2825};
2826}
Chris Lattner960a5432007-03-03 02:04:50 +00002827
2828bool InstCombiner::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002829 if (skipOptnoneFunction(F))
2830 return false;
2831
Rafael Espindola93512512014-02-25 17:30:31 +00002832 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topperf40110f2014-04-25 05:29:35 +00002833 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosiere6de63d2011-12-01 21:29:16 +00002834 TLI = &getAnalysis<TargetLibraryInfo>();
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00002835 // Minimizing size?
2836 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2837 Attribute::MinSize);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002838
Chris Lattner022a5822009-08-30 07:44:24 +00002839 /// Builder - This is an IRBuilder that automatically inserts new
2840 /// instructions into the worklist when they are created.
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002841 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002842 TheBuilder(F.getContext(), TargetFolder(DL),
Chris Lattner022a5822009-08-30 07:44:24 +00002843 InstCombineIRInserter(Worklist));
2844 Builder = &TheBuilder;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002845
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002846 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
Meador Ingedf796f82012-10-13 16:45:24 +00002847 Simplifier = &TheSimplifier;
2848
Chris Lattner960a5432007-03-03 02:04:50 +00002849 bool EverMadeChange = false;
2850
Devang Patelaad34d82011-03-17 22:18:16 +00002851 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2852 // by instcombiner.
2853 EverMadeChange = LowerDbgDeclare(F);
2854
Chris Lattner960a5432007-03-03 02:04:50 +00002855 // Iterate while there is work to do.
2856 unsigned Iteration = 0;
Bill Wendling37169522008-05-14 22:45:20 +00002857 while (DoOneIteration(F, Iteration++))
Chris Lattner960a5432007-03-03 02:04:50 +00002858 EverMadeChange = true;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002859
Craig Topperf40110f2014-04-25 05:29:35 +00002860 Builder = nullptr;
Chris Lattner960a5432007-03-03 02:04:50 +00002861 return EverMadeChange;
2862}
2863
Brian Gaeke38b79e82004-07-27 17:43:21 +00002864FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +00002865 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +00002866}