blob: 5190dd2fd8f7d03f047f10248ea789874b7d5f4e [file] [log] [blame]
Chris Lattner64fd9352002-03-28 18:08:31 +00001//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
2//
3// This transform changes programs so that disjoint data structures are
4// allocated out of different pools of memory, increasing locality and shrinking
5// pointer size.
6//
Chris Lattner457e1ac2002-04-15 22:42:23 +00007// This pass requires a DCE & instcombine pass to be run after it for best
8// results.
9//
Chris Lattner64fd9352002-03-28 18:08:31 +000010//===----------------------------------------------------------------------===//
11
12#include "llvm/Transforms/IPO/PoolAllocate.h"
Chris Lattner7608a462002-05-07 18:36:35 +000013#include "llvm/Transforms/Utils/CloneFunction.h"
Chris Lattner396d5d72002-03-30 04:02:31 +000014#include "llvm/Analysis/DataStructureGraph.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000015#include "llvm/Module.h"
16#include "llvm/Function.h"
Chris Lattnerd92b01c2002-04-09 18:37:46 +000017#include "llvm/BasicBlock.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000018#include "llvm/iMemory.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000019#include "llvm/iTerminators.h"
Chris Lattner441e16f2002-04-12 20:23:15 +000020#include "llvm/iPHINode.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000021#include "llvm/iOther.h"
Chris Lattner441e16f2002-04-12 20:23:15 +000022#include "llvm/DerivedTypes.h"
Chris Lattnerca142372002-04-28 19:55:58 +000023#include "llvm/Constants.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000024#include "llvm/Target/TargetData.h"
Chris Lattnerf32d65d2002-03-29 21:25:19 +000025#include "llvm/Support/InstVisitor.h"
Chris Lattner2e9fa6d2002-04-09 19:48:49 +000026#include "llvm/Argument.h"
Chris Lattner396d5d72002-03-30 04:02:31 +000027#include "Support/DepthFirstIterator.h"
Chris Lattnere0618ca2002-03-29 05:50:20 +000028#include "Support/STLExtras.h"
Chris Lattner175f37c2002-03-29 03:40:59 +000029#include <algorithm>
Chris Lattner64fd9352002-03-28 18:08:31 +000030
Chris Lattner441e16f2002-04-12 20:23:15 +000031// DEBUG_CREATE_POOLS - Enable this to turn on debug output for the pool
32// creation phase in the top level function of a transformed data structure.
33//
Chris Lattneracf19022002-04-14 06:14:41 +000034//#define DEBUG_CREATE_POOLS 1
35
36// DEBUG_TRANSFORM_PROGRESS - Enable this to get lots of debug output on what
37// the transformation is doing.
38//
39//#define DEBUG_TRANSFORM_PROGRESS 1
Chris Lattner441e16f2002-04-12 20:23:15 +000040
Chris Lattner457e1ac2002-04-15 22:42:23 +000041// DEBUG_POOLBASE_LOAD_ELIMINATOR - Turn this on to get statistics about how
42// many static loads were eliminated from a function...
43//
44#define DEBUG_POOLBASE_LOAD_ELIMINATOR 1
45
Chris Lattner50e3d322002-04-13 23:13:18 +000046#include "Support/CommandLine.h"
47enum PtrSize {
48 Ptr8bits, Ptr16bits, Ptr32bits
49};
50
51static cl::Enum<enum PtrSize> ReqPointerSize("ptrsize", 0,
Chris Lattneracf19022002-04-14 06:14:41 +000052 "Set pointer size for -poolalloc pass",
Chris Lattner50e3d322002-04-13 23:13:18 +000053 clEnumValN(Ptr32bits, "32", "Use 32 bit indices for pointers"),
54 clEnumValN(Ptr16bits, "16", "Use 16 bit indices for pointers"),
55 clEnumValN(Ptr8bits , "8", "Use 8 bit indices for pointers"), 0);
56
Chris Lattner457e1ac2002-04-15 22:42:23 +000057static cl::Flag DisableRLE("no-pool-load-elim", "Disable pool load elimination after poolalloc pass", cl::Hidden);
58
Chris Lattner441e16f2002-04-12 20:23:15 +000059const Type *POINTERTYPE;
Chris Lattner692ad5d2002-03-29 17:13:46 +000060
Chris Lattnere0618ca2002-03-29 05:50:20 +000061// FIXME: This is dependant on the sparc backend layout conventions!!
62static TargetData TargetData("test");
63
Chris Lattner50e3d322002-04-13 23:13:18 +000064static const Type *getPointerTransformedType(const Type *Ty) {
65 if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
66 return POINTERTYPE;
67 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
68 vector<const Type *> NewElTypes;
69 NewElTypes.reserve(STy->getElementTypes().size());
70 for (StructType::ElementTypes::const_iterator
71 I = STy->getElementTypes().begin(),
72 E = STy->getElementTypes().end(); I != E; ++I)
73 NewElTypes.push_back(getPointerTransformedType(*I));
74 return StructType::get(NewElTypes);
75 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
76 return ArrayType::get(getPointerTransformedType(ATy->getElementType()),
77 ATy->getNumElements());
78 } else {
79 assert(Ty->isPrimitiveType() && "Unknown derived type!");
80 return Ty;
81 }
82}
83
Chris Lattner64fd9352002-03-28 18:08:31 +000084namespace {
Chris Lattner441e16f2002-04-12 20:23:15 +000085 struct PoolInfo {
86 DSNode *Node; // The node this pool allocation represents
87 Value *Handle; // LLVM value of the pool in the current context
88 const Type *NewType; // The transformed type of the memory objects
89 const Type *PoolType; // The type of the pool
90
91 const Type *getOldType() const { return Node->getType(); }
92
93 PoolInfo() { // Define a default ctor for map::operator[]
94 cerr << "Map subscript used to get element that doesn't exist!\n";
95 abort(); // Invalid
96 }
97
98 PoolInfo(DSNode *N, Value *H, const Type *NT, const Type *PT)
99 : Node(N), Handle(H), NewType(NT), PoolType(PT) {
100 // Handle can be null...
101 assert(N && NT && PT && "Pool info null!");
102 }
103
104 PoolInfo(DSNode *N) : Node(N), Handle(0), NewType(0), PoolType(0) {
105 assert(N && "Invalid pool info!");
106
107 // The new type of the memory object is the same as the old type, except
108 // that all of the pointer values are replaced with POINTERTYPE values.
Chris Lattner50e3d322002-04-13 23:13:18 +0000109 NewType = getPointerTransformedType(getOldType());
Chris Lattner441e16f2002-04-12 20:23:15 +0000110 }
111 };
112
Chris Lattner692ad5d2002-03-29 17:13:46 +0000113 // ScalarInfo - Information about an LLVM value that we know points to some
114 // datastructure we are processing.
115 //
116 struct ScalarInfo {
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000117 Value *Val; // Scalar value in Current Function
Chris Lattner441e16f2002-04-12 20:23:15 +0000118 PoolInfo Pool; // The pool the scalar points into
Chris Lattner692ad5d2002-03-29 17:13:46 +0000119
Chris Lattner441e16f2002-04-12 20:23:15 +0000120 ScalarInfo(Value *V, const PoolInfo &PI) : Val(V), Pool(PI) {
121 assert(V && "Null value passed to ScalarInfo ctor!");
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000122 }
Chris Lattner692ad5d2002-03-29 17:13:46 +0000123 };
124
Chris Lattner396d5d72002-03-30 04:02:31 +0000125 // CallArgInfo - Information on one operand for a call that got expanded.
126 struct CallArgInfo {
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000127 int ArgNo; // Call argument number this corresponds to
128 DSNode *Node; // The graph node for the pool
129 Value *PoolHandle; // The LLVM value that is the pool pointer
Chris Lattner396d5d72002-03-30 04:02:31 +0000130
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000131 CallArgInfo(int Arg, DSNode *N, Value *PH)
132 : ArgNo(Arg), Node(N), PoolHandle(PH) {
133 assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
Chris Lattner396d5d72002-03-30 04:02:31 +0000134 }
135
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000136 // operator< when sorting, sort by argument number.
Chris Lattner396d5d72002-03-30 04:02:31 +0000137 bool operator<(const CallArgInfo &CAI) const {
138 return ArgNo < CAI.ArgNo;
139 }
140 };
141
Chris Lattner692ad5d2002-03-29 17:13:46 +0000142 // TransformFunctionInfo - Information about how a function eeds to be
143 // transformed.
144 //
145 struct TransformFunctionInfo {
146 // ArgInfo - Maintain information about the arguments that need to be
Chris Lattner441e16f2002-04-12 20:23:15 +0000147 // processed. Each CallArgInfo corresponds to an argument that needs to
148 // have a pool pointer passed into the transformed function with it.
Chris Lattner692ad5d2002-03-29 17:13:46 +0000149 //
150 // As a special case, "argument" number -1 corresponds to the return value.
151 //
Chris Lattner396d5d72002-03-30 04:02:31 +0000152 vector<CallArgInfo> ArgInfo;
Chris Lattner692ad5d2002-03-29 17:13:46 +0000153
154 // Func - The function to be transformed...
155 Function *Func;
156
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000157 // The call instruction that is used to map CallArgInfo PoolHandle values
158 // into the new function values.
159 CallInst *Call;
160
Chris Lattner692ad5d2002-03-29 17:13:46 +0000161 // default ctor...
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000162 TransformFunctionInfo() : Func(0), Call(0) {}
Chris Lattner692ad5d2002-03-29 17:13:46 +0000163
Chris Lattner396d5d72002-03-30 04:02:31 +0000164 bool operator<(const TransformFunctionInfo &TFI) const {
Chris Lattner291a1b12002-03-29 19:05:48 +0000165 if (Func < TFI.Func) return true;
166 if (Func > TFI.Func) return false;
Chris Lattner291a1b12002-03-29 19:05:48 +0000167 if (ArgInfo.size() < TFI.ArgInfo.size()) return true;
168 if (ArgInfo.size() > TFI.ArgInfo.size()) return false;
Chris Lattner396d5d72002-03-30 04:02:31 +0000169 return ArgInfo < TFI.ArgInfo;
Chris Lattner692ad5d2002-03-29 17:13:46 +0000170 }
171
172 void finalizeConstruction() {
173 // Sort the vector so that the return value is first, followed by the
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000174 // argument records, in order. Note that this must be a stable sort so
175 // that the entries with the same sorting criteria (ie they are multiple
176 // pool entries for the same argument) are kept in depth first order.
177 stable_sort(ArgInfo.begin(), ArgInfo.end());
Chris Lattner692ad5d2002-03-29 17:13:46 +0000178 }
Chris Lattner3e78dea2002-04-18 14:43:30 +0000179
180 // addCallInfo - For a specified function call CI, figure out which pool
181 // descriptors need to be passed in as arguments, and which arguments need
182 // to be transformed into indices. If Arg != -1, the specified call
183 // argument is passed in as a pointer to a data structure.
184 //
185 void addCallInfo(DataStructure *DS, CallInst *CI, int Arg,
186 DSNode *GraphNode, map<DSNode*, PoolInfo> &PoolDescs);
187
188 // Make sure that all dependant arguments are added to this transformation
189 // info. For example, if we call foo(null, P) and foo treats it's first and
190 // second arguments as belonging to the same data structure, the we MUST add
191 // entries to know that the null needs to be transformed into an index as
192 // well.
193 //
194 void ensureDependantArgumentsIncluded(DataStructure *DS,
195 map<DSNode*, PoolInfo> &PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000196 };
197
198
199 // Define the pass class that we implement...
Chris Lattner441e16f2002-04-12 20:23:15 +0000200 struct PoolAllocate : public Pass {
Chris Lattner37104aa2002-04-29 14:57:45 +0000201 const char *getPassName() const { return "Pool Allocate"; }
202
Chris Lattner175f37c2002-03-29 03:40:59 +0000203 PoolAllocate() {
Chris Lattner50e3d322002-04-13 23:13:18 +0000204 switch (ReqPointerSize) {
205 case Ptr32bits: POINTERTYPE = Type::UIntTy; break;
206 case Ptr16bits: POINTERTYPE = Type::UShortTy; break;
207 case Ptr8bits: POINTERTYPE = Type::UByteTy; break;
208 }
Chris Lattner175f37c2002-03-29 03:40:59 +0000209
210 CurModule = 0; DS = 0;
211 PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
Chris Lattner64fd9352002-03-28 18:08:31 +0000212 }
213
Chris Lattner441e16f2002-04-12 20:23:15 +0000214 // getPoolType - Get the type used by the backend for a pool of a particular
215 // type. This pool record is used to allocate nodes of type NodeType.
216 //
217 // Here, PoolTy = { NodeType*, sbyte*, uint }*
218 //
219 const StructType *getPoolType(const Type *NodeType) {
220 vector<const Type*> PoolElements;
221 PoolElements.push_back(PointerType::get(NodeType));
222 PoolElements.push_back(PointerType::get(Type::SByteTy));
223 PoolElements.push_back(Type::UIntTy);
Chris Lattner8f796d62002-04-13 19:25:57 +0000224 StructType *Result = StructType::get(PoolElements);
225
226 // Add a name to the symbol table to correspond to the backend
227 // representation of this pool...
228 assert(CurModule && "No current module!?");
229 string Name = CurModule->getTypeName(NodeType);
230 if (Name.empty()) Name = CurModule->getTypeName(PoolElements[0]);
231 CurModule->addTypeName(Name+"oolbe", Result);
232
233 return Result;
Chris Lattner441e16f2002-04-12 20:23:15 +0000234 }
235
Chris Lattner175f37c2002-03-29 03:40:59 +0000236 bool run(Module *M);
237
Chris Lattnerc8e66542002-04-27 06:56:12 +0000238 // getAnalysisUsage - This function requires data structure information
Chris Lattner175f37c2002-03-29 03:40:59 +0000239 // to be able to see what is pool allocatable.
Chris Lattner64fd9352002-03-28 18:08:31 +0000240 //
Chris Lattnerc8e66542002-04-27 06:56:12 +0000241 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
242 AU.addRequired(DataStructure::ID);
Chris Lattner64fd9352002-03-28 18:08:31 +0000243 }
Chris Lattner175f37c2002-03-29 03:40:59 +0000244
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000245 public:
Chris Lattner175f37c2002-03-29 03:40:59 +0000246 // CurModule - The module being processed.
247 Module *CurModule;
248
249 // DS - The data structure graph for the module being processed.
250 DataStructure *DS;
251
252 // Prototypes that we add to support pool allocation...
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000253 Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolAllocArray, *PoolFree;
Chris Lattner175f37c2002-03-29 03:40:59 +0000254
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000255 // The map of already transformed functions... note that the keys of this
256 // map do not have meaningful values for 'Call' or the 'PoolHandle' elements
257 // of the ArgInfo elements.
258 //
Chris Lattner692ad5d2002-03-29 17:13:46 +0000259 map<TransformFunctionInfo, Function*> TransformedFunctions;
260
261 // getTransformedFunction - Get a transformed function, or return null if
262 // the function specified hasn't been transformed yet.
263 //
264 Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
265 map<TransformFunctionInfo, Function*>::const_iterator I =
266 TransformedFunctions.find(TFI);
267 if (I != TransformedFunctions.end()) return I->second;
268 return 0;
269 }
270
271
Chris Lattner441e16f2002-04-12 20:23:15 +0000272 // addPoolPrototypes - Add prototypes for the pool functions to the
273 // specified module and update the Pool* instance variables to point to
274 // them.
Chris Lattner175f37c2002-03-29 03:40:59 +0000275 //
276 void addPoolPrototypes(Module *M);
277
Chris Lattner66df97d2002-03-29 06:21:38 +0000278
279 // CreatePools - Insert instructions into the function we are processing to
280 // create all of the memory pool objects themselves. This also inserts
281 // destruction code. Add an alloca for each pool that is allocated to the
Chris Lattner441e16f2002-04-12 20:23:15 +0000282 // PoolDescs map.
Chris Lattner66df97d2002-03-29 06:21:38 +0000283 //
284 void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
Chris Lattner441e16f2002-04-12 20:23:15 +0000285 map<DSNode*, PoolInfo> &PoolDescs);
Chris Lattner66df97d2002-03-29 06:21:38 +0000286
Chris Lattner175f37c2002-03-29 03:40:59 +0000287 // processFunction - Convert a function to use pool allocation where
288 // available.
289 //
290 bool processFunction(Function *F);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000291
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000292 // transformFunctionBody - This transforms the instruction in 'F' to use the
Chris Lattner441e16f2002-04-12 20:23:15 +0000293 // pools specified in PoolDescs when modifying data structure nodes
294 // specified in the PoolDescs map. IPFGraph is the closed data structure
295 // graph for F, of which the PoolDescriptor nodes come from.
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000296 //
297 void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
Chris Lattner441e16f2002-04-12 20:23:15 +0000298 map<DSNode*, PoolInfo> &PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000299
300 // transformFunction - Transform the specified function the specified way.
301 // It we have already transformed that function that way, don't do anything.
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000302 // The nodes in the TransformFunctionInfo come out of callers data structure
Chris Lattner441e16f2002-04-12 20:23:15 +0000303 // graph, and the PoolDescs passed in are the caller's.
Chris Lattner692ad5d2002-03-29 17:13:46 +0000304 //
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000305 void transformFunction(TransformFunctionInfo &TFI,
Chris Lattner441e16f2002-04-12 20:23:15 +0000306 FunctionDSGraph &CallerIPGraph,
307 map<DSNode*, PoolInfo> &PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000308
Chris Lattner64fd9352002-03-28 18:08:31 +0000309 };
310}
311
Chris Lattner692ad5d2002-03-29 17:13:46 +0000312// isNotPoolableAlloc - This is a predicate that returns true if the specified
Chris Lattner175f37c2002-03-29 03:40:59 +0000313// allocation node in a data structure graph is eligable for pool allocation.
314//
315static bool isNotPoolableAlloc(const AllocDSNode *DS) {
Chris Lattnere0618ca2002-03-29 05:50:20 +0000316 if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
Chris Lattnere0618ca2002-03-29 05:50:20 +0000317 return false;
Chris Lattner175f37c2002-03-29 03:40:59 +0000318}
319
Chris Lattner175f37c2002-03-29 03:40:59 +0000320// processFunction - Convert a function to use pool allocation where
321// available.
322//
323bool PoolAllocate::processFunction(Function *F) {
324 // Get the closed datastructure graph for the current function... if there are
325 // any allocations in this graph that are not escaping, we need to pool
326 // allocate them here!
327 //
328 FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
329
330 // Get all of the allocations that do not escape the current function. Since
331 // they are still live (they exist in the graph at all), this means we must
332 // have scalar references to these nodes, but the scalars are never returned.
333 //
Chris Lattner692ad5d2002-03-29 17:13:46 +0000334 vector<AllocDSNode*> Allocs;
Chris Lattner175f37c2002-03-29 03:40:59 +0000335 IPGraph.getNonEscapingAllocations(Allocs);
336
337 // Filter out allocations that we cannot handle. Currently, this includes
338 // variable sized array allocations and alloca's (which we do not want to
339 // pool allocate)
340 //
341 Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
342 Allocs.end());
343
344
345 if (Allocs.empty()) return false; // Nothing to do.
346
Chris Lattner3e78dea2002-04-18 14:43:30 +0000347#ifdef DEBUG_TRANSFORM_PROGRESS
348 cerr << "Transforming Function: " << F->getName() << "\n";
349#endif
350
Chris Lattner692ad5d2002-03-29 17:13:46 +0000351 // Insert instructions into the function we are processing to create all of
352 // the memory pool objects themselves. This also inserts destruction code.
Chris Lattner441e16f2002-04-12 20:23:15 +0000353 // This fills in the PoolDescs map to associate the alloc node with the
Chris Lattner396d5d72002-03-30 04:02:31 +0000354 // allocation of the memory pool corresponding to it.
Chris Lattner692ad5d2002-03-29 17:13:46 +0000355 //
Chris Lattner441e16f2002-04-12 20:23:15 +0000356 map<DSNode*, PoolInfo> PoolDescs;
357 CreatePools(F, Allocs, PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000358
Chris Lattneracf19022002-04-14 06:14:41 +0000359#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +0000360 cerr << "Transformed Entry Function: \n" << F;
Chris Lattneracf19022002-04-14 06:14:41 +0000361#endif
Chris Lattner441e16f2002-04-12 20:23:15 +0000362
363 // Now we need to figure out what called functions we need to transform, and
Chris Lattner692ad5d2002-03-29 17:13:46 +0000364 // how. To do this, we look at all of the scalars, seeing which functions are
365 // either used as a scalar value (so they return a data structure), or are
366 // passed one of our scalar values.
367 //
Chris Lattner441e16f2002-04-12 20:23:15 +0000368 transformFunctionBody(F, IPGraph, PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +0000369
370 return true;
371}
372
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000373
Chris Lattner441e16f2002-04-12 20:23:15 +0000374//===----------------------------------------------------------------------===//
375//
376// NewInstructionCreator - This class is used to traverse the function being
377// modified, changing each instruction visit'ed to use and provide pointer
378// indexes instead of real pointers. This is what changes the body of a
379// function to use pool allocation.
380//
381class NewInstructionCreator : public InstVisitor<NewInstructionCreator> {
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000382 PoolAllocate &PoolAllocator;
383 vector<ScalarInfo> &Scalars;
384 map<CallInst*, TransformFunctionInfo> &CallMap;
Chris Lattner441e16f2002-04-12 20:23:15 +0000385 map<Value*, Value*> &XFormMap; // Map old pointers to new indexes
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000386
Chris Lattner441e16f2002-04-12 20:23:15 +0000387 struct RefToUpdate {
388 Instruction *I; // Instruction to update
389 unsigned OpNum; // Operand number to update
390 Value *OldVal; // The old value it had
391
392 RefToUpdate(Instruction *i, unsigned o, Value *ov)
393 : I(i), OpNum(o), OldVal(ov) {}
394 };
395 vector<RefToUpdate> ReferencesToUpdate;
396
397 const ScalarInfo &getScalarRef(const Value *V) {
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000398 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
399 if (Scalars[i].Val == V) return Scalars[i];
Chris Lattner3e78dea2002-04-18 14:43:30 +0000400
401 cerr << "Could not find scalar " << V << " in scalar map!\n";
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000402 assert(0 && "Scalar not found in getScalar!");
403 abort();
404 return Scalars[0];
405 }
Chris Lattner441e16f2002-04-12 20:23:15 +0000406
407 const ScalarInfo *getScalar(const Value *V) {
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000408 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Chris Lattner441e16f2002-04-12 20:23:15 +0000409 if (Scalars[i].Val == V) return &Scalars[i];
410 return 0;
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000411 }
412
Chris Lattner441e16f2002-04-12 20:23:15 +0000413 BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) {
414 BasicBlock *BB = I->getParent();
415 BasicBlock::iterator RI = find(BB->begin(), BB->end(), I);
416 BB->getInstList().replaceWith(RI, New);
417 XFormMap[I] = New;
418 return RI;
419 }
420
Chris Lattner39db8712002-05-02 17:38:14 +0000421 Instruction *createPoolBaseInstruction(Value *PtrVal) {
Chris Lattner441e16f2002-04-12 20:23:15 +0000422 const ScalarInfo &SC = getScalarRef(PtrVal);
423 vector<Value*> Args(3);
424 Args[0] = ConstantUInt::get(Type::UIntTy, 0); // No pointer offset
425 Args[1] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of pool descriptr
426 Args[2] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of poolalloc val
Chris Lattner39db8712002-05-02 17:38:14 +0000427 return new LoadInst(SC.Pool.Handle, Args, PtrVal->getName()+".poolbase");
Chris Lattner441e16f2002-04-12 20:23:15 +0000428 }
429
430
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000431public:
Chris Lattner441e16f2002-04-12 20:23:15 +0000432 NewInstructionCreator(PoolAllocate &PA, vector<ScalarInfo> &S,
433 map<CallInst*, TransformFunctionInfo> &C,
434 map<Value*, Value*> &X)
435 : PoolAllocator(PA), Scalars(S), CallMap(C), XFormMap(X) {}
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000436
Chris Lattner441e16f2002-04-12 20:23:15 +0000437
438 // updateReferences - The NewInstructionCreator is responsible for creating
439 // new instructions to replace the old ones in the function, and then link up
440 // references to values to their new values. For it to do this, however, it
441 // keeps track of information about the value mapping of old values to new
442 // values that need to be patched up. Given this value map and a set of
443 // instruction operands to patch, updateReferences performs the updates.
444 //
445 void updateReferences() {
446 for (unsigned i = 0, e = ReferencesToUpdate.size(); i != e; ++i) {
447 RefToUpdate &Ref = ReferencesToUpdate[i];
448 Value *NewVal = XFormMap[Ref.OldVal];
449
450 if (NewVal == 0) {
451 if (isa<Constant>(Ref.OldVal) && // Refering to a null ptr?
452 cast<Constant>(Ref.OldVal)->isNullValue()) {
453 // Transform the null pointer into a null index... caching in XFormMap
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000454 XFormMap[Ref.OldVal] = NewVal = Constant::getNullValue(POINTERTYPE);
Chris Lattner441e16f2002-04-12 20:23:15 +0000455 //} else if (isa<Argument>(Ref.OldVal)) {
456 } else {
457 cerr << "Unknown reference to: " << Ref.OldVal << "\n";
458 assert(XFormMap[Ref.OldVal] &&
459 "Reference to value that was not updated found!");
460 }
461 }
462
463 Ref.I->setOperand(Ref.OpNum, NewVal);
464 }
465 ReferencesToUpdate.clear();
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000466 }
467
Chris Lattner441e16f2002-04-12 20:23:15 +0000468 //===--------------------------------------------------------------------===//
469 // Transformation methods:
470 // These methods specify how each type of instruction is transformed by the
471 // NewInstructionCreator instance...
472 //===--------------------------------------------------------------------===//
473
474 void visitGetElementPtrInst(GetElementPtrInst *I) {
475 assert(0 && "Cannot transform get element ptr instructions yet!");
476 }
477
478 // Replace the load instruction with a new one.
479 void visitLoadInst(LoadInst *I) {
Chris Lattner39db8712002-05-02 17:38:14 +0000480 vector<Instruction *> BeforeInsts;
Chris Lattner441e16f2002-04-12 20:23:15 +0000481
482 // Cast our index to be a UIntTy so we can use it to index into the pool...
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000483 CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
Chris Lattner441e16f2002-04-12 20:23:15 +0000484 Type::UIntTy, I->getOperand(0)->getName());
Chris Lattner39db8712002-05-02 17:38:14 +0000485 BeforeInsts.push_back(Index);
Chris Lattner441e16f2002-04-12 20:23:15 +0000486 ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0)));
Chris Lattner39db8712002-05-02 17:38:14 +0000487
488 // Include the pool base instruction...
489 Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0));
490 BeforeInsts.push_back(PoolBase);
491
492 Instruction *IdxInst =
493 BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index,
494 I->getName()+".idx");
495 BeforeInsts.push_back(IdxInst);
Chris Lattner441e16f2002-04-12 20:23:15 +0000496
497 vector<Value*> Indices(I->idx_begin(), I->idx_end());
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000498 Indices[0] = IdxInst;
Chris Lattner39db8712002-05-02 17:38:14 +0000499 Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
500 I->getName()+".addr");
501 BeforeInsts.push_back(Address);
502
503 Instruction *NewLoad = new LoadInst(Address, I->getName());
Chris Lattner441e16f2002-04-12 20:23:15 +0000504
505 // Replace the load instruction with the new load instruction...
506 BasicBlock::iterator II = ReplaceInstWith(I, NewLoad);
507
Chris Lattner39db8712002-05-02 17:38:14 +0000508 // Add all of the instructions before the load...
509 NewLoad->getParent()->getInstList().insert(II, BeforeInsts.begin(),
510 BeforeInsts.end());
Chris Lattner441e16f2002-04-12 20:23:15 +0000511
512 // If not yielding a pool allocated pointer, use the new load value as the
513 // value in the program instead of the old load value...
514 //
515 if (!getScalar(I))
516 I->replaceAllUsesWith(NewLoad);
517 }
518
519 // Replace the store instruction with a new one. In the store instruction,
520 // the value stored could be a pointer type, meaning that the new store may
521 // have to change one or both of it's operands.
522 //
523 void visitStoreInst(StoreInst *I) {
524 assert(getScalar(I->getOperand(1)) &&
525 "Store inst found only storing pool allocated pointer. "
526 "Not imp yet!");
527
528 Value *Val = I->getOperand(0); // The value to store...
Chris Lattner39db8712002-05-02 17:38:14 +0000529
Chris Lattner441e16f2002-04-12 20:23:15 +0000530 // Check to see if the value we are storing is a data structure pointer...
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000531 //if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0)))
532 if (isa<PointerType>(I->getOperand(0)->getType()))
533 Val = Constant::getNullValue(POINTERTYPE); // Yes, store a dummy
Chris Lattner441e16f2002-04-12 20:23:15 +0000534
535 Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1));
536
537 // Cast our index to be a UIntTy so we can use it to index into the pool...
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000538 CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
Chris Lattner441e16f2002-04-12 20:23:15 +0000539 Type::UIntTy, I->getOperand(1)->getName());
540 ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1)));
541
Chris Lattner39db8712002-05-02 17:38:14 +0000542 // Instructions to add after the Index...
543 vector<Instruction*> AfterInsts;
544
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000545 Instruction *IdxInst =
Chris Lattner39db8712002-05-02 17:38:14 +0000546 BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index, "idx");
547 AfterInsts.push_back(IdxInst);
548
549 vector<Value*> Indices(I->idx_begin(), I->idx_end());
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000550 Indices[0] = IdxInst;
Chris Lattner39db8712002-05-02 17:38:14 +0000551 Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
552 I->getName()+"storeaddr");
553 AfterInsts.push_back(Address);
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000554
Chris Lattner39db8712002-05-02 17:38:14 +0000555 Instruction *NewStore = new StoreInst(Val, Address);
556 AfterInsts.push_back(NewStore);
Chris Lattner441e16f2002-04-12 20:23:15 +0000557 if (Val != I->getOperand(0)) // Value stored was a pointer?
558 ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0)));
559
560
561 // Replace the store instruction with the cast instruction...
562 BasicBlock::iterator II = ReplaceInstWith(I, Index);
563
564 // Add the pool base calculator instruction before the index...
Chris Lattner39db8712002-05-02 17:38:14 +0000565 II = Index->getParent()->getInstList().insert(II, PoolBase)+2;
Chris Lattner441e16f2002-04-12 20:23:15 +0000566
Chris Lattner39db8712002-05-02 17:38:14 +0000567 // Add the instructions that go after the index...
568 Index->getParent()->getInstList().insert(II, AfterInsts.begin(),
569 AfterInsts.end());
Chris Lattner441e16f2002-04-12 20:23:15 +0000570 }
571
572
573 // Create call to poolalloc for every malloc instruction
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000574 void visitMallocInst(MallocInst *I) {
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000575 const ScalarInfo &SCI = getScalarRef(I);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000576 vector<Value*> Args;
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000577
578 CallInst *Call;
579 if (!I->isArrayAllocation()) {
580 Args.push_back(SCI.Pool.Handle);
581 Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
582 } else {
583 Args.push_back(I->getArraySize());
584 Args.push_back(SCI.Pool.Handle);
585 Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I->getName());
586 }
587
Chris Lattner441e16f2002-04-12 20:23:15 +0000588 ReplaceInstWith(I, Call);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000589 }
590
Chris Lattner441e16f2002-04-12 20:23:15 +0000591 // Convert a call to poolfree for every free instruction...
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000592 void visitFreeInst(FreeInst *I) {
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000593 // Create a new call to poolfree before the free instruction
594 vector<Value*> Args;
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000595 Args.push_back(Constant::getNullValue(POINTERTYPE));
Chris Lattner441e16f2002-04-12 20:23:15 +0000596 Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle);
597 Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args);
598 ReplaceInstWith(I, NewCall);
Chris Lattner271255b2002-04-18 22:11:30 +0000599 ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I->getOperand(0)));
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000600 }
601
602 // visitCallInst - Create a new call instruction with the extra arguments for
603 // all of the memory pools that the call needs.
604 //
605 void visitCallInst(CallInst *I) {
606 TransformFunctionInfo &TI = CallMap[I];
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000607
608 // Start with all of the old arguments...
609 vector<Value*> Args(I->op_begin()+1, I->op_end());
610
Chris Lattner441e16f2002-04-12 20:23:15 +0000611 for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) {
612 // Replace all of the pointer arguments with our new pointer typed values.
613 if (TI.ArgInfo[i].ArgNo != -1)
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000614 Args[TI.ArgInfo[i].ArgNo] = Constant::getNullValue(POINTERTYPE);
Chris Lattner441e16f2002-04-12 20:23:15 +0000615
616 // Add all of the pool arguments...
Chris Lattner396d5d72002-03-30 04:02:31 +0000617 Args.push_back(TI.ArgInfo[i].PoolHandle);
Chris Lattner441e16f2002-04-12 20:23:15 +0000618 }
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000619
620 Function *NF = PoolAllocator.getTransformedFunction(TI);
Chris Lattner441e16f2002-04-12 20:23:15 +0000621 Instruction *NewCall = new CallInst(NF, Args, I->getName());
622 ReplaceInstWith(I, NewCall);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000623
Chris Lattner441e16f2002-04-12 20:23:15 +0000624 // Keep track of the mapping of operands so that we can resolve them to real
625 // values later.
626 Value *RetVal = NewCall;
627 for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
628 if (TI.ArgInfo[i].ArgNo != -1)
629 ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1,
630 I->getOperand(TI.ArgInfo[i].ArgNo+1)));
631 else
632 RetVal = 0; // If returning a pointer, don't change retval...
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000633
Chris Lattner441e16f2002-04-12 20:23:15 +0000634 // If not returning a pointer, use the new call as the value in the program
635 // instead of the old call...
636 //
637 if (RetVal)
638 I->replaceAllUsesWith(RetVal);
639 }
640
641 // visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi
642 // nodes...
643 //
644 void visitPHINode(PHINode *PN) {
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000645 Value *DummyVal = Constant::getNullValue(POINTERTYPE);
Chris Lattner441e16f2002-04-12 20:23:15 +0000646 PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName());
647 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
648 NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i));
649 ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2,
650 PN->getIncomingValue(i)));
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000651 }
652
Chris Lattner441e16f2002-04-12 20:23:15 +0000653 ReplaceInstWith(PN, NewPhi);
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000654 }
655
Chris Lattner441e16f2002-04-12 20:23:15 +0000656 // visitReturnInst - Replace ret instruction with a new return...
Chris Lattner847b6e22002-03-30 20:53:14 +0000657 void visitReturnInst(ReturnInst *I) {
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000658 Instruction *Ret = new ReturnInst(Constant::getNullValue(POINTERTYPE));
Chris Lattner441e16f2002-04-12 20:23:15 +0000659 ReplaceInstWith(I, Ret);
660 ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0)));
Chris Lattner847b6e22002-03-30 20:53:14 +0000661 }
662
Chris Lattner441e16f2002-04-12 20:23:15 +0000663 // visitSetCondInst - Replace a conditional test instruction with a new one
Chris Lattnercf09a2a2002-04-01 00:45:33 +0000664 void visitSetCondInst(SetCondInst *SCI) {
Chris Lattner441e16f2002-04-12 20:23:15 +0000665 BinaryOperator *I = (BinaryOperator*)SCI;
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000666 Value *DummyVal = Constant::getNullValue(POINTERTYPE);
Chris Lattner441e16f2002-04-12 20:23:15 +0000667 BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal,
668 DummyVal, I->getName());
669 ReplaceInstWith(I, New);
670
671 ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0)));
672 ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1)));
673
674 // Make sure branches refer to the new condition...
675 I->replaceAllUsesWith(New);
Chris Lattnercf09a2a2002-04-01 00:45:33 +0000676 }
677
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000678 void visitInstruction(Instruction *I) {
Chris Lattner441e16f2002-04-12 20:23:15 +0000679 cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I;
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000680 }
Chris Lattnerf32d65d2002-03-29 21:25:19 +0000681};
682
683
Chris Lattner457e1ac2002-04-15 22:42:23 +0000684// PoolBaseLoadEliminator - Every load and store through a pool allocated
685// pointer causes a load of the real pool base out of the pool descriptor.
686// Iterate through the function, doing a local elimination pass of duplicate
687// loads. This attempts to turn the all too common:
688//
689// %reg109.poolbase22 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0
690// %reg207 = load %root.p* %reg109.poolbase22, uint %reg109, ubyte 0, ubyte 0
691// %reg109.poolbase23 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0
692// store double %reg207, %root.p* %reg109.poolbase23, uint %reg109, ...
693//
694// into:
695// %reg109.poolbase22 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0
696// %reg207 = load %root.p* %reg109.poolbase22, uint %reg109, ubyte 0, ubyte 0
697// store double %reg207, %root.p* %reg109.poolbase22, uint %reg109, ...
698//
699//
700class PoolBaseLoadEliminator : public InstVisitor<PoolBaseLoadEliminator> {
701 // PoolDescValues - Keep track of the values in the current function that are
702 // pool descriptors (loads from which we want to eliminate).
703 //
704 vector<Value*> PoolDescValues;
705
706 // PoolDescMap - As we are analyzing a BB, keep track of which load to use
707 // when referencing a pool descriptor.
708 //
709 map<Value*, LoadInst*> PoolDescMap;
710
711 // These two fields keep track of statistics of how effective we are, if
712 // debugging is enabled.
713 //
714 unsigned Eliminated, Remaining;
715public:
716 // Compact the pool descriptor map into a list of the pool descriptors in the
717 // current context that we should know about...
718 //
719 PoolBaseLoadEliminator(const map<DSNode*, PoolInfo> &PoolDescs) {
720 Eliminated = Remaining = 0;
721 for (map<DSNode*, PoolInfo>::const_iterator I = PoolDescs.begin(),
722 E = PoolDescs.end(); I != E; ++I)
723 PoolDescValues.push_back(I->second.Handle);
724
725 // Remove duplicates from the list of pool values
726 sort(PoolDescValues.begin(), PoolDescValues.end());
727 PoolDescValues.erase(unique(PoolDescValues.begin(), PoolDescValues.end()),
728 PoolDescValues.end());
729 }
730
731#ifdef DEBUG_POOLBASE_LOAD_ELIMINATOR
732 void visitFunction(Function *F) {
733 cerr << "Pool Load Elim '" << F->getName() << "'\t";
734 }
735 ~PoolBaseLoadEliminator() {
736 unsigned Total = Eliminated+Remaining;
737 if (Total)
738 cerr << "removed " << Eliminated << "["
739 << Eliminated*100/Total << "%] loads, leaving "
740 << Remaining << ".\n";
741 }
742#endif
743
744 // Loop over the function, looking for loads to eliminate. Because we are a
745 // local transformation, we reset all of our state when we enter a new basic
746 // block.
747 //
748 void visitBasicBlock(BasicBlock *) {
749 PoolDescMap.clear(); // Forget state.
750 }
751
752 // Starting with an empty basic block, we scan it looking for loads of the
753 // pool descriptor. When we find a load, we add it to the PoolDescMap,
754 // indicating that we have a value available to recycle next time we see the
755 // poolbase of this instruction being loaded.
756 //
757 void visitLoadInst(LoadInst *LI) {
758 Value *LoadAddr = LI->getPointerOperand();
759 map<Value*, LoadInst*>::iterator VIt = PoolDescMap.find(LoadAddr);
760 if (VIt != PoolDescMap.end()) { // We already have a value for this load?
761 LI->replaceAllUsesWith(VIt->second); // Make the current load dead
762 ++Eliminated;
763 } else {
764 // This load might not be a load of a pool pointer, check to see if it is
765 if (LI->getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
766 find(PoolDescValues.begin(), PoolDescValues.end(), LoadAddr) !=
767 PoolDescValues.end()) {
768
769 assert("Make sure it's a load of the pool base, not a chaining field" &&
Chris Lattner0e0c15b2002-04-27 02:29:32 +0000770 LI->getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
771 LI->getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
772 LI->getOperand(3) == Constant::getNullValue(Type::UByteTy));
Chris Lattner457e1ac2002-04-15 22:42:23 +0000773
774 // If it is a load of a pool base, keep track of it for future reference
775 PoolDescMap.insert(make_pair(LoadAddr, LI));
776 ++Remaining;
777 }
778 }
779 }
780
781 // If we run across a function call, forget all state... Calls to
782 // poolalloc/poolfree can invalidate the pool base pointer, so it should be
783 // reloaded the next time it is used. Furthermore, a call to a random
784 // function might call one of these functions, so be conservative. Through
785 // more analysis, this could be improved in the future.
786 //
787 void visitCallInst(CallInst *) {
788 PoolDescMap.clear();
789 }
790};
791
Chris Lattner3e78dea2002-04-18 14:43:30 +0000792static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
793 map<DSNode*, PointerValSet> &NodeMapping) {
794 for (unsigned i = 0, e = PVS.size(); i != e; ++i)
795 if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
796 assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
797 DSNode *DestNode = PVS[i].Node;
798
799 // Loop over all of the outgoing links in the mapped graph
800 for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
801 PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
802 const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
803
804 // Add all of the node mappings now!
805 for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
806 assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
807 addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
808 }
809 }
810 }
811}
812
813// CalculateNodeMapping - There is a partial isomorphism between the graph
814// passed in and the graph that is actually used by the function. We need to
815// figure out what this mapping is so that we can transformFunctionBody the
816// instructions in the function itself. Note that every node in the graph that
817// we are interested in must be both in the local graph of the called function,
818// and in the local graph of the calling function. Because of this, we only
819// define the mapping for these nodes [conveniently these are the only nodes we
820// CAN define a mapping for...]
821//
822// The roots of the graph that we are transforming is rooted in the arguments
823// passed into the function from the caller. This is where we start our
824// mapping calculation.
825//
826// The NodeMapping calculated maps from the callers graph to the called graph.
827//
828static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
829 FunctionDSGraph &CallerGraph,
830 FunctionDSGraph &CalledGraph,
831 map<DSNode*, PointerValSet> &NodeMapping) {
832 int LastArgNo = -2;
833 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
834 // Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
835 // corresponds to...
836 //
837 // Only consider first node of sequence. Extra nodes may may be added
838 // to the TFI if the data structure requires more nodes than just the
839 // one the argument points to. We are only interested in the one the
840 // argument points to though.
841 //
842 if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
843 if (TFI.ArgInfo[i].ArgNo == -1) {
844 addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
845 NodeMapping);
846 } else {
847 // Figure out which node argument # ArgNo points to in the called graph.
848 Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
849 addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
850 NodeMapping);
851 }
852 LastArgNo = TFI.ArgInfo[i].ArgNo;
853 }
854 }
855}
Chris Lattner441e16f2002-04-12 20:23:15 +0000856
857
Chris Lattner3e78dea2002-04-18 14:43:30 +0000858
859
860// addCallInfo - For a specified function call CI, figure out which pool
861// descriptors need to be passed in as arguments, and which arguments need to be
862// transformed into indices. If Arg != -1, the specified call argument is
863// passed in as a pointer to a data structure.
864//
865void TransformFunctionInfo::addCallInfo(DataStructure *DS, CallInst *CI,
866 int Arg, DSNode *GraphNode,
867 map<DSNode*, PoolInfo> &PoolDescs) {
Chris Lattner0dc225c2002-03-31 07:17:46 +0000868 assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
Chris Lattner3e78dea2002-04-18 14:43:30 +0000869 assert(Func == 0 || Func == CI->getCalledFunction() &&
Chris Lattner0dc225c2002-03-31 07:17:46 +0000870 "Function call record should always call the same function!");
Chris Lattner3e78dea2002-04-18 14:43:30 +0000871 assert(Call == 0 || Call == CI &&
Chris Lattner0dc225c2002-03-31 07:17:46 +0000872 "Call element already filled in with different value!");
Chris Lattner3e78dea2002-04-18 14:43:30 +0000873 Func = CI->getCalledFunction();
874 Call = CI;
875 //FunctionDSGraph &CalledGraph = DS->getClosedDSGraph(Func);
Chris Lattner396d5d72002-03-30 04:02:31 +0000876
877 // For now, add the entire graph that is pointed to by the call argument.
878 // This graph can and should be pruned to only what the function itself will
879 // use, because often this will be a dramatically smaller subset of what we
880 // are providing.
881 //
Chris Lattner3e78dea2002-04-18 14:43:30 +0000882 // FIXME: This should use pool links instead of extra arguments!
883 //
Chris Lattnerca9f4d32002-03-30 09:12:35 +0000884 for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
Chris Lattner441e16f2002-04-12 20:23:15 +0000885 I != E; ++I)
Chris Lattner3e78dea2002-04-18 14:43:30 +0000886 ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescs[*I].Handle));
887}
888
889static void markReachableNodes(const PointerValSet &Vals,
890 set<DSNode*> &ReachableNodes) {
891 for (unsigned n = 0, ne = Vals.size(); n != ne; ++n) {
892 DSNode *N = Vals[n].Node;
893 if (ReachableNodes.count(N) == 0) // Haven't already processed node?
894 ReachableNodes.insert(df_begin(N), df_end(N)); // Insert all
895 }
896}
897
898// Make sure that all dependant arguments are added to this transformation info.
899// For example, if we call foo(null, P) and foo treats it's first and second
900// arguments as belonging to the same data structure, the we MUST add entries to
901// know that the null needs to be transformed into an index as well.
902//
903void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
904 map<DSNode*, PoolInfo> &PoolDescs) {
905 // FIXME: This does not work for indirect function calls!!!
906 if (Func == 0) return; // FIXME!
907
908 // Make sure argument entries are sorted.
909 finalizeConstruction();
910
911 // Loop over the function signature, checking to see if there are any pointer
912 // arguments that we do not convert... if there is something we haven't
913 // converted, set done to false.
914 //
915 unsigned PtrNo = 0;
916 bool Done = true;
917 if (isa<PointerType>(Func->getReturnType())) // Make sure we convert retval
918 if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == -1) {
919 // We DO transform the ret val... skip all possible entries for retval
920 while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == -1)
921 PtrNo++;
922 } else {
923 Done = false;
924 }
925
926 for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
927 Argument *Arg = Func->getArgumentList()[i];
928 if (isa<PointerType>(Arg->getType())) {
929 if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
930 // We DO transform this arg... skip all possible entries for argument
931 while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
932 PtrNo++;
933 } else {
934 Done = false;
935 break;
936 }
937 }
938 }
939
940 // If we already have entries for all pointer arguments and retvals, there
941 // certainly is no work to do. Bail out early to avoid building relatively
942 // expensive data structures.
943 //
944 if (Done) return;
945
946#ifdef DEBUG_TRANSFORM_PROGRESS
947 cerr << "Must ensure dependant arguments for: " << Func->getName() << "\n";
948#endif
949
950 // Otherwise, we MIGHT have to add the arguments/retval if they are part of
951 // the same datastructure graph as some other argument or retval that we ARE
952 // processing.
953 //
954 // Get the data structure graph for the called function.
955 //
956 FunctionDSGraph &CalledDS = DS->getClosedDSGraph(Func);
957
958 // Build a mapping between the nodes in our current graph and the nodes in the
959 // called function's graph. We build it based on our _incomplete_
960 // transformation information, because it contains all of the info that we
961 // should need.
962 //
963 map<DSNode*, PointerValSet> NodeMapping;
964 CalculateNodeMapping(Func, *this,
965 DS->getClosedDSGraph(Call->getParent()->getParent()),
966 CalledDS, NodeMapping);
967
968 // Build the inverted version of the node mapping, that maps from a node in
969 // the called functions graph to a single node in the caller graph.
970 //
971 map<DSNode*, DSNode*> InverseNodeMap;
972 for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin(),
973 E = NodeMapping.end(); I != E; ++I) {
974 PointerValSet &CalledNodes = I->second;
975 for (unsigned i = 0, e = CalledNodes.size(); i != e; ++i)
976 InverseNodeMap[CalledNodes[i].Node] = I->first;
977 }
978 NodeMapping.clear(); // Done with information, free memory
979
980 // Build a set of reachable nodes from the arguments/retval that we ARE
981 // passing in...
982 set<DSNode*> ReachableNodes;
983
984 // Loop through all of the arguments, marking all of the reachable data
985 // structure nodes reachable if they are from this pointer...
986 //
987 for (unsigned i = 0, e = ArgInfo.size(); i != e; ++i) {
988 if (ArgInfo[i].ArgNo == -1) {
989 if (i == 0) // Only process retvals once (performance opt)
990 markReachableNodes(CalledDS.getRetNodes(), ReachableNodes);
991 } else { // If it's an argument value...
992 Argument *Arg = Func->getArgumentList()[ArgInfo[i].ArgNo];
993 if (isa<PointerType>(Arg->getType()))
994 markReachableNodes(CalledDS.getValueMap()[Arg], ReachableNodes);
995 }
996 }
997
998 // Now that we know which nodes are already reachable, see if any of the
999 // arguments that we are not passing values in for can reach one of the
1000 // existing nodes...
1001 //
1002
1003 // <FIXME> IN THEORY, we should allow arbitrary paths from the argument to
1004 // nodes we know about. The problem is that if we do this, then I don't know
1005 // how to get pool pointers for this head list. Since we are completely
1006 // deadline driven, I'll just allow direct accesses to the graph. </FIXME>
1007 //
1008
1009 PtrNo = 0;
1010 if (isa<PointerType>(Func->getReturnType())) // Make sure we convert retval
1011 if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == -1) {
1012 // We DO transform the ret val... skip all possible entries for retval
1013 while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == -1)
1014 PtrNo++;
1015 } else {
1016 // See what the return value points to...
1017
1018 // FIXME: This should generalize to any number of nodes, just see if any
1019 // are reachable.
1020 assert(CalledDS.getRetNodes().size() == 1 &&
1021 "Assumes only one node is returned");
1022 DSNode *N = CalledDS.getRetNodes()[0].Node;
1023
1024 // If the return value is not marked as being passed in, but it NEEDS to
1025 // be transformed, then make it known now.
1026 //
1027 if (ReachableNodes.count(N)) {
1028#ifdef DEBUG_TRANSFORM_PROGRESS
1029 cerr << "ensure dependant arguments adds return value entry!\n";
1030#endif
1031 addCallInfo(DS, Call, -1, InverseNodeMap[N], PoolDescs);
1032
1033 // Keep sorted!
1034 finalizeConstruction();
1035 }
1036 }
1037
1038 for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
1039 Argument *Arg = Func->getArgumentList()[i];
1040 if (isa<PointerType>(Arg->getType())) {
1041 if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
1042 // We DO transform this arg... skip all possible entries for argument
1043 while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
1044 PtrNo++;
1045 } else {
1046 // This should generalize to any number of nodes, just see if any are
1047 // reachable.
1048 assert(CalledDS.getValueMap()[Arg].size() == 1 &&
1049 "Only handle case where pointing to one node so far!");
1050
1051 // If the arg is not marked as being passed in, but it NEEDS to
1052 // be transformed, then make it known now.
1053 //
1054 DSNode *N = CalledDS.getValueMap()[Arg][0].Node;
1055 if (ReachableNodes.count(N)) {
1056#ifdef DEBUG_TRANSFORM_PROGRESS
1057 cerr << "ensure dependant arguments adds for arg #" << i << "\n";
1058#endif
1059 addCallInfo(DS, Call, i, InverseNodeMap[N], PoolDescs);
1060
1061 // Keep sorted!
1062 finalizeConstruction();
1063 }
1064 }
1065 }
1066 }
Chris Lattner396d5d72002-03-30 04:02:31 +00001067}
1068
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001069
1070// transformFunctionBody - This transforms the instruction in 'F' to use the
Chris Lattner441e16f2002-04-12 20:23:15 +00001071// pools specified in PoolDescs when modifying data structure nodes specified in
1072// the PoolDescs map. Specifically, scalar values specified in the Scalars
1073// vector must be remapped. IPFGraph is the closed data structure graph for F,
1074// of which the PoolDescriptor nodes come from.
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001075//
1076void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
Chris Lattner441e16f2002-04-12 20:23:15 +00001077 map<DSNode*, PoolInfo> &PoolDescs) {
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001078
1079 // Loop through the value map looking for scalars that refer to nonescaping
1080 // allocations. Add them to the Scalars vector. Note that we may have
1081 // multiple entries in the Scalars vector for each value if it points to more
1082 // than one object.
1083 //
1084 map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
1085 vector<ScalarInfo> Scalars;
1086
Chris Lattneracf19022002-04-14 06:14:41 +00001087#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner0e0c15b2002-04-27 02:29:32 +00001088 cerr << "Building scalar map for fn '" << F->getName() << "' body:\n";
Chris Lattneracf19022002-04-14 06:14:41 +00001089#endif
Chris Lattner847b6e22002-03-30 20:53:14 +00001090
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001091 for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
1092 E = ValMap.end(); I != E; ++I) {
1093 const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
1094
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001095 // Check to see if the scalar points to a data structure node...
1096 for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
Chris Lattner0e0c15b2002-04-27 02:29:32 +00001097 if (PVS[i].Index) { cerr << "Problem in " << F->getName() << " for " << I->first << "\n"; }
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001098 assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
1099
1100 // If the allocation is in the nonescaping set...
Chris Lattner441e16f2002-04-12 20:23:15 +00001101 map<DSNode*, PoolInfo>::iterator AI = PoolDescs.find(PVS[i].Node);
1102 if (AI != PoolDescs.end()) { // Add it to the list of scalars
1103 Scalars.push_back(ScalarInfo(I->first, AI->second));
Chris Lattneracf19022002-04-14 06:14:41 +00001104#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001105 cerr << "\nScalar Mapping from:" << I->first
1106 << "Scalar Mapping to: "; PVS.print(cerr);
Chris Lattneracf19022002-04-14 06:14:41 +00001107#endif
Chris Lattner441e16f2002-04-12 20:23:15 +00001108 }
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001109 }
1110 }
1111
Chris Lattneracf19022002-04-14 06:14:41 +00001112#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner847b6e22002-03-30 20:53:14 +00001113 cerr << "\nIn '" << F->getName()
Chris Lattner175f37c2002-03-29 03:40:59 +00001114 << "': Found the following values that point to poolable nodes:\n";
1115
1116 for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Chris Lattner441e16f2002-04-12 20:23:15 +00001117 cerr << Scalars[i].Val;
1118 cerr << "\n";
Chris Lattneracf19022002-04-14 06:14:41 +00001119#endif
Chris Lattnere0618ca2002-03-29 05:50:20 +00001120
Chris Lattner692ad5d2002-03-29 17:13:46 +00001121 // CallMap - Contain an entry for every call instruction that needs to be
1122 // transformed. Each entry in the map contains information about what we need
1123 // to do to each call site to change it to work.
1124 //
1125 map<CallInst*, TransformFunctionInfo> CallMap;
Chris Lattner66df97d2002-03-29 06:21:38 +00001126
Chris Lattner441e16f2002-04-12 20:23:15 +00001127 // Now we need to figure out what called functions we need to transform, and
Chris Lattner692ad5d2002-03-29 17:13:46 +00001128 // how. To do this, we look at all of the scalars, seeing which functions are
1129 // either used as a scalar value (so they return a data structure), or are
1130 // passed one of our scalar values.
1131 //
1132 for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
1133 Value *ScalarVal = Scalars[i].Val;
1134
1135 // Check to see if the scalar _IS_ a call...
1136 if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
1137 // If so, add information about the pool it will be returning...
Chris Lattner3e78dea2002-04-18 14:43:30 +00001138 CallMap[CI].addCallInfo(DS, CI, -1, Scalars[i].Pool.Node, PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +00001139
1140 // Check to see if the scalar is an operand to a call...
1141 for (Value::use_iterator UI = ScalarVal->use_begin(),
1142 UE = ScalarVal->use_end(); UI != UE; ++UI) {
1143 if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
1144 // Find out which operand this is to the call instruction...
1145 User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
1146 assert(OI != CI->op_end() && "Call on use list but not an operand!?");
1147 assert(OI != CI->op_begin() && "Pointer operand is call destination?");
1148
1149 // FIXME: This is broken if the same pointer is passed to a call more
1150 // than once! It will get multiple entries for the first pointer.
1151
1152 // Add the operand number and pool handle to the call table...
Chris Lattner3e78dea2002-04-18 14:43:30 +00001153 CallMap[CI].addCallInfo(DS, CI, OI-CI->op_begin()-1,
1154 Scalars[i].Pool.Node, PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +00001155 }
1156 }
1157 }
1158
Chris Lattner3e78dea2002-04-18 14:43:30 +00001159 // Make sure that all dependant arguments are added as well. For example, if
1160 // we call foo(null, P) and foo treats it's first and second arguments as
1161 // belonging to the same data structure, the we MUST set up the CallMap to
1162 // know that the null needs to be transformed into an index as well.
1163 //
1164 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
1165 I != CallMap.end(); ++I)
1166 I->second.ensureDependantArgumentsIncluded(DS, PoolDescs);
1167
Chris Lattneracf19022002-04-14 06:14:41 +00001168#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner692ad5d2002-03-29 17:13:46 +00001169 // Print out call map...
1170 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
1171 I != CallMap.end(); ++I) {
Chris Lattner441e16f2002-04-12 20:23:15 +00001172 cerr << "For call: " << I->first;
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001173 cerr << I->second.Func->getName() << " must pass pool pointer for args #";
Chris Lattner692ad5d2002-03-29 17:13:46 +00001174 for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001175 cerr << I->second.ArgInfo[i].ArgNo << ", ";
Chris Lattner441e16f2002-04-12 20:23:15 +00001176 cerr << "\n\n";
Chris Lattner692ad5d2002-03-29 17:13:46 +00001177 }
Chris Lattneracf19022002-04-14 06:14:41 +00001178#endif
Chris Lattner692ad5d2002-03-29 17:13:46 +00001179
1180 // Loop through all of the call nodes, recursively creating the new functions
1181 // that we want to call... This uses a map to prevent infinite recursion and
1182 // to avoid duplicating functions unneccesarily.
1183 //
1184 for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
1185 E = CallMap.end(); I != E; ++I) {
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001186 // Transform all of the functions we need, or at least ensure there is a
1187 // cached version available.
Chris Lattner441e16f2002-04-12 20:23:15 +00001188 transformFunction(I->second, IPFGraph, PoolDescs);
Chris Lattner692ad5d2002-03-29 17:13:46 +00001189 }
1190
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001191 // Now that all of the functions that we want to call are available, transform
Chris Lattner441e16f2002-04-12 20:23:15 +00001192 // the local function so that it uses the pools locally and passes them to the
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001193 // functions that we just hacked up.
1194 //
1195
1196 // First step, find the instructions to be modified.
1197 vector<Instruction*> InstToFix;
1198 for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
1199 Value *ScalarVal = Scalars[i].Val;
1200
1201 // Check to see if the scalar _IS_ an instruction. If so, it is involved.
1202 if (Instruction *Inst = dyn_cast<Instruction>(ScalarVal))
1203 InstToFix.push_back(Inst);
1204
1205 // All all of the instructions that use the scalar as an operand...
1206 for (Value::use_iterator UI = ScalarVal->use_begin(),
1207 UE = ScalarVal->use_end(); UI != UE; ++UI)
Chris Lattner441e16f2002-04-12 20:23:15 +00001208 InstToFix.push_back(cast<Instruction>(*UI));
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001209 }
1210
Chris Lattner50e3d322002-04-13 23:13:18 +00001211 // Make sure that we get return instructions that return a null value from the
1212 // function...
1213 //
1214 if (!IPFGraph.getRetNodes().empty()) {
1215 assert(IPFGraph.getRetNodes().size() == 1 && "Can only return one node?");
1216 PointerVal RetNode = IPFGraph.getRetNodes()[0];
1217 assert(RetNode.Index == 0 && "Subindexing not implemented yet!");
1218
1219 // Only process return instructions if the return value of this function is
1220 // part of one of the data structures we are transforming...
1221 //
1222 if (PoolDescs.count(RetNode.Node)) {
1223 // Loop over all of the basic blocks, adding return instructions...
1224 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
1225 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
1226 InstToFix.push_back(RI);
1227 }
1228 }
1229
1230
1231
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001232 // Eliminate duplicates by sorting, then removing equal neighbors.
1233 sort(InstToFix.begin(), InstToFix.end());
1234 InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end());
1235
Chris Lattner441e16f2002-04-12 20:23:15 +00001236 // Loop over all of the instructions to transform, creating the new
1237 // replacement instructions for them. This also unlinks them from the
1238 // function so they can be safely deleted later.
1239 //
1240 map<Value*, Value*> XFormMap;
1241 NewInstructionCreator NIC(*this, Scalars, CallMap, XFormMap);
Chris Lattner692ad5d2002-03-29 17:13:46 +00001242
Chris Lattner441e16f2002-04-12 20:23:15 +00001243 // Visit all instructions... creating the new instructions that we need and
1244 // unlinking the old instructions from the function...
1245 //
Chris Lattneracf19022002-04-14 06:14:41 +00001246#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001247 for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) {
1248 cerr << "Fixing: " << InstToFix[i];
1249 NIC.visit(InstToFix[i]);
1250 }
Chris Lattneracf19022002-04-14 06:14:41 +00001251#else
1252 NIC.visit(InstToFix.begin(), InstToFix.end());
1253#endif
Chris Lattner441e16f2002-04-12 20:23:15 +00001254
1255 // Make all instructions we will delete "let go" of their operands... so that
1256 // we can safely delete Arguments whose types have changed...
1257 //
1258 for_each(InstToFix.begin(), InstToFix.end(),
1259 mem_fun(&Instruction::dropAllReferences));
1260
1261 // Loop through all of the pointer arguments coming into the function,
1262 // replacing them with arguments of POINTERTYPE to match the function type of
1263 // the function.
1264 //
1265 FunctionType::ParamTypes::const_iterator TI =
1266 F->getFunctionType()->getParamTypes().begin();
1267 for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(),
1268 E = F->getArgumentList().end(); I != E; ++I, ++TI) {
1269 Argument *Arg = *I;
1270 if (Arg->getType() != *TI) {
1271 assert(isa<PointerType>(Arg->getType()) && *TI == POINTERTYPE);
1272 Argument *NewArg = new Argument(*TI, Arg->getName());
1273 XFormMap[Arg] = NewArg; // Map old arg into new arg...
1274
Chris Lattner441e16f2002-04-12 20:23:15 +00001275 // Replace the old argument and then delete it...
1276 delete F->getArgumentList().replaceWith(I, NewArg);
1277 }
1278 }
1279
1280 // Now that all of the new instructions have been created, we can update all
1281 // of the references to dummy values to be references to the actual values
1282 // that are computed.
1283 //
1284 NIC.updateReferences();
1285
Chris Lattneracf19022002-04-14 06:14:41 +00001286#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001287 cerr << "TRANSFORMED FUNCTION:\n" << F;
Chris Lattneracf19022002-04-14 06:14:41 +00001288#endif
Chris Lattner441e16f2002-04-12 20:23:15 +00001289
1290 // Delete all of the "instructions to fix"
1291 for_each(InstToFix.begin(), InstToFix.end(), deleter<Instruction>);
Chris Lattner692ad5d2002-03-29 17:13:46 +00001292
Chris Lattner457e1ac2002-04-15 22:42:23 +00001293 // Eliminate pool base loads that we can easily prove are redundant
1294 if (!DisableRLE)
1295 PoolBaseLoadEliminator(PoolDescs).visit(F);
1296
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001297 // Since we have liberally hacked the function to pieces, we want to inform
1298 // the datastructure pass that its internal representation is out of date.
1299 //
1300 DS->invalidateFunction(F);
Chris Lattner692ad5d2002-03-29 17:13:46 +00001301}
1302
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001303
1304
1305// transformFunction - Transform the specified function the specified way. It
1306// we have already transformed that function that way, don't do anything. The
1307// nodes in the TransformFunctionInfo come out of callers data structure graph.
1308//
1309void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
Chris Lattner441e16f2002-04-12 20:23:15 +00001310 FunctionDSGraph &CallerIPGraph,
1311 map<DSNode*, PoolInfo> &CallerPoolDesc) {
Chris Lattner692ad5d2002-03-29 17:13:46 +00001312 if (getTransformedFunction(TFI)) return; // Function xformation already done?
1313
Chris Lattneracf19022002-04-14 06:14:41 +00001314#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001315 cerr << "********** Entering transformFunction for "
Chris Lattner0dc225c2002-03-31 07:17:46 +00001316 << TFI.Func->getName() << ":\n";
1317 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
1318 cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n";
1319 cerr << "\n";
Chris Lattneracf19022002-04-14 06:14:41 +00001320#endif
Chris Lattner0dc225c2002-03-31 07:17:46 +00001321
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001322 const FunctionType *OldFuncType = TFI.Func->getFunctionType();
Chris Lattner692ad5d2002-03-29 17:13:46 +00001323
Chris Lattner291a1b12002-03-29 19:05:48 +00001324 assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
Chris Lattner692ad5d2002-03-29 17:13:46 +00001325
Chris Lattner291a1b12002-03-29 19:05:48 +00001326 // Build the type for the new function that we are transforming
1327 vector<const Type*> ArgTys;
Chris Lattner441e16f2002-04-12 20:23:15 +00001328 ArgTys.reserve(OldFuncType->getNumParams()+TFI.ArgInfo.size());
Chris Lattner291a1b12002-03-29 19:05:48 +00001329 for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
1330 ArgTys.push_back(OldFuncType->getParamType(i));
1331
Chris Lattner441e16f2002-04-12 20:23:15 +00001332 const Type *RetType = OldFuncType->getReturnType();
1333
Chris Lattner291a1b12002-03-29 19:05:48 +00001334 // Add one pool pointer for every argument that needs to be supplemented.
Chris Lattner441e16f2002-04-12 20:23:15 +00001335 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
1336 if (TFI.ArgInfo[i].ArgNo == -1)
1337 RetType = POINTERTYPE; // Return a pointer
1338 else
1339 ArgTys[TFI.ArgInfo[i].ArgNo] = POINTERTYPE; // Pass a pointer
1340 ArgTys.push_back(PointerType::get(CallerPoolDesc.find(TFI.ArgInfo[i].Node)
1341 ->second.PoolType));
1342 }
Chris Lattner291a1b12002-03-29 19:05:48 +00001343
1344 // Build the new function type...
Chris Lattner441e16f2002-04-12 20:23:15 +00001345 const FunctionType *NewFuncType = FunctionType::get(RetType, ArgTys,
1346 OldFuncType->isVarArg());
Chris Lattner291a1b12002-03-29 19:05:48 +00001347
1348 // The new function is internal, because we know that only we can call it.
1349 // This also helps subsequent IP transformations to eliminate duplicated pool
Chris Lattner441e16f2002-04-12 20:23:15 +00001350 // pointers (which look like the same value is always passed into a parameter,
1351 // allowing it to be easily eliminated).
Chris Lattner291a1b12002-03-29 19:05:48 +00001352 //
1353 Function *NewFunc = new Function(NewFuncType, true,
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001354 TFI.Func->getName()+".poolxform");
Chris Lattner291a1b12002-03-29 19:05:48 +00001355 CurModule->getFunctionList().push_back(NewFunc);
1356
Chris Lattner441e16f2002-04-12 20:23:15 +00001357
Chris Lattneracf19022002-04-14 06:14:41 +00001358#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001359 cerr << "Created function prototype: " << NewFunc << "\n";
Chris Lattneracf19022002-04-14 06:14:41 +00001360#endif
Chris Lattner441e16f2002-04-12 20:23:15 +00001361
Chris Lattner291a1b12002-03-29 19:05:48 +00001362 // Add the newly formed function to the TransformedFunctions table so that
1363 // infinite recursion does not occur!
1364 //
1365 TransformedFunctions[TFI] = NewFunc;
1366
1367 // Add arguments to the function... starting with all of the old arguments
1368 vector<Value*> ArgMap;
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001369 for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
Chris Lattner2e9fa6d2002-04-09 19:48:49 +00001370 const Argument *OFA = TFI.Func->getArgumentList()[i];
1371 Argument *NFA = new Argument(OFA->getType(), OFA->getName());
Chris Lattner291a1b12002-03-29 19:05:48 +00001372 NewFunc->getArgumentList().push_back(NFA);
1373 ArgMap.push_back(NFA); // Keep track of the arguments
1374 }
1375
1376 // Now add all of the arguments corresponding to pools passed in...
1377 for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
Chris Lattner441e16f2002-04-12 20:23:15 +00001378 CallArgInfo &AI = TFI.ArgInfo[i];
Chris Lattner291a1b12002-03-29 19:05:48 +00001379 string Name;
Chris Lattner441e16f2002-04-12 20:23:15 +00001380 if (AI.ArgNo == -1)
1381 Name = "ret";
Chris Lattner291a1b12002-03-29 19:05:48 +00001382 else
Chris Lattner441e16f2002-04-12 20:23:15 +00001383 Name = ArgMap[AI.ArgNo]->getName(); // Get the arg name
1384 const Type *Ty = PointerType::get(CallerPoolDesc[AI.Node].PoolType);
1385 Argument *NFA = new Argument(Ty, Name+".pool");
Chris Lattner291a1b12002-03-29 19:05:48 +00001386 NewFunc->getArgumentList().push_back(NFA);
1387 }
1388
1389 // Now clone the body of the old function into the new function...
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001390 CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
Chris Lattner291a1b12002-03-29 19:05:48 +00001391
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001392 // Okay, now we have a function that is identical to the old one, except that
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001393 // it has extra arguments for the pools coming in. Now we have to get the
1394 // data structure graph for the function we are replacing, and figure out how
1395 // our graph nodes map to the graph nodes in the dest function.
1396 //
Chris Lattner847b6e22002-03-30 20:53:14 +00001397 FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc);
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001398
Chris Lattner441e16f2002-04-12 20:23:15 +00001399 // NodeMapping - Multimap from callers graph to called graph. We are
1400 // guaranteed that the called function graph has more nodes than the caller,
1401 // or exactly the same number of nodes. This is because the called function
1402 // might not know that two nodes are merged when considering the callers
1403 // context, but the caller obviously does. Because of this, a single node in
1404 // the calling function's data structure graph can map to multiple nodes in
1405 // the called functions graph.
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001406 //
1407 map<DSNode*, PointerValSet> NodeMapping;
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001408
Chris Lattner847b6e22002-03-30 20:53:14 +00001409 CalculateNodeMapping(NewFunc, TFI, CallerIPGraph, DSGraph,
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001410 NodeMapping);
1411
1412 // Print out the node mapping...
Chris Lattneracf19022002-04-14 06:14:41 +00001413#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner847b6e22002-03-30 20:53:14 +00001414 cerr << "\nNode mapping for call of " << NewFunc->getName() << "\n";
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001415 for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
1416 I != NodeMapping.end(); ++I) {
1417 cerr << "Map: "; I->first->print(cerr);
1418 cerr << "To: "; I->second.print(cerr);
1419 cerr << "\n";
1420 }
Chris Lattneracf19022002-04-14 06:14:41 +00001421#endif
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001422
1423 // Fill in the PoolDescriptor information for the transformed function so that
1424 // it can determine which value holds the pool descriptor for each data
1425 // structure node that it accesses.
1426 //
Chris Lattner441e16f2002-04-12 20:23:15 +00001427 map<DSNode*, PoolInfo> PoolDescs;
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001428
Chris Lattneracf19022002-04-14 06:14:41 +00001429#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner847b6e22002-03-30 20:53:14 +00001430 cerr << "\nCalculating the pool descriptor map:\n";
Chris Lattneracf19022002-04-14 06:14:41 +00001431#endif
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001432
Chris Lattner441e16f2002-04-12 20:23:15 +00001433 // Calculate as much of the pool descriptor map as possible. Since we have
1434 // the node mapping between the caller and callee functions, and we have the
1435 // pool descriptor information of the caller, we can calculate a partical pool
1436 // descriptor map for the called function.
1437 //
1438 // The nodes that we do not have complete information for are the ones that
1439 // are accessed by loading pointers derived from arguments passed in, but that
1440 // are not passed in directly. In this case, we have all of the information
1441 // except a pool value. If the called function refers to this pool, the pool
1442 // value will be loaded from the pool graph and added to the map as neccesary.
1443 //
1444 for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
1445 I != NodeMapping.end(); ++I) {
1446 DSNode *CallerNode = I->first;
1447 PoolInfo &CallerPI = CallerPoolDesc[CallerNode];
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001448
Chris Lattner441e16f2002-04-12 20:23:15 +00001449 // Check to see if we have a node pointer passed in for this value...
1450 Value *CalleeValue = 0;
1451 for (unsigned a = 0, ae = TFI.ArgInfo.size(); a != ae; ++a)
1452 if (TFI.ArgInfo[a].Node == CallerNode) {
1453 // Calculate the argument number that the pool is to the function
1454 // call... The call instruction should not have the pool operands added
1455 // yet.
1456 unsigned ArgNo = TFI.Call->getNumOperands()-1+a;
Chris Lattneracf19022002-04-14 06:14:41 +00001457#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001458 cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n";
Chris Lattneracf19022002-04-14 06:14:41 +00001459#endif
Chris Lattner441e16f2002-04-12 20:23:15 +00001460 assert(ArgNo < NewFunc->getArgumentList().size() &&
1461 "Call already has pool arguments added??");
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001462
Chris Lattner441e16f2002-04-12 20:23:15 +00001463 // Map the pool argument into the called function...
1464 CalleeValue = NewFunc->getArgumentList()[ArgNo];
1465 break; // Found value, quit loop
1466 }
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001467
Chris Lattner441e16f2002-04-12 20:23:15 +00001468 // Loop over all of the data structure nodes that this incoming node maps to
1469 // Creating a PoolInfo structure for them.
1470 for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
1471 assert(I->second[i].Index == 0 && "Doesn't handle subindexing yet!");
1472 DSNode *CalleeNode = I->second[i].Node;
1473
1474 // Add the descriptor. We already know everything about it by now, much
1475 // of it is the same as the caller info.
1476 //
1477 PoolDescs.insert(make_pair(CalleeNode,
1478 PoolInfo(CalleeNode, CalleeValue,
1479 CallerPI.NewType,
1480 CallerPI.PoolType)));
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001481 }
Chris Lattner847b6e22002-03-30 20:53:14 +00001482 }
1483
1484 // We must destroy the node mapping so that we don't have latent references
1485 // into the data structure graph for the new function. Otherwise we get
1486 // assertion failures when transformFunctionBody tries to invalidate the
1487 // graph.
1488 //
1489 NodeMapping.clear();
Chris Lattnerca9f4d32002-03-30 09:12:35 +00001490
1491 // Now that we know everything we need about the function, transform the body
1492 // now!
1493 //
Chris Lattner441e16f2002-04-12 20:23:15 +00001494 transformFunctionBody(NewFunc, DSGraph, PoolDescs);
1495
Chris Lattneracf19022002-04-14 06:14:41 +00001496#ifdef DEBUG_TRANSFORM_PROGRESS
Chris Lattner441e16f2002-04-12 20:23:15 +00001497 cerr << "Function after transformation:\n" << NewFunc;
Chris Lattneracf19022002-04-14 06:14:41 +00001498#endif
Chris Lattner66df97d2002-03-29 06:21:38 +00001499}
1500
Chris Lattner8f796d62002-04-13 19:25:57 +00001501static unsigned countPointerTypes(const Type *Ty) {
1502 if (isa<PointerType>(Ty)) {
1503 return 1;
1504 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1505 unsigned Num = 0;
1506 for (unsigned i = 0, e = STy->getElementTypes().size(); i != e; ++i)
1507 Num += countPointerTypes(STy->getElementTypes()[i]);
1508 return Num;
1509 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1510 return countPointerTypes(ATy->getElementType());
1511 } else {
1512 assert(Ty->isPrimitiveType() && "Unknown derived type!");
1513 return 0;
1514 }
1515}
Chris Lattner66df97d2002-03-29 06:21:38 +00001516
1517// CreatePools - Insert instructions into the function we are processing to
1518// create all of the memory pool objects themselves. This also inserts
1519// destruction code. Add an alloca for each pool that is allocated to the
Chris Lattner441e16f2002-04-12 20:23:15 +00001520// PoolDescs vector.
Chris Lattner66df97d2002-03-29 06:21:38 +00001521//
1522void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
Chris Lattner441e16f2002-04-12 20:23:15 +00001523 map<DSNode*, PoolInfo> &PoolDescs) {
1524 // Find all of the return nodes in the function...
Chris Lattnere0618ca2002-03-29 05:50:20 +00001525 vector<BasicBlock*> ReturnNodes;
1526 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
1527 if (isa<ReturnInst>((*I)->getTerminator()))
1528 ReturnNodes.push_back(*I);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001529
Chris Lattner3e78dea2002-04-18 14:43:30 +00001530#ifdef DEBUG_CREATE_POOLS
1531 cerr << "Allocs that we are pool allocating:\n";
1532 for (unsigned i = 0, e = Allocs.size(); i != e; ++i)
1533 Allocs[i]->dump();
1534#endif
1535
Chris Lattner441e16f2002-04-12 20:23:15 +00001536 map<DSNode*, PATypeHolder> AbsPoolTyMap;
1537
1538 // First pass over the allocations to process...
1539 for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
1540 // Create the pooldescriptor mapping... with null entries for everything
1541 // except the node & NewType fields.
1542 //
1543 map<DSNode*, PoolInfo>::iterator PI =
1544 PoolDescs.insert(make_pair(Allocs[i], PoolInfo(Allocs[i]))).first;
1545
Chris Lattner8f796d62002-04-13 19:25:57 +00001546 // Add a symbol table entry for the new type if there was one for the old
1547 // type...
1548 string OldName = CurModule->getTypeName(Allocs[i]->getType());
Chris Lattner0e0c15b2002-04-27 02:29:32 +00001549 if (OldName.empty()) OldName = "node";
1550 CurModule->addTypeName(OldName+".p", PI->second.NewType);
Chris Lattner8f796d62002-04-13 19:25:57 +00001551
Chris Lattner441e16f2002-04-12 20:23:15 +00001552 // Create the abstract pool types that will need to be resolved in a second
1553 // pass once an abstract type is created for each pool.
1554 //
1555 // Can only handle limited shapes for now...
Chris Lattner0e0c15b2002-04-27 02:29:32 +00001556 const Type *OldNodeTy = Allocs[i]->getType();
Chris Lattner441e16f2002-04-12 20:23:15 +00001557 vector<const Type*> PoolTypes;
1558
1559 // Pool type is the first element of the pool descriptor type...
1560 PoolTypes.push_back(getPoolType(PoolDescs[Allocs[i]].NewType));
Chris Lattner8f796d62002-04-13 19:25:57 +00001561
1562 unsigned NumPointers = countPointerTypes(OldNodeTy);
1563 while (NumPointers--) // Add a different opaque type for each pointer
1564 PoolTypes.push_back(OpaqueType::get());
1565
Chris Lattner441e16f2002-04-12 20:23:15 +00001566 assert(Allocs[i]->getNumLinks() == PoolTypes.size()-1 &&
1567 "Node should have same number of pointers as pool!");
1568
Chris Lattner8f796d62002-04-13 19:25:57 +00001569 StructType *PoolType = StructType::get(PoolTypes);
1570
1571 // Add a symbol table entry for the pooltype if possible...
Chris Lattner0e0c15b2002-04-27 02:29:32 +00001572 CurModule->addTypeName(OldName+".pool", PoolType);
Chris Lattner8f796d62002-04-13 19:25:57 +00001573
Chris Lattner441e16f2002-04-12 20:23:15 +00001574 // Create the pool type, with opaque values for pointers...
Chris Lattner8f796d62002-04-13 19:25:57 +00001575 AbsPoolTyMap.insert(make_pair(Allocs[i], PoolType));
Chris Lattner441e16f2002-04-12 20:23:15 +00001576#ifdef DEBUG_CREATE_POOLS
1577 cerr << "POOL TY: " << AbsPoolTyMap.find(Allocs[i])->second.get() << "\n";
1578#endif
1579 }
1580
1581 // Now that we have types for all of the pool types, link them all together.
1582 for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
1583 PATypeHolder &PoolTyH = AbsPoolTyMap.find(Allocs[i])->second;
1584
1585 // Resolve all of the outgoing pointer types of this pool node...
1586 for (unsigned p = 0, pe = Allocs[i]->getNumLinks(); p != pe; ++p) {
1587 PointerValSet &PVS = Allocs[i]->getLink(p);
1588 assert(!PVS.empty() && "Outgoing edge is empty, field unused, can"
1589 " probably just leave the type opaque or something dumb.");
1590 unsigned Out;
1591 for (Out = 0; AbsPoolTyMap.count(PVS[Out].Node) == 0; ++Out)
1592 assert(Out != PVS.size() && "No edge to an outgoing allocation node!?");
1593
1594 assert(PVS[Out].Index == 0 && "Subindexing not implemented yet!");
1595
1596 // The actual struct type could change each time through the loop, so it's
1597 // NOT loop invariant.
1598 StructType *PoolTy = cast<StructType>(PoolTyH.get());
1599
1600 // Get the opaque type...
1601 DerivedType *ElTy =
1602 cast<DerivedType>(PoolTy->getElementTypes()[p+1].get());
1603
1604#ifdef DEBUG_CREATE_POOLS
1605 cerr << "Refining " << ElTy << " of " << PoolTy << " to "
1606 << AbsPoolTyMap.find(PVS[Out].Node)->second.get() << "\n";
1607#endif
1608
1609 const Type *RefPoolTy = AbsPoolTyMap.find(PVS[Out].Node)->second.get();
1610 ElTy->refineAbstractTypeTo(PointerType::get(RefPoolTy));
1611
1612#ifdef DEBUG_CREATE_POOLS
1613 cerr << "Result pool type is: " << PoolTyH.get() << "\n";
1614#endif
1615 }
1616 }
1617
1618 // Create the code that goes in the entry and exit nodes for the function...
Chris Lattnere0618ca2002-03-29 05:50:20 +00001619 vector<Instruction*> EntryNodeInsts;
1620 for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
Chris Lattner441e16f2002-04-12 20:23:15 +00001621 PoolInfo &PI = PoolDescs[Allocs[i]];
1622
1623 // Fill in the pool type for this pool...
1624 PI.PoolType = AbsPoolTyMap.find(Allocs[i])->second.get();
1625 assert(!PI.PoolType->isAbstract() &&
1626 "Pool type should not be abstract anymore!");
1627
Chris Lattnere0618ca2002-03-29 05:50:20 +00001628 // Add an allocation and a free for each pool...
Chris Lattner5da145b2002-04-13 19:52:54 +00001629 AllocaInst *PoolAlloc
1630 = new AllocaInst(PointerType::get(PI.PoolType), 0,
1631 CurModule->getTypeName(PI.PoolType));
Chris Lattner441e16f2002-04-12 20:23:15 +00001632 PI.Handle = PoolAlloc;
Chris Lattnere0618ca2002-03-29 05:50:20 +00001633 EntryNodeInsts.push_back(PoolAlloc);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001634 AllocationInst *AI = Allocs[i]->getAllocation();
1635
1636 // Initialize the pool. We need to know how big each allocation is. For
1637 // our purposes here, we assume we are allocating a scalar, or array of
1638 // constant size.
1639 //
Chris Lattneracf19022002-04-14 06:14:41 +00001640 unsigned ElSize = TargetData.getTypeSize(PI.NewType);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001641
1642 vector<Value*> Args;
Chris Lattnere0618ca2002-03-29 05:50:20 +00001643 Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
Chris Lattner441e16f2002-04-12 20:23:15 +00001644 Args.push_back(PoolAlloc); // Pool to initialize
Chris Lattnere0618ca2002-03-29 05:50:20 +00001645 EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
1646
Chris Lattner441e16f2002-04-12 20:23:15 +00001647 // Add code to destroy the pool in all of the exit nodes of the function...
Chris Lattner8f796d62002-04-13 19:25:57 +00001648 Args.clear();
1649 Args.push_back(PoolAlloc); // Pool to initialize
1650
Chris Lattnere0618ca2002-03-29 05:50:20 +00001651 for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
1652 Instruction *Destroy = new CallInst(PoolDestroy, Args);
1653
1654 // Insert it before the return instruction...
1655 BasicBlock *RetNode = ReturnNodes[EN];
1656 RetNode->getInstList().insert(RetNode->end()-1, Destroy);
1657 }
1658 }
1659
Chris Lattner5da145b2002-04-13 19:52:54 +00001660 // Now that all of the pool descriptors have been created, link them together
1661 // so that called functions can get links as neccesary...
1662 //
1663 for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
1664 PoolInfo &PI = PoolDescs[Allocs[i]];
1665
1666 // For every pointer in the data structure, initialize a link that
1667 // indicates which pool to access...
1668 //
1669 vector<Value*> Indices(2);
1670 Indices[0] = ConstantUInt::get(Type::UIntTy, 0);
1671 for (unsigned l = 0, le = PI.Node->getNumLinks(); l != le; ++l)
1672 // Only store an entry for the field if the field is used!
1673 if (!PI.Node->getLink(l).empty()) {
1674 assert(PI.Node->getLink(l).size() == 1 && "Should have only one link!");
1675 PointerVal PV = PI.Node->getLink(l)[0];
1676 assert(PV.Index == 0 && "Subindexing not supported yet!");
1677 PoolInfo &LinkedPool = PoolDescs[PV.Node];
1678 Indices[1] = ConstantUInt::get(Type::UByteTy, 1+l);
1679
1680 EntryNodeInsts.push_back(new StoreInst(LinkedPool.Handle, PI.Handle,
1681 Indices));
1682 }
1683 }
1684
Chris Lattnere0618ca2002-03-29 05:50:20 +00001685 // Insert the entry node code into the entry block...
1686 F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
1687 EntryNodeInsts.begin(),
1688 EntryNodeInsts.end());
Chris Lattner175f37c2002-03-29 03:40:59 +00001689}
1690
1691
Chris Lattner441e16f2002-04-12 20:23:15 +00001692// addPoolPrototypes - Add prototypes for the pool functions to the specified
Chris Lattner175f37c2002-03-29 03:40:59 +00001693// module and update the Pool* instance variables to point to them.
1694//
1695void PoolAllocate::addPoolPrototypes(Module *M) {
Chris Lattner441e16f2002-04-12 20:23:15 +00001696 // Get poolinit function...
Chris Lattnere0618ca2002-03-29 05:50:20 +00001697 vector<const Type*> Args;
Chris Lattnere0618ca2002-03-29 05:50:20 +00001698 Args.push_back(Type::UIntTy); // Num bytes per element
Chris Lattner441e16f2002-04-12 20:23:15 +00001699 FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001700 PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
Chris Lattner175f37c2002-03-29 03:40:59 +00001701
Chris Lattnere0618ca2002-03-29 05:50:20 +00001702 // Get pooldestroy function...
1703 Args.pop_back(); // Only takes a pool...
Chris Lattner441e16f2002-04-12 20:23:15 +00001704 FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001705 PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
1706
Chris Lattnere0618ca2002-03-29 05:50:20 +00001707 // Get the poolalloc function...
Chris Lattner441e16f2002-04-12 20:23:15 +00001708 FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001709 PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
1710
1711 // Get the poolfree function...
Chris Lattner441e16f2002-04-12 20:23:15 +00001712 Args.push_back(POINTERTYPE); // Pointer to free
1713 FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true);
Chris Lattnere0618ca2002-03-29 05:50:20 +00001714 PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
1715
Chris Lattner0e0c15b2002-04-27 02:29:32 +00001716 Args[0] = Type::UIntTy; // Number of slots to allocate
1717 FunctionType *PoolAllocArrayTy = FunctionType::get(POINTERTYPE, Args, true);
1718 PoolAllocArray = M->getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
Chris Lattner175f37c2002-03-29 03:40:59 +00001719}
1720
1721
1722bool PoolAllocate::run(Module *M) {
1723 addPoolPrototypes(M);
1724 CurModule = M;
1725
1726 DS = &getAnalysis<DataStructure>();
1727 bool Changed = false;
Chris Lattner291a1b12002-03-29 19:05:48 +00001728
1729 // We cannot use an iterator here because it will get invalidated when we add
1730 // functions to the module later...
1731 for (unsigned i = 0; i != M->size(); ++i)
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001732 if (!M->getFunctionList()[i]->isExternal()) {
Chris Lattner291a1b12002-03-29 19:05:48 +00001733 Changed |= processFunction(M->getFunctionList()[i]);
Chris Lattnerf32d65d2002-03-29 21:25:19 +00001734 if (Changed) {
1735 cerr << "Only processing one function\n";
1736 break;
1737 }
1738 }
Chris Lattner175f37c2002-03-29 03:40:59 +00001739
1740 CurModule = 0;
1741 DS = 0;
1742 return false;
1743}
1744
1745
1746// createPoolAllocatePass - Global function to access the functionality of this
1747// pass...
1748//
Chris Lattner64fd9352002-03-28 18:08:31 +00001749Pass *createPoolAllocatePass() { return new PoolAllocate(); }