blob: 03841164b58dee7b8ddf3fdccd5cda7cb0380f22 [file] [log] [blame]
Chris Lattner7e044912010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carrutha9174582015-01-22 05:25:13 +000015#include "InstCombineInternal.h"
James Molloy2b21a7c2015-05-20 18:41:25 +000016#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000019#include "llvm/Support/KnownBits.h"
Chris Lattner7e044912010-01-04 07:17:19 +000020
21using namespace llvm;
Shuxin Yang63e999e2012-12-04 00:04:54 +000022using namespace llvm::PatternMatch;
Chris Lattner7e044912010-01-04 07:17:19 +000023
Chandler Carruth964daaa2014-04-22 02:55:47 +000024#define DEBUG_TYPE "instcombine"
25
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000026/// Check to see if the specified operand of the specified instruction is a
27/// constant integer. If so, check to see if there are any bits set in the
28/// constant that are not demanded. If so, shrink the constant and return true.
Craig Topper4c947752012-12-22 18:09:02 +000029static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Craig Topper358cd9a2017-04-20 23:58:27 +000030 const APInt &Demanded) {
Chris Lattner7e044912010-01-04 07:17:19 +000031 assert(I && "No instruction?");
32 assert(OpNo < I->getNumOperands() && "Operand index too large");
33
Sanjay Patelae3b43e2017-02-09 21:43:06 +000034 // The operand must be a constant integer or splat integer.
35 Value *Op = I->getOperand(OpNo);
36 const APInt *C;
37 if (!match(Op, m_APInt(C)))
38 return false;
Chris Lattner7e044912010-01-04 07:17:19 +000039
40 // If there are no bits set that aren't demanded, nothing to do.
Craig Toppera8129a12017-04-20 16:17:13 +000041 if (C->isSubsetOf(Demanded))
Chris Lattner7e044912010-01-04 07:17:19 +000042 return false;
43
44 // This instruction is producing bits that are not demanded. Shrink the RHS.
Craig Topper358cd9a2017-04-20 23:58:27 +000045 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
David Majnemer42b83a52014-08-22 07:56:32 +000046
Chris Lattner7e044912010-01-04 07:17:19 +000047 return true;
48}
49
50
51
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000052/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
53/// the instruction has any properties that allow us to simplify its operands.
Chris Lattner7e044912010-01-04 07:17:19 +000054bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +000056 KnownBits Known(BitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +000057 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Craig Topper4c947752012-12-22 18:09:02 +000058
Craig Topperb45eabc2017-04-26 16:39:58 +000059 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 0, &Inst);
Craig Topperf40110f2014-04-25 05:29:35 +000061 if (!V) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000062 if (V == &Inst) return true;
Sanjay Patel4b198802016-02-01 22:23:39 +000063 replaceInstUsesWith(Inst, V);
Chris Lattner7e044912010-01-04 07:17:19 +000064 return true;
65}
66
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000067/// This form of SimplifyDemandedBits simplifies the specified instruction
68/// operand if possible, updating it in place. It returns true if it made any
69/// change and false otherwise.
Craig Topper47596dd2017-03-25 06:52:52 +000070bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
71 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +000072 KnownBits &Known,
Chris Lattner7e044912010-01-04 07:17:19 +000073 unsigned Depth) {
Craig Topper47596dd2017-03-25 06:52:52 +000074 Use &U = I->getOperandUse(OpNo);
Craig Topperb45eabc2017-04-26 16:39:58 +000075 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76 Depth, I);
Craig Topperf40110f2014-04-25 05:29:35 +000077 if (!NewVal) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000078 U = NewVal;
79 return true;
80}
81
82
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000083/// This function attempts to replace V with a simpler value based on the
84/// demanded bits. When this function is called, it is known that only the bits
85/// set in DemandedMask of the result of V are ever used downstream.
86/// Consequently, depending on the mask and V, it may be possible to replace V
87/// with a constant or one of its operands. In such cases, this function does
88/// the replacement and returns true. In all other cases, it returns false after
89/// analyzing the expression and setting KnownOne and known to be one in the
Craig Topperb45eabc2017-04-26 16:39:58 +000090/// expression. Known.Zero contains all the bits that are known to be zero in
91/// the expression. These are provided to potentially allow the caller (which
92/// might recursively be SimplifyDemandedBits itself) to simplify the
93/// expression.
94/// Known.One and Known.Zero always follow the invariant that:
95/// Known.One & Known.Zero == 0.
96/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
97/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
98/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
99/// be the same.
Chris Lattner7e044912010-01-04 07:17:19 +0000100///
101/// This returns null if it did not change anything and it permits no
102/// simplification. This returns V itself if it did some simplification of V's
103/// operands based on the information about what bits are demanded. This returns
104/// some other non-null value if it found out that V is equal to another value
105/// in the context where the specified bits are demanded, but not for all users.
106Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000107 KnownBits &Known, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000108 Instruction *CxtI) {
Craig Toppere73658d2014-04-28 04:05:08 +0000109 assert(V != nullptr && "Null pointer of Value???");
Chris Lattner7e044912010-01-04 07:17:19 +0000110 assert(Depth <= 6 && "Limit Search Depth");
111 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattner229907c2011-07-18 04:54:35 +0000112 Type *VTy = V->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000113 assert(
114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000115 Known.getBitWidth() == BitWidth &&
116 "Value *V, DemandedMask and Known must have same BitWidth");
Craig Topper83dc1c62017-04-20 16:14:58 +0000117
118 if (isa<Constant>(V)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000119 computeKnownBits(V, Known, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000120 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000121 }
122
Craig Topperf0aeee02017-05-05 17:36:09 +0000123 Known.resetAll();
Craig Topper73ba1c82017-06-07 07:40:37 +0000124 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
Chris Lattner7e044912010-01-04 07:17:19 +0000125 return UndefValue::get(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000126
Chris Lattner7e044912010-01-04 07:17:19 +0000127 if (Depth == 6) // Limit search depth.
Craig Topperf40110f2014-04-25 05:29:35 +0000128 return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000129
Chris Lattner7e044912010-01-04 07:17:19 +0000130 Instruction *I = dyn_cast<Instruction>(V);
131 if (!I) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000132 computeKnownBits(V, Known, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000133 return nullptr; // Only analyze instructions.
Chris Lattner7e044912010-01-04 07:17:19 +0000134 }
135
136 // If there are multiple uses of this value and we aren't at the root, then
137 // we can't do any simplifications of the operands, because DemandedMask
138 // only reflects the bits demanded by *one* of the users.
Craig Topper7603dce2017-04-25 16:48:19 +0000139 if (Depth != 0 && !I->hasOneUse())
Craig Topperb45eabc2017-04-26 16:39:58 +0000140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
Craig Topper4c947752012-12-22 18:09:02 +0000141
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
Craig Topperb0076fe2017-04-12 18:05:21 +0000143
Chris Lattner7e044912010-01-04 07:17:19 +0000144 // If this is the root being simplified, allow it to have multiple uses,
145 // just set the DemandedMask to all bits so that we can try to simplify the
146 // operands. This allows visitTruncInst (for example) to simplify the
147 // operand of a trunc without duplicating all the logic below.
148 if (Depth == 0 && !V->hasOneUse())
Craig Toppere06b6bc2017-04-04 05:03:02 +0000149 DemandedMask.setAllBits();
Craig Topper4c947752012-12-22 18:09:02 +0000150
Chris Lattner7e044912010-01-04 07:17:19 +0000151 switch (I->getOpcode()) {
152 default:
Craig Topperb45eabc2017-04-26 16:39:58 +0000153 computeKnownBits(I, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000154 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000155 case Instruction::And: {
Chris Lattner7e044912010-01-04 07:17:19 +0000156 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
159 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000160 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000163
Craig Topper9a458cd2017-04-14 22:34:14 +0000164 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000166 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000168
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000169 // If the client is only demanding bits that we know, return the known
170 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000172 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000173
Chris Lattner7e044912010-01-04 07:17:19 +0000174 // If all of the demanded bits are known 1 on one side, return the other.
175 // These bits cannot contribute to the result of the 'and'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
Chris Lattner7e044912010-01-04 07:17:19 +0000177 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
Chris Lattner7e044912010-01-04 07:17:19 +0000179 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000180
Chris Lattner7e044912010-01-04 07:17:19 +0000181 // If the RHS is a constant, see if we can simplify it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000183 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000184
Craig Topperb45eabc2017-04-26 16:39:58 +0000185 Known.Zero = std::move(IKnownZero);
186 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000187 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000188 }
189 case Instruction::Or: {
Chris Lattner7e044912010-01-04 07:17:19 +0000190 // If either the LHS or the RHS are One, the result is One.
Craig Topperb45eabc2017-04-26 16:39:58 +0000191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
193 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000194 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000197
Craig Topper9a458cd2017-04-14 22:34:14 +0000198 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
200 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
201 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000202
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000203 // If the client is only demanding bits that we know, return the known
204 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000206 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000207
Chris Lattner7e044912010-01-04 07:17:19 +0000208 // If all of the demanded bits are known zero on one side, return the other.
209 // These bits cannot contribute to the result of the 'or'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000211 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000213 return I->getOperand(1);
214
Chris Lattner7e044912010-01-04 07:17:19 +0000215 // If the RHS is a constant, see if we can simplify it.
216 if (ShrinkDemandedConstant(I, 1, DemandedMask))
217 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000218
Craig Topperb45eabc2017-04-26 16:39:58 +0000219 Known.Zero = std::move(IKnownZero);
220 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000221 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000222 }
Chris Lattner7e044912010-01-04 07:17:19 +0000223 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000226 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000229
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000230 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
232 (RHSKnown.One & LHSKnown.One);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000233 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
235 (RHSKnown.One & LHSKnown.Zero);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000236
237 // If the client is only demanding bits that we know, return the known
238 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000240 return Constant::getIntegerValue(VTy, IKnownOne);
241
Chris Lattner7e044912010-01-04 07:17:19 +0000242 // If all of the demanded bits are known zero on one side, return the other.
243 // These bits cannot contribute to the result of the 'xor'.
Craig Topperb45eabc2017-04-26 16:39:58 +0000244 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000245 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000246 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
Chris Lattner7e044912010-01-04 07:17:19 +0000247 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000248
Chris Lattner7e044912010-01-04 07:17:19 +0000249 // If all of the demanded bits are known to be zero on one side or the
250 // other, turn this into an *inclusive* or.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Craig Topperb45eabc2017-04-26 16:39:58 +0000252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
Craig Topper4c947752012-12-22 18:09:02 +0000253 Instruction *Or =
Chris Lattner7e044912010-01-04 07:17:19 +0000254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
255 I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000256 return InsertNewInstWith(Or, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000257 }
Craig Topper4c947752012-12-22 18:09:02 +0000258
Chris Lattner7e044912010-01-04 07:17:19 +0000259 // If all of the demanded bits on one side are known, and all of the set
260 // bits on that side are also known to be set on the other side, turn this
261 // into an AND, as we know the bits will be cleared.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
Craig Topperb45eabc2017-04-26 16:39:58 +0000263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
264 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
Craig Topper17f37ba2017-04-20 20:47:35 +0000265 Constant *AndC = Constant::getIntegerValue(VTy,
Craig Topperb45eabc2017-04-26 16:39:58 +0000266 ~RHSKnown.One & DemandedMask);
Craig Topper17f37ba2017-04-20 20:47:35 +0000267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
268 return InsertNewInstWith(And, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000269 }
Craig Topper4c947752012-12-22 18:09:02 +0000270
Sanjay Patel8ce1d4c2017-04-21 20:29:17 +0000271 // If the RHS is a constant, see if we can simplify it.
272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
273 if (ShrinkDemandedConstant(I, 1, DemandedMask))
274 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000275
Chris Lattner7e044912010-01-04 07:17:19 +0000276 // If our LHS is an 'and' and if it has one use, and if any of the bits we
277 // are flipping are known to be set, then the xor is just resetting those
278 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
279 // simplifying both of them.
280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
282 isa<ConstantInt>(I->getOperand(1)) &&
283 isa<ConstantInt>(LHSInst->getOperand(1)) &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
Chris Lattner7e044912010-01-04 07:17:19 +0000285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
Craig Topperb45eabc2017-04-26 16:39:58 +0000287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
Craig Topper4c947752012-12-22 18:09:02 +0000288
Chris Lattner7e044912010-01-04 07:17:19 +0000289 Constant *AndC =
290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000292 InsertNewInstWith(NewAnd, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000293
Chris Lattner7e044912010-01-04 07:17:19 +0000294 Constant *XorC =
295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000297 return InsertNewInstWith(NewXor, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000298 }
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000299
300 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000301 Known.Zero = std::move(IKnownZero);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000302 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000303 Known.One = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000304 break;
305 }
306 case Instruction::Select:
James Molloy2b21a7c2015-05-20 18:41:25 +0000307 // If this is a select as part of a min/max pattern, don't simplify any
308 // further in case we break the structure.
309 Value *LHS, *RHS;
James Molloy134bec22015-08-11 09:12:57 +0000310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000311 return nullptr;
Simon Pilgrim61116dd2015-09-17 20:32:45 +0000312
Craig Topperb45eabc2017-04-26 16:39:58 +0000313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000315 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
Craig Topper4c947752012-12-22 18:09:02 +0000318
Chris Lattner7e044912010-01-04 07:17:19 +0000319 // If the operands are constants, see if we can simplify them.
320 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
321 ShrinkDemandedConstant(I, 2, DemandedMask))
322 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000323
Chris Lattner7e044912010-01-04 07:17:19 +0000324 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000325 Known.One = RHSKnown.One & LHSKnown.One;
326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
Chris Lattner7e044912010-01-04 07:17:19 +0000327 break;
Craig Topper2f9c6da2017-05-24 18:40:25 +0000328 case Instruction::ZExt:
Chris Lattner7e044912010-01-04 07:17:19 +0000329 case Instruction::Trunc: {
Craig Topper2f9c6da2017-05-24 18:40:25 +0000330 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
331
332 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
333 KnownBits InputKnown(SrcBitWidth);
334 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000335 return I;
Craig Topper2f9c6da2017-05-24 18:40:25 +0000336 Known = Known.zextOrTrunc(BitWidth);
337 // Any top bits are known to be zero.
338 if (BitWidth > SrcBitWidth)
339 Known.Zero.setBitsFrom(SrcBitWidth);
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000340 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000341 break;
342 }
343 case Instruction::BitCast:
Duncan Sands9dff9be2010-02-15 16:12:20 +0000344 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Craig Topperf40110f2014-04-25 05:29:35 +0000345 return nullptr; // vector->int or fp->int?
Chris Lattner7e044912010-01-04 07:17:19 +0000346
Chris Lattner229907c2011-07-18 04:54:35 +0000347 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
348 if (VectorType *SrcVTy =
Chris Lattner7e044912010-01-04 07:17:19 +0000349 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
350 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
351 // Don't touch a bitcast between vectors of different element counts.
Craig Topperf40110f2014-04-25 05:29:35 +0000352 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000353 } else
354 // Don't touch a scalar-to-vector bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000355 return nullptr;
Duncan Sands19d0b472010-02-16 11:11:14 +0000356 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattner7e044912010-01-04 07:17:19 +0000357 // Don't touch a vector-to-scalar bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000358 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000359
Craig Topperb45eabc2017-04-26 16:39:58 +0000360 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000361 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000362 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000363 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000364 case Instruction::SExt: {
365 // Compute the bits in the result that are not present in the input.
Craig Topper1c660db2017-05-24 17:33:30 +0000366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000367
Craig Topper1c660db2017-05-24 17:33:30 +0000368 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000369
Chris Lattner7e044912010-01-04 07:17:19 +0000370 // If any of the sign extended bits are demanded, we know that the sign
371 // bit is demanded.
Craig Topper1c660db2017-05-24 17:33:30 +0000372 if (DemandedMask.getActiveBits() > SrcBitWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000373 InputDemandedBits.setBit(SrcBitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000374
Craig Topper1c660db2017-05-24 17:33:30 +0000375 KnownBits InputKnown(SrcBitWidth);
376 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000377 return I;
Chris Lattner7e044912010-01-04 07:17:19 +0000378
379 // If the input sign bit is known zero, or if the NewBits are not demanded
380 // convert this into a zero extension.
Craig Topper1c660db2017-05-24 17:33:30 +0000381 if (InputKnown.isNonNegative() ||
382 DemandedMask.getActiveBits() <= SrcBitWidth) {
383 // Convert to ZExt cast.
Chris Lattner7e044912010-01-04 07:17:19 +0000384 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000385 return InsertNewInstWith(NewCast, *I);
Craig Topper1c660db2017-05-24 17:33:30 +0000386 }
387
388 // If the sign bit of the input is known set or clear, then we know the
389 // top bits of the result.
390 Known = InputKnown.sext(BitWidth);
391 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000392 break;
393 }
Matthias Braune48484c2015-04-30 22:05:30 +0000394 case Instruction::Add:
395 case Instruction::Sub: {
396 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
397 /// about the high bits of the operands.
Chris Lattner7e044912010-01-04 07:17:19 +0000398 unsigned NLZ = DemandedMask.countLeadingZeros();
Matthias Braune48484c2015-04-30 22:05:30 +0000399 if (NLZ > 0) {
400 // Right fill the mask of bits for this ADD/SUB to demand the most
Chris Lattner7e044912010-01-04 07:17:19 +0000401 // significant bit and all those below it.
Chris Lattner7e044912010-01-04 07:17:19 +0000402 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Craig Topper07f29152017-03-22 04:03:53 +0000403 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
Craig Topperb45eabc2017-04-26 16:39:58 +0000404 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
Matthias Braune48484c2015-04-30 22:05:30 +0000405 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
Craig Topperb45eabc2017-04-26 16:39:58 +0000406 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
Matthias Braune48484c2015-04-30 22:05:30 +0000407 // Disable the nsw and nuw flags here: We can no longer guarantee that
408 // we won't wrap after simplification. Removing the nsw/nuw flags is
409 // legal here because the top bit is not demanded.
410 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
411 BinOP.setHasNoSignedWrap(false);
412 BinOP.setHasNoUnsignedWrap(false);
Chris Lattner7e044912010-01-04 07:17:19 +0000413 return I;
David Majnemer7d0e99c2015-04-22 22:42:05 +0000414 }
Craig Topper845033a2017-04-12 16:49:59 +0000415
416 // If we are known to be adding/subtracting zeros to every bit below
417 // the highest demanded bit, we just return the other side.
Craig Topperb45eabc2017-04-26 16:39:58 +0000418 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
Craig Topper845033a2017-04-12 16:49:59 +0000419 return I->getOperand(0);
420 // We can't do this with the LHS for subtraction.
421 if (I->getOpcode() == Instruction::Add &&
Craig Topperb45eabc2017-04-26 16:39:58 +0000422 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
Craig Topper845033a2017-04-12 16:49:59 +0000423 return I->getOperand(1);
Chris Lattner7e044912010-01-04 07:17:19 +0000424 }
Benjamin Kramer010337c2011-12-24 17:31:38 +0000425
Craig Topper8fbb74b2017-03-24 22:12:10 +0000426 // Otherwise just hand the add/sub off to computeKnownBits to fill in
427 // the known zeros and ones.
Craig Topperb45eabc2017-04-26 16:39:58 +0000428 computeKnownBits(V, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000429 break;
Matthias Braune48484c2015-04-30 22:05:30 +0000430 }
Sanjay Patel3e1ae722017-04-20 21:33:02 +0000431 case Instruction::Shl: {
432 const APInt *SA;
433 if (match(I->getOperand(1), m_APInt(SA))) {
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000434 const APInt *ShrAmt;
435 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
436 Instruction *Shr = cast<Instruction>(I->getOperand(0));
Sanjay Patelcc663b82017-04-20 22:37:01 +0000437 if (Value *R = simplifyShrShlDemandedBits(
Craig Topperb45eabc2017-04-26 16:39:58 +0000438 Shr, *ShrAmt, I, *SA, DemandedMask, Known))
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000439 return R;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000440 }
441
Chris Lattner768003c2011-02-10 05:09:34 +0000442 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner7e044912010-01-04 07:17:19 +0000443 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000444
Chris Lattner768003c2011-02-10 05:09:34 +0000445 // If the shift is NUW/NSW, then it does demand the high bits.
446 ShlOperator *IOp = cast<ShlOperator>(I);
447 if (IOp->hasNoSignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000448 DemandedMaskIn.setHighBits(ShiftAmt+1);
Chris Lattner768003c2011-02-10 05:09:34 +0000449 else if (IOp->hasNoUnsignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000450 DemandedMaskIn.setHighBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000451
Craig Topperb45eabc2017-04-26 16:39:58 +0000452 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000453 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000454 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperb45eabc2017-04-26 16:39:58 +0000455 Known.Zero <<= ShiftAmt;
456 Known.One <<= ShiftAmt;
Chris Lattner7e044912010-01-04 07:17:19 +0000457 // low bits known zero.
458 if (ShiftAmt)
Craig Topperb45eabc2017-04-26 16:39:58 +0000459 Known.Zero.setLowBits(ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000460 }
461 break;
Sanjay Patel3e1ae722017-04-20 21:33:02 +0000462 }
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000463 case Instruction::LShr: {
464 const APInt *SA;
465 if (match(I->getOperand(1), m_APInt(SA))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000466 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000467
Chris Lattner7e044912010-01-04 07:17:19 +0000468 // Unsigned shift right.
469 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000470
Chris Lattner768003c2011-02-10 05:09:34 +0000471 // If the shift is exact, then it does demand the low bits (and knows that
472 // they are zero).
473 if (cast<LShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000474 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000475
Craig Topperb45eabc2017-04-26 16:39:58 +0000476 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000477 return I;
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000478 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperb45eabc2017-04-26 16:39:58 +0000479 Known.Zero.lshrInPlace(ShiftAmt);
480 Known.One.lshrInPlace(ShiftAmt);
Craig Topper3a86a042017-03-19 05:49:16 +0000481 if (ShiftAmt)
Craig Topperb45eabc2017-04-26 16:39:58 +0000482 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
Chris Lattner7e044912010-01-04 07:17:19 +0000483 }
484 break;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000485 }
486 case Instruction::AShr: {
Chris Lattner7e044912010-01-04 07:17:19 +0000487 // If this is an arithmetic shift right and only the low-bit is set, we can
488 // always convert this into a logical shr, even if the shift amount is
489 // variable. The low bit of the shift cannot be an input sign bit unless
490 // the shift amount is >= the size of the datatype, which is undefined.
Craig Topper73ba1c82017-06-07 07:40:37 +0000491 if (DemandedMask.isOneValue()) {
Chris Lattner7e044912010-01-04 07:17:19 +0000492 // Perform the logical shift right.
493 Instruction *NewVal = BinaryOperator::CreateLShr(
494 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000495 return InsertNewInstWith(NewVal, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000496 }
Chris Lattner7e044912010-01-04 07:17:19 +0000497
498 // If the sign bit is the only bit demanded by this ashr, then there is no
499 // need to do it, the shift doesn't change the high bit.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000500 if (DemandedMask.isSignMask())
Chris Lattner7e044912010-01-04 07:17:19 +0000501 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000502
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000503 const APInt *SA;
504 if (match(I->getOperand(1), m_APInt(SA))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000505 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000506
Chris Lattner7e044912010-01-04 07:17:19 +0000507 // Signed shift right.
508 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000509 // If any of the high bits are demanded, we should set the sign bit as
Chris Lattner7e044912010-01-04 07:17:19 +0000510 // demanded.
511 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Craig Topperc9a4fc02017-04-14 05:09:04 +0000512 DemandedMaskIn.setSignBit();
Craig Topper4c947752012-12-22 18:09:02 +0000513
Chris Lattner768003c2011-02-10 05:09:34 +0000514 // If the shift is exact, then it does demand the low bits (and knows that
515 // they are zero).
516 if (cast<AShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000517 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000518
Craig Topperb45eabc2017-04-26 16:39:58 +0000519 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000520 return I;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000521
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000522 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000523 // Compute the new bits that are at the top now.
524 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Craig Topperb45eabc2017-04-26 16:39:58 +0000525 Known.Zero.lshrInPlace(ShiftAmt);
526 Known.One.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000527
Chris Lattner7e044912010-01-04 07:17:19 +0000528 // Handle the sign bits.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000529 APInt SignMask(APInt::getSignMask(BitWidth));
Chris Lattner7e044912010-01-04 07:17:19 +0000530 // Adjust to where it is now in the mask.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000531 SignMask.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000532
Chris Lattner7e044912010-01-04 07:17:19 +0000533 // If the input sign bit is known to be zero, or if none of the top bits
534 // are demanded, turn this into an unsigned shift right.
Craig Topperb45eabc2017-04-26 16:39:58 +0000535 if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] ||
Craig Topperff238892017-04-20 21:24:37 +0000536 !DemandedMask.intersects(HighBits)) {
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000537 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
538 I->getOperand(1));
539 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
540 return InsertNewInstWith(LShr, *I);
Craig Topperb45eabc2017-04-26 16:39:58 +0000541 } else if (Known.One.intersects(SignMask)) { // New bits are known one.
542 Known.One |= HighBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000543 }
544 }
545 break;
Sanjay Patelfb5b3e72017-04-20 20:59:02 +0000546 }
Chris Lattner7e044912010-01-04 07:17:19 +0000547 case Instruction::SRem:
548 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmana81a82d2011-03-09 01:28:35 +0000549 // X % -1 demands all the bits because we don't want to introduce
550 // INT_MIN % -1 (== undef) by accident.
551 if (Rem->isAllOnesValue())
552 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000553 APInt RA = Rem->getValue().abs();
554 if (RA.isPowerOf2()) {
555 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
556 return I->getOperand(0);
557
558 APInt LowBits = RA - 1;
Craig Topperbcfd2d12017-04-20 16:56:25 +0000559 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000560 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000561 return I;
562
Duncan Sands3a48b872010-01-28 17:22:42 +0000563 // The low bits of LHS are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +0000564 Known.Zero = LHSKnown.Zero & LowBits;
565 Known.One = LHSKnown.One & LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000566
Duncan Sands3a48b872010-01-28 17:22:42 +0000567 // If LHS is non-negative or has all low bits zero, then the upper bits
568 // are all zero.
Craig Topperca48af32017-04-29 16:43:11 +0000569 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +0000570 Known.Zero |= ~LowBits;
Duncan Sands3a48b872010-01-28 17:22:42 +0000571
572 // If LHS is negative and not all low bits are zero, then the upper bits
573 // are all one.
Craig Topperca48af32017-04-29 16:43:11 +0000574 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
Craig Topperb45eabc2017-04-26 16:39:58 +0000575 Known.One |= ~LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000576
Craig Topper7e0aeeb2017-05-23 07:18:37 +0000577 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +0000578 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000579 }
580 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000581
582 // The sign bit is the LHS's sign bit, except when the result of the
583 // remainder is zero.
Craig Topperd23004c2017-04-17 16:38:20 +0000584 if (DemandedMask.isSignBitSet()) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000585 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
Nick Lewyckye4679792011-03-07 01:50:10 +0000586 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +0000587 if (LHSKnown.isNonNegative())
588 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +0000589 }
Chris Lattner7e044912010-01-04 07:17:19 +0000590 break;
591 case Instruction::URem: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000592 KnownBits Known2(BitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000593 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +0000594 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
595 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000596 return I;
597
Craig Topper8df66c62017-05-12 17:20:30 +0000598 unsigned Leaders = Known2.countMinLeadingZeros();
Craig Topperb45eabc2017-04-26 16:39:58 +0000599 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Chris Lattner7e044912010-01-04 07:17:19 +0000600 break;
601 }
602 case Instruction::Call:
603 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
604 switch (II->getIntrinsicID()) {
605 default: break;
606 case Intrinsic::bswap: {
607 // If the only bits demanded come from one byte of the bswap result,
608 // just shift the input byte into position to eliminate the bswap.
609 unsigned NLZ = DemandedMask.countLeadingZeros();
610 unsigned NTZ = DemandedMask.countTrailingZeros();
Craig Topper4c947752012-12-22 18:09:02 +0000611
Chris Lattner7e044912010-01-04 07:17:19 +0000612 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
613 // we need all the bits down to bit 8. Likewise, round NLZ. If we
614 // have 14 leading zeros, round to 8.
615 NLZ &= ~7;
616 NTZ &= ~7;
617 // If we need exactly one byte, we can do this transformation.
618 if (BitWidth-NLZ-NTZ == 8) {
619 unsigned ResultBit = NTZ;
620 unsigned InputBit = BitWidth-NTZ-8;
Craig Topper4c947752012-12-22 18:09:02 +0000621
Chris Lattner7e044912010-01-04 07:17:19 +0000622 // Replace this with either a left or right shift to get the byte into
623 // the right place.
624 Instruction *NewVal;
625 if (InputBit > ResultBit)
Gabor Greif79430172010-06-24 12:35:13 +0000626 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000627 ConstantInt::get(I->getType(), InputBit-ResultBit));
628 else
Gabor Greif79430172010-06-24 12:35:13 +0000629 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000630 ConstantInt::get(I->getType(), ResultBit-InputBit));
631 NewVal->takeName(I);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000632 return InsertNewInstWith(NewVal, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000633 }
Craig Topper4c947752012-12-22 18:09:02 +0000634
Chris Lattner7e044912010-01-04 07:17:19 +0000635 // TODO: Could compute known zero/one bits based on the input.
636 break;
637 }
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000638 case Intrinsic::x86_mmx_pmovmskb:
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000639 case Intrinsic::x86_sse_movmsk_ps:
640 case Intrinsic::x86_sse2_movmsk_pd:
641 case Intrinsic::x86_sse2_pmovmskb_128:
642 case Intrinsic::x86_avx_movmsk_ps_256:
643 case Intrinsic::x86_avx_movmsk_pd_256:
644 case Intrinsic::x86_avx2_pmovmskb: {
645 // MOVMSK copies the vector elements' sign bits to the low bits
646 // and zeros the high bits.
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000647 unsigned ArgWidth;
648 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
649 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
650 } else {
651 auto Arg = II->getArgOperand(0);
652 auto ArgType = cast<VectorType>(Arg->getType());
653 ArgWidth = ArgType->getNumElements();
654 }
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000655
656 // If we don't need any of low bits then return zero,
657 // we know that DemandedMask is non-zero already.
658 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
Craig Topper73ba1c82017-06-07 07:40:37 +0000659 if (DemandedElts.isNullValue())
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000660 return ConstantInt::getNullValue(VTy);
661
Ahmed Bougacha17482a52016-04-28 14:36:07 +0000662 // We know that the upper bits are set to zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000663 Known.Zero.setBitsFrom(ArgWidth);
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000664 return nullptr;
665 }
Chad Rosierb3628842011-05-26 23:13:19 +0000666 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +0000667 Known.Zero.setBitsFrom(32);
Craig Topperf40110f2014-04-25 05:29:35 +0000668 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000669 }
670 }
Craig Topperb45eabc2017-04-26 16:39:58 +0000671 computeKnownBits(V, Known, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000672 break;
673 }
Craig Topper4c947752012-12-22 18:09:02 +0000674
Chris Lattner7e044912010-01-04 07:17:19 +0000675 // If the client is only demanding bits that we know, return the known
676 // constant.
Craig Topperb45eabc2017-04-26 16:39:58 +0000677 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
678 return Constant::getIntegerValue(VTy, Known.One);
Craig Topperf40110f2014-04-25 05:29:35 +0000679 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000680}
681
Craig Topperb45eabc2017-04-26 16:39:58 +0000682/// Helper routine of SimplifyDemandedUseBits. It computes Known
Craig Topperb0076fe2017-04-12 18:05:21 +0000683/// bits. It also tries to handle simplifications that can be done based on
684/// DemandedMask, but without modifying the Instruction.
685Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
686 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000687 KnownBits &Known,
Craig Topperb0076fe2017-04-12 18:05:21 +0000688 unsigned Depth,
689 Instruction *CxtI) {
690 unsigned BitWidth = DemandedMask.getBitWidth();
691 Type *ITy = I->getType();
692
Craig Topperb45eabc2017-04-26 16:39:58 +0000693 KnownBits LHSKnown(BitWidth);
694 KnownBits RHSKnown(BitWidth);
Craig Topperb0076fe2017-04-12 18:05:21 +0000695
696 // Despite the fact that we can't simplify this instruction in all User's
Craig Topperb45eabc2017-04-26 16:39:58 +0000697 // context, we can at least compute the known bits, and we can
Craig Topperb0076fe2017-04-12 18:05:21 +0000698 // do simplifications that apply to *just* the one user if we know that
699 // this instruction has a simpler value in that context.
Craig Topperf35a7f72017-04-12 18:25:25 +0000700 switch (I->getOpcode()) {
Craig Topper9a458cd2017-04-14 22:34:14 +0000701 case Instruction::And: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000702 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000703 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
704 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000705 CxtI);
706
Craig Topper9a458cd2017-04-14 22:34:14 +0000707 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000708 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000709 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000710 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000711
Craig Topperc75f94b2017-04-12 19:32:47 +0000712 // If the client is only demanding bits that we know, return the known
713 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000714 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000715 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000716
Craig Topperb0076fe2017-04-12 18:05:21 +0000717 // If all of the demanded bits are known 1 on one side, return the other.
718 // These bits cannot contribute to the result of the 'and' in this
719 // context.
Craig Topperb45eabc2017-04-26 16:39:58 +0000720 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
Craig Topperb0076fe2017-04-12 18:05:21 +0000721 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000722 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
Craig Topperb0076fe2017-04-12 18:05:21 +0000723 return I->getOperand(1);
724
Craig Topperb45eabc2017-04-26 16:39:58 +0000725 Known.Zero = std::move(IKnownZero);
726 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000727 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000728 }
729 case Instruction::Or: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000730 // We can simplify (X|Y) -> X or Y in the user's context if we know that
731 // only bits from X or Y are demanded.
732
733 // If either the LHS or the RHS are One, the result is One.
Craig Topperb45eabc2017-04-26 16:39:58 +0000734 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
735 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000736 CxtI);
737
Craig Topper9a458cd2017-04-14 22:34:14 +0000738 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000739 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
Craig Topper9a458cd2017-04-14 22:34:14 +0000740 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000741 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
Craig Topper9a458cd2017-04-14 22:34:14 +0000742
Craig Topperc75f94b2017-04-12 19:32:47 +0000743 // If the client is only demanding bits that we know, return the known
744 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000745 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000746 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000747
Craig Topperb0076fe2017-04-12 18:05:21 +0000748 // If all of the demanded bits are known zero on one side, return the
749 // other. These bits cannot contribute to the result of the 'or' in this
750 // context.
Craig Topperb45eabc2017-04-26 16:39:58 +0000751 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000752 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000753 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000754 return I->getOperand(1);
755
Craig Topperb45eabc2017-04-26 16:39:58 +0000756 Known.Zero = std::move(IKnownZero);
757 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000758 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000759 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000760 case Instruction::Xor: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000761 // We can simplify (X^Y) -> X or Y in the user's context if we know that
762 // only bits from X or Y are demanded.
763
Craig Topperb45eabc2017-04-26 16:39:58 +0000764 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
765 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
Craig Topperb0076fe2017-04-12 18:05:21 +0000766 CxtI);
767
Craig Topperc75f94b2017-04-12 19:32:47 +0000768 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000769 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
770 (RHSKnown.One & LHSKnown.One);
Craig Topperc75f94b2017-04-12 19:32:47 +0000771 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000772 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
773 (RHSKnown.One & LHSKnown.Zero);
Craig Topperc75f94b2017-04-12 19:32:47 +0000774
775 // If the client is only demanding bits that we know, return the known
776 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000777 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topperc75f94b2017-04-12 19:32:47 +0000778 return Constant::getIntegerValue(ITy, IKnownOne);
779
Craig Topperb0076fe2017-04-12 18:05:21 +0000780 // If all of the demanded bits are known zero on one side, return the
781 // other.
Craig Topperb45eabc2017-04-26 16:39:58 +0000782 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000783 return I->getOperand(0);
Craig Topperb45eabc2017-04-26 16:39:58 +0000784 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000785 return I->getOperand(1);
Craig Topperf35a7f72017-04-12 18:25:25 +0000786
Craig Topperc75f94b2017-04-12 19:32:47 +0000787 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000788 Known.Zero = std::move(IKnownZero);
Craig Topperc75f94b2017-04-12 19:32:47 +0000789 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000790 Known.One = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000791 break;
Craig Topperb0076fe2017-04-12 18:05:21 +0000792 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000793 default:
Craig Topperb45eabc2017-04-26 16:39:58 +0000794 // Compute the Known bits to simplify things downstream.
795 computeKnownBits(I, Known, Depth, CxtI);
Craig Topperb0076fe2017-04-12 18:05:21 +0000796
Craig Topperc75f94b2017-04-12 19:32:47 +0000797 // If this user is only demanding bits that we know, return the known
798 // constant.
Craig Topperb45eabc2017-04-26 16:39:58 +0000799 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
800 return Constant::getIntegerValue(ITy, Known.One);
Craig Topper9a51c7f2017-04-12 18:17:46 +0000801
Craig Topperc75f94b2017-04-12 19:32:47 +0000802 break;
803 }
Craig Topper9a51c7f2017-04-12 18:17:46 +0000804
Craig Topperb0076fe2017-04-12 18:05:21 +0000805 return nullptr;
806}
807
808
Shuxin Yang63e999e2012-12-04 00:04:54 +0000809/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
810/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
811/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
812/// of "C2-C1".
813///
814/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
815/// ..., bn}, without considering the specific value X is holding.
816/// This transformation is legal iff one of following conditions is hold:
817/// 1) All the bit in S are 0, in this case E1 == E2.
818/// 2) We don't care those bits in S, per the input DemandedMask.
819/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
820/// rest bits.
821///
822/// Currently we only test condition 2).
823///
824/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
825/// not successful.
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000826Value *
Sanjay Patelcc663b82017-04-20 22:37:01 +0000827InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000828 Instruction *Shl, const APInt &ShlOp1,
829 const APInt &DemandedMask,
Craig Topperb45eabc2017-04-26 16:39:58 +0000830 KnownBits &Known) {
Benjamin Kramer010f1082013-08-30 14:35:35 +0000831 if (!ShlOp1 || !ShrOp1)
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000832 return nullptr; // No-op.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000833
834 Value *VarX = Shr->getOperand(0);
835 Type *Ty = VarX->getType();
Sanjay Patelc9485ca2017-04-20 22:33:54 +0000836 unsigned BitWidth = Ty->getScalarSizeInBits();
Benjamin Kramer010f1082013-08-30 14:35:35 +0000837 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
Craig Topperf40110f2014-04-25 05:29:35 +0000838 return nullptr; // Undef.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000839
840 unsigned ShlAmt = ShlOp1.getZExtValue();
841 unsigned ShrAmt = ShrOp1.getZExtValue();
Shuxin Yang63e999e2012-12-04 00:04:54 +0000842
Craig Topperb45eabc2017-04-26 16:39:58 +0000843 Known.One.clearAllBits();
844 Known.Zero.setLowBits(ShlAmt - 1);
845 Known.Zero &= DemandedMask;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000846
Benjamin Kramer010f1082013-08-30 14:35:35 +0000847 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
848 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
Shuxin Yang63e999e2012-12-04 00:04:54 +0000849
850 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
851 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
852 (BitMask1.ashr(ShrAmt) << ShlAmt);
853
854 if (ShrAmt <= ShlAmt) {
855 BitMask2 <<= (ShlAmt - ShrAmt);
856 } else {
857 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
858 BitMask2.ashr(ShrAmt - ShlAmt);
859 }
860
861 // Check if condition-2 (see the comment to this function) is satified.
862 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
863 if (ShrAmt == ShlAmt)
864 return VarX;
865
866 if (!Shr->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +0000867 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000868
869 BinaryOperator *New;
870 if (ShrAmt < ShlAmt) {
871 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
872 New = BinaryOperator::CreateShl(VarX, Amt);
873 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
874 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
875 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
876 } else {
877 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
Shuxin Yang86c0e232012-12-04 03:28:32 +0000878 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
879 BinaryOperator::CreateAShr(VarX, Amt);
Shuxin Yang81b36782012-12-12 00:29:03 +0000880 if (cast<BinaryOperator>(Shr)->isExact())
881 New->setIsExact(true);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000882 }
883
884 return InsertNewInstWith(New, *Shl);
885 }
886
Craig Topperf40110f2014-04-25 05:29:35 +0000887 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000888}
Chris Lattner7e044912010-01-04 07:17:19 +0000889
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +0000890/// The specified value produces a vector with any number of elements.
891/// DemandedElts contains the set of elements that are actually used by the
892/// caller. This method analyzes which elements of the operand are undef and
893/// returns that information in UndefElts.
Chris Lattner7e044912010-01-04 07:17:19 +0000894///
895/// If the information about demanded elements can be used to simplify the
896/// operation, the operation is simplified, then the resultant value is
897/// returned. This returns null if no change was made.
898Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattnerb22423c2010-02-08 23:56:03 +0000899 APInt &UndefElts,
Chris Lattner7e044912010-01-04 07:17:19 +0000900 unsigned Depth) {
Sanjay Patel9190b4a2016-04-29 20:54:56 +0000901 unsigned VWidth = V->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +0000902 APInt EltMask(APInt::getAllOnesValue(VWidth));
903 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
904
905 if (isa<UndefValue>(V)) {
906 // If the entire vector is undefined, just return this info.
907 UndefElts = EltMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000908 return nullptr;
Chris Lattnerb22423c2010-02-08 23:56:03 +0000909 }
Craig Topper4c947752012-12-22 18:09:02 +0000910
Craig Topper73ba1c82017-06-07 07:40:37 +0000911 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000912 UndefElts = EltMask;
913 return UndefValue::get(V->getType());
914 }
915
916 UndefElts = 0;
Craig Topper4c947752012-12-22 18:09:02 +0000917
Chris Lattner67058832012-01-25 06:48:06 +0000918 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
919 if (Constant *C = dyn_cast<Constant>(V)) {
920 // Check if this is identity. If so, return 0 since we are not simplifying
921 // anything.
922 if (DemandedElts.isAllOnesValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000923 return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +0000924
Chris Lattner229907c2011-07-18 04:54:35 +0000925 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner7e044912010-01-04 07:17:19 +0000926 Constant *Undef = UndefValue::get(EltTy);
Craig Topper4c947752012-12-22 18:09:02 +0000927
Chris Lattner67058832012-01-25 06:48:06 +0000928 SmallVector<Constant*, 16> Elts;
929 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7e044912010-01-04 07:17:19 +0000930 if (!DemandedElts[i]) { // If not demanded, set to undef.
931 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000932 UndefElts.setBit(i);
Chris Lattner67058832012-01-25 06:48:06 +0000933 continue;
934 }
Craig Topper4c947752012-12-22 18:09:02 +0000935
Chris Lattner67058832012-01-25 06:48:06 +0000936 Constant *Elt = C->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000937 if (!Elt) return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000938
Chris Lattner67058832012-01-25 06:48:06 +0000939 if (isa<UndefValue>(Elt)) { // Already undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000940 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000941 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +0000942 } else { // Otherwise, defined.
Chris Lattner67058832012-01-25 06:48:06 +0000943 Elts.push_back(Elt);
Chris Lattner7e044912010-01-04 07:17:19 +0000944 }
Chris Lattner67058832012-01-25 06:48:06 +0000945 }
Craig Topper4c947752012-12-22 18:09:02 +0000946
Chris Lattner7e044912010-01-04 07:17:19 +0000947 // If we changed the constant, return it.
Chris Lattner47a86bd2012-01-25 06:02:56 +0000948 Constant *NewCV = ConstantVector::get(Elts);
Craig Topperf40110f2014-04-25 05:29:35 +0000949 return NewCV != C ? NewCV : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000950 }
Craig Topper4c947752012-12-22 18:09:02 +0000951
Chris Lattner7e044912010-01-04 07:17:19 +0000952 // Limit search depth.
953 if (Depth == 10)
Craig Topperf40110f2014-04-25 05:29:35 +0000954 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000955
Stuart Hastings5bd18b62011-05-17 22:13:31 +0000956 // If multiple users are using the root value, proceed with
Chris Lattner7e044912010-01-04 07:17:19 +0000957 // simplification conservatively assuming that all elements
958 // are needed.
959 if (!V->hasOneUse()) {
960 // Quit if we find multiple users of a non-root value though.
961 // They'll be handled when it's their turn to be visited by
962 // the main instcombine process.
963 if (Depth != 0)
964 // TODO: Just compute the UndefElts information recursively.
Craig Topperf40110f2014-04-25 05:29:35 +0000965 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000966
967 // Conservatively assume that all elements are needed.
968 DemandedElts = EltMask;
969 }
Craig Topper4c947752012-12-22 18:09:02 +0000970
Chris Lattner7e044912010-01-04 07:17:19 +0000971 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000972 if (!I) return nullptr; // Only analyze instructions.
Craig Topper4c947752012-12-22 18:09:02 +0000973
Chris Lattner7e044912010-01-04 07:17:19 +0000974 bool MadeChange = false;
975 APInt UndefElts2(VWidth, 0);
Craig Topper23ebd952016-12-11 08:54:52 +0000976 APInt UndefElts3(VWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +0000977 Value *TmpV;
978 switch (I->getOpcode()) {
979 default: break;
Craig Topper4c947752012-12-22 18:09:02 +0000980
Chris Lattner7e044912010-01-04 07:17:19 +0000981 case Instruction::InsertElement: {
982 // If this is a variable index, we don't know which element it overwrites.
983 // demand exactly the same input as we produce.
984 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +0000985 if (!Idx) {
Chris Lattner7e044912010-01-04 07:17:19 +0000986 // Note that we can't propagate undef elt info, because we don't know
987 // which elt is getting updated.
988 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000989 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +0000990 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
991 break;
992 }
Craig Topper4c947752012-12-22 18:09:02 +0000993
Chris Lattner7e044912010-01-04 07:17:19 +0000994 // If this is inserting an element that isn't demanded, remove this
995 // insertelement.
996 unsigned IdxNo = Idx->getZExtValue();
997 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
998 Worklist.Add(I);
999 return I->getOperand(0);
1000 }
Craig Topper4c947752012-12-22 18:09:02 +00001001
Chris Lattner7e044912010-01-04 07:17:19 +00001002 // Otherwise, the element inserted overwrites whatever was there, so the
1003 // input demanded set is simpler than the output set.
1004 APInt DemandedElts2 = DemandedElts;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001005 DemandedElts2.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001006 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001007 UndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001008 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1009
1010 // The inserted element is defined.
Jay Foad25a5e4c2010-12-01 08:53:58 +00001011 UndefElts.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001012 break;
1013 }
1014 case Instruction::ShuffleVector: {
1015 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Craig Topper2e18bcf2016-12-29 04:24:32 +00001016 unsigned LHSVWidth =
1017 Shuffle->getOperand(0)->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +00001018 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1019 for (unsigned i = 0; i < VWidth; i++) {
1020 if (DemandedElts[i]) {
1021 unsigned MaskVal = Shuffle->getMaskValue(i);
1022 if (MaskVal != -1u) {
1023 assert(MaskVal < LHSVWidth * 2 &&
1024 "shufflevector mask index out of range!");
1025 if (MaskVal < LHSVWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +00001026 LeftDemanded.setBit(MaskVal);
Chris Lattner7e044912010-01-04 07:17:19 +00001027 else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001028 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattner7e044912010-01-04 07:17:19 +00001029 }
1030 }
1031 }
1032
Alexey Bataevfee90782016-09-23 09:14:08 +00001033 APInt LHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001034 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001035 LHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001036 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1037
Alexey Bataevfee90782016-09-23 09:14:08 +00001038 APInt RHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001039 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001040 RHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001041 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1042
1043 bool NewUndefElts = false;
Alexey Bataev793c9462016-09-26 13:18:59 +00001044 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1045 unsigned RHSIdx = -1u, RHSValIdx = -1u;
Alexey Bataevfee90782016-09-23 09:14:08 +00001046 bool LHSUniform = true;
1047 bool RHSUniform = true;
Chris Lattner7e044912010-01-04 07:17:19 +00001048 for (unsigned i = 0; i < VWidth; i++) {
1049 unsigned MaskVal = Shuffle->getMaskValue(i);
1050 if (MaskVal == -1u) {
Jay Foad25a5e4c2010-12-01 08:53:58 +00001051 UndefElts.setBit(i);
Eli Friedman888bea02011-09-15 01:14:29 +00001052 } else if (!DemandedElts[i]) {
1053 NewUndefElts = true;
1054 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +00001055 } else if (MaskVal < LHSVWidth) {
Alexey Bataevfee90782016-09-23 09:14:08 +00001056 if (LHSUndefElts[MaskVal]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001057 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001058 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001059 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001060 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1061 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001062 LHSUniform = LHSUniform && (MaskVal == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001063 }
1064 } else {
Alexey Bataevfee90782016-09-23 09:14:08 +00001065 if (RHSUndefElts[MaskVal - LHSVWidth]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001066 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001067 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001068 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001069 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1070 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001071 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001072 }
1073 }
1074 }
1075
Alexey Bataevfee90782016-09-23 09:14:08 +00001076 // Try to transform shuffle with constant vector and single element from
1077 // this constant vector to single insertelement instruction.
1078 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1079 // insertelement V, C[ci], ci-n
1080 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1081 Value *Op = nullptr;
1082 Constant *Value = nullptr;
1083 unsigned Idx = -1u;
1084
Craig Topper62f06e22016-12-29 05:38:31 +00001085 // Find constant vector with the single element in shuffle (LHS or RHS).
Alexey Bataevfee90782016-09-23 09:14:08 +00001086 if (LHSIdx < LHSVWidth && RHSUniform) {
1087 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1088 Op = Shuffle->getOperand(1);
Alexey Bataev793c9462016-09-26 13:18:59 +00001089 Value = CV->getOperand(LHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001090 Idx = LHSIdx;
1091 }
1092 }
1093 if (RHSIdx < LHSVWidth && LHSUniform) {
1094 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1095 Op = Shuffle->getOperand(0);
Alexey Bataev793c9462016-09-26 13:18:59 +00001096 Value = CV->getOperand(RHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001097 Idx = RHSIdx;
1098 }
1099 }
1100 // Found constant vector with single element - convert to insertelement.
1101 if (Op && Value) {
1102 Instruction *New = InsertElementInst::Create(
1103 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1104 Shuffle->getName());
1105 InsertNewInstWith(New, *Shuffle);
1106 return New;
1107 }
1108 }
Chris Lattner7e044912010-01-04 07:17:19 +00001109 if (NewUndefElts) {
1110 // Add additional discovered undefs.
Chris Lattner0256be92012-01-27 03:08:05 +00001111 SmallVector<Constant*, 16> Elts;
Chris Lattner7e044912010-01-04 07:17:19 +00001112 for (unsigned i = 0; i < VWidth; ++i) {
1113 if (UndefElts[i])
1114 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1115 else
1116 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1117 Shuffle->getMaskValue(i)));
1118 }
1119 I->setOperand(2, ConstantVector::get(Elts));
1120 MadeChange = true;
1121 }
1122 break;
1123 }
Pete Cooperabc13af2012-07-26 23:10:24 +00001124 case Instruction::Select: {
1125 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1126 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1127 for (unsigned i = 0; i < VWidth; i++) {
Andrea Di Biagio40f59e42015-10-06 10:34:53 +00001128 Constant *CElt = CV->getAggregateElement(i);
1129 // Method isNullValue always returns false when called on a
1130 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1131 // to avoid propagating incorrect information.
1132 if (isa<ConstantExpr>(CElt))
1133 continue;
1134 if (CElt->isNullValue())
Pete Cooperabc13af2012-07-26 23:10:24 +00001135 LeftDemanded.clearBit(i);
1136 else
1137 RightDemanded.clearBit(i);
1138 }
1139 }
1140
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001141 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1142 Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001143 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1144
1145 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001146 UndefElts2, Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001147 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001148
Pete Cooperabc13af2012-07-26 23:10:24 +00001149 // Output elements are undefined if both are undefined.
1150 UndefElts &= UndefElts2;
1151 break;
1152 }
Chris Lattner7e044912010-01-04 07:17:19 +00001153 case Instruction::BitCast: {
1154 // Vector->vector casts only.
Chris Lattner229907c2011-07-18 04:54:35 +00001155 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattner7e044912010-01-04 07:17:19 +00001156 if (!VTy) break;
1157 unsigned InVWidth = VTy->getNumElements();
1158 APInt InputDemandedElts(InVWidth, 0);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001159 UndefElts2 = APInt(InVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001160 unsigned Ratio;
1161
1162 if (VWidth == InVWidth) {
1163 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1164 // elements as are demanded of us.
1165 Ratio = 1;
1166 InputDemandedElts = DemandedElts;
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001167 } else if ((VWidth % InVWidth) == 0) {
1168 // If the number of elements in the output is a multiple of the number of
1169 // elements in the input then an input element is live if any of the
1170 // corresponding output elements are live.
1171 Ratio = VWidth / InVWidth;
1172 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Chris Lattner7e044912010-01-04 07:17:19 +00001173 if (DemandedElts[OutIdx])
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001174 InputDemandedElts.setBit(OutIdx / Ratio);
1175 } else if ((InVWidth % VWidth) == 0) {
1176 // If the number of elements in the input is a multiple of the number of
1177 // elements in the output then an input element is live if the
1178 // corresponding output element is live.
1179 Ratio = InVWidth / VWidth;
Chris Lattner7e044912010-01-04 07:17:19 +00001180 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001181 if (DemandedElts[InIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001182 InputDemandedElts.setBit(InIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001183 } else {
1184 // Unsupported so far.
1185 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001186 }
Craig Topper4c947752012-12-22 18:09:02 +00001187
Chris Lattner7e044912010-01-04 07:17:19 +00001188 // div/rem demand all inputs, because they don't want divide by zero.
1189 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001190 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001191 if (TmpV) {
1192 I->setOperand(0, TmpV);
1193 MadeChange = true;
1194 }
Craig Topper4c947752012-12-22 18:09:02 +00001195
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001196 if (VWidth == InVWidth) {
1197 UndefElts = UndefElts2;
1198 } else if ((VWidth % InVWidth) == 0) {
1199 // If the number of elements in the output is a multiple of the number of
1200 // elements in the input then an output element is undef if the
1201 // corresponding input element is undef.
Chris Lattner7e044912010-01-04 07:17:19 +00001202 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001203 if (UndefElts2[OutIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001204 UndefElts.setBit(OutIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001205 } else if ((InVWidth % VWidth) == 0) {
1206 // If the number of elements in the input is a multiple of the number of
1207 // elements in the output then an output element is undef if all of the
1208 // corresponding input elements are undef.
1209 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1210 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1211 if (SubUndef.countPopulation() == Ratio)
1212 UndefElts.setBit(OutIdx);
1213 }
1214 } else {
Chris Lattner7e044912010-01-04 07:17:19 +00001215 llvm_unreachable("Unimp");
Chris Lattner7e044912010-01-04 07:17:19 +00001216 }
1217 break;
1218 }
1219 case Instruction::And:
1220 case Instruction::Or:
1221 case Instruction::Xor:
1222 case Instruction::Add:
1223 case Instruction::Sub:
1224 case Instruction::Mul:
1225 // div/rem demand all inputs, because they don't want divide by zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001226 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1227 Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001228 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1229 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001230 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001231 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001232
Chris Lattner7e044912010-01-04 07:17:19 +00001233 // Output elements are undefined if both are undefined. Consider things
1234 // like undef&0. The result is known zero, not undef.
1235 UndefElts &= UndefElts2;
1236 break;
Pete Coopere807e452012-07-26 22:37:04 +00001237 case Instruction::FPTrunc:
1238 case Instruction::FPExt:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001239 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1240 Depth + 1);
Pete Coopere807e452012-07-26 22:37:04 +00001241 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1242 break;
Craig Topper4c947752012-12-22 18:09:02 +00001243
Chris Lattner7e044912010-01-04 07:17:19 +00001244 case Instruction::Call: {
1245 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1246 if (!II) break;
1247 switch (II->getIntrinsicID()) {
1248 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001249
Craig Topper7fc6d342016-12-11 22:32:38 +00001250 case Intrinsic::x86_xop_vfrcz_ss:
1251 case Intrinsic::x86_xop_vfrcz_sd:
1252 // The instructions for these intrinsics are speced to zero upper bits not
1253 // pass them through like other scalar intrinsics. So we shouldn't just
1254 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1255 // Instead we should return a zero vector.
Craig Topper1a8a3372016-12-29 03:30:17 +00001256 if (!DemandedElts[0]) {
1257 Worklist.Add(II);
Craig Topper7fc6d342016-12-11 22:32:38 +00001258 return ConstantAggregateZero::get(II->getType());
Craig Topper1a8a3372016-12-29 03:30:17 +00001259 }
Craig Topper7fc6d342016-12-11 22:32:38 +00001260
Craig Topperac75bca2016-12-13 07:45:45 +00001261 // Only the lower element is used.
1262 DemandedElts = 1;
Craig Topper7fc6d342016-12-11 22:32:38 +00001263 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1264 UndefElts, Depth + 1);
1265 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperac75bca2016-12-13 07:45:45 +00001266
1267 // Only the lower element is undefined. The high elements are zero.
1268 UndefElts = UndefElts[0];
Craig Topper7fc6d342016-12-11 22:32:38 +00001269 break;
1270
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001271 // Unary scalar-as-vector operations that work column-wise.
Simon Pilgrim83020942016-04-24 18:23:14 +00001272 case Intrinsic::x86_sse_rcp_ss:
1273 case Intrinsic::x86_sse_rsqrt_ss:
1274 case Intrinsic::x86_sse_sqrt_ss:
1275 case Intrinsic::x86_sse2_sqrt_sd:
Simon Pilgrim83020942016-04-24 18:23:14 +00001276 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1277 UndefElts, Depth + 1);
1278 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1279
1280 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001281 if (!DemandedElts[0]) {
1282 Worklist.Add(II);
Simon Pilgrim83020942016-04-24 18:23:14 +00001283 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001284 }
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001285 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1286 // checks).
Simon Pilgrim83020942016-04-24 18:23:14 +00001287 break;
1288
Craig Toppera0372de2016-12-14 03:17:27 +00001289 // Binary scalar-as-vector operations that work column-wise. The high
1290 // elements come from operand 0. The low element is a function of both
1291 // operands.
Chris Lattner7e044912010-01-04 07:17:19 +00001292 case Intrinsic::x86_sse_min_ss:
1293 case Intrinsic::x86_sse_max_ss:
Simon Pilgrim83020942016-04-24 18:23:14 +00001294 case Intrinsic::x86_sse_cmp_ss:
Chris Lattner7e044912010-01-04 07:17:19 +00001295 case Intrinsic::x86_sse2_min_sd:
1296 case Intrinsic::x86_sse2_max_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00001297 case Intrinsic::x86_sse2_cmp_sd: {
1298 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1299 UndefElts, Depth + 1);
1300 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1301
1302 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001303 if (!DemandedElts[0]) {
1304 Worklist.Add(II);
Craig Toppera0372de2016-12-14 03:17:27 +00001305 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001306 }
Craig Toppera0372de2016-12-14 03:17:27 +00001307
1308 // Only lower element is used for operand 1.
1309 DemandedElts = 1;
1310 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1311 UndefElts2, Depth + 1);
1312 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1313
1314 // Lower element is undefined if both lower elements are undefined.
1315 // Consider things like undef&0. The result is known zero, not undef.
1316 if (!UndefElts2[0])
1317 UndefElts.clearBit(0);
1318
1319 break;
1320 }
1321
Craig Toppereb6a20e2016-12-14 03:17:30 +00001322 // Binary scalar-as-vector operations that work column-wise. The high
1323 // elements come from operand 0 and the low element comes from operand 1.
Simon Pilgrim83020942016-04-24 18:23:14 +00001324 case Intrinsic::x86_sse41_round_ss:
Craig Toppereb6a20e2016-12-14 03:17:30 +00001325 case Intrinsic::x86_sse41_round_sd: {
1326 // Don't use the low element of operand 0.
1327 APInt DemandedElts2 = DemandedElts;
1328 DemandedElts2.clearBit(0);
1329 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001330 UndefElts, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001331 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001332
1333 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001334 if (!DemandedElts[0]) {
1335 Worklist.Add(II);
Craig Toppereb6a20e2016-12-14 03:17:30 +00001336 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001337 }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001338
1339 // Only lower element is used for operand 1.
1340 DemandedElts = 1;
Gabor Greife23efee2010-06-28 16:45:00 +00001341 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001342 UndefElts2, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001343 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattner7e044912010-01-04 07:17:19 +00001344
Craig Toppereb6a20e2016-12-14 03:17:30 +00001345 // Take the high undef elements from operand 0 and take the lower element
1346 // from operand 1.
1347 UndefElts.clearBit(0);
1348 UndefElts |= UndefElts2[0];
Chris Lattner7e044912010-01-04 07:17:19 +00001349 break;
Craig Toppereb6a20e2016-12-14 03:17:30 +00001350 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001351
Craig Topperdfd268d2016-12-14 05:43:05 +00001352 // Three input scalar-as-vector operations that work column-wise. The high
1353 // elements come from operand 0 and the low element is a function of all
1354 // three inputs.
Craig Topper268b3ab2016-12-14 06:06:58 +00001355 case Intrinsic::x86_avx512_mask_add_ss_round:
1356 case Intrinsic::x86_avx512_mask_div_ss_round:
1357 case Intrinsic::x86_avx512_mask_mul_ss_round:
1358 case Intrinsic::x86_avx512_mask_sub_ss_round:
1359 case Intrinsic::x86_avx512_mask_max_ss_round:
1360 case Intrinsic::x86_avx512_mask_min_ss_round:
1361 case Intrinsic::x86_avx512_mask_add_sd_round:
1362 case Intrinsic::x86_avx512_mask_div_sd_round:
1363 case Intrinsic::x86_avx512_mask_mul_sd_round:
1364 case Intrinsic::x86_avx512_mask_sub_sd_round:
1365 case Intrinsic::x86_avx512_mask_max_sd_round:
1366 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topper23ebd952016-12-11 08:54:52 +00001367 case Intrinsic::x86_fma_vfmadd_ss:
1368 case Intrinsic::x86_fma_vfmsub_ss:
1369 case Intrinsic::x86_fma_vfnmadd_ss:
1370 case Intrinsic::x86_fma_vfnmsub_ss:
1371 case Intrinsic::x86_fma_vfmadd_sd:
1372 case Intrinsic::x86_fma_vfmsub_sd:
1373 case Intrinsic::x86_fma_vfnmadd_sd:
1374 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Topperab5f3552016-12-15 03:49:45 +00001375 case Intrinsic::x86_avx512_mask_vfmadd_ss:
1376 case Intrinsic::x86_avx512_mask_vfmadd_sd:
1377 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1378 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
Craig Topper23ebd952016-12-11 08:54:52 +00001379 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1380 UndefElts, Depth + 1);
1381 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperdfd268d2016-12-14 05:43:05 +00001382
1383 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001384 if (!DemandedElts[0]) {
1385 Worklist.Add(II);
Craig Topperdfd268d2016-12-14 05:43:05 +00001386 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001387 }
Craig Topperdfd268d2016-12-14 05:43:05 +00001388
1389 // Only lower element is used for operand 1 and 2.
1390 DemandedElts = 1;
Craig Topper23ebd952016-12-11 08:54:52 +00001391 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1392 UndefElts2, Depth + 1);
1393 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1394 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1395 UndefElts3, Depth + 1);
1396 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1397
Craig Topperdfd268d2016-12-14 05:43:05 +00001398 // Lower element is undefined if all three lower elements are undefined.
1399 // Consider things like undef&0. The result is known zero, not undef.
1400 if (!UndefElts2[0] || !UndefElts3[0])
1401 UndefElts.clearBit(0);
Craig Topper23ebd952016-12-11 08:54:52 +00001402
Craig Topper23ebd952016-12-11 08:54:52 +00001403 break;
1404
Craig Topperab5f3552016-12-15 03:49:45 +00001405 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1406 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1407 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1408 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1409 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1410 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1411 // These intrinsics get the passthru bits from operand 2.
1412 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1413 UndefElts, Depth + 1);
1414 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1415
1416 // If lowest element of a scalar op isn't used then use Arg2.
Craig Topper1a8a3372016-12-29 03:30:17 +00001417 if (!DemandedElts[0]) {
1418 Worklist.Add(II);
Craig Topperab5f3552016-12-15 03:49:45 +00001419 return II->getArgOperand(2);
Craig Topper1a8a3372016-12-29 03:30:17 +00001420 }
Craig Topperab5f3552016-12-15 03:49:45 +00001421
1422 // Only lower element is used for operand 0 and 1.
1423 DemandedElts = 1;
1424 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1425 UndefElts2, Depth + 1);
1426 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1427 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1428 UndefElts3, Depth + 1);
1429 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1430
1431 // Lower element is undefined if all three lower elements are undefined.
1432 // Consider things like undef&0. The result is known zero, not undef.
1433 if (!UndefElts2[0] || !UndefElts3[0])
1434 UndefElts.clearBit(0);
1435
1436 break;
1437
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001438 case Intrinsic::x86_sse2_pmulu_dq:
1439 case Intrinsic::x86_sse41_pmuldq:
1440 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00001441 case Intrinsic::x86_avx2_pmulu_dq:
1442 case Intrinsic::x86_avx512_pmul_dq_512:
1443 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001444 Value *Op0 = II->getArgOperand(0);
1445 Value *Op1 = II->getArgOperand(1);
1446 unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1447 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1448
1449 APInt InnerDemandedElts(InnerVWidth, 0);
1450 for (unsigned i = 0; i != VWidth; ++i)
1451 if (DemandedElts[i])
1452 InnerDemandedElts.setBit(i * 2);
1453
1454 UndefElts2 = APInt(InnerVWidth, 0);
1455 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1456 Depth + 1);
1457 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1458
1459 UndefElts3 = APInt(InnerVWidth, 0);
1460 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1461 Depth + 1);
1462 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1463
1464 break;
1465 }
1466
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001467 case Intrinsic::x86_sse2_packssdw_128:
1468 case Intrinsic::x86_sse2_packsswb_128:
1469 case Intrinsic::x86_sse2_packuswb_128:
1470 case Intrinsic::x86_sse41_packusdw:
1471 case Intrinsic::x86_avx2_packssdw:
1472 case Intrinsic::x86_avx2_packsswb:
1473 case Intrinsic::x86_avx2_packusdw:
Craig Topper3731f4d2017-02-16 07:35:23 +00001474 case Intrinsic::x86_avx2_packuswb:
1475 case Intrinsic::x86_avx512_packssdw_512:
1476 case Intrinsic::x86_avx512_packsswb_512:
1477 case Intrinsic::x86_avx512_packusdw_512:
1478 case Intrinsic::x86_avx512_packuswb_512: {
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001479 auto *Ty0 = II->getArgOperand(0)->getType();
1480 unsigned InnerVWidth = Ty0->getVectorNumElements();
1481 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1482
1483 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1484 unsigned VWidthPerLane = VWidth / NumLanes;
1485 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1486
1487 // Per lane, pack the elements of the first input and then the second.
1488 // e.g.
1489 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1490 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1491 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1492 APInt OpDemandedElts(InnerVWidth, 0);
1493 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1494 unsigned LaneIdx = Lane * VWidthPerLane;
1495 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1496 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1497 if (DemandedElts[Idx])
1498 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1499 }
1500 }
1501
1502 // Demand elements from the operand.
1503 auto *Op = II->getArgOperand(OpNum);
1504 APInt OpUndefElts(InnerVWidth, 0);
1505 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1506 Depth + 1);
1507 if (TmpV) {
1508 II->setArgOperand(OpNum, TmpV);
1509 MadeChange = true;
1510 }
1511
1512 // Pack the operand's UNDEF elements, one lane at a time.
1513 OpUndefElts = OpUndefElts.zext(VWidth);
1514 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1515 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1516 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
Craig Topper24e71012017-04-28 03:36:24 +00001517 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001518 UndefElts |= LaneElts;
1519 }
1520 }
1521 break;
1522 }
1523
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001524 // PSHUFB
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001525 case Intrinsic::x86_ssse3_pshuf_b_128:
1526 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001527 case Intrinsic::x86_avx512_pshuf_b_512:
1528 // PERMILVAR
1529 case Intrinsic::x86_avx_vpermilvar_ps:
1530 case Intrinsic::x86_avx_vpermilvar_ps_256:
1531 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1532 case Intrinsic::x86_avx_vpermilvar_pd:
1533 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrimfe2c0ed2017-01-18 14:47:49 +00001534 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1535 // PERMV
1536 case Intrinsic::x86_avx2_permd:
1537 case Intrinsic::x86_avx2_permps: {
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001538 Value *Op1 = II->getArgOperand(1);
1539 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1540 Depth + 1);
1541 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1542 break;
1543 }
1544
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001545 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1546 // in an undefined state.
1547 case Intrinsic::x86_sse4a_extrq:
1548 case Intrinsic::x86_sse4a_extrqi:
1549 case Intrinsic::x86_sse4a_insertq:
1550 case Intrinsic::x86_sse4a_insertqi:
Craig Topper3a86a042017-03-19 05:49:16 +00001551 UndefElts.setHighBits(VWidth / 2);
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001552 break;
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001553 case Intrinsic::amdgcn_buffer_load:
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001554 case Intrinsic::amdgcn_buffer_load_format:
1555 case Intrinsic::amdgcn_image_sample:
1556 case Intrinsic::amdgcn_image_sample_cl:
1557 case Intrinsic::amdgcn_image_sample_d:
1558 case Intrinsic::amdgcn_image_sample_d_cl:
1559 case Intrinsic::amdgcn_image_sample_l:
1560 case Intrinsic::amdgcn_image_sample_b:
1561 case Intrinsic::amdgcn_image_sample_b_cl:
1562 case Intrinsic::amdgcn_image_sample_lz:
1563 case Intrinsic::amdgcn_image_sample_cd:
1564 case Intrinsic::amdgcn_image_sample_cd_cl:
1565
1566 case Intrinsic::amdgcn_image_sample_c:
1567 case Intrinsic::amdgcn_image_sample_c_cl:
1568 case Intrinsic::amdgcn_image_sample_c_d:
1569 case Intrinsic::amdgcn_image_sample_c_d_cl:
1570 case Intrinsic::amdgcn_image_sample_c_l:
1571 case Intrinsic::amdgcn_image_sample_c_b:
1572 case Intrinsic::amdgcn_image_sample_c_b_cl:
1573 case Intrinsic::amdgcn_image_sample_c_lz:
1574 case Intrinsic::amdgcn_image_sample_c_cd:
1575 case Intrinsic::amdgcn_image_sample_c_cd_cl:
1576
1577 case Intrinsic::amdgcn_image_sample_o:
1578 case Intrinsic::amdgcn_image_sample_cl_o:
1579 case Intrinsic::amdgcn_image_sample_d_o:
1580 case Intrinsic::amdgcn_image_sample_d_cl_o:
1581 case Intrinsic::amdgcn_image_sample_l_o:
1582 case Intrinsic::amdgcn_image_sample_b_o:
1583 case Intrinsic::amdgcn_image_sample_b_cl_o:
1584 case Intrinsic::amdgcn_image_sample_lz_o:
1585 case Intrinsic::amdgcn_image_sample_cd_o:
1586 case Intrinsic::amdgcn_image_sample_cd_cl_o:
1587
1588 case Intrinsic::amdgcn_image_sample_c_o:
1589 case Intrinsic::amdgcn_image_sample_c_cl_o:
1590 case Intrinsic::amdgcn_image_sample_c_d_o:
1591 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
1592 case Intrinsic::amdgcn_image_sample_c_l_o:
1593 case Intrinsic::amdgcn_image_sample_c_b_o:
1594 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
1595 case Intrinsic::amdgcn_image_sample_c_lz_o:
1596 case Intrinsic::amdgcn_image_sample_c_cd_o:
1597 case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
1598
1599 case Intrinsic::amdgcn_image_getlod: {
Craig Topperd33ee1b2017-04-03 16:34:59 +00001600 if (VWidth == 1 || !DemandedElts.isMask())
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001601 return nullptr;
1602
1603 // TODO: Handle 3 vectors when supported in code gen.
1604 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1605 if (NewNumElts == VWidth)
1606 return nullptr;
1607
1608 Module *M = II->getParent()->getParent()->getParent();
1609 Type *EltTy = V->getType()->getVectorElementType();
1610
1611 Type *NewTy = (NewNumElts == 1) ? EltTy :
1612 VectorType::get(EltTy, NewNumElts);
1613
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001614 auto IID = II->getIntrinsicID();
1615
1616 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
1617 IID == Intrinsic::amdgcn_buffer_load_format;
1618
1619 Function *NewIntrin = IsBuffer ?
1620 Intrinsic::getDeclaration(M, IID, NewTy) :
1621 // Samplers have 3 mangled types.
1622 Intrinsic::getDeclaration(M, IID,
1623 { NewTy, II->getArgOperand(0)->getType(),
1624 II->getArgOperand(1)->getType()});
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001625
1626 SmallVector<Value *, 5> Args;
1627 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1628 Args.push_back(II->getArgOperand(I));
1629
Matt Arsenaulta3bdd8f2017-03-10 05:25:49 +00001630 IRBuilderBase::InsertPointGuard Guard(*Builder);
1631 Builder->SetInsertPoint(II);
1632
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001633 CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
1634 NewCall->takeName(II);
1635 NewCall->copyMetadata(*II);
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001636
1637 if (!IsBuffer) {
1638 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
1639 if (DMask) {
1640 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1641
1642 unsigned PopCnt = 0;
1643 unsigned NewDMask = 0;
1644 for (unsigned I = 0; I < 4; ++I) {
1645 const unsigned Bit = 1 << I;
1646 if (!!(DMaskVal & Bit)) {
1647 if (++PopCnt > NewNumElts)
1648 break;
1649
1650 NewDMask |= Bit;
1651 }
1652 }
1653
1654 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
1655 }
1656 }
1657
1658
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001659 if (NewNumElts == 1) {
1660 return Builder->CreateInsertElement(UndefValue::get(V->getType()),
1661 NewCall, static_cast<uint64_t>(0));
1662 }
1663
1664 SmallVector<uint32_t, 8> EltMask;
1665 for (unsigned I = 0; I < VWidth; ++I)
1666 EltMask.push_back(I);
1667
1668 Value *Shuffle = Builder->CreateShuffleVector(
1669 NewCall, UndefValue::get(NewTy), EltMask);
1670
1671 MadeChange = true;
1672 return Shuffle;
1673 }
Chris Lattner7e044912010-01-04 07:17:19 +00001674 }
1675 break;
1676 }
1677 }
Craig Topperf40110f2014-04-25 05:29:35 +00001678 return MadeChange ? I : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001679}