Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1 | //===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This file implements the new LLVM's Global Value Numbering pass. |
| 11 | /// GVN partitions values computed by a function into congruence classes. |
| 12 | /// Values ending up in the same congruence class are guaranteed to be the same |
| 13 | /// for every execution of the program. In that respect, congruency is a |
| 14 | /// compile-time approximation of equivalence of values at runtime. |
| 15 | /// The algorithm implemented here uses a sparse formulation and it's based |
| 16 | /// on the ideas described in the paper: |
| 17 | /// "A Sparse Algorithm for Predicated Global Value Numbering" from |
| 18 | /// Karthik Gargi. |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "llvm/Transforms/Scalar/NewGVN.h" |
| 23 | #include "llvm/ADT/BitVector.h" |
| 24 | #include "llvm/ADT/DenseMap.h" |
| 25 | #include "llvm/ADT/DenseSet.h" |
| 26 | #include "llvm/ADT/DepthFirstIterator.h" |
| 27 | #include "llvm/ADT/Hashing.h" |
| 28 | #include "llvm/ADT/MapVector.h" |
| 29 | #include "llvm/ADT/PostOrderIterator.h" |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 30 | #include "llvm/ADT/STLExtras.h" |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 31 | #include "llvm/ADT/SmallPtrSet.h" |
| 32 | #include "llvm/ADT/SmallSet.h" |
| 33 | #include "llvm/ADT/SparseBitVector.h" |
| 34 | #include "llvm/ADT/Statistic.h" |
| 35 | #include "llvm/ADT/TinyPtrVector.h" |
| 36 | #include "llvm/Analysis/AliasAnalysis.h" |
| 37 | #include "llvm/Analysis/AssumptionCache.h" |
| 38 | #include "llvm/Analysis/CFG.h" |
| 39 | #include "llvm/Analysis/CFGPrinter.h" |
| 40 | #include "llvm/Analysis/ConstantFolding.h" |
| 41 | #include "llvm/Analysis/GlobalsModRef.h" |
| 42 | #include "llvm/Analysis/InstructionSimplify.h" |
| 43 | #include "llvm/Analysis/Loads.h" |
| 44 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 45 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| 46 | #include "llvm/Analysis/MemoryLocation.h" |
| 47 | #include "llvm/Analysis/PHITransAddr.h" |
| 48 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 49 | #include "llvm/Analysis/ValueTracking.h" |
| 50 | #include "llvm/IR/DataLayout.h" |
| 51 | #include "llvm/IR/Dominators.h" |
| 52 | #include "llvm/IR/GlobalVariable.h" |
| 53 | #include "llvm/IR/IRBuilder.h" |
| 54 | #include "llvm/IR/IntrinsicInst.h" |
| 55 | #include "llvm/IR/LLVMContext.h" |
| 56 | #include "llvm/IR/Metadata.h" |
| 57 | #include "llvm/IR/PatternMatch.h" |
| 58 | #include "llvm/IR/PredIteratorCache.h" |
| 59 | #include "llvm/IR/Type.h" |
| 60 | #include "llvm/Support/Allocator.h" |
| 61 | #include "llvm/Support/CommandLine.h" |
| 62 | #include "llvm/Support/Debug.h" |
| 63 | #include "llvm/Transforms/Scalar.h" |
| 64 | #include "llvm/Transforms/Scalar/GVNExpression.h" |
| 65 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 66 | #include "llvm/Transforms/Utils/Local.h" |
| 67 | #include "llvm/Transforms/Utils/MemorySSA.h" |
| 68 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 69 | #include <unordered_map> |
| 70 | #include <utility> |
| 71 | #include <vector> |
| 72 | using namespace llvm; |
| 73 | using namespace PatternMatch; |
| 74 | using namespace llvm::GVNExpression; |
| 75 | |
| 76 | #define DEBUG_TYPE "newgvn" |
| 77 | |
| 78 | STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); |
| 79 | STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); |
| 80 | STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); |
| 81 | STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); |
| 82 | |
| 83 | //===----------------------------------------------------------------------===// |
| 84 | // GVN Pass |
| 85 | //===----------------------------------------------------------------------===// |
| 86 | |
| 87 | // Anchor methods. |
| 88 | namespace llvm { |
| 89 | namespace GVNExpression { |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 90 | Expression::~Expression() = default; |
| 91 | BasicExpression::~BasicExpression() = default; |
| 92 | CallExpression::~CallExpression() = default; |
| 93 | LoadExpression::~LoadExpression() = default; |
| 94 | StoreExpression::~StoreExpression() = default; |
| 95 | AggregateValueExpression::~AggregateValueExpression() = default; |
| 96 | PHIExpression::~PHIExpression() = default; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 97 | } |
| 98 | } |
| 99 | |
| 100 | // Congruence classes represent the set of expressions/instructions |
| 101 | // that are all the same *during some scope in the function*. |
| 102 | // That is, because of the way we perform equality propagation, and |
| 103 | // because of memory value numbering, it is not correct to assume |
| 104 | // you can willy-nilly replace any member with any other at any |
| 105 | // point in the function. |
| 106 | // |
| 107 | // For any Value in the Member set, it is valid to replace any dominated member |
| 108 | // with that Value. |
| 109 | // |
| 110 | // Every congruence class has a leader, and the leader is used to |
| 111 | // symbolize instructions in a canonical way (IE every operand of an |
| 112 | // instruction that is a member of the same congruence class will |
| 113 | // always be replaced with leader during symbolization). |
| 114 | // To simplify symbolization, we keep the leader as a constant if class can be |
| 115 | // proved to be a constant value. |
| 116 | // Otherwise, the leader is a randomly chosen member of the value set, it does |
| 117 | // not matter which one is chosen. |
| 118 | // Each congruence class also has a defining expression, |
| 119 | // though the expression may be null. If it exists, it can be used for forward |
| 120 | // propagation and reassociation of values. |
| 121 | // |
| 122 | struct CongruenceClass { |
Piotr Padlewski | e4047b8 | 2016-12-28 19:29:26 +0000 | [diff] [blame] | 123 | using MemberSet = SmallPtrSet<Value *, 4>; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 124 | unsigned ID; |
| 125 | // Representative leader. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 126 | Value *RepLeader = nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 127 | // Defining Expression. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 128 | const Expression *DefiningExpr = nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 129 | // Actual members of this class. |
| 130 | MemberSet Members; |
| 131 | |
| 132 | // True if this class has no members left. This is mainly used for assertion |
| 133 | // purposes, and for skipping empty classes. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 134 | bool Dead = false; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 135 | |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 136 | explicit CongruenceClass(unsigned ID) : ID(ID) {} |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 137 | CongruenceClass(unsigned ID, Value *Leader, const Expression *E) |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 138 | : ID(ID), RepLeader(Leader), DefiningExpr(E) {} |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 139 | }; |
| 140 | |
| 141 | namespace llvm { |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 142 | template <> struct DenseMapInfo<const Expression *> { |
| 143 | static const Expression *getEmptyKey() { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 144 | auto Val = static_cast<uintptr_t>(-1); |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 145 | Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; |
| 146 | return reinterpret_cast<const Expression *>(Val); |
| 147 | } |
| 148 | static const Expression *getTombstoneKey() { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 149 | auto Val = static_cast<uintptr_t>(~1U); |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 150 | Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; |
| 151 | return reinterpret_cast<const Expression *>(Val); |
| 152 | } |
| 153 | static unsigned getHashValue(const Expression *V) { |
| 154 | return static_cast<unsigned>(V->getHashValue()); |
| 155 | } |
| 156 | static bool isEqual(const Expression *LHS, const Expression *RHS) { |
| 157 | if (LHS == RHS) |
| 158 | return true; |
| 159 | if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || |
| 160 | LHS == getEmptyKey() || RHS == getEmptyKey()) |
| 161 | return false; |
| 162 | return *LHS == *RHS; |
| 163 | } |
| 164 | }; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 165 | } // end namespace llvm |
| 166 | |
| 167 | class NewGVN : public FunctionPass { |
| 168 | DominatorTree *DT; |
| 169 | const DataLayout *DL; |
| 170 | const TargetLibraryInfo *TLI; |
| 171 | AssumptionCache *AC; |
| 172 | AliasAnalysis *AA; |
| 173 | MemorySSA *MSSA; |
| 174 | MemorySSAWalker *MSSAWalker; |
| 175 | BumpPtrAllocator ExpressionAllocator; |
| 176 | ArrayRecycler<Value *> ArgRecycler; |
| 177 | |
| 178 | // Congruence class info. |
| 179 | CongruenceClass *InitialClass; |
| 180 | std::vector<CongruenceClass *> CongruenceClasses; |
| 181 | unsigned NextCongruenceNum; |
| 182 | |
| 183 | // Value Mappings. |
| 184 | DenseMap<Value *, CongruenceClass *> ValueToClass; |
| 185 | DenseMap<Value *, const Expression *> ValueToExpression; |
| 186 | |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 187 | // A table storing which memorydefs/phis represent a memory state provably |
| 188 | // equivalent to another memory state. |
| 189 | // We could use the congruence class machinery, but the MemoryAccess's are |
| 190 | // abstract memory states, so they can only ever be equivalent to each other, |
| 191 | // and not to constants, etc. |
Daniel Berlin | 7ad1ea0 | 2016-12-29 00:49:32 +0000 | [diff] [blame] | 192 | DenseMap<const MemoryAccess *, MemoryAccess *> MemoryAccessEquiv; |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 193 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 194 | // Expression to class mapping. |
Piotr Padlewski | e4047b8 | 2016-12-28 19:29:26 +0000 | [diff] [blame] | 195 | using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 196 | ExpressionClassMap ExpressionToClass; |
| 197 | |
| 198 | // Which values have changed as a result of leader changes. |
| 199 | SmallPtrSet<Value *, 8> ChangedValues; |
| 200 | |
| 201 | // Reachability info. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 202 | using BlockEdge = BasicBlockEdge; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 203 | DenseSet<BlockEdge> ReachableEdges; |
| 204 | SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; |
| 205 | |
| 206 | // This is a bitvector because, on larger functions, we may have |
| 207 | // thousands of touched instructions at once (entire blocks, |
| 208 | // instructions with hundreds of uses, etc). Even with optimization |
| 209 | // for when we mark whole blocks as touched, when this was a |
| 210 | // SmallPtrSet or DenseSet, for some functions, we spent >20% of all |
| 211 | // the time in GVN just managing this list. The bitvector, on the |
| 212 | // other hand, efficiently supports test/set/clear of both |
| 213 | // individual and ranges, as well as "find next element" This |
| 214 | // enables us to use it as a worklist with essentially 0 cost. |
| 215 | BitVector TouchedInstructions; |
| 216 | |
| 217 | DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; |
| 218 | DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>> |
| 219 | DominatedInstRange; |
| 220 | |
| 221 | #ifndef NDEBUG |
| 222 | // Debugging for how many times each block and instruction got processed. |
| 223 | DenseMap<const Value *, unsigned> ProcessedCount; |
| 224 | #endif |
| 225 | |
| 226 | // DFS info. |
| 227 | DenseMap<const BasicBlock *, std::pair<int, int>> DFSDomMap; |
| 228 | DenseMap<const Value *, unsigned> InstrDFS; |
Daniel Berlin | 1f31fe52 | 2016-12-27 09:20:36 +0000 | [diff] [blame] | 229 | SmallVector<Value *, 32> DFSToInstr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 230 | |
| 231 | // Deletion info. |
| 232 | SmallPtrSet<Instruction *, 8> InstructionsToErase; |
| 233 | |
| 234 | public: |
| 235 | static char ID; // Pass identification, replacement for typeid. |
| 236 | NewGVN() : FunctionPass(ID) { |
| 237 | initializeNewGVNPass(*PassRegistry::getPassRegistry()); |
| 238 | } |
| 239 | |
| 240 | bool runOnFunction(Function &F) override; |
| 241 | bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 242 | TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 243 | |
| 244 | private: |
| 245 | // This transformation requires dominator postdominator info. |
| 246 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 247 | AU.addRequired<AssumptionCacheTracker>(); |
| 248 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 249 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 250 | AU.addRequired<MemorySSAWrapperPass>(); |
| 251 | AU.addRequired<AAResultsWrapperPass>(); |
| 252 | |
| 253 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 254 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 255 | } |
| 256 | |
| 257 | // Expression handling. |
| 258 | const Expression *createExpression(Instruction *, const BasicBlock *); |
| 259 | const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, |
| 260 | const BasicBlock *); |
| 261 | PHIExpression *createPHIExpression(Instruction *); |
| 262 | const VariableExpression *createVariableExpression(Value *); |
| 263 | const ConstantExpression *createConstantExpression(Constant *); |
| 264 | const Expression *createVariableOrConstant(Value *V, const BasicBlock *B); |
| 265 | const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *, |
| 266 | const BasicBlock *); |
| 267 | LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, |
| 268 | MemoryAccess *, const BasicBlock *); |
| 269 | |
| 270 | const CallExpression *createCallExpression(CallInst *, MemoryAccess *, |
| 271 | const BasicBlock *); |
| 272 | const AggregateValueExpression * |
| 273 | createAggregateValueExpression(Instruction *, const BasicBlock *); |
| 274 | bool setBasicExpressionInfo(Instruction *, BasicExpression *, |
| 275 | const BasicBlock *); |
| 276 | |
| 277 | // Congruence class handling. |
| 278 | CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 279 | auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 280 | CongruenceClasses.emplace_back(result); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 281 | return result; |
| 282 | } |
| 283 | |
| 284 | CongruenceClass *createSingletonCongruenceClass(Value *Member) { |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 285 | CongruenceClass *CClass = createCongruenceClass(Member, nullptr); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 286 | CClass->Members.insert(Member); |
| 287 | ValueToClass[Member] = CClass; |
| 288 | return CClass; |
| 289 | } |
| 290 | void initializeCongruenceClasses(Function &F); |
| 291 | |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 292 | // Value number an Instruction or MemoryPhi. |
| 293 | void valueNumberMemoryPhi(MemoryPhi *); |
| 294 | void valueNumberInstruction(Instruction *); |
| 295 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 296 | // Symbolic evaluation. |
| 297 | const Expression *checkSimplificationResults(Expression *, Instruction *, |
| 298 | Value *); |
| 299 | const Expression *performSymbolicEvaluation(Value *, const BasicBlock *); |
| 300 | const Expression *performSymbolicLoadEvaluation(Instruction *, |
| 301 | const BasicBlock *); |
| 302 | const Expression *performSymbolicStoreEvaluation(Instruction *, |
| 303 | const BasicBlock *); |
| 304 | const Expression *performSymbolicCallEvaluation(Instruction *, |
| 305 | const BasicBlock *); |
| 306 | const Expression *performSymbolicPHIEvaluation(Instruction *, |
| 307 | const BasicBlock *); |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 308 | bool setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 309 | const Expression *performSymbolicAggrValueEvaluation(Instruction *, |
| 310 | const BasicBlock *); |
| 311 | |
| 312 | // Congruence finding. |
| 313 | // Templated to allow them to work both on BB's and BB-edges. |
| 314 | template <class T> |
| 315 | Value *lookupOperandLeader(Value *, const User *, const T &) const; |
| 316 | void performCongruenceFinding(Value *, const Expression *); |
| 317 | |
| 318 | // Reachability handling. |
| 319 | void updateReachableEdge(BasicBlock *, BasicBlock *); |
| 320 | void processOutgoingEdges(TerminatorInst *, BasicBlock *); |
Daniel Berlin | 8a6a861 | 2016-12-24 00:04:07 +0000 | [diff] [blame] | 321 | bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 322 | Value *findConditionEquivalence(Value *, BasicBlock *) const; |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 323 | MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 324 | |
| 325 | // Elimination. |
| 326 | struct ValueDFS; |
| 327 | void convertDenseToDFSOrdered(CongruenceClass::MemberSet &, |
| 328 | std::vector<ValueDFS> &); |
| 329 | |
| 330 | bool eliminateInstructions(Function &); |
| 331 | void replaceInstruction(Instruction *, Value *); |
| 332 | void markInstructionForDeletion(Instruction *); |
| 333 | void deleteInstructionsInBlock(BasicBlock *); |
| 334 | |
| 335 | // New instruction creation. |
| 336 | void handleNewInstruction(Instruction *){}; |
| 337 | void markUsersTouched(Value *); |
| 338 | void markMemoryUsersTouched(MemoryAccess *); |
| 339 | |
| 340 | // Utilities. |
| 341 | void cleanupTables(); |
| 342 | std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); |
| 343 | void updateProcessedCount(Value *V); |
| 344 | }; |
| 345 | |
| 346 | char NewGVN::ID = 0; |
| 347 | |
| 348 | // createGVNPass - The public interface to this file. |
| 349 | FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); } |
| 350 | |
Davide Italiano | b111409 | 2016-12-28 13:37:17 +0000 | [diff] [blame] | 351 | template <typename T> |
| 352 | static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { |
| 353 | if ((!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) || |
Daniel Berlin | 7ad1ea0 | 2016-12-29 00:49:32 +0000 | [diff] [blame] | 354 | !LHS.BasicExpression::equals(RHS)) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 355 | return false; |
Daniel Berlin | 7ad1ea0 | 2016-12-29 00:49:32 +0000 | [diff] [blame] | 356 | } else if (const auto *L = dyn_cast<LoadExpression>(&RHS)) { |
Davide Italiano | b111409 | 2016-12-28 13:37:17 +0000 | [diff] [blame] | 357 | if (LHS.getDefiningAccess() != L->getDefiningAccess()) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 358 | return false; |
Daniel Berlin | 7ad1ea0 | 2016-12-29 00:49:32 +0000 | [diff] [blame] | 359 | } else if (const auto *S = dyn_cast<StoreExpression>(&RHS)) { |
Davide Italiano | b111409 | 2016-12-28 13:37:17 +0000 | [diff] [blame] | 360 | if (LHS.getDefiningAccess() != S->getDefiningAccess()) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 361 | return false; |
Daniel Berlin | 7ad1ea0 | 2016-12-29 00:49:32 +0000 | [diff] [blame] | 362 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 363 | return true; |
| 364 | } |
| 365 | |
Davide Italiano | b111409 | 2016-12-28 13:37:17 +0000 | [diff] [blame] | 366 | bool LoadExpression::equals(const Expression &Other) const { |
| 367 | return equalsLoadStoreHelper(*this, Other); |
| 368 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 369 | |
Davide Italiano | b111409 | 2016-12-28 13:37:17 +0000 | [diff] [blame] | 370 | bool StoreExpression::equals(const Expression &Other) const { |
| 371 | return equalsLoadStoreHelper(*this, Other); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 372 | } |
| 373 | |
| 374 | #ifndef NDEBUG |
| 375 | static std::string getBlockName(const BasicBlock *B) { |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 376 | return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 377 | } |
| 378 | #endif |
| 379 | |
| 380 | INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false) |
| 381 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 382 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| 383 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 384 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 385 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 386 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| 387 | INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false) |
| 388 | |
| 389 | PHIExpression *NewGVN::createPHIExpression(Instruction *I) { |
| 390 | BasicBlock *PhiBlock = I->getParent(); |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 391 | auto *PN = cast<PHINode>(I); |
| 392 | auto *E = new (ExpressionAllocator) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 393 | PHIExpression(PN->getNumOperands(), I->getParent()); |
| 394 | |
| 395 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 396 | E->setType(I->getType()); |
| 397 | E->setOpcode(I->getOpcode()); |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 398 | |
| 399 | auto ReachablePhiArg = [&](const Use &U) { |
| 400 | return ReachableBlocks.count(PN->getIncomingBlock(U)); |
| 401 | }; |
| 402 | |
| 403 | // Filter out unreachable operands |
| 404 | auto Filtered = make_filter_range(PN->operands(), ReachablePhiArg); |
| 405 | |
| 406 | std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), |
| 407 | [&](const Use &U) -> Value * { |
| 408 | // Don't try to transform self-defined phis |
| 409 | if (U == PN) |
| 410 | return PN; |
| 411 | const BasicBlockEdge BBE(PN->getIncomingBlock(U), PhiBlock); |
| 412 | return lookupOperandLeader(U, I, BBE); |
| 413 | }); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 414 | return E; |
| 415 | } |
| 416 | |
| 417 | // Set basic expression info (Arguments, type, opcode) for Expression |
| 418 | // E from Instruction I in block B. |
| 419 | bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E, |
| 420 | const BasicBlock *B) { |
| 421 | bool AllConstant = true; |
| 422 | if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) |
| 423 | E->setType(GEP->getSourceElementType()); |
| 424 | else |
| 425 | E->setType(I->getType()); |
| 426 | E->setOpcode(I->getOpcode()); |
| 427 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 428 | |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 429 | // Transform the operand array into an operand leader array, and keep track of |
| 430 | // whether all members are constant. |
| 431 | std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 432 | auto Operand = lookupOperandLeader(O, I, B); |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 433 | AllConstant &= isa<Constant>(Operand); |
| 434 | return Operand; |
| 435 | }); |
| 436 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 437 | return AllConstant; |
| 438 | } |
| 439 | |
| 440 | const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, |
| 441 | Value *Arg1, Value *Arg2, |
| 442 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 443 | auto *E = new (ExpressionAllocator) BasicExpression(2); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 444 | |
| 445 | E->setType(T); |
| 446 | E->setOpcode(Opcode); |
| 447 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 448 | if (Instruction::isCommutative(Opcode)) { |
| 449 | // Ensure that commutative instructions that only differ by a permutation |
| 450 | // of their operands get the same value number by sorting the operand value |
| 451 | // numbers. Since all commutative instructions have two operands it is more |
| 452 | // efficient to sort by hand rather than using, say, std::sort. |
| 453 | if (Arg1 > Arg2) |
| 454 | std::swap(Arg1, Arg2); |
| 455 | } |
Daniel Berlin | 65f5f0d | 2016-12-25 22:10:37 +0000 | [diff] [blame] | 456 | E->op_push_back(lookupOperandLeader(Arg1, nullptr, B)); |
| 457 | E->op_push_back(lookupOperandLeader(Arg2, nullptr, B)); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 458 | |
| 459 | Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI, |
| 460 | DT, AC); |
| 461 | if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V)) |
| 462 | return SimplifiedE; |
| 463 | return E; |
| 464 | } |
| 465 | |
| 466 | // Take a Value returned by simplification of Expression E/Instruction |
| 467 | // I, and see if it resulted in a simpler expression. If so, return |
| 468 | // that expression. |
| 469 | // TODO: Once finished, this should not take an Instruction, we only |
| 470 | // use it for printing. |
| 471 | const Expression *NewGVN::checkSimplificationResults(Expression *E, |
| 472 | Instruction *I, Value *V) { |
| 473 | if (!V) |
| 474 | return nullptr; |
| 475 | if (auto *C = dyn_cast<Constant>(V)) { |
| 476 | if (I) |
| 477 | DEBUG(dbgs() << "Simplified " << *I << " to " |
| 478 | << " constant " << *C << "\n"); |
| 479 | NumGVNOpsSimplified++; |
| 480 | assert(isa<BasicExpression>(E) && |
| 481 | "We should always have had a basic expression here"); |
| 482 | |
| 483 | cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| 484 | ExpressionAllocator.Deallocate(E); |
| 485 | return createConstantExpression(C); |
| 486 | } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { |
| 487 | if (I) |
| 488 | DEBUG(dbgs() << "Simplified " << *I << " to " |
| 489 | << " variable " << *V << "\n"); |
| 490 | cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| 491 | ExpressionAllocator.Deallocate(E); |
| 492 | return createVariableExpression(V); |
| 493 | } |
| 494 | |
| 495 | CongruenceClass *CC = ValueToClass.lookup(V); |
| 496 | if (CC && CC->DefiningExpr) { |
| 497 | if (I) |
| 498 | DEBUG(dbgs() << "Simplified " << *I << " to " |
| 499 | << " expression " << *V << "\n"); |
| 500 | NumGVNOpsSimplified++; |
| 501 | assert(isa<BasicExpression>(E) && |
| 502 | "We should always have had a basic expression here"); |
| 503 | cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| 504 | ExpressionAllocator.Deallocate(E); |
| 505 | return CC->DefiningExpr; |
| 506 | } |
| 507 | return nullptr; |
| 508 | } |
| 509 | |
| 510 | const Expression *NewGVN::createExpression(Instruction *I, |
| 511 | const BasicBlock *B) { |
| 512 | |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 513 | auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 514 | |
| 515 | bool AllConstant = setBasicExpressionInfo(I, E, B); |
| 516 | |
| 517 | if (I->isCommutative()) { |
| 518 | // Ensure that commutative instructions that only differ by a permutation |
| 519 | // of their operands get the same value number by sorting the operand value |
| 520 | // numbers. Since all commutative instructions have two operands it is more |
| 521 | // efficient to sort by hand rather than using, say, std::sort. |
| 522 | assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); |
| 523 | if (E->getOperand(0) > E->getOperand(1)) |
| 524 | E->swapOperands(0, 1); |
| 525 | } |
| 526 | |
| 527 | // Perform simplificaiton |
| 528 | // TODO: Right now we only check to see if we get a constant result. |
| 529 | // We may get a less than constant, but still better, result for |
| 530 | // some operations. |
| 531 | // IE |
| 532 | // add 0, x -> x |
| 533 | // and x, x -> x |
| 534 | // We should handle this by simply rewriting the expression. |
| 535 | if (auto *CI = dyn_cast<CmpInst>(I)) { |
| 536 | // Sort the operand value numbers so x<y and y>x get the same value |
| 537 | // number. |
| 538 | CmpInst::Predicate Predicate = CI->getPredicate(); |
| 539 | if (E->getOperand(0) > E->getOperand(1)) { |
| 540 | E->swapOperands(0, 1); |
| 541 | Predicate = CmpInst::getSwappedPredicate(Predicate); |
| 542 | } |
| 543 | E->setOpcode((CI->getOpcode() << 8) | Predicate); |
| 544 | // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands |
| 545 | // TODO: Since we noop bitcasts, we may need to check types before |
| 546 | // simplifying, so that we don't end up simplifying based on a wrong |
| 547 | // type assumption. We should clean this up so we can use constants of the |
| 548 | // wrong type |
| 549 | |
| 550 | assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && |
| 551 | "Wrong types on cmp instruction"); |
| 552 | if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() && |
| 553 | E->getOperand(1)->getType() == I->getOperand(1)->getType())) { |
| 554 | Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), |
| 555 | *DL, TLI, DT, AC); |
| 556 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 557 | return SimplifiedE; |
| 558 | } |
| 559 | } else if (isa<SelectInst>(I)) { |
| 560 | if (isa<Constant>(E->getOperand(0)) || |
| 561 | (E->getOperand(1)->getType() == I->getOperand(1)->getType() && |
| 562 | E->getOperand(2)->getType() == I->getOperand(2)->getType())) { |
| 563 | Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1), |
| 564 | E->getOperand(2), *DL, TLI, DT, AC); |
| 565 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 566 | return SimplifiedE; |
| 567 | } |
| 568 | } else if (I->isBinaryOp()) { |
| 569 | Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), |
| 570 | *DL, TLI, DT, AC); |
| 571 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 572 | return SimplifiedE; |
| 573 | } else if (auto *BI = dyn_cast<BitCastInst>(I)) { |
| 574 | Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC); |
| 575 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 576 | return SimplifiedE; |
| 577 | } else if (isa<GetElementPtrInst>(I)) { |
| 578 | Value *V = SimplifyGEPInst(E->getType(), |
Daniel Berlin | 65f5f0d | 2016-12-25 22:10:37 +0000 | [diff] [blame] | 579 | ArrayRef<Value *>(E->op_begin(), E->op_end()), |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 580 | *DL, TLI, DT, AC); |
| 581 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 582 | return SimplifiedE; |
| 583 | } else if (AllConstant) { |
| 584 | // We don't bother trying to simplify unless all of the operands |
| 585 | // were constant. |
| 586 | // TODO: There are a lot of Simplify*'s we could call here, if we |
| 587 | // wanted to. The original motivating case for this code was a |
| 588 | // zext i1 false to i8, which we don't have an interface to |
| 589 | // simplify (IE there is no SimplifyZExt). |
| 590 | |
| 591 | SmallVector<Constant *, 8> C; |
| 592 | for (Value *Arg : E->operands()) |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 593 | C.emplace_back(cast<Constant>(Arg)); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 594 | |
| 595 | if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI)) |
| 596 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 597 | return SimplifiedE; |
| 598 | } |
| 599 | return E; |
| 600 | } |
| 601 | |
| 602 | const AggregateValueExpression * |
| 603 | NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) { |
| 604 | if (auto *II = dyn_cast<InsertValueInst>(I)) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 605 | auto *E = new (ExpressionAllocator) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 606 | AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); |
| 607 | setBasicExpressionInfo(I, E, B); |
| 608 | E->allocateIntOperands(ExpressionAllocator); |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 609 | std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 610 | return E; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 611 | } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 612 | auto *E = new (ExpressionAllocator) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 613 | AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); |
| 614 | setBasicExpressionInfo(EI, E, B); |
| 615 | E->allocateIntOperands(ExpressionAllocator); |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 616 | std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 617 | return E; |
| 618 | } |
| 619 | llvm_unreachable("Unhandled type of aggregate value operation"); |
| 620 | } |
| 621 | |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 622 | const VariableExpression *NewGVN::createVariableExpression(Value *V) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 623 | auto *E = new (ExpressionAllocator) VariableExpression(V); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 624 | E->setOpcode(V->getValueID()); |
| 625 | return E; |
| 626 | } |
| 627 | |
| 628 | const Expression *NewGVN::createVariableOrConstant(Value *V, |
| 629 | const BasicBlock *B) { |
| 630 | auto Leader = lookupOperandLeader(V, nullptr, B); |
| 631 | if (auto *C = dyn_cast<Constant>(Leader)) |
| 632 | return createConstantExpression(C); |
| 633 | return createVariableExpression(Leader); |
| 634 | } |
| 635 | |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 636 | const ConstantExpression *NewGVN::createConstantExpression(Constant *C) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 637 | auto *E = new (ExpressionAllocator) ConstantExpression(C); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 638 | E->setOpcode(C->getValueID()); |
| 639 | return E; |
| 640 | } |
| 641 | |
| 642 | const CallExpression *NewGVN::createCallExpression(CallInst *CI, |
| 643 | MemoryAccess *HV, |
| 644 | const BasicBlock *B) { |
| 645 | // FIXME: Add operand bundles for calls. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 646 | auto *E = |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 647 | new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV); |
| 648 | setBasicExpressionInfo(CI, E, B); |
| 649 | return E; |
| 650 | } |
| 651 | |
| 652 | // See if we have a congruence class and leader for this operand, and if so, |
| 653 | // return it. Otherwise, return the operand itself. |
| 654 | template <class T> |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 655 | Value *NewGVN::lookupOperandLeader(Value *V, const User *U, const T &B) const { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 656 | CongruenceClass *CC = ValueToClass.lookup(V); |
| 657 | if (CC && (CC != InitialClass)) |
| 658 | return CC->RepLeader; |
| 659 | return V; |
| 660 | } |
| 661 | |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 662 | MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const { |
| 663 | MemoryAccess *Result = MemoryAccessEquiv.lookup(MA); |
| 664 | return Result ? Result : MA; |
| 665 | } |
| 666 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 667 | LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, |
| 668 | LoadInst *LI, MemoryAccess *DA, |
| 669 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 670 | auto *E = new (ExpressionAllocator) LoadExpression(1, LI, DA); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 671 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 672 | E->setType(LoadType); |
| 673 | |
| 674 | // Give store and loads same opcode so they value number together. |
| 675 | E->setOpcode(0); |
Davide Italiano | a312ca8 | 2016-12-26 16:19:34 +0000 | [diff] [blame] | 676 | E->op_push_back(lookupOperandLeader(PointerOp, LI, B)); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 677 | if (LI) |
| 678 | E->setAlignment(LI->getAlignment()); |
| 679 | |
| 680 | // TODO: Value number heap versions. We may be able to discover |
| 681 | // things alias analysis can't on it's own (IE that a store and a |
| 682 | // load have the same value, and thus, it isn't clobbering the load). |
| 683 | return E; |
| 684 | } |
| 685 | |
| 686 | const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI, |
| 687 | MemoryAccess *DA, |
| 688 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 689 | auto *E = |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 690 | new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA); |
| 691 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 692 | E->setType(SI->getValueOperand()->getType()); |
| 693 | |
| 694 | // Give store and loads same opcode so they value number together. |
| 695 | E->setOpcode(0); |
Daniel Berlin | 65f5f0d | 2016-12-25 22:10:37 +0000 | [diff] [blame] | 696 | E->op_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B)); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 697 | |
| 698 | // TODO: Value number heap versions. We may be able to discover |
| 699 | // things alias analysis can't on it's own (IE that a store and a |
| 700 | // load have the same value, and thus, it isn't clobbering the load). |
| 701 | return E; |
| 702 | } |
| 703 | |
| 704 | const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I, |
| 705 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 706 | auto *SI = cast<StoreInst>(I); |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 707 | // If this store's memorydef stores the same value as the last store, the |
| 708 | // memory accesses are equivalent. |
| 709 | // Get the expression, if any, for the RHS of the MemoryDef. |
| 710 | MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI); |
| 711 | MemoryAccess *StoreRHS = lookupMemoryAccessEquiv( |
| 712 | cast<MemoryDef>(StoreAccess)->getDefiningAccess()); |
| 713 | const Expression *OldStore = createStoreExpression(SI, StoreRHS, B); |
| 714 | // See if this store expression already has a value, and it's the same as our |
| 715 | // current store. |
| 716 | CongruenceClass *CC = ExpressionToClass.lookup(OldStore); |
| 717 | if (CC && |
| 718 | CC->RepLeader == lookupOperandLeader(SI->getValueOperand(), SI, B)) { |
| 719 | setMemoryAccessEquivTo(StoreAccess, StoreRHS); |
| 720 | return OldStore; |
| 721 | } |
| 722 | return createStoreExpression(SI, StoreAccess, B); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 723 | } |
| 724 | |
| 725 | const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I, |
| 726 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 727 | auto *LI = cast<LoadInst>(I); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 728 | |
| 729 | // We can eliminate in favor of non-simple loads, but we won't be able to |
| 730 | // eliminate them. |
| 731 | if (!LI->isSimple()) |
| 732 | return nullptr; |
| 733 | |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 734 | Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand(), I, B); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 735 | // Load of undef is undef. |
| 736 | if (isa<UndefValue>(LoadAddressLeader)) |
| 737 | return createConstantExpression(UndefValue::get(LI->getType())); |
| 738 | |
| 739 | MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I); |
| 740 | |
| 741 | if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { |
| 742 | if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { |
| 743 | Instruction *DefiningInst = MD->getMemoryInst(); |
| 744 | // If the defining instruction is not reachable, replace with undef. |
| 745 | if (!ReachableBlocks.count(DefiningInst->getParent())) |
| 746 | return createConstantExpression(UndefValue::get(LI->getType())); |
| 747 | } |
| 748 | } |
| 749 | |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 750 | const Expression *E = |
| 751 | createLoadExpression(LI->getType(), LI->getPointerOperand(), LI, |
| 752 | lookupMemoryAccessEquiv(DefiningAccess), B); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 753 | return E; |
| 754 | } |
| 755 | |
| 756 | // Evaluate read only and pure calls, and create an expression result. |
| 757 | const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I, |
| 758 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 759 | auto *CI = cast<CallInst>(I); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 760 | if (AA->doesNotAccessMemory(CI)) |
| 761 | return createCallExpression(CI, nullptr, B); |
Davide Italiano | b222549 | 2016-12-27 18:15:39 +0000 | [diff] [blame] | 762 | if (AA->onlyReadsMemory(CI)) { |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 763 | MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI); |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 764 | return createCallExpression(CI, lookupMemoryAccessEquiv(DefiningAccess), B); |
Davide Italiano | b222549 | 2016-12-27 18:15:39 +0000 | [diff] [blame] | 765 | } |
| 766 | return nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 767 | } |
| 768 | |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 769 | // Update the memory access equivalence table to say that From is equal to To, |
| 770 | // and return true if this is different from what already existed in the table. |
| 771 | bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To) { |
| 772 | auto LookupResult = MemoryAccessEquiv.insert({From, nullptr}); |
| 773 | bool Changed = false; |
| 774 | // If it's already in the table, see if the value changed. |
| 775 | if (LookupResult.second) { |
| 776 | if (To && LookupResult.first->second != To) { |
| 777 | // It wasn't equivalent before, and now it is. |
| 778 | LookupResult.first->second = To; |
| 779 | Changed = true; |
| 780 | } else if (!To) { |
| 781 | // It used to be equivalent to something, and now it's not. |
| 782 | MemoryAccessEquiv.erase(LookupResult.first); |
| 783 | Changed = true; |
| 784 | } |
| 785 | } else if (To) { |
| 786 | // It wasn't in the table, but is equivalent to something. |
| 787 | LookupResult.first->second = To; |
| 788 | Changed = true; |
| 789 | } |
| 790 | return Changed; |
| 791 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 792 | // Evaluate PHI nodes symbolically, and create an expression result. |
| 793 | const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I, |
| 794 | const BasicBlock *B) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 795 | auto *E = cast<PHIExpression>(createPHIExpression(I)); |
Daniel Berlin | 65f5f0d | 2016-12-25 22:10:37 +0000 | [diff] [blame] | 796 | if (E->op_empty()) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 797 | DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef" |
| 798 | << "\n"); |
| 799 | E->deallocateOperands(ArgRecycler); |
| 800 | ExpressionAllocator.Deallocate(E); |
| 801 | return createConstantExpression(UndefValue::get(I->getType())); |
| 802 | } |
| 803 | |
| 804 | Value *AllSameValue = E->getOperand(0); |
| 805 | |
| 806 | // See if all arguments are the same, ignoring undef arguments, because we can |
| 807 | // choose a value that is the same for them. |
| 808 | for (const Value *Arg : E->operands()) |
| 809 | if (Arg != AllSameValue && !isa<UndefValue>(Arg)) { |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 810 | AllSameValue = nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 811 | break; |
| 812 | } |
| 813 | |
| 814 | if (AllSameValue) { |
| 815 | // It's possible to have phi nodes with cycles (IE dependent on |
| 816 | // other phis that are .... dependent on the original phi node), |
| 817 | // especially in weird CFG's where some arguments are unreachable, or |
| 818 | // uninitialized along certain paths. |
| 819 | // This can cause infinite loops during evaluation (even if you disable |
| 820 | // the recursion below, you will simply ping-pong between congruence |
| 821 | // classes). If a phi node symbolically evaluates to another phi node, |
| 822 | // just leave it alone. If they are really the same, we will still |
| 823 | // eliminate them in favor of each other. |
| 824 | if (isa<PHINode>(AllSameValue)) |
| 825 | return E; |
| 826 | NumGVNPhisAllSame++; |
| 827 | DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue |
| 828 | << "\n"); |
| 829 | E->deallocateOperands(ArgRecycler); |
| 830 | ExpressionAllocator.Deallocate(E); |
| 831 | if (auto *C = dyn_cast<Constant>(AllSameValue)) |
| 832 | return createConstantExpression(C); |
| 833 | return createVariableExpression(AllSameValue); |
| 834 | } |
| 835 | return E; |
| 836 | } |
| 837 | |
| 838 | const Expression * |
| 839 | NewGVN::performSymbolicAggrValueEvaluation(Instruction *I, |
| 840 | const BasicBlock *B) { |
| 841 | if (auto *EI = dyn_cast<ExtractValueInst>(I)) { |
| 842 | auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); |
| 843 | if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { |
| 844 | unsigned Opcode = 0; |
| 845 | // EI might be an extract from one of our recognised intrinsics. If it |
| 846 | // is we'll synthesize a semantically equivalent expression instead on |
| 847 | // an extract value expression. |
| 848 | switch (II->getIntrinsicID()) { |
| 849 | case Intrinsic::sadd_with_overflow: |
| 850 | case Intrinsic::uadd_with_overflow: |
| 851 | Opcode = Instruction::Add; |
| 852 | break; |
| 853 | case Intrinsic::ssub_with_overflow: |
| 854 | case Intrinsic::usub_with_overflow: |
| 855 | Opcode = Instruction::Sub; |
| 856 | break; |
| 857 | case Intrinsic::smul_with_overflow: |
| 858 | case Intrinsic::umul_with_overflow: |
| 859 | Opcode = Instruction::Mul; |
| 860 | break; |
| 861 | default: |
| 862 | break; |
| 863 | } |
| 864 | |
| 865 | if (Opcode != 0) { |
| 866 | // Intrinsic recognized. Grab its args to finish building the |
| 867 | // expression. |
| 868 | assert(II->getNumArgOperands() == 2 && |
| 869 | "Expect two args for recognised intrinsics."); |
| 870 | return createBinaryExpression(Opcode, EI->getType(), |
| 871 | II->getArgOperand(0), |
| 872 | II->getArgOperand(1), B); |
| 873 | } |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | return createAggregateValueExpression(I, B); |
| 878 | } |
| 879 | |
| 880 | // Substitute and symbolize the value before value numbering. |
| 881 | const Expression *NewGVN::performSymbolicEvaluation(Value *V, |
| 882 | const BasicBlock *B) { |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 883 | const Expression *E = nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 884 | if (auto *C = dyn_cast<Constant>(V)) |
| 885 | E = createConstantExpression(C); |
| 886 | else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { |
| 887 | E = createVariableExpression(V); |
| 888 | } else { |
| 889 | // TODO: memory intrinsics. |
| 890 | // TODO: Some day, we should do the forward propagation and reassociation |
| 891 | // parts of the algorithm. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 892 | auto *I = cast<Instruction>(V); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 893 | switch (I->getOpcode()) { |
| 894 | case Instruction::ExtractValue: |
| 895 | case Instruction::InsertValue: |
| 896 | E = performSymbolicAggrValueEvaluation(I, B); |
| 897 | break; |
| 898 | case Instruction::PHI: |
| 899 | E = performSymbolicPHIEvaluation(I, B); |
| 900 | break; |
| 901 | case Instruction::Call: |
| 902 | E = performSymbolicCallEvaluation(I, B); |
| 903 | break; |
| 904 | case Instruction::Store: |
| 905 | E = performSymbolicStoreEvaluation(I, B); |
| 906 | break; |
| 907 | case Instruction::Load: |
| 908 | E = performSymbolicLoadEvaluation(I, B); |
| 909 | break; |
| 910 | case Instruction::BitCast: { |
| 911 | E = createExpression(I, B); |
| 912 | } break; |
| 913 | |
| 914 | case Instruction::Add: |
| 915 | case Instruction::FAdd: |
| 916 | case Instruction::Sub: |
| 917 | case Instruction::FSub: |
| 918 | case Instruction::Mul: |
| 919 | case Instruction::FMul: |
| 920 | case Instruction::UDiv: |
| 921 | case Instruction::SDiv: |
| 922 | case Instruction::FDiv: |
| 923 | case Instruction::URem: |
| 924 | case Instruction::SRem: |
| 925 | case Instruction::FRem: |
| 926 | case Instruction::Shl: |
| 927 | case Instruction::LShr: |
| 928 | case Instruction::AShr: |
| 929 | case Instruction::And: |
| 930 | case Instruction::Or: |
| 931 | case Instruction::Xor: |
| 932 | case Instruction::ICmp: |
| 933 | case Instruction::FCmp: |
| 934 | case Instruction::Trunc: |
| 935 | case Instruction::ZExt: |
| 936 | case Instruction::SExt: |
| 937 | case Instruction::FPToUI: |
| 938 | case Instruction::FPToSI: |
| 939 | case Instruction::UIToFP: |
| 940 | case Instruction::SIToFP: |
| 941 | case Instruction::FPTrunc: |
| 942 | case Instruction::FPExt: |
| 943 | case Instruction::PtrToInt: |
| 944 | case Instruction::IntToPtr: |
| 945 | case Instruction::Select: |
| 946 | case Instruction::ExtractElement: |
| 947 | case Instruction::InsertElement: |
| 948 | case Instruction::ShuffleVector: |
| 949 | case Instruction::GetElementPtr: |
| 950 | E = createExpression(I, B); |
| 951 | break; |
| 952 | default: |
| 953 | return nullptr; |
| 954 | } |
| 955 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 956 | return E; |
| 957 | } |
| 958 | |
| 959 | // There is an edge from 'Src' to 'Dst'. Return true if every path from |
| 960 | // the entry block to 'Dst' passes via this edge. In particular 'Dst' |
| 961 | // must not be reachable via another edge from 'Src'. |
Daniel Berlin | 8a6a861 | 2016-12-24 00:04:07 +0000 | [diff] [blame] | 962 | bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 963 | |
| 964 | // While in theory it is interesting to consider the case in which Dst has |
| 965 | // more than one predecessor, because Dst might be part of a loop which is |
| 966 | // only reachable from Src, in practice it is pointless since at the time |
| 967 | // GVN runs all such loops have preheaders, which means that Dst will have |
| 968 | // been changed to have only one predecessor, namely Src. |
| 969 | const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); |
| 970 | const BasicBlock *Src = E.getStart(); |
| 971 | assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); |
| 972 | (void)Src; |
| 973 | return Pred != nullptr; |
| 974 | } |
| 975 | |
| 976 | void NewGVN::markUsersTouched(Value *V) { |
| 977 | // Now mark the users as touched. |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 978 | for (auto *User : V->users()) { |
| 979 | assert(isa<Instruction>(User) && "Use of value not within an instruction?"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 980 | TouchedInstructions.set(InstrDFS[User]); |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) { |
| 985 | for (auto U : MA->users()) { |
| 986 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(U)) |
| 987 | TouchedInstructions.set(InstrDFS[MUD->getMemoryInst()]); |
| 988 | else |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 989 | TouchedInstructions.set(InstrDFS[U]); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 990 | } |
| 991 | } |
| 992 | |
| 993 | // Perform congruence finding on a given value numbering expression. |
| 994 | void NewGVN::performCongruenceFinding(Value *V, const Expression *E) { |
| 995 | |
| 996 | ValueToExpression[V] = E; |
| 997 | // This is guaranteed to return something, since it will at least find |
| 998 | // INITIAL. |
| 999 | CongruenceClass *VClass = ValueToClass[V]; |
| 1000 | assert(VClass && "Should have found a vclass"); |
| 1001 | // Dead classes should have been eliminated from the mapping. |
| 1002 | assert(!VClass->Dead && "Found a dead class"); |
| 1003 | |
| 1004 | CongruenceClass *EClass; |
| 1005 | // Expressions we can't symbolize are always in their own unique |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1006 | // congruence class. FIXME: This is hard to perfect. Long term, we should try |
| 1007 | // to create expressions for everything. We should add UnknownExpression(Inst) |
| 1008 | // or something to avoid wasting time creating real ones. Then the existing |
| 1009 | // logic will just work. |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 1010 | if (E == nullptr) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1011 | // We may have already made a unique class. |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1012 | // Test whether we are still in the initial class, or we have found a class |
| 1013 | if (VClass == InitialClass || VClass->RepLeader != V) { |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 1014 | CongruenceClass *NewClass = createCongruenceClass(V, nullptr); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1015 | // We should always be adding the member in the below code. |
| 1016 | EClass = NewClass; |
| 1017 | DEBUG(dbgs() << "Created new congruence class for " << *V |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 1018 | << " due to nullptr expression\n"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1019 | } else { |
| 1020 | EClass = VClass; |
| 1021 | } |
| 1022 | } else if (const auto *VE = dyn_cast<VariableExpression>(E)) { |
| 1023 | EClass = ValueToClass[VE->getVariableValue()]; |
| 1024 | } else { |
| 1025 | auto lookupResult = ExpressionToClass.insert({E, nullptr}); |
| 1026 | |
| 1027 | // If it's not in the value table, create a new congruence class. |
| 1028 | if (lookupResult.second) { |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 1029 | CongruenceClass *NewClass = createCongruenceClass(nullptr, E); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1030 | auto place = lookupResult.first; |
| 1031 | place->second = NewClass; |
| 1032 | |
| 1033 | // Constants and variables should always be made the leader. |
| 1034 | if (const auto *CE = dyn_cast<ConstantExpression>(E)) |
| 1035 | NewClass->RepLeader = CE->getConstantValue(); |
| 1036 | else if (const auto *VE = dyn_cast<VariableExpression>(E)) |
| 1037 | NewClass->RepLeader = VE->getVariableValue(); |
| 1038 | else if (const auto *SE = dyn_cast<StoreExpression>(E)) |
| 1039 | NewClass->RepLeader = SE->getStoreInst()->getValueOperand(); |
| 1040 | else |
| 1041 | NewClass->RepLeader = V; |
| 1042 | |
| 1043 | EClass = NewClass; |
| 1044 | DEBUG(dbgs() << "Created new congruence class for " << *V |
| 1045 | << " using expression " << *E << " at " << NewClass->ID |
| 1046 | << "\n"); |
| 1047 | DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n"); |
| 1048 | } else { |
| 1049 | EClass = lookupResult.first->second; |
| 1050 | assert(EClass && "Somehow don't have an eclass"); |
| 1051 | |
| 1052 | assert(!EClass->Dead && "We accidentally looked up a dead class"); |
| 1053 | } |
| 1054 | } |
| 1055 | bool WasInChanged = ChangedValues.erase(V); |
| 1056 | if (VClass != EClass || WasInChanged) { |
| 1057 | DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E |
| 1058 | << "\n"); |
| 1059 | |
| 1060 | if (VClass != EClass) { |
| 1061 | DEBUG(dbgs() << "New congruence class for " << V << " is " << EClass->ID |
| 1062 | << "\n"); |
| 1063 | |
| 1064 | VClass->Members.erase(V); |
| 1065 | EClass->Members.insert(V); |
| 1066 | ValueToClass[V] = EClass; |
| 1067 | // See if we destroyed the class or need to swap leaders. |
| 1068 | if (VClass->Members.empty() && VClass != InitialClass) { |
| 1069 | if (VClass->DefiningExpr) { |
| 1070 | VClass->Dead = true; |
| 1071 | DEBUG(dbgs() << "Erasing expression " << *E << " from table\n"); |
| 1072 | ExpressionToClass.erase(VClass->DefiningExpr); |
| 1073 | } |
| 1074 | } else if (VClass->RepLeader == V) { |
| 1075 | // FIXME: When the leader changes, the value numbering of |
| 1076 | // everything may change, so we need to reprocess. |
| 1077 | VClass->RepLeader = *(VClass->Members.begin()); |
| 1078 | for (auto M : VClass->Members) { |
| 1079 | if (auto *I = dyn_cast<Instruction>(M)) |
| 1080 | TouchedInstructions.set(InstrDFS[I]); |
| 1081 | ChangedValues.insert(M); |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | markUsersTouched(V); |
Davide Italiano | 463c32e | 2016-12-24 17:17:21 +0000 | [diff] [blame] | 1086 | if (auto *I = dyn_cast<Instruction>(V)) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1087 | if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) |
| 1088 | markMemoryUsersTouched(MA); |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | // Process the fact that Edge (from, to) is reachable, including marking |
| 1093 | // any newly reachable blocks and instructions for processing. |
| 1094 | void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { |
| 1095 | // Check if the Edge was reachable before. |
| 1096 | if (ReachableEdges.insert({From, To}).second) { |
| 1097 | // If this block wasn't reachable before, all instructions are touched. |
| 1098 | if (ReachableBlocks.insert(To).second) { |
| 1099 | DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n"); |
| 1100 | const auto &InstRange = BlockInstRange.lookup(To); |
| 1101 | TouchedInstructions.set(InstRange.first, InstRange.second); |
| 1102 | } else { |
| 1103 | DEBUG(dbgs() << "Block " << getBlockName(To) |
| 1104 | << " was reachable, but new edge {" << getBlockName(From) |
| 1105 | << "," << getBlockName(To) << "} to it found\n"); |
| 1106 | |
| 1107 | // We've made an edge reachable to an existing block, which may |
| 1108 | // impact predicates. Otherwise, only mark the phi nodes as touched, as |
| 1109 | // they are the only thing that depend on new edges. Anything using their |
| 1110 | // values will get propagated to if necessary. |
| 1111 | auto BI = To->begin(); |
| 1112 | while (isa<PHINode>(BI)) { |
| 1113 | TouchedInstructions.set(InstrDFS[&*BI]); |
| 1114 | ++BI; |
| 1115 | } |
| 1116 | } |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | // Given a predicate condition (from a switch, cmp, or whatever) and a block, |
| 1121 | // see if we know some constant value for it already. |
| 1122 | Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const { |
| 1123 | auto Result = lookupOperandLeader(Cond, nullptr, B); |
| 1124 | if (isa<Constant>(Result)) |
| 1125 | return Result; |
| 1126 | return nullptr; |
| 1127 | } |
| 1128 | |
| 1129 | // Process the outgoing edges of a block for reachability. |
| 1130 | void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) { |
| 1131 | // Evaluate reachability of terminator instruction. |
| 1132 | BranchInst *BR; |
| 1133 | if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) { |
| 1134 | Value *Cond = BR->getCondition(); |
| 1135 | Value *CondEvaluated = findConditionEquivalence(Cond, B); |
| 1136 | if (!CondEvaluated) { |
| 1137 | if (auto *I = dyn_cast<Instruction>(Cond)) { |
| 1138 | const Expression *E = createExpression(I, B); |
| 1139 | if (const auto *CE = dyn_cast<ConstantExpression>(E)) { |
| 1140 | CondEvaluated = CE->getConstantValue(); |
| 1141 | } |
| 1142 | } else if (isa<ConstantInt>(Cond)) { |
| 1143 | CondEvaluated = Cond; |
| 1144 | } |
| 1145 | } |
| 1146 | ConstantInt *CI; |
| 1147 | BasicBlock *TrueSucc = BR->getSuccessor(0); |
| 1148 | BasicBlock *FalseSucc = BR->getSuccessor(1); |
| 1149 | if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { |
| 1150 | if (CI->isOne()) { |
| 1151 | DEBUG(dbgs() << "Condition for Terminator " << *TI |
| 1152 | << " evaluated to true\n"); |
| 1153 | updateReachableEdge(B, TrueSucc); |
| 1154 | } else if (CI->isZero()) { |
| 1155 | DEBUG(dbgs() << "Condition for Terminator " << *TI |
| 1156 | << " evaluated to false\n"); |
| 1157 | updateReachableEdge(B, FalseSucc); |
| 1158 | } |
| 1159 | } else { |
| 1160 | updateReachableEdge(B, TrueSucc); |
| 1161 | updateReachableEdge(B, FalseSucc); |
| 1162 | } |
| 1163 | } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { |
| 1164 | // For switches, propagate the case values into the case |
| 1165 | // destinations. |
| 1166 | |
| 1167 | // Remember how many outgoing edges there are to every successor. |
| 1168 | SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; |
| 1169 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1170 | Value *SwitchCond = SI->getCondition(); |
| 1171 | Value *CondEvaluated = findConditionEquivalence(SwitchCond, B); |
| 1172 | // See if we were able to turn this switch statement into a constant. |
| 1173 | if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1174 | auto *CondVal = cast<ConstantInt>(CondEvaluated); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1175 | // We should be able to get case value for this. |
| 1176 | auto CaseVal = SI->findCaseValue(CondVal); |
| 1177 | if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) { |
| 1178 | // We proved the value is outside of the range of the case. |
| 1179 | // We can't do anything other than mark the default dest as reachable, |
| 1180 | // and go home. |
| 1181 | updateReachableEdge(B, SI->getDefaultDest()); |
| 1182 | return; |
| 1183 | } |
| 1184 | // Now get where it goes and mark it reachable. |
| 1185 | BasicBlock *TargetBlock = CaseVal.getCaseSuccessor(); |
| 1186 | updateReachableEdge(B, TargetBlock); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1187 | } else { |
| 1188 | for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { |
| 1189 | BasicBlock *TargetBlock = SI->getSuccessor(i); |
| 1190 | ++SwitchEdges[TargetBlock]; |
| 1191 | updateReachableEdge(B, TargetBlock); |
| 1192 | } |
| 1193 | } |
| 1194 | } else { |
| 1195 | // Otherwise this is either unconditional, or a type we have no |
| 1196 | // idea about. Just mark successors as reachable. |
| 1197 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { |
| 1198 | BasicBlock *TargetBlock = TI->getSuccessor(i); |
| 1199 | updateReachableEdge(B, TargetBlock); |
| 1200 | } |
| 1201 | } |
| 1202 | } |
| 1203 | |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1204 | // The algorithm initially places the values of the routine in the INITIAL |
| 1205 | // congruence |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1206 | // class. The leader of INITIAL is the undetermined value `TOP`. |
| 1207 | // When the algorithm has finished, values still in INITIAL are unreachable. |
| 1208 | void NewGVN::initializeCongruenceClasses(Function &F) { |
| 1209 | // FIXME now i can't remember why this is 2 |
| 1210 | NextCongruenceNum = 2; |
| 1211 | // Initialize all other instructions to be in INITIAL class. |
| 1212 | CongruenceClass::MemberSet InitialValues; |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 1213 | InitialClass = createCongruenceClass(nullptr, nullptr); |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1214 | for (auto &B : F) |
| 1215 | for (auto &I : B) { |
| 1216 | InitialValues.insert(&I); |
| 1217 | ValueToClass[&I] = InitialClass; |
| 1218 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1219 | InitialClass->Members.swap(InitialValues); |
| 1220 | |
| 1221 | // Initialize arguments to be in their own unique congruence classes |
| 1222 | for (auto &FA : F.args()) |
| 1223 | createSingletonCongruenceClass(&FA); |
| 1224 | } |
| 1225 | |
| 1226 | void NewGVN::cleanupTables() { |
| 1227 | for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) { |
| 1228 | DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has " |
| 1229 | << CongruenceClasses[i]->Members.size() << " members\n"); |
| 1230 | // Make sure we delete the congruence class (probably worth switching to |
| 1231 | // a unique_ptr at some point. |
| 1232 | delete CongruenceClasses[i]; |
Davide Italiano | 0e71480 | 2016-12-28 14:00:11 +0000 | [diff] [blame] | 1233 | CongruenceClasses[i] = nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1234 | } |
| 1235 | |
| 1236 | ValueToClass.clear(); |
| 1237 | ArgRecycler.clear(ExpressionAllocator); |
| 1238 | ExpressionAllocator.Reset(); |
| 1239 | CongruenceClasses.clear(); |
| 1240 | ExpressionToClass.clear(); |
| 1241 | ValueToExpression.clear(); |
| 1242 | ReachableBlocks.clear(); |
| 1243 | ReachableEdges.clear(); |
| 1244 | #ifndef NDEBUG |
| 1245 | ProcessedCount.clear(); |
| 1246 | #endif |
| 1247 | DFSDomMap.clear(); |
| 1248 | InstrDFS.clear(); |
| 1249 | InstructionsToErase.clear(); |
| 1250 | |
| 1251 | DFSToInstr.clear(); |
| 1252 | BlockInstRange.clear(); |
| 1253 | TouchedInstructions.clear(); |
| 1254 | DominatedInstRange.clear(); |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1255 | MemoryAccessEquiv.clear(); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1256 | } |
| 1257 | |
| 1258 | std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, |
| 1259 | unsigned Start) { |
| 1260 | unsigned End = Start; |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1261 | if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) { |
| 1262 | InstrDFS[MemPhi] = End++; |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 1263 | DFSToInstr.emplace_back(MemPhi); |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1264 | } |
| 1265 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1266 | for (auto &I : *B) { |
| 1267 | InstrDFS[&I] = End++; |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 1268 | DFSToInstr.emplace_back(&I); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1269 | } |
| 1270 | |
| 1271 | // All of the range functions taken half-open ranges (open on the end side). |
| 1272 | // So we do not subtract one from count, because at this point it is one |
| 1273 | // greater than the last instruction. |
| 1274 | return std::make_pair(Start, End); |
| 1275 | } |
| 1276 | |
| 1277 | void NewGVN::updateProcessedCount(Value *V) { |
| 1278 | #ifndef NDEBUG |
| 1279 | if (ProcessedCount.count(V) == 0) { |
| 1280 | ProcessedCount.insert({V, 1}); |
| 1281 | } else { |
| 1282 | ProcessedCount[V] += 1; |
| 1283 | assert(ProcessedCount[V] < 100 && |
Davide Italiano | 75e39f9 | 2016-12-30 15:01:17 +0000 | [diff] [blame^] | 1284 | "Seem to have processed the same Value a lot"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1285 | } |
| 1286 | #endif |
| 1287 | } |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1288 | // Evaluate MemoryPhi nodes symbolically, just like PHI nodes |
| 1289 | void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { |
| 1290 | // If all the arguments are the same, the MemoryPhi has the same value as the |
| 1291 | // argument. |
| 1292 | // Filter out unreachable blocks from our operands. |
| 1293 | auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { |
| 1294 | return ReachableBlocks.count(MP->getIncomingBlock(U)); |
| 1295 | }); |
| 1296 | |
| 1297 | assert(Filtered.begin() != Filtered.end() && |
| 1298 | "We should not be processing a MemoryPhi in a completely " |
| 1299 | "unreachable block"); |
| 1300 | |
| 1301 | // Transform the remaining operands into operand leaders. |
| 1302 | // FIXME: mapped_iterator should have a range version. |
| 1303 | auto LookupFunc = [&](const Use &U) { |
| 1304 | return lookupMemoryAccessEquiv(cast<MemoryAccess>(U)); |
| 1305 | }; |
| 1306 | auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); |
| 1307 | auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); |
| 1308 | |
| 1309 | // and now check if all the elements are equal. |
| 1310 | // Sadly, we can't use std::equals since these are random access iterators. |
| 1311 | MemoryAccess *AllSameValue = *MappedBegin; |
| 1312 | ++MappedBegin; |
| 1313 | bool AllEqual = std::all_of( |
| 1314 | MappedBegin, MappedEnd, |
| 1315 | [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); |
| 1316 | |
| 1317 | if (AllEqual) |
| 1318 | DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n"); |
| 1319 | else |
| 1320 | DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); |
| 1321 | |
| 1322 | if (setMemoryAccessEquivTo(MP, AllEqual ? AllSameValue : nullptr)) |
| 1323 | markMemoryUsersTouched(MP); |
| 1324 | } |
| 1325 | |
| 1326 | // Value number a single instruction, symbolically evaluating, performing |
| 1327 | // congruence finding, and updating mappings. |
| 1328 | void NewGVN::valueNumberInstruction(Instruction *I) { |
| 1329 | DEBUG(dbgs() << "Processing instruction " << *I << "\n"); |
Daniel Berlin | d59e801 | 2016-12-26 18:44:36 +0000 | [diff] [blame] | 1330 | if (isInstructionTriviallyDead(I, TLI)) { |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1331 | DEBUG(dbgs() << "Skipping unused instruction\n"); |
Daniel Berlin | d59e801 | 2016-12-26 18:44:36 +0000 | [diff] [blame] | 1332 | markInstructionForDeletion(I); |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1333 | return; |
| 1334 | } |
| 1335 | if (!I->isTerminator()) { |
| 1336 | const Expression *Symbolized = performSymbolicEvaluation(I, I->getParent()); |
| 1337 | performCongruenceFinding(I, Symbolized); |
| 1338 | } else { |
| 1339 | processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent()); |
| 1340 | } |
| 1341 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1342 | |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1343 | // This is the main transformation entry point. |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1344 | bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC, |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1345 | TargetLibraryInfo *_TLI, AliasAnalysis *_AA, |
| 1346 | MemorySSA *_MSSA) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1347 | bool Changed = false; |
| 1348 | DT = _DT; |
| 1349 | AC = _AC; |
| 1350 | TLI = _TLI; |
| 1351 | AA = _AA; |
| 1352 | MSSA = _MSSA; |
| 1353 | DL = &F.getParent()->getDataLayout(); |
| 1354 | MSSAWalker = MSSA->getWalker(); |
| 1355 | |
| 1356 | // Count number of instructions for sizing of hash tables, and come |
| 1357 | // up with a global dfs numbering for instructions. |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1358 | unsigned ICount = 1; |
| 1359 | // Add an empty instruction to account for the fact that we start at 1 |
| 1360 | DFSToInstr.emplace_back(nullptr); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1361 | // Note: We want RPO traversal of the blocks, which is not quite the same as |
| 1362 | // dominator tree order, particularly with regard whether backedges get |
| 1363 | // visited first or second, given a block with multiple successors. |
| 1364 | // If we visit in the wrong order, we will end up performing N times as many |
| 1365 | // iterations. |
Daniel Berlin | 6658cc9 | 2016-12-29 01:12:36 +0000 | [diff] [blame] | 1366 | // The dominator tree does guarantee that, for a given dom tree node, it's |
| 1367 | // parent must occur before it in the RPO ordering. Thus, we only need to sort |
| 1368 | // the siblings. |
| 1369 | DenseMap<const DomTreeNode *, unsigned> RPOOrdering; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1370 | ReversePostOrderTraversal<Function *> RPOT(&F); |
Daniel Berlin | 6658cc9 | 2016-12-29 01:12:36 +0000 | [diff] [blame] | 1371 | unsigned Counter = 0; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1372 | for (auto &B : RPOT) { |
Daniel Berlin | 6658cc9 | 2016-12-29 01:12:36 +0000 | [diff] [blame] | 1373 | auto *Node = DT->getNode(B); |
| 1374 | assert(Node && "RPO and Dominator tree should have same reachability"); |
| 1375 | RPOOrdering[Node] = ++Counter; |
| 1376 | } |
| 1377 | // Sort dominator tree children arrays into RPO. |
| 1378 | for (auto &B : RPOT) { |
| 1379 | auto *Node = DT->getNode(B); |
| 1380 | if (Node->getChildren().size() > 1) |
| 1381 | std::sort(Node->begin(), Node->end(), |
| 1382 | [&RPOOrdering](const DomTreeNode *A, const DomTreeNode *B) { |
| 1383 | return RPOOrdering[A] < RPOOrdering[B]; |
| 1384 | }); |
| 1385 | } |
| 1386 | |
| 1387 | // Now a standard depth first ordering of the domtree is equivalent to RPO. |
| 1388 | auto DFI = df_begin(DT->getRootNode()); |
| 1389 | for (auto DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) { |
| 1390 | BasicBlock *B = DFI->getBlock(); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1391 | const auto &BlockRange = assignDFSNumbers(B, ICount); |
| 1392 | BlockInstRange.insert({B, BlockRange}); |
| 1393 | ICount += BlockRange.second - BlockRange.first; |
| 1394 | } |
| 1395 | |
| 1396 | // Handle forward unreachable blocks and figure out which blocks |
| 1397 | // have single preds. |
| 1398 | for (auto &B : F) { |
| 1399 | // Assign numbers to unreachable blocks. |
Daniel Berlin | 6658cc9 | 2016-12-29 01:12:36 +0000 | [diff] [blame] | 1400 | if (!DFI.nodeVisited(DT->getNode(&B))) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1401 | const auto &BlockRange = assignDFSNumbers(&B, ICount); |
| 1402 | BlockInstRange.insert({&B, BlockRange}); |
| 1403 | ICount += BlockRange.second - BlockRange.first; |
| 1404 | } |
| 1405 | } |
| 1406 | |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1407 | TouchedInstructions.resize(ICount); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1408 | DominatedInstRange.reserve(F.size()); |
| 1409 | // Ensure we don't end up resizing the expressionToClass map, as |
| 1410 | // that can be quite expensive. At most, we have one expression per |
| 1411 | // instruction. |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1412 | ExpressionToClass.reserve(ICount); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1413 | |
| 1414 | // Initialize the touched instructions to include the entry block. |
| 1415 | const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); |
| 1416 | TouchedInstructions.set(InstRange.first, InstRange.second); |
| 1417 | ReachableBlocks.insert(&F.getEntryBlock()); |
| 1418 | |
| 1419 | initializeCongruenceClasses(F); |
| 1420 | |
| 1421 | // We start out in the entry block. |
| 1422 | BasicBlock *LastBlock = &F.getEntryBlock(); |
| 1423 | while (TouchedInstructions.any()) { |
| 1424 | // Walk through all the instructions in all the blocks in RPO. |
| 1425 | for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1; |
| 1426 | InstrNum = TouchedInstructions.find_next(InstrNum)) { |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1427 | assert(InstrNum != 0 && "Bit 0 should never be set, something touched an " |
| 1428 | "instruction not in the lookup table"); |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1429 | Value *V = DFSToInstr[InstrNum]; |
| 1430 | BasicBlock *CurrBlock = nullptr; |
| 1431 | |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1432 | if (auto *I = dyn_cast<Instruction>(V)) |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1433 | CurrBlock = I->getParent(); |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1434 | else if (auto *MP = dyn_cast<MemoryPhi>(V)) |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1435 | CurrBlock = MP->getBlock(); |
| 1436 | else |
| 1437 | llvm_unreachable("DFSToInstr gave us an unknown type of instruction"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1438 | |
| 1439 | // If we hit a new block, do reachability processing. |
| 1440 | if (CurrBlock != LastBlock) { |
| 1441 | LastBlock = CurrBlock; |
| 1442 | bool BlockReachable = ReachableBlocks.count(CurrBlock); |
| 1443 | const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); |
| 1444 | |
| 1445 | // If it's not reachable, erase any touched instructions and move on. |
| 1446 | if (!BlockReachable) { |
| 1447 | TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); |
| 1448 | DEBUG(dbgs() << "Skipping instructions in block " |
| 1449 | << getBlockName(CurrBlock) |
| 1450 | << " because it is unreachable\n"); |
| 1451 | continue; |
| 1452 | } |
| 1453 | updateProcessedCount(CurrBlock); |
| 1454 | } |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1455 | |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1456 | if (auto *MP = dyn_cast<MemoryPhi>(V)) { |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1457 | DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); |
| 1458 | valueNumberMemoryPhi(MP); |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1459 | } else if (auto *I = dyn_cast<Instruction>(V)) { |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1460 | valueNumberInstruction(I); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1461 | } else { |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1462 | llvm_unreachable("Should have been a MemoryPhi or Instruction"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1463 | } |
Daniel Berlin | d7c12ee | 2016-12-25 22:23:49 +0000 | [diff] [blame] | 1464 | updateProcessedCount(V); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1465 | // Reset after processing (because we may mark ourselves as touched when |
| 1466 | // we propagate equalities). |
| 1467 | TouchedInstructions.reset(InstrNum); |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | Changed |= eliminateInstructions(F); |
| 1472 | |
| 1473 | // Delete all instructions marked for deletion. |
| 1474 | for (Instruction *ToErase : InstructionsToErase) { |
| 1475 | if (!ToErase->use_empty()) |
| 1476 | ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType())); |
| 1477 | |
| 1478 | ToErase->eraseFromParent(); |
| 1479 | } |
| 1480 | |
| 1481 | // Delete all unreachable blocks. |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1482 | auto UnreachableBlockPred = [&](const BasicBlock &BB) { |
| 1483 | return !ReachableBlocks.count(&BB); |
| 1484 | }; |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1485 | |
| 1486 | for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { |
| 1487 | DEBUG(dbgs() << "We believe block " << getBlockName(&BB) |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1488 | << " is unreachable\n"); |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1489 | deleteInstructionsInBlock(&BB); |
| 1490 | Changed = true; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1491 | } |
| 1492 | |
| 1493 | cleanupTables(); |
| 1494 | return Changed; |
| 1495 | } |
| 1496 | |
| 1497 | bool NewGVN::runOnFunction(Function &F) { |
| 1498 | if (skipFunction(F)) |
| 1499 | return false; |
| 1500 | return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| 1501 | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), |
| 1502 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), |
| 1503 | &getAnalysis<AAResultsWrapperPass>().getAAResults(), |
| 1504 | &getAnalysis<MemorySSAWrapperPass>().getMSSA()); |
| 1505 | } |
| 1506 | |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1507 | PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1508 | NewGVN Impl; |
| 1509 | |
| 1510 | // Apparently the order in which we get these results matter for |
| 1511 | // the old GVN (see Chandler's comment in GVN.cpp). I'll keep |
| 1512 | // the same order here, just in case. |
| 1513 | auto &AC = AM.getResult<AssumptionAnalysis>(F); |
| 1514 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| 1515 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| 1516 | auto &AA = AM.getResult<AAManager>(F); |
| 1517 | auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); |
| 1518 | bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA); |
| 1519 | if (!Changed) |
| 1520 | return PreservedAnalyses::all(); |
| 1521 | PreservedAnalyses PA; |
| 1522 | PA.preserve<DominatorTreeAnalysis>(); |
| 1523 | PA.preserve<GlobalsAA>(); |
| 1524 | return PA; |
| 1525 | } |
| 1526 | |
| 1527 | // Return true if V is a value that will always be available (IE can |
| 1528 | // be placed anywhere) in the function. We don't do globals here |
| 1529 | // because they are often worse to put in place. |
| 1530 | // TODO: Separate cost from availability |
| 1531 | static bool alwaysAvailable(Value *V) { |
| 1532 | return isa<Constant>(V) || isa<Argument>(V); |
| 1533 | } |
| 1534 | |
| 1535 | // Get the basic block from an instruction/value. |
| 1536 | static BasicBlock *getBlockForValue(Value *V) { |
| 1537 | if (auto *I = dyn_cast<Instruction>(V)) |
| 1538 | return I->getParent(); |
| 1539 | return nullptr; |
| 1540 | } |
| 1541 | |
| 1542 | struct NewGVN::ValueDFS { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1543 | int DFSIn = 0; |
| 1544 | int DFSOut = 0; |
| 1545 | int LocalNum = 0; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1546 | // Only one of these will be set. |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1547 | Value *Val = nullptr; |
| 1548 | Use *U = nullptr; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1549 | |
| 1550 | bool operator<(const ValueDFS &Other) const { |
| 1551 | // It's not enough that any given field be less than - we have sets |
| 1552 | // of fields that need to be evaluated together to give a proper ordering. |
| 1553 | // For example, if you have; |
| 1554 | // DFS (1, 3) |
| 1555 | // Val 0 |
| 1556 | // DFS (1, 2) |
| 1557 | // Val 50 |
| 1558 | // We want the second to be less than the first, but if we just go field |
| 1559 | // by field, we will get to Val 0 < Val 50 and say the first is less than |
| 1560 | // the second. We only want it to be less than if the DFS orders are equal. |
| 1561 | // |
| 1562 | // Each LLVM instruction only produces one value, and thus the lowest-level |
| 1563 | // differentiator that really matters for the stack (and what we use as as a |
| 1564 | // replacement) is the local dfs number. |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1565 | // Everything else in the structure is instruction level, and only affects |
| 1566 | // the order in which we will replace operands of a given instruction. |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1567 | // |
| 1568 | // For a given instruction (IE things with equal dfsin, dfsout, localnum), |
| 1569 | // the order of replacement of uses does not matter. |
| 1570 | // IE given, |
| 1571 | // a = 5 |
| 1572 | // b = a + a |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1573 | // When you hit b, you will have two valuedfs with the same dfsin, out, and |
| 1574 | // localnum. |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1575 | // The .val will be the same as well. |
| 1576 | // The .u's will be different. |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1577 | // You will replace both, and it does not matter what order you replace them |
| 1578 | // in (IE whether you replace operand 2, then operand 1, or operand 1, then |
| 1579 | // operand 2). |
| 1580 | // Similarly for the case of same dfsin, dfsout, localnum, but different |
| 1581 | // .val's |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1582 | // a = 5 |
| 1583 | // b = 6 |
| 1584 | // c = a + b |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1585 | // in c, we will a valuedfs for a, and one for b,with everything the same |
| 1586 | // but .val and .u. |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1587 | // It does not matter what order we replace these operands in. |
| 1588 | // You will always end up with the same IR, and this is guaranteed. |
| 1589 | return std::tie(DFSIn, DFSOut, LocalNum, Val, U) < |
| 1590 | std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val, |
| 1591 | Other.U); |
| 1592 | } |
| 1593 | }; |
| 1594 | |
| 1595 | void NewGVN::convertDenseToDFSOrdered(CongruenceClass::MemberSet &Dense, |
| 1596 | std::vector<ValueDFS> &DFSOrderedSet) { |
| 1597 | for (auto D : Dense) { |
| 1598 | // First add the value. |
| 1599 | BasicBlock *BB = getBlockForValue(D); |
| 1600 | // Constants are handled prior to ever calling this function, so |
| 1601 | // we should only be left with instructions as members. |
Chandler Carruth | ee08676 | 2016-12-23 01:38:06 +0000 | [diff] [blame] | 1602 | assert(BB && "Should have figured out a basic block for value"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1603 | ValueDFS VD; |
| 1604 | |
| 1605 | std::pair<int, int> DFSPair = DFSDomMap[BB]; |
| 1606 | assert(DFSPair.first != -1 && DFSPair.second != -1 && "Invalid DFS Pair"); |
| 1607 | VD.DFSIn = DFSPair.first; |
| 1608 | VD.DFSOut = DFSPair.second; |
| 1609 | VD.Val = D; |
| 1610 | // If it's an instruction, use the real local dfs number. |
| 1611 | if (auto *I = dyn_cast<Instruction>(D)) |
| 1612 | VD.LocalNum = InstrDFS[I]; |
| 1613 | else |
| 1614 | llvm_unreachable("Should have been an instruction"); |
| 1615 | |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 1616 | DFSOrderedSet.emplace_back(VD); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1617 | |
| 1618 | // Now add the users. |
| 1619 | for (auto &U : D->uses()) { |
| 1620 | if (auto *I = dyn_cast<Instruction>(U.getUser())) { |
| 1621 | ValueDFS VD; |
| 1622 | // Put the phi node uses in the incoming block. |
| 1623 | BasicBlock *IBlock; |
| 1624 | if (auto *P = dyn_cast<PHINode>(I)) { |
| 1625 | IBlock = P->getIncomingBlock(U); |
| 1626 | // Make phi node users appear last in the incoming block |
| 1627 | // they are from. |
| 1628 | VD.LocalNum = InstrDFS.size() + 1; |
| 1629 | } else { |
| 1630 | IBlock = I->getParent(); |
| 1631 | VD.LocalNum = InstrDFS[I]; |
| 1632 | } |
| 1633 | std::pair<int, int> DFSPair = DFSDomMap[IBlock]; |
| 1634 | VD.DFSIn = DFSPair.first; |
| 1635 | VD.DFSOut = DFSPair.second; |
| 1636 | VD.U = &U; |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 1637 | DFSOrderedSet.emplace_back(VD); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1638 | } |
| 1639 | } |
| 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | static void patchReplacementInstruction(Instruction *I, Value *Repl) { |
| 1644 | // Patch the replacement so that it is not more restrictive than the value |
| 1645 | // being replaced. |
| 1646 | auto *Op = dyn_cast<BinaryOperator>(I); |
| 1647 | auto *ReplOp = dyn_cast<BinaryOperator>(Repl); |
| 1648 | |
| 1649 | if (Op && ReplOp) |
| 1650 | ReplOp->andIRFlags(Op); |
| 1651 | |
| 1652 | if (auto *ReplInst = dyn_cast<Instruction>(Repl)) { |
| 1653 | // FIXME: If both the original and replacement value are part of the |
| 1654 | // same control-flow region (meaning that the execution of one |
| 1655 | // guarentees the executation of the other), then we can combine the |
| 1656 | // noalias scopes here and do better than the general conservative |
| 1657 | // answer used in combineMetadata(). |
| 1658 | |
| 1659 | // In general, GVN unifies expressions over different control-flow |
| 1660 | // regions, and so we need a conservative combination of the noalias |
| 1661 | // scopes. |
| 1662 | unsigned KnownIDs[] = { |
| 1663 | LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| 1664 | LLVMContext::MD_noalias, LLVMContext::MD_range, |
| 1665 | LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, |
| 1666 | LLVMContext::MD_invariant_group}; |
| 1667 | combineMetadata(ReplInst, I, KnownIDs); |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { |
| 1672 | patchReplacementInstruction(I, Repl); |
| 1673 | I->replaceAllUsesWith(Repl); |
| 1674 | } |
| 1675 | |
| 1676 | void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { |
| 1677 | DEBUG(dbgs() << " BasicBlock Dead:" << *BB); |
| 1678 | ++NumGVNBlocksDeleted; |
| 1679 | |
| 1680 | // Check to see if there are non-terminating instructions to delete. |
| 1681 | if (isa<TerminatorInst>(BB->begin())) |
| 1682 | return; |
| 1683 | |
| 1684 | // Delete the instructions backwards, as it has a reduced likelihood of having |
| 1685 | // to update as many def-use and use-def chains. Start after the terminator. |
| 1686 | auto StartPoint = BB->rbegin(); |
| 1687 | ++StartPoint; |
| 1688 | // Note that we explicitly recalculate BB->rend() on each iteration, |
| 1689 | // as it may change when we remove the first instruction. |
| 1690 | for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { |
| 1691 | Instruction &Inst = *I++; |
| 1692 | if (!Inst.use_empty()) |
| 1693 | Inst.replaceAllUsesWith(UndefValue::get(Inst.getType())); |
| 1694 | if (isa<LandingPadInst>(Inst)) |
| 1695 | continue; |
| 1696 | |
| 1697 | Inst.eraseFromParent(); |
| 1698 | ++NumGVNInstrDeleted; |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | void NewGVN::markInstructionForDeletion(Instruction *I) { |
| 1703 | DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); |
| 1704 | InstructionsToErase.insert(I); |
| 1705 | } |
| 1706 | |
| 1707 | void NewGVN::replaceInstruction(Instruction *I, Value *V) { |
| 1708 | |
| 1709 | DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); |
| 1710 | patchAndReplaceAllUsesWith(I, V); |
| 1711 | // We save the actual erasing to avoid invalidating memory |
| 1712 | // dependencies until we are done with everything. |
| 1713 | markInstructionForDeletion(I); |
| 1714 | } |
| 1715 | |
| 1716 | namespace { |
| 1717 | |
| 1718 | // This is a stack that contains both the value and dfs info of where |
| 1719 | // that value is valid. |
| 1720 | class ValueDFSStack { |
| 1721 | public: |
| 1722 | Value *back() const { return ValueStack.back(); } |
| 1723 | std::pair<int, int> dfs_back() const { return DFSStack.back(); } |
| 1724 | |
| 1725 | void push_back(Value *V, int DFSIn, int DFSOut) { |
Piotr Padlewski | 6c37d29 | 2016-12-28 23:24:02 +0000 | [diff] [blame] | 1726 | ValueStack.emplace_back(V); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1727 | DFSStack.emplace_back(DFSIn, DFSOut); |
| 1728 | } |
| 1729 | bool empty() const { return DFSStack.empty(); } |
| 1730 | bool isInScope(int DFSIn, int DFSOut) const { |
| 1731 | if (empty()) |
| 1732 | return false; |
| 1733 | return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; |
| 1734 | } |
| 1735 | |
| 1736 | void popUntilDFSScope(int DFSIn, int DFSOut) { |
| 1737 | |
| 1738 | // These two should always be in sync at this point. |
| 1739 | assert(ValueStack.size() == DFSStack.size() && |
| 1740 | "Mismatch between ValueStack and DFSStack"); |
| 1741 | while ( |
| 1742 | !DFSStack.empty() && |
| 1743 | !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { |
| 1744 | DFSStack.pop_back(); |
| 1745 | ValueStack.pop_back(); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | private: |
| 1750 | SmallVector<Value *, 8> ValueStack; |
| 1751 | SmallVector<std::pair<int, int>, 8> DFSStack; |
| 1752 | }; |
| 1753 | } |
| 1754 | |
| 1755 | bool NewGVN::eliminateInstructions(Function &F) { |
| 1756 | // This is a non-standard eliminator. The normal way to eliminate is |
| 1757 | // to walk the dominator tree in order, keeping track of available |
| 1758 | // values, and eliminating them. However, this is mildly |
| 1759 | // pointless. It requires doing lookups on every instruction, |
| 1760 | // regardless of whether we will ever eliminate it. For |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1761 | // instructions part of most singleton congruence classes, we know we |
| 1762 | // will never eliminate them. |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1763 | |
| 1764 | // Instead, this eliminator looks at the congruence classes directly, sorts |
| 1765 | // them into a DFS ordering of the dominator tree, and then we just |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1766 | // perform elimination straight on the sets by walking the congruence |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1767 | // class member uses in order, and eliminate the ones dominated by the |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1768 | // last member. This is worst case O(E log E) where E = number of |
| 1769 | // instructions in a single congruence class. In theory, this is all |
| 1770 | // instructions. In practice, it is much faster, as most instructions are |
| 1771 | // either in singleton congruence classes or can't possibly be eliminated |
| 1772 | // anyway (if there are no overlapping DFS ranges in class). |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1773 | // When we find something not dominated, it becomes the new leader |
Daniel Berlin | 85cbc8c | 2016-12-26 19:57:25 +0000 | [diff] [blame] | 1774 | // for elimination purposes. |
| 1775 | // TODO: If we wanted to be faster, We could remove any members with no |
| 1776 | // overlapping ranges while sorting, as we will never eliminate anything |
| 1777 | // with those members, as they don't dominate anything else in our set. |
| 1778 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1779 | bool AnythingReplaced = false; |
| 1780 | |
| 1781 | // Since we are going to walk the domtree anyway, and we can't guarantee the |
| 1782 | // DFS numbers are updated, we compute some ourselves. |
| 1783 | DT->updateDFSNumbers(); |
| 1784 | |
| 1785 | for (auto &B : F) { |
| 1786 | if (!ReachableBlocks.count(&B)) { |
| 1787 | for (const auto S : successors(&B)) { |
| 1788 | for (auto II = S->begin(); isa<PHINode>(II); ++II) { |
Piotr Padlewski | fc5727b | 2016-12-28 19:17:17 +0000 | [diff] [blame] | 1789 | auto &Phi = cast<PHINode>(*II); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1790 | DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block " |
| 1791 | << getBlockName(&B) |
| 1792 | << " with undef due to it being unreachable\n"); |
| 1793 | for (auto &Operand : Phi.incoming_values()) |
| 1794 | if (Phi.getIncomingBlock(Operand) == &B) |
| 1795 | Operand.set(UndefValue::get(Phi.getType())); |
| 1796 | } |
| 1797 | } |
| 1798 | } |
| 1799 | DomTreeNode *Node = DT->getNode(&B); |
| 1800 | if (Node) |
| 1801 | DFSDomMap[&B] = {Node->getDFSNumIn(), Node->getDFSNumOut()}; |
| 1802 | } |
| 1803 | |
| 1804 | for (CongruenceClass *CC : CongruenceClasses) { |
| 1805 | // FIXME: We should eventually be able to replace everything still |
| 1806 | // in the initial class with undef, as they should be unreachable. |
| 1807 | // Right now, initial still contains some things we skip value |
| 1808 | // numbering of (UNREACHABLE's, for example). |
| 1809 | if (CC == InitialClass || CC->Dead) |
| 1810 | continue; |
| 1811 | assert(CC->RepLeader && "We should have had a leader"); |
| 1812 | |
| 1813 | // If this is a leader that is always available, and it's a |
| 1814 | // constant or has no equivalences, just replace everything with |
| 1815 | // it. We then update the congruence class with whatever members |
| 1816 | // are left. |
| 1817 | if (alwaysAvailable(CC->RepLeader)) { |
| 1818 | SmallPtrSet<Value *, 4> MembersLeft; |
| 1819 | for (auto M : CC->Members) { |
| 1820 | |
| 1821 | Value *Member = M; |
| 1822 | |
| 1823 | // Void things have no uses we can replace. |
| 1824 | if (Member == CC->RepLeader || Member->getType()->isVoidTy()) { |
| 1825 | MembersLeft.insert(Member); |
| 1826 | continue; |
| 1827 | } |
| 1828 | |
| 1829 | DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for " |
| 1830 | << *Member << "\n"); |
| 1831 | // Due to equality propagation, these may not always be |
| 1832 | // instructions, they may be real values. We don't really |
| 1833 | // care about trying to replace the non-instructions. |
| 1834 | if (auto *I = dyn_cast<Instruction>(Member)) { |
| 1835 | assert(CC->RepLeader != I && |
| 1836 | "About to accidentally remove our leader"); |
| 1837 | replaceInstruction(I, CC->RepLeader); |
| 1838 | AnythingReplaced = true; |
| 1839 | |
| 1840 | continue; |
| 1841 | } else { |
| 1842 | MembersLeft.insert(I); |
| 1843 | } |
| 1844 | } |
| 1845 | CC->Members.swap(MembersLeft); |
| 1846 | |
| 1847 | } else { |
| 1848 | DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n"); |
| 1849 | // If this is a singleton, we can skip it. |
| 1850 | if (CC->Members.size() != 1) { |
| 1851 | |
| 1852 | // This is a stack because equality replacement/etc may place |
| 1853 | // constants in the middle of the member list, and we want to use |
| 1854 | // those constant values in preference to the current leader, over |
| 1855 | // the scope of those constants. |
| 1856 | ValueDFSStack EliminationStack; |
| 1857 | |
| 1858 | // Convert the members to DFS ordered sets and then merge them. |
| 1859 | std::vector<ValueDFS> DFSOrderedSet; |
| 1860 | convertDenseToDFSOrdered(CC->Members, DFSOrderedSet); |
| 1861 | |
| 1862 | // Sort the whole thing. |
| 1863 | sort(DFSOrderedSet.begin(), DFSOrderedSet.end()); |
| 1864 | |
| 1865 | for (auto &C : DFSOrderedSet) { |
| 1866 | int MemberDFSIn = C.DFSIn; |
| 1867 | int MemberDFSOut = C.DFSOut; |
| 1868 | Value *Member = C.Val; |
| 1869 | Use *MemberUse = C.U; |
| 1870 | |
| 1871 | // We ignore void things because we can't get a value from them. |
| 1872 | if (Member && Member->getType()->isVoidTy()) |
| 1873 | continue; |
| 1874 | |
| 1875 | if (EliminationStack.empty()) { |
| 1876 | DEBUG(dbgs() << "Elimination Stack is empty\n"); |
| 1877 | } else { |
| 1878 | DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" |
| 1879 | << EliminationStack.dfs_back().first << "," |
| 1880 | << EliminationStack.dfs_back().second << ")\n"); |
| 1881 | } |
| 1882 | if (Member && isa<Constant>(Member)) |
| 1883 | assert(isa<Constant>(CC->RepLeader)); |
| 1884 | |
| 1885 | DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," |
| 1886 | << MemberDFSOut << ")\n"); |
| 1887 | // First, we see if we are out of scope or empty. If so, |
| 1888 | // and there equivalences, we try to replace the top of |
| 1889 | // stack with equivalences (if it's on the stack, it must |
| 1890 | // not have been eliminated yet). |
| 1891 | // Then we synchronize to our current scope, by |
| 1892 | // popping until we are back within a DFS scope that |
| 1893 | // dominates the current member. |
| 1894 | // Then, what happens depends on a few factors |
| 1895 | // If the stack is now empty, we need to push |
| 1896 | // If we have a constant or a local equivalence we want to |
| 1897 | // start using, we also push. |
| 1898 | // Otherwise, we walk along, processing members who are |
| 1899 | // dominated by this scope, and eliminate them. |
| 1900 | bool ShouldPush = |
| 1901 | Member && (EliminationStack.empty() || isa<Constant>(Member)); |
| 1902 | bool OutOfScope = |
| 1903 | !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); |
| 1904 | |
| 1905 | if (OutOfScope || ShouldPush) { |
| 1906 | // Sync to our current scope. |
| 1907 | EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); |
| 1908 | ShouldPush |= Member && EliminationStack.empty(); |
| 1909 | if (ShouldPush) { |
| 1910 | EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | // If we get to this point, and the stack is empty we must have a use |
| 1915 | // with nothing we can use to eliminate it, just skip it. |
| 1916 | if (EliminationStack.empty()) |
| 1917 | continue; |
| 1918 | |
| 1919 | // Skip the Value's, we only want to eliminate on their uses. |
| 1920 | if (Member) |
| 1921 | continue; |
| 1922 | Value *Result = EliminationStack.back(); |
| 1923 | |
Daniel Berlin | e0bd37e | 2016-12-29 22:15:12 +0000 | [diff] [blame] | 1924 | // Don't replace our existing users with ourselves, and don't replace |
| 1925 | // phi node arguments with the result of the same phi node. |
| 1926 | // IE tmp = phi(tmp11, undef); tmp11 = foo -> tmp = phi(tmp, undef) |
| 1927 | if (MemberUse->get() == Result || |
| 1928 | (isa<PHINode>(Result) && MemberUse->getUser() == Result)) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1929 | continue; |
| 1930 | |
| 1931 | DEBUG(dbgs() << "Found replacement " << *Result << " for " |
| 1932 | << *MemberUse->get() << " in " << *(MemberUse->getUser()) |
| 1933 | << "\n"); |
| 1934 | |
| 1935 | // If we replaced something in an instruction, handle the patching of |
| 1936 | // metadata. |
Daniel Berlin | 85f91b0 | 2016-12-26 20:06:58 +0000 | [diff] [blame] | 1937 | if (auto *ReplacedInst = dyn_cast<Instruction>(MemberUse->get())) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1938 | patchReplacementInstruction(ReplacedInst, Result); |
| 1939 | |
| 1940 | assert(isa<Instruction>(MemberUse->getUser())); |
| 1941 | MemberUse->set(Result); |
| 1942 | AnythingReplaced = true; |
| 1943 | } |
| 1944 | } |
| 1945 | } |
| 1946 | |
| 1947 | // Cleanup the congruence class. |
| 1948 | SmallPtrSet<Value *, 4> MembersLeft; |
Piotr Padlewski | 26dada7 | 2016-12-28 19:42:49 +0000 | [diff] [blame] | 1949 | for (Value * Member : CC->Members) { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1950 | if (Member->getType()->isVoidTy()) { |
| 1951 | MembersLeft.insert(Member); |
| 1952 | continue; |
| 1953 | } |
| 1954 | |
| 1955 | if (auto *MemberInst = dyn_cast<Instruction>(Member)) { |
| 1956 | if (isInstructionTriviallyDead(MemberInst)) { |
| 1957 | // TODO: Don't mark loads of undefs. |
| 1958 | markInstructionForDeletion(MemberInst); |
| 1959 | continue; |
| 1960 | } |
| 1961 | } |
| 1962 | MembersLeft.insert(Member); |
| 1963 | } |
| 1964 | CC->Members.swap(MembersLeft); |
| 1965 | } |
| 1966 | |
| 1967 | return AnythingReplaced; |
| 1968 | } |