blob: 103c6e0365bad080d9b8ca7631609156e25c436a [file] [log] [blame]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
Reid Kleckner0ad60a92016-06-07 20:27:30 +000066Currently, there are two backend consumers of debug info: DwarfDebug and
Vedant Kumarce898db2016-11-01 23:55:50 +000067CodeViewDebug. DwarfDebug produces DWARF suitable for use with GDB, LLDB, and
Reid Kleckner0ad60a92016-06-07 20:27:30 +000068other DWARF-based debuggers. :ref:`CodeViewDebug <codeview>` produces CodeView,
69the Microsoft debug info format, which is usable with Microsoft debuggers such
70as Visual Studio and WinDBG. LLVM's debug information format is mostly derived
71from and inspired by DWARF, but it is feasible to translate into other target
72debug info formats such as STABS.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +000073
74It would also be reasonable to use debug information to feed profiling tools
75for analysis of generated code, or, tools for reconstructing the original
76source from generated code.
77
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +000078.. _intro_debugopt:
79
80Debugging optimized code
81------------------------
82
83An extremely high priority of LLVM debugging information is to make it interact
84well with optimizations and analysis. In particular, the LLVM debug
85information provides the following guarantees:
86
87* LLVM debug information **always provides information to accurately read
88 the source-level state of the program**, regardless of which LLVM
89 optimizations have been run, and without any modification to the
90 optimizations themselves. However, some optimizations may impact the
91 ability to modify the current state of the program with a debugger, such
92 as setting program variables, or calling functions that have been
93 deleted.
94
Vedant Kumarce898db2016-11-01 23:55:50 +000095* As desired, LLVM optimizations can be upgraded to be aware of debugging
96 information, allowing them to update the debugging information as they
97 perform aggressive optimizations. This means that, with effort, the LLVM
98 optimizers could optimize debug code just as well as non-debug code.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +000099
100* LLVM debug information does not prevent optimizations from
101 happening (for example inlining, basic block reordering/merging/cleanup,
102 tail duplication, etc).
103
104* LLVM debug information is automatically optimized along with the rest of
105 the program, using existing facilities. For example, duplicate
106 information is automatically merged by the linker, and unused information
107 is automatically removed.
108
109Basically, the debug information allows you to compile a program with
110"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
111the program as it executes from a debugger. Compiling a program with
112"``-O3 -g``" gives you full debug information that is always available and
113accurate for reading (e.g., you get accurate stack traces despite tail call
114elimination and inlining), but you might lose the ability to modify the program
Vedant Kumarce898db2016-11-01 23:55:50 +0000115and call functions which were optimized out of the program, or inlined away
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000116completely.
117
Vedant Kumarce898db2016-11-01 23:55:50 +0000118The :ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000119optimizer's handling of debugging information. It can be run like this:
120
121.. code-block:: bash
122
123 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
124 % make TEST=dbgopt
125
126This will test impact of debugging information on optimization passes. If
127debugging information influences optimization passes then it will be reported
128as a failure. See :doc:`TestingGuide` for more information on LLVM test
129infrastructure and how to run various tests.
130
131.. _format:
132
133Debugging information format
134============================
135
136LLVM debugging information has been carefully designed to make it possible for
137the optimizer to optimize the program and debugging information without
138necessarily having to know anything about debugging information. In
139particular, the use of metadata avoids duplicated debugging information from
140the beginning, and the global dead code elimination pass automatically deletes
141debugging information for a function if it decides to delete the function.
142
143To do this, most of the debugging information (descriptors for types,
144variables, functions, source files, etc) is inserted by the language front-end
145in the form of LLVM metadata.
146
147Debug information is designed to be agnostic about the target debugger and
148debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
149pass to decode the information that represents variables, types, functions,
150namespaces, etc: this allows for arbitrary source-language semantics and
151type-systems to be used, as long as there is a module written for the target
152debugger to interpret the information.
153
154To provide basic functionality, the LLVM debugger does have to make some
155assumptions about the source-level language being debugged, though it keeps
156these to a minimum. The only common features that the LLVM debugger assumes
Michael Kuperstein605308a2015-05-14 10:58:59 +0000157exist are `source files <LangRef.html#difile>`_, and `program objects
158<LangRef.html#diglobalvariable>`_. These abstract objects are used by a
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000159debugger to form stack traces, show information about local variables, etc.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000160
161This section of the documentation first describes the representation aspects
162common to any source-language. :ref:`ccxx_frontend` describes the data layout
163conventions used by the C and C++ front-ends.
164
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000165Debug information descriptors are `specialized metadata nodes
166<LangRef.html#specialized-metadata>`_, first-class subclasses of ``Metadata``.
Adrian Prantlb1416832014-08-01 22:11:58 +0000167
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000168.. _format_common_intrinsics:
169
170Debugger intrinsic functions
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000171----------------------------
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000172
173LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
Reid Kleckner0fe506b2017-09-21 19:52:03 +0000174track source local variables through optimization and code generation.
175
176``llvm.dbg.addr``
177^^^^^^^^^^^^^^^^^^^^
178
179.. code-block:: llvm
180
181 void @llvm.dbg.addr(metadata, metadata, metadata)
182
183This intrinsic provides information about a local element (e.g., variable).
184The first argument is metadata holding the address of variable, typically a
185static alloca in the function entry block. The second argument is a
186`local variable <LangRef.html#dilocalvariable>`_ containing a description of
187the variable. The third argument is a `complex expression
188<LangRef.html#diexpression>`_. An `llvm.dbg.addr` intrinsic describes the
189*address* of a source variable.
190
Jonas Devlieghereaaecdc42017-11-06 11:47:24 +0000191.. code-block:: text
Reid Kleckner0fe506b2017-09-21 19:52:03 +0000192
193 %i.addr = alloca i32, align 4
194 call void @llvm.dbg.addr(metadata i32* %i.addr, metadata !1,
195 metadata !DIExpression()), !dbg !2
196 !1 = !DILocalVariable(name: "i", ...) ; int i
197 !2 = !DILocation(...)
198 ...
199 %buffer = alloca [256 x i8], align 8
200 ; The address of i is buffer+64.
201 call void @llvm.dbg.addr(metadata [256 x i8]* %buffer, metadata !3,
202 metadata !DIExpression(DW_OP_plus, 64)), !dbg !4
203 !3 = !DILocalVariable(name: "i", ...) ; int i
204 !4 = !DILocation(...)
205
206A frontend should generate exactly one call to ``llvm.dbg.addr`` at the point
207of declaration of a source variable. Optimization passes that fully promote the
208variable from memory to SSA values will replace this call with possibly
209multiple calls to `llvm.dbg.value`. Passes that delete stores are effectively
210partial promotion, and they will insert a mix of calls to ``llvm.dbg.value``
211and ``llvm.dbg.addr`` to track the source variable value when it is available.
212After optimization, there may be multiple calls to ``llvm.dbg.addr`` describing
213the program points where the variables lives in memory. All calls for the same
214concrete source variable must agree on the memory location.
215
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000216
217``llvm.dbg.declare``
218^^^^^^^^^^^^^^^^^^^^
219
220.. code-block:: llvm
221
Michael Kuperstein605308a2015-05-14 10:58:59 +0000222 void @llvm.dbg.declare(metadata, metadata, metadata)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000223
Reid Kleckner0fe506b2017-09-21 19:52:03 +0000224This intrinsic is identical to `llvm.dbg.addr`, except that there can only be
225one call to `llvm.dbg.declare` for a given concrete `local variable
226<LangRef.html#dilocalvariable>`_. It is not control-dependent, meaning that if
227a call to `llvm.dbg.declare` exists and has a valid location argument, that
228address is considered to be the true home of the variable across its entire
229lifetime. This makes it hard for optimizations to preserve accurate debug info
230in the presence of ``llvm.dbg.declare``, so we are transitioning away from it,
231and we plan to deprecate it in future LLVM releases.
Adrian Prantl6825fb62017-04-18 01:21:53 +0000232
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000233
234``llvm.dbg.value``
235^^^^^^^^^^^^^^^^^^
236
237.. code-block:: llvm
238
Adrian Prantlabe04752017-07-28 20:21:02 +0000239 void @llvm.dbg.value(metadata, metadata, metadata)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000240
241This intrinsic provides information when a user source variable is set to a new
Vedant Kumar593ec592017-10-26 17:58:05 +0000242value. The first argument is the new value (wrapped as metadata). The second
Adrian Prantlabe04752017-07-28 20:21:02 +0000243argument is a `local variable <LangRef.html#dilocalvariable>`_ containing a
Vedant Kumar593ec592017-10-26 17:58:05 +0000244description of the variable. The third argument is a `complex expression
Adrian Prantlabe04752017-07-28 20:21:02 +0000245<LangRef.html#diexpression>`_.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000246
247Object lifetimes and scoping
248============================
249
250In many languages, the local variables in functions can have their lifetimes or
251scopes limited to a subset of a function. In the C family of languages, for
252example, variables are only live (readable and writable) within the source
253block that they are defined in. In functional languages, values are only
254readable after they have been defined. Though this is a very obvious concept,
255it is non-trivial to model in LLVM, because it has no notion of scoping in this
256sense, and does not want to be tied to a language's scoping rules.
257
258In order to handle this, the LLVM debug format uses the metadata attached to
259llvm instructions to encode line number and scoping information. Consider the
260following C fragment, for example:
261
262.. code-block:: c
263
264 1. void foo() {
265 2. int X = 21;
266 3. int Y = 22;
267 4. {
268 5. int Z = 23;
269 6. Z = X;
270 7. }
271 8. X = Y;
272 9. }
273
Reid Kleckner0fe506b2017-09-21 19:52:03 +0000274.. FIXME: Update the following example to use llvm.dbg.addr once that is the
275 default in clang.
276
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000277Compiled to LLVM, this function would be represented like this:
278
Renato Golin124f2592016-07-20 12:16:38 +0000279.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000280
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000281 ; Function Attrs: nounwind ssp uwtable
Peter Collingbourne50108682015-11-06 02:41:02 +0000282 define void @foo() #0 !dbg !4 {
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000283 entry:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000284 %X = alloca i32, align 4
Bill Wendlinge814a372013-10-27 04:50:34 +0000285 %Y = alloca i32, align 4
286 %Z = alloca i32, align 4
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000287 call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
288 store i32 21, i32* %X, align 4, !dbg !14
289 call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
290 store i32 22, i32* %Y, align 4, !dbg !16
291 call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
292 store i32 23, i32* %Z, align 4, !dbg !19
293 %0 = load i32, i32* %X, align 4, !dbg !20
294 store i32 %0, i32* %Z, align 4, !dbg !21
295 %1 = load i32, i32* %Y, align 4, !dbg !22
296 store i32 %1, i32* %X, align 4, !dbg !23
297 ret void, !dbg !24
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000298 }
299
David Blaikiec4fe5db2013-05-29 02:05:13 +0000300 ; Function Attrs: nounwind readnone
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000301 declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000302
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000303 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
David Blaikiec4fe5db2013-05-29 02:05:13 +0000304 attributes #1 = { nounwind readnone }
305
306 !llvm.dbg.cu = !{!0}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000307 !llvm.module.flags = !{!7, !8, !9}
308 !llvm.ident = !{!10}
Bill Wendlinge814a372013-10-27 04:50:34 +0000309
Adrian Prantlb8089512016-04-01 00:16:49 +0000310 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000311 !1 = !DIFile(filename: "/dev/stdin", directory: "/Users/dexonsmith/data/llvm/debug-info")
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000312 !2 = !{}
313 !3 = !{!4}
Peter Collingbourne50108682015-11-06 02:41:02 +0000314 !4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000315 !5 = !DISubroutineType(types: !6)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000316 !6 = !{null}
317 !7 = !{i32 2, !"Dwarf Version", i32 2}
318 !8 = !{i32 2, !"Debug Info Version", i32 3}
319 !9 = !{i32 1, !"PIC Level", i32 2}
320 !10 = !{!"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)"}
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +0000321 !11 = !DILocalVariable(name: "X", scope: !4, file: !1, line: 2, type: !12)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000322 !12 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
323 !13 = !DIExpression()
324 !14 = !DILocation(line: 2, column: 9, scope: !4)
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +0000325 !15 = !DILocalVariable(name: "Y", scope: !4, file: !1, line: 3, type: !12)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000326 !16 = !DILocation(line: 3, column: 9, scope: !4)
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +0000327 !17 = !DILocalVariable(name: "Z", scope: !18, file: !1, line: 5, type: !12)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000328 !18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
329 !19 = !DILocation(line: 5, column: 11, scope: !18)
330 !20 = !DILocation(line: 6, column: 11, scope: !18)
331 !21 = !DILocation(line: 6, column: 9, scope: !18)
332 !22 = !DILocation(line: 8, column: 9, scope: !4)
333 !23 = !DILocation(line: 8, column: 7, scope: !4)
334 !24 = !DILocation(line: 9, column: 3, scope: !4)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000335
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000336
337This example illustrates a few important details about LLVM debugging
338information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
339location information, which are attached to an instruction, are applied
340together to allow a debugger to analyze the relationship between statements,
341variable definitions, and the code used to implement the function.
342
343.. code-block:: llvm
344
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000345 call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
David Blaikiec4fe5db2013-05-29 02:05:13 +0000346 ; [debug line = 2:7] [debug variable = X]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000347
348The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000349variable ``X``. The metadata ``!dbg !14`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000350scope information for the variable ``X``.
351
Renato Golin124f2592016-07-20 12:16:38 +0000352.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000353
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000354 !14 = !DILocation(line: 2, column: 9, scope: !4)
Peter Collingbourne50108682015-11-06 02:41:02 +0000355 !4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,
356 isLocal: false, isDefinition: true, scopeLine: 1,
357 isOptimized: false, variables: !2)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000358
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000359Here ``!14`` is metadata providing `location information
Michael Kuperstein605308a2015-05-14 10:58:59 +0000360<LangRef.html#dilocation>`_. In this example, scope is encoded by ``!4``, a
361`subprogram descriptor <LangRef.html#disubprogram>`_. This way the location
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000362information attached to the intrinsics indicates that the variable ``X`` is
363declared at line number 2 at a function level scope in function ``foo``.
364
365Now lets take another example.
366
367.. code-block:: llvm
368
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000369 call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
David Blaikiec4fe5db2013-05-29 02:05:13 +0000370 ; [debug line = 5:9] [debug variable = Z]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000371
David Blaikiec4fe5db2013-05-29 02:05:13 +0000372The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000373variable ``Z``. The metadata ``!dbg !19`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000374scope information for the variable ``Z``.
375
Renato Golin124f2592016-07-20 12:16:38 +0000376.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000377
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000378 !18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
379 !19 = !DILocation(line: 5, column: 11, scope: !18)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000380
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000381Here ``!19`` indicates that ``Z`` is declared at line number 5 and column
382number 0 inside of lexical scope ``!18``. The lexical scope itself resides
383inside of subprogram ``!4`` described above.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000384
385The scope information attached with each instruction provides a straightforward
386way to find instructions covered by a scope.
387
388.. _ccxx_frontend:
389
390C/C++ front-end specific debug information
391==========================================
392
393The C and C++ front-ends represent information about the program in a format
394that is effectively identical to `DWARF 3.0
395<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
396content. This allows code generators to trivially support native debuggers by
397generating standard dwarf information, and contains enough information for
398non-dwarf targets to translate it as needed.
399
400This section describes the forms used to represent C and C++ programs. Other
401languages could pattern themselves after this (which itself is tuned to
402representing programs in the same way that DWARF 3 does), or they could choose
403to provide completely different forms if they don't fit into the DWARF model.
404As support for debugging information gets added to the various LLVM
405source-language front-ends, the information used should be documented here.
406
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000407The following sections provide examples of a few C/C++ constructs and the debug
408information that would best describe those constructs. The canonical
409references are the ``DIDescriptor`` classes defined in
410``include/llvm/IR/DebugInfo.h`` and the implementations of the helper functions
411in ``lib/IR/DIBuilder.cpp``.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000412
413C/C++ source file information
414-----------------------------
415
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000416``llvm::Instruction`` provides easy access to metadata attached with an
417instruction. One can extract line number information encoded in LLVM IR using
Duncan P. N. Exon Smithf032c952015-08-06 18:15:25 +0000418``Instruction::getDebugLoc()`` and ``DILocation::getLine()``.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000419
420.. code-block:: c++
421
Duncan P. N. Exon Smithf032c952015-08-06 18:15:25 +0000422 if (DILocation *Loc = I->getDebugLoc()) { // Here I is an LLVM instruction
423 unsigned Line = Loc->getLine();
424 StringRef File = Loc->getFilename();
425 StringRef Dir = Loc->getDirectory();
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000426 }
427
428C/C++ global variable information
429---------------------------------
430
431Given an integer global variable declared as follows:
432
433.. code-block:: c
434
Victor Leschuk3c989982016-10-26 11:59:03 +0000435 _Alignas(8) int MyGlobal = 100;
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000436
437a C/C++ front-end would generate the following descriptors:
438
Renato Golin124f2592016-07-20 12:16:38 +0000439.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000440
441 ;;
442 ;; Define the global itself.
443 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000444 @MyGlobal = global i32 100, align 8, !dbg !0
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000445
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000446 ;;
447 ;; List of debug info of globals
448 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000449 !llvm.dbg.cu = !{!1}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000450
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000451 ;; Some unrelated metadata.
452 !llvm.module.flags = !{!6, !7}
Victor Leschuk3c989982016-10-26 11:59:03 +0000453 !llvm.ident = !{!8}
454
455 ;; Define the global variable itself
456 !0 = distinct !DIGlobalVariable(name: "MyGlobal", scope: !1, file: !2, line: 1, type: !5, isLocal: false, isDefinition: true, align: 64)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000457
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000458 ;; Define the compile unit.
Victor Leschuk3c989982016-10-26 11:59:03 +0000459 !1 = distinct !DICompileUnit(language: DW_LANG_C99, file: !2,
460 producer: "clang version 4.0.0 (http://llvm.org/git/clang.git ae4deadbea242e8ea517eef662c30443f75bd086) (http://llvm.org/git/llvm.git 818b4c1539df3e51dc7e62c89ead4abfd348827d)",
461 isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug,
462 enums: !3, globals: !4)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000463
464 ;;
465 ;; Define the file
466 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000467 !2 = !DIFile(filename: "/dev/stdin",
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000468 directory: "/Users/dexonsmith/data/llvm/debug-info")
469
470 ;; An empty array.
Victor Leschuk3c989982016-10-26 11:59:03 +0000471 !3 = !{}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000472
473 ;; The Array of Global Variables
Victor Leschuk3c989982016-10-26 11:59:03 +0000474 !4 = !{!0}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000475
476 ;;
477 ;; Define the type
478 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000479 !5 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000480
481 ;; Dwarf version to output.
Victor Leschuk3c989982016-10-26 11:59:03 +0000482 !6 = !{i32 2, !"Dwarf Version", i32 4}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000483
484 ;; Debug info schema version.
485 !7 = !{i32 2, !"Debug Info Version", i32 3}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000486
Victor Leschuk3c989982016-10-26 11:59:03 +0000487 ;; Compiler identification
488 !8 = !{!"clang version 4.0.0 (http://llvm.org/git/clang.git ae4deadbea242e8ea517eef662c30443f75bd086) (http://llvm.org/git/llvm.git 818b4c1539df3e51dc7e62c89ead4abfd348827d)"}
489
490
491The align value in DIGlobalVariable description specifies variable alignment in
492case it was forced by C11 _Alignas(), C++11 alignas() keywords or compiler
493attribute __attribute__((aligned ())). In other case (when this field is missing)
494alignment is considered default. This is used when producing DWARF output
495for DW_AT_alignment value.
496
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000497C/C++ function information
498--------------------------
499
500Given a function declared as follows:
501
502.. code-block:: c
503
504 int main(int argc, char *argv[]) {
505 return 0;
506 }
507
508a C/C++ front-end would generate the following descriptors:
509
Renato Golin124f2592016-07-20 12:16:38 +0000510.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000511
512 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000513 ;; Define the anchor for subprograms.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000514 ;;
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000515 !4 = !DISubprogram(name: "main", scope: !1, file: !1, line: 1, type: !5,
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000516 isLocal: false, isDefinition: true, scopeLine: 1,
517 flags: DIFlagPrototyped, isOptimized: false,
Peter Collingbourne50108682015-11-06 02:41:02 +0000518 variables: !2)
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000519
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000520 ;;
521 ;; Define the subprogram itself.
522 ;;
Peter Collingbourne50108682015-11-06 02:41:02 +0000523 define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000524 ...
525 }
526
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000527Debugging information format
528============================
529
530Debugging Information Extension for Objective C Properties
531----------------------------------------------------------
532
533Introduction
534^^^^^^^^^^^^
535
536Objective C provides a simpler way to declare and define accessor methods using
537declared properties. The language provides features to declare a property and
538to let compiler synthesize accessor methods.
539
540The debugger lets developer inspect Objective C interfaces and their instance
541variables and class variables. However, the debugger does not know anything
542about the properties defined in Objective C interfaces. The debugger consumes
543information generated by compiler in DWARF format. The format does not support
544encoding of Objective C properties. This proposal describes DWARF extensions to
545encode Objective C properties, which the debugger can use to let developers
546inspect Objective C properties.
547
548Proposal
549^^^^^^^^
550
551Objective C properties exist separately from class members. A property can be
552defined only by "setter" and "getter" selectors, and be calculated anew on each
553access. Or a property can just be a direct access to some declared ivar.
554Finally it can have an ivar "automatically synthesized" for it by the compiler,
555in which case the property can be referred to in user code directly using the
556standard C dereference syntax as well as through the property "dot" syntax, but
557there is no entry in the ``@interface`` declaration corresponding to this ivar.
558
559To facilitate debugging, these properties we will add a new DWARF TAG into the
560``DW_TAG_structure_type`` definition for the class to hold the description of a
561given property, and a set of DWARF attributes that provide said description.
562The property tag will also contain the name and declared type of the property.
563
564If there is a related ivar, there will also be a DWARF property attribute placed
565in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
566for that property. And in the case where the compiler synthesizes the ivar
567directly, the compiler is expected to generate a ``DW_TAG_member`` for that
568ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
569to access this ivar directly in code, and with the property attribute pointing
570back to the property it is backing.
571
572The following examples will serve as illustration for our discussion:
573
574.. code-block:: objc
575
576 @interface I1 {
577 int n2;
578 }
579
580 @property int p1;
581 @property int p2;
582 @end
583
584 @implementation I1
585 @synthesize p1;
586 @synthesize p2 = n2;
587 @end
588
589This produces the following DWARF (this is a "pseudo dwarfdump" output):
590
591.. code-block:: none
592
593 0x00000100: TAG_structure_type [7] *
594 AT_APPLE_runtime_class( 0x10 )
595 AT_name( "I1" )
596 AT_decl_file( "Objc_Property.m" )
597 AT_decl_line( 3 )
598
599 0x00000110 TAG_APPLE_property
600 AT_name ( "p1" )
601 AT_type ( {0x00000150} ( int ) )
602
603 0x00000120: TAG_APPLE_property
604 AT_name ( "p2" )
605 AT_type ( {0x00000150} ( int ) )
606
607 0x00000130: TAG_member [8]
608 AT_name( "_p1" )
609 AT_APPLE_property ( {0x00000110} "p1" )
610 AT_type( {0x00000150} ( int ) )
611 AT_artificial ( 0x1 )
612
613 0x00000140: TAG_member [8]
614 AT_name( "n2" )
615 AT_APPLE_property ( {0x00000120} "p2" )
616 AT_type( {0x00000150} ( int ) )
617
618 0x00000150: AT_type( ( int ) )
619
620Note, the current convention is that the name of the ivar for an
621auto-synthesized property is the name of the property from which it derives
622with an underscore prepended, as is shown in the example. But we actually
623don't need to know this convention, since we are given the name of the ivar
624directly.
625
626Also, it is common practice in ObjC to have different property declarations in
627the @interface and @implementation - e.g. to provide a read-only property in
628the interface,and a read-write interface in the implementation. In that case,
629the compiler should emit whichever property declaration will be in force in the
630current translation unit.
631
632Developers can decorate a property with attributes which are encoded using
633``DW_AT_APPLE_property_attribute``.
634
635.. code-block:: objc
636
637 @property (readonly, nonatomic) int pr;
638
639.. code-block:: none
640
641 TAG_APPLE_property [8]
642 AT_name( "pr" )
643 AT_type ( {0x00000147} (int) )
644 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
645
646The setter and getter method names are attached to the property using
647``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
648
649.. code-block:: objc
650
651 @interface I1
652 @property (setter=myOwnP3Setter:) int p3;
653 -(void)myOwnP3Setter:(int)a;
654 @end
655
656 @implementation I1
657 @synthesize p3;
658 -(void)myOwnP3Setter:(int)a{ }
659 @end
660
661The DWARF for this would be:
662
663.. code-block:: none
664
665 0x000003bd: TAG_structure_type [7] *
666 AT_APPLE_runtime_class( 0x10 )
667 AT_name( "I1" )
668 AT_decl_file( "Objc_Property.m" )
669 AT_decl_line( 3 )
670
671 0x000003cd TAG_APPLE_property
672 AT_name ( "p3" )
673 AT_APPLE_property_setter ( "myOwnP3Setter:" )
674 AT_type( {0x00000147} ( int ) )
675
676 0x000003f3: TAG_member [8]
677 AT_name( "_p3" )
678 AT_type ( {0x00000147} ( int ) )
679 AT_APPLE_property ( {0x000003cd} )
680 AT_artificial ( 0x1 )
681
682New DWARF Tags
683^^^^^^^^^^^^^^
684
685+-----------------------+--------+
686| TAG | Value |
687+=======================+========+
688| DW_TAG_APPLE_property | 0x4200 |
689+-----------------------+--------+
690
691New DWARF Attributes
692^^^^^^^^^^^^^^^^^^^^
693
694+--------------------------------+--------+-----------+
695| Attribute | Value | Classes |
696+================================+========+===========+
697| DW_AT_APPLE_property | 0x3fed | Reference |
698+--------------------------------+--------+-----------+
699| DW_AT_APPLE_property_getter | 0x3fe9 | String |
700+--------------------------------+--------+-----------+
701| DW_AT_APPLE_property_setter | 0x3fea | String |
702+--------------------------------+--------+-----------+
703| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
704+--------------------------------+--------+-----------+
705
706New DWARF Constants
707^^^^^^^^^^^^^^^^^^^
708
Frederic Risseea4f882014-10-08 14:59:44 +0000709+--------------------------------------+-------+
710| Name | Value |
711+======================================+=======+
712| DW_APPLE_PROPERTY_readonly | 0x01 |
713+--------------------------------------+-------+
714| DW_APPLE_PROPERTY_getter | 0x02 |
715+--------------------------------------+-------+
716| DW_APPLE_PROPERTY_assign | 0x04 |
717+--------------------------------------+-------+
718| DW_APPLE_PROPERTY_readwrite | 0x08 |
719+--------------------------------------+-------+
720| DW_APPLE_PROPERTY_retain | 0x10 |
721+--------------------------------------+-------+
722| DW_APPLE_PROPERTY_copy | 0x20 |
723+--------------------------------------+-------+
724| DW_APPLE_PROPERTY_nonatomic | 0x40 |
725+--------------------------------------+-------+
726| DW_APPLE_PROPERTY_setter | 0x80 |
727+--------------------------------------+-------+
728| DW_APPLE_PROPERTY_atomic | 0x100 |
729+--------------------------------------+-------+
730| DW_APPLE_PROPERTY_weak | 0x200 |
731+--------------------------------------+-------+
732| DW_APPLE_PROPERTY_strong | 0x400 |
733+--------------------------------------+-------+
734| DW_APPLE_PROPERTY_unsafe_unretained | 0x800 |
Adrian Prantl0418ef22016-07-14 00:41:18 +0000735+--------------------------------------+-------+
736| DW_APPLE_PROPERTY_nullability | 0x1000|
737+--------------------------------------+-------+
738| DW_APPLE_PROPERTY_null_resettable | 0x2000|
739+--------------------------------------+-------+
740| DW_APPLE_PROPERTY_class | 0x4000|
741+--------------------------------------+-------+
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000742
743Name Accelerator Tables
744-----------------------
745
746Introduction
747^^^^^^^^^^^^
748
749The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
750debugger needs. The "``pub``" in the section name indicates that the entries
751in the table are publicly visible names only. This means no static or hidden
752functions show up in the "``.debug_pubnames``". No static variables or private
753class variables are in the "``.debug_pubtypes``". Many compilers add different
754things to these tables, so we can't rely upon the contents between gcc, icc, or
755clang.
756
757The typical query given by users tends not to match up with the contents of
758these tables. For example, the DWARF spec states that "In the case of the name
759of a function member or static data member of a C++ structure, class or union,
760the name presented in the "``.debug_pubnames``" section is not the simple name
761given by the ``DW_AT_name attribute`` of the referenced debugging information
762entry, but rather the fully qualified name of the data or function member."
763So the only names in these tables for complex C++ entries is a fully
764qualified name. Debugger users tend not to enter their search strings as
765"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
766"``a::b::c``". So the name entered in the name table must be demangled in
767order to chop it up appropriately and additional names must be manually entered
768into the table to make it effective as a name lookup table for debuggers to
Bruce Mitchenere9ffb452015-09-12 01:17:08 +0000769use.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000770
771All debuggers currently ignore the "``.debug_pubnames``" table as a result of
772its inconsistent and useless public-only name content making it a waste of
773space in the object file. These tables, when they are written to disk, are not
774sorted in any way, leaving every debugger to do its own parsing and sorting.
775These tables also include an inlined copy of the string values in the table
776itself making the tables much larger than they need to be on disk, especially
777for large C++ programs.
778
779Can't we just fix the sections by adding all of the names we need to this
780table? No, because that is not what the tables are defined to contain and we
781won't know the difference between the old bad tables and the new good tables.
782At best we could make our own renamed sections that contain all of the data we
783need.
784
785These tables are also insufficient for what a debugger like LLDB needs. LLDB
786uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
787often asked to look for type "``foo``" or namespace "``bar``", or list items in
788namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
789tables. Since clang asks a lot of questions when it is parsing an expression,
790we need to be very fast when looking up names, as it happens a lot. Having new
791accelerator tables that are optimized for very quick lookups will benefit this
792type of debugging experience greatly.
793
794We would like to generate name lookup tables that can be mapped into memory
795from disk, and used as is, with little or no up-front parsing. We would also
796be able to control the exact content of these different tables so they contain
797exactly what we need. The Name Accelerator Tables were designed to fix these
798issues. In order to solve these issues we need to:
799
800* Have a format that can be mapped into memory from disk and used as is
801* Lookups should be very fast
802* Extensible table format so these tables can be made by many producers
803* Contain all of the names needed for typical lookups out of the box
804* Strict rules for the contents of tables
805
806Table size is important and the accelerator table format should allow the reuse
807of strings from common string tables so the strings for the names are not
808duplicated. We also want to make sure the table is ready to be used as-is by
809simply mapping the table into memory with minimal header parsing.
810
811The name lookups need to be fast and optimized for the kinds of lookups that
812debuggers tend to do. Optimally we would like to touch as few parts of the
813mapped table as possible when doing a name lookup and be able to quickly find
814the name entry we are looking for, or discover there are no matches. In the
815case of debuggers we optimized for lookups that fail most of the time.
816
817Each table that is defined should have strict rules on exactly what is in the
818accelerator tables and documented so clients can rely on the content.
819
820Hash Tables
821^^^^^^^^^^^
822
823Standard Hash Tables
824""""""""""""""""""""
825
826Typical hash tables have a header, buckets, and each bucket points to the
827bucket contents:
828
829.. code-block:: none
830
831 .------------.
832 | HEADER |
833 |------------|
834 | BUCKETS |
835 |------------|
836 | DATA |
837 `------------'
838
839The BUCKETS are an array of offsets to DATA for each hash:
840
841.. code-block:: none
842
843 .------------.
844 | 0x00001000 | BUCKETS[0]
845 | 0x00002000 | BUCKETS[1]
846 | 0x00002200 | BUCKETS[2]
847 | 0x000034f0 | BUCKETS[3]
848 | | ...
849 | 0xXXXXXXXX | BUCKETS[n_buckets]
850 '------------'
851
852So for ``bucket[3]`` in the example above, we have an offset into the table
8530x000034f0 which points to a chain of entries for the bucket. Each bucket must
854contain a next pointer, full 32 bit hash value, the string itself, and the data
855for the current string value.
856
857.. code-block:: none
858
859 .------------.
860 0x000034f0: | 0x00003500 | next pointer
861 | 0x12345678 | 32 bit hash
862 | "erase" | string value
863 | data[n] | HashData for this bucket
864 |------------|
865 0x00003500: | 0x00003550 | next pointer
866 | 0x29273623 | 32 bit hash
867 | "dump" | string value
868 | data[n] | HashData for this bucket
869 |------------|
870 0x00003550: | 0x00000000 | next pointer
871 | 0x82638293 | 32 bit hash
872 | "main" | string value
873 | data[n] | HashData for this bucket
874 `------------'
875
876The problem with this layout for debuggers is that we need to optimize for the
877negative lookup case where the symbol we're searching for is not present. So
Vedant Kumarce898db2016-11-01 23:55:50 +0000878if we were to lookup "``printf``" in the table above, we would make a 32-bit
879hash for "``printf``", it might match ``bucket[3]``. We would need to go to
880the offset 0x000034f0 and start looking to see if our 32 bit hash matches. To
881do so, we need to read the next pointer, then read the hash, compare it, and
882skip to the next bucket. Each time we are skipping many bytes in memory and
883touching new pages just to do the compare on the full 32 bit hash. All of
884these accesses then tell us that we didn't have a match.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000885
886Name Hash Tables
887""""""""""""""""
888
889To solve the issues mentioned above we have structured the hash tables a bit
890differently: a header, buckets, an array of all unique 32 bit hash values,
891followed by an array of hash value data offsets, one for each hash value, then
892the data for all hash values:
893
894.. code-block:: none
895
896 .-------------.
897 | HEADER |
898 |-------------|
899 | BUCKETS |
900 |-------------|
901 | HASHES |
902 |-------------|
903 | OFFSETS |
904 |-------------|
905 | DATA |
906 `-------------'
907
908The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
909making all of the full 32 bit hash values contiguous in memory, we allow
910ourselves to efficiently check for a match while touching as little memory as
911possible. Most often checking the 32 bit hash values is as far as the lookup
912goes. If it does match, it usually is a match with no collisions. So for a
913table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
914values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
915``OFFSETS`` as:
916
917.. code-block:: none
918
919 .-------------------------.
920 | HEADER.magic | uint32_t
921 | HEADER.version | uint16_t
922 | HEADER.hash_function | uint16_t
923 | HEADER.bucket_count | uint32_t
924 | HEADER.hashes_count | uint32_t
925 | HEADER.header_data_len | uint32_t
926 | HEADER_DATA | HeaderData
927 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +0000928 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000929 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +0000930 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000931 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +0000932 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000933 |-------------------------|
934 | ALL HASH DATA |
935 `-------------------------'
936
937So taking the exact same data from the standard hash example above we end up
938with:
939
940.. code-block:: none
941
942 .------------.
943 | HEADER |
944 |------------|
945 | 0 | BUCKETS[0]
946 | 2 | BUCKETS[1]
947 | 5 | BUCKETS[2]
948 | 6 | BUCKETS[3]
949 | | ...
950 | ... | BUCKETS[n_buckets]
951 |------------|
952 | 0x........ | HASHES[0]
953 | 0x........ | HASHES[1]
954 | 0x........ | HASHES[2]
955 | 0x........ | HASHES[3]
956 | 0x........ | HASHES[4]
957 | 0x........ | HASHES[5]
958 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
959 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
960 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
961 | 0x........ | HASHES[9]
962 | 0x........ | HASHES[10]
963 | 0x........ | HASHES[11]
964 | 0x........ | HASHES[12]
965 | 0x........ | HASHES[13]
966 | 0x........ | HASHES[n_hashes]
967 |------------|
968 | 0x........ | OFFSETS[0]
969 | 0x........ | OFFSETS[1]
970 | 0x........ | OFFSETS[2]
971 | 0x........ | OFFSETS[3]
972 | 0x........ | OFFSETS[4]
973 | 0x........ | OFFSETS[5]
974 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
975 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
976 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
977 | 0x........ | OFFSETS[9]
978 | 0x........ | OFFSETS[10]
979 | 0x........ | OFFSETS[11]
980 | 0x........ | OFFSETS[12]
981 | 0x........ | OFFSETS[13]
982 | 0x........ | OFFSETS[n_hashes]
983 |------------|
984 | |
985 | |
986 | |
987 | |
988 | |
989 |------------|
990 0x000034f0: | 0x00001203 | .debug_str ("erase")
991 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
992 | 0x........ | HashData[0]
993 | 0x........ | HashData[1]
994 | 0x........ | HashData[2]
995 | 0x........ | HashData[3]
996 | 0x00000000 | String offset into .debug_str (terminate data for hash)
997 |------------|
998 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
999 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1000 | 0x........ | HashData[0]
1001 | 0x........ | HashData[1]
1002 | 0x00001203 | String offset into .debug_str ("dump")
1003 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1004 | 0x........ | HashData[0]
1005 | 0x........ | HashData[1]
1006 | 0x........ | HashData[2]
1007 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1008 |------------|
1009 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1010 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1011 | 0x........ | HashData[0]
1012 | 0x........ | HashData[1]
1013 | 0x........ | HashData[2]
1014 | 0x........ | HashData[3]
1015 | 0x........ | HashData[4]
1016 | 0x........ | HashData[5]
1017 | 0x........ | HashData[6]
1018 | 0x........ | HashData[7]
1019 | 0x........ | HashData[8]
1020 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1021 `------------'
1022
1023So we still have all of the same data, we just organize it more efficiently for
1024debugger lookup. If we repeat the same "``printf``" lookup from above, we
1025would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1026hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1027is the index into the ``HASHES`` table. We would then compare any consecutive
102832 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1029``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1030``n_buckets`` is still 3. In the case of a failed lookup we would access the
1031memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1032before we know that we have no match. We don't end up marching through
1033multiple words of memory and we really keep the number of processor data cache
1034lines being accessed as small as possible.
1035
1036The string hash that is used for these lookup tables is the Daniel J.
1037Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1038very good hash for all kinds of names in programs with very few hash
1039collisions.
1040
1041Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1042
1043Details
1044^^^^^^^
1045
1046These name hash tables are designed to be generic where specializations of the
1047table get to define additional data that goes into the header ("``HeaderData``"),
1048how the string value is stored ("``KeyType``") and the content of the data for each
1049hash value.
1050
1051Header Layout
1052"""""""""""""
1053
1054The header has a fixed part, and the specialized part. The exact format of the
1055header is:
1056
1057.. code-block:: c
1058
1059 struct Header
1060 {
1061 uint32_t magic; // 'HASH' magic value to allow endian detection
1062 uint16_t version; // Version number
1063 uint16_t hash_function; // The hash function enumeration that was used
1064 uint32_t bucket_count; // The number of buckets in this hash table
1065 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1066 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1067 // Specifically the length of the following HeaderData field - this does not
1068 // include the size of the preceding fields
1069 HeaderData header_data; // Implementation specific header data
1070 };
1071
1072The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1073encoded as an ASCII integer. This allows the detection of the start of the
1074hash table and also allows the table's byte order to be determined so the table
1075can be correctly extracted. The "``magic``" value is followed by a 16 bit
1076``version`` number which allows the table to be revised and modified in the
1077future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1078enumeration that specifies which hash function was used to produce this table.
1079The current values for the hash function enumerations include:
1080
1081.. code-block:: c
1082
1083 enum HashFunctionType
1084 {
1085 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1086 };
1087
1088``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1089are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1090hash values that are in the ``HASHES`` array, and is the same number of offsets
1091are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1092in bytes of the ``HeaderData`` that is filled in by specialized versions of
1093this table.
1094
1095Fixed Lookup
1096""""""""""""
1097
1098The header is followed by the buckets, hashes, offsets, and hash value data.
1099
1100.. code-block:: c
1101
1102 struct FixedTable
1103 {
1104 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1105 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1106 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1107 };
1108
1109``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
1110``hashes`` array contains all of the 32 bit hash values for all names in the
1111hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
1112array that points to the data for the hash value.
1113
1114This table setup makes it very easy to repurpose these tables to contain
1115different data, while keeping the lookup mechanism the same for all tables.
1116This layout also makes it possible to save the table to disk and map it in
1117later and do very efficient name lookups with little or no parsing.
1118
1119DWARF lookup tables can be implemented in a variety of ways and can store a lot
1120of information for each name. We want to make the DWARF tables extensible and
1121able to store the data efficiently so we have used some of the DWARF features
1122that enable efficient data storage to define exactly what kind of data we store
1123for each name.
1124
1125The ``HeaderData`` contains a definition of the contents of each HashData chunk.
1126We might want to store an offset to all of the debug information entries (DIEs)
1127for each name. To keep things extensible, we create a list of items, or
1128Atoms, that are contained in the data for each name. First comes the type of
1129the data in each atom:
1130
1131.. code-block:: c
1132
1133 enum AtomType
1134 {
1135 eAtomTypeNULL = 0u,
1136 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
1137 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
1138 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
1139 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
1140 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
1141 };
1142
1143The enumeration values and their meanings are:
1144
1145.. code-block:: none
1146
1147 eAtomTypeNULL - a termination atom that specifies the end of the atom list
1148 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
1149 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
1150 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
1151 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
1152 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
1153
1154Then we allow each atom type to define the atom type and how the data for each
1155atom type data is encoded:
1156
1157.. code-block:: c
1158
1159 struct Atom
1160 {
1161 uint16_t type; // AtomType enum value
1162 uint16_t form; // DWARF DW_FORM_XXX defines
1163 };
1164
1165The ``form`` type above is from the DWARF specification and defines the exact
1166encoding of the data for the Atom type. See the DWARF specification for the
1167``DW_FORM_`` definitions.
1168
1169.. code-block:: c
1170
1171 struct HeaderData
1172 {
1173 uint32_t die_offset_base;
1174 uint32_t atom_count;
1175 Atoms atoms[atom_count0];
1176 };
1177
1178``HeaderData`` defines the base DIE offset that should be added to any atoms
1179that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
1180``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
1181what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
1182each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
1183should be interpreted.
1184
1185For the current implementations of the "``.apple_names``" (all functions +
1186globals), the "``.apple_types``" (names of all types that are defined), and
1187the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
1188array to be:
1189
1190.. code-block:: c
1191
1192 HeaderData.atom_count = 1;
1193 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
1194 HeaderData.atoms[0].form = DW_FORM_data4;
1195
1196This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
Eric Christopher911f1d32013-03-19 23:10:26 +00001197encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
1198multiple matching DIEs in a single file, which could come up with an inlined
1199function for instance. Future tables could include more information about the
1200DIE such as flags indicating if the DIE is a function, method, block,
1201or inlined.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001202
1203The KeyType for the DWARF table is a 32 bit string table offset into the
Eric Christopher911f1d32013-03-19 23:10:26 +00001204".debug_str" table. The ".debug_str" is the string table for the DWARF which
1205may already contain copies of all of the strings. This helps make sure, with
1206help from the compiler, that we reuse the strings between all of the DWARF
1207sections and keeps the hash table size down. Another benefit to having the
1208compiler generate all strings as DW_FORM_strp in the debug info, is that
1209DWARF parsing can be made much faster.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001210
1211After a lookup is made, we get an offset into the hash data. The hash data
Eric Christopher911f1d32013-03-19 23:10:26 +00001212needs to be able to deal with 32 bit hash collisions, so the chunk of data
1213at the offset in the hash data consists of a triple:
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001214
1215.. code-block:: c
1216
1217 uint32_t str_offset
1218 uint32_t hash_data_count
1219 HashData[hash_data_count]
1220
1221If "str_offset" is zero, then the bucket contents are done. 99.9% of the
Eric Christopher911f1d32013-03-19 23:10:26 +00001222hash data chunks contain a single item (no 32 bit hash collision):
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001223
1224.. code-block:: none
1225
1226 .------------.
1227 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1228 | 0x00000004 | uint32_t HashData count
1229 | 0x........ | uint32_t HashData[0] DIE offset
1230 | 0x........ | uint32_t HashData[1] DIE offset
1231 | 0x........ | uint32_t HashData[2] DIE offset
1232 | 0x........ | uint32_t HashData[3] DIE offset
1233 | 0x00000000 | uint32_t KeyType (end of hash chain)
1234 `------------'
1235
1236If there are collisions, you will have multiple valid string offsets:
1237
1238.. code-block:: none
1239
1240 .------------.
1241 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1242 | 0x00000004 | uint32_t HashData count
1243 | 0x........ | uint32_t HashData[0] DIE offset
1244 | 0x........ | uint32_t HashData[1] DIE offset
1245 | 0x........ | uint32_t HashData[2] DIE offset
1246 | 0x........ | uint32_t HashData[3] DIE offset
1247 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
1248 | 0x00000002 | uint32_t HashData count
1249 | 0x........ | uint32_t HashData[0] DIE offset
1250 | 0x........ | uint32_t HashData[1] DIE offset
1251 | 0x00000000 | uint32_t KeyType (end of hash chain)
1252 `------------'
1253
1254Current testing with real world C++ binaries has shown that there is around 1
125532 bit hash collision per 100,000 name entries.
1256
1257Contents
1258^^^^^^^^
1259
1260As we said, we want to strictly define exactly what is included in the
1261different tables. For DWARF, we have 3 tables: "``.apple_names``",
1262"``.apple_types``", and "``.apple_namespaces``".
1263
1264"``.apple_names``" sections should contain an entry for each DWARF DIE whose
1265``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
1266``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
1267``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
1268``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
1269static variables). All global and static variables should be included,
1270including those scoped within functions and classes. For example using the
1271following code:
1272
1273.. code-block:: c
1274
1275 static int var = 0;
1276
1277 void f ()
1278 {
1279 static int var = 0;
1280 }
1281
1282Both of the static ``var`` variables would be included in the table. All
1283functions should emit both their full names and their basenames. For C or C++,
1284the full name is the mangled name (if available) which is usually in the
1285``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
1286function basename. If global or static variables have a mangled name in a
1287``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
1288simple name found in the ``DW_AT_name`` attribute.
1289
1290"``.apple_types``" sections should contain an entry for each DWARF DIE whose
1291tag is one of:
1292
1293* DW_TAG_array_type
1294* DW_TAG_class_type
1295* DW_TAG_enumeration_type
1296* DW_TAG_pointer_type
1297* DW_TAG_reference_type
1298* DW_TAG_string_type
1299* DW_TAG_structure_type
1300* DW_TAG_subroutine_type
1301* DW_TAG_typedef
1302* DW_TAG_union_type
1303* DW_TAG_ptr_to_member_type
1304* DW_TAG_set_type
1305* DW_TAG_subrange_type
1306* DW_TAG_base_type
1307* DW_TAG_const_type
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001308* DW_TAG_file_type
1309* DW_TAG_namelist
1310* DW_TAG_packed_type
1311* DW_TAG_volatile_type
1312* DW_TAG_restrict_type
Victor Leschuke1156c22016-10-31 19:09:38 +00001313* DW_TAG_atomic_type
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001314* DW_TAG_interface_type
1315* DW_TAG_unspecified_type
1316* DW_TAG_shared_type
1317
1318Only entries with a ``DW_AT_name`` attribute are included, and the entry must
1319not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
1320value). For example, using the following code:
1321
1322.. code-block:: c
1323
1324 int main ()
1325 {
1326 int *b = 0;
1327 return *b;
1328 }
1329
1330We get a few type DIEs:
1331
1332.. code-block:: none
1333
1334 0x00000067: TAG_base_type [5]
1335 AT_encoding( DW_ATE_signed )
1336 AT_name( "int" )
1337 AT_byte_size( 0x04 )
1338
1339 0x0000006e: TAG_pointer_type [6]
1340 AT_type( {0x00000067} ( int ) )
1341 AT_byte_size( 0x08 )
1342
1343The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
1344
1345"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
1346If we run into a namespace that has no name this is an anonymous namespace, and
1347the name should be output as "``(anonymous namespace)``" (without the quotes).
1348Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
1349standard C++ library that demangles mangled names.
1350
1351
1352Language Extensions and File Format Changes
1353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1354
1355Objective-C Extensions
1356""""""""""""""""""""""
1357
1358"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
1359Objective-C class. The name used in the hash table is the name of the
1360Objective-C class itself. If the Objective-C class has a category, then an
1361entry is made for both the class name without the category, and for the class
1362name with the category. So if we have a DIE at offset 0x1234 with a name of
1363method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
1364an entry for "``NSString``" that points to DIE 0x1234, and an entry for
1365"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
1366track down all Objective-C methods for an Objective-C class when doing
1367expressions. It is needed because of the dynamic nature of Objective-C where
1368anyone can add methods to a class. The DWARF for Objective-C methods is also
1369emitted differently from C++ classes where the methods are not usually
1370contained in the class definition, they are scattered about across one or more
1371compile units. Categories can also be defined in different shared libraries.
1372So we need to be able to quickly find all of the methods and class functions
1373given the Objective-C class name, or quickly find all methods and class
1374functions for a class + category name. This table does not contain any
1375selector names, it just maps Objective-C class names (or class names +
1376category) to all of the methods and class functions. The selectors are added
1377as function basenames in the "``.debug_names``" section.
1378
1379In the "``.apple_names``" section for Objective-C functions, the full name is
1380the entire function name with the brackets ("``-[NSString
1381stringWithCString:]``") and the basename is the selector only
1382("``stringWithCString:``").
1383
1384Mach-O Changes
1385""""""""""""""
1386
Alp Tokerf907b892013-12-05 05:44:44 +00001387The sections names for the apple hash tables are for non-mach-o files. For
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001388mach-o files, the sections should be contained in the ``__DWARF`` segment with
1389names as follows:
1390
1391* "``.apple_names``" -> "``__apple_names``"
1392* "``.apple_types``" -> "``__apple_types``"
1393* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
1394* "``.apple_objc``" -> "``__apple_objc``"
1395
Reid Kleckner0ad60a92016-06-07 20:27:30 +00001396.. _codeview:
1397
1398CodeView Debug Info Format
1399==========================
1400
1401LLVM supports emitting CodeView, the Microsoft debug info format, and this
1402section describes the design and implementation of that support.
1403
1404Format Background
1405-----------------
1406
1407CodeView as a format is clearly oriented around C++ debugging, and in C++, the
1408majority of debug information tends to be type information. Therefore, the
1409overriding design constraint of CodeView is the separation of type information
1410from other "symbol" information so that type information can be efficiently
1411merged across translation units. Both type information and symbol information is
1412generally stored as a sequence of records, where each record begins with a
141316-bit record size and a 16-bit record kind.
1414
1415Type information is usually stored in the ``.debug$T`` section of the object
1416file. All other debug info, such as line info, string table, symbol info, and
1417inlinee info, is stored in one or more ``.debug$S`` sections. There may only be
1418one ``.debug$T`` section per object file, since all other debug info refers to
1419it. If a PDB (enabled by the ``/Zi`` MSVC option) was used during compilation,
1420the ``.debug$T`` section will contain only an ``LF_TYPESERVER2`` record pointing
1421to the PDB. When using PDBs, symbol information appears to remain in the object
1422file ``.debug$S`` sections.
1423
1424Type records are referred to by their index, which is the number of records in
1425the stream before a given record plus ``0x1000``. Many common basic types, such
1426as the basic integral types and unqualified pointers to them, are represented
1427using type indices less than ``0x1000``. Such basic types are built in to
1428CodeView consumers and do not require type records.
1429
1430Each type record may only contain type indices that are less than its own type
1431index. This ensures that the graph of type stream references is acyclic. While
1432the source-level type graph may contain cycles through pointer types (consider a
1433linked list struct), these cycles are removed from the type stream by always
1434referring to the forward declaration record of user-defined record types. Only
1435"symbol" records in the ``.debug$S`` streams may refer to complete,
1436non-forward-declaration type records.
1437
1438Working with CodeView
1439---------------------
1440
1441These are instructions for some common tasks for developers working to improve
1442LLVM's CodeView support. Most of them revolve around using the CodeView dumper
1443embedded in ``llvm-readobj``.
1444
1445* Testing MSVC's output::
1446
1447 $ cl -c -Z7 foo.cpp # Use /Z7 to keep types in the object file
1448 $ llvm-readobj -codeview foo.obj
1449
1450* Getting LLVM IR debug info out of Clang::
1451
1452 $ clang -g -gcodeview --target=x86_64-windows-msvc foo.cpp -S -emit-llvm
1453
1454 Use this to generate LLVM IR for LLVM test cases.
1455
1456* Generate and dump CodeView from LLVM IR metadata::
1457
1458 $ llc foo.ll -filetype=obj -o foo.obj
1459 $ llvm-readobj -codeview foo.obj > foo.txt
1460
1461 Use this pattern in lit test cases and FileCheck the output of llvm-readobj
1462
1463Improving LLVM's CodeView support is a process of finding interesting type
1464records, constructing a C++ test case that makes MSVC emit those records,
1465dumping the records, understanding them, and then generating equivalent records
1466in LLVM's backend.