blob: ea438c6e4620ce16d8d957873c815f73582b67e1 [file] [log] [blame]
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001//===- HexagonBitTracker.cpp ----------------------------------------------===//
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000010#include "HexagonBitTracker.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000011#include "Hexagon.h"
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000012#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000014#include "llvm/CodeGen/MachineFrameInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000015#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/MachineOperand.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/IR/Argument.h"
20#include "llvm/IR/Attributes.h"
21#include "llvm/IR/Function.h"
22#include "llvm/IR/Type.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000023#include "llvm/Support/Compiler.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000024#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <cstdlib>
33#include <utility>
34#include <vector>
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000035
36using namespace llvm;
37
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000038using BT = BitTracker;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000039
Benjamin Kramerd8861512015-07-13 20:38:16 +000040HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41 MachineRegisterInfo &mri,
42 const HexagonInstrInfo &tii,
43 MachineFunction &mf)
Matthias Braun941a7052016-07-28 18:40:00 +000044 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000045 // Populate the VRX map (VR to extension-type).
46 // Go over all the formal parameters of the function. If a given parameter
47 // P is sign- or zero-extended, locate the virtual register holding that
48 // parameter and create an entry in the VRX map indicating the type of ex-
49 // tension (and the source type).
50 // This is a bit complicated to do accurately, since the memory layout in-
51 // formation is necessary to precisely determine whether an aggregate para-
52 // meter will be passed in a register or in memory. What is given in MRI
53 // is the association between the physical register that is live-in (i.e.
54 // holds an argument), and the virtual register that this value will be
55 // copied into. This, by itself, is not sufficient to map back the virtual
56 // register to a formal parameter from Function (since consecutive live-ins
57 // from MRI may not correspond to consecutive formal parameters from Func-
58 // tion). To avoid the complications with in-memory arguments, only consi-
59 // der the initial sequence of formal parameters that are known to be
60 // passed via registers.
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000061 unsigned InVirtReg, InPhysReg = 0;
62 const Function &F = *MF.getFunction();
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000063
64 using arg_iterator = Function::const_arg_iterator;
65
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000066 for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000067 const Argument &Arg = *I;
68 Type *ATy = Arg.getType();
69 unsigned Width = 0;
70 if (ATy->isIntegerTy())
71 Width = ATy->getIntegerBitWidth();
72 else if (ATy->isPointerTy())
73 Width = 32;
74 // If pointer size is not set through target data, it will default to
75 // Module::AnyPointerSize.
76 if (Width == 0 || Width > 64)
77 break;
Reid Kleckner6652a522017-04-28 18:37:16 +000078 if (Arg.hasAttribute(Attribute::ByVal))
Krzysztof Parzyszek60f0b512016-08-11 18:15:16 +000079 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000080 InPhysReg = getNextPhysReg(InPhysReg, Width);
81 if (!InPhysReg)
82 break;
83 InVirtReg = getVirtRegFor(InPhysReg);
84 if (!InVirtReg)
85 continue;
Reid Kleckner6652a522017-04-28 18:37:16 +000086 if (Arg.hasAttribute(Attribute::SExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000087 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
Reid Kleckner6652a522017-04-28 18:37:16 +000088 else if (Arg.hasAttribute(Attribute::ZExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000089 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
90 }
91}
92
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000093BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000094 using namespace Hexagon;
95
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000096 if (Sub == 0)
97 return MachineEvaluator::mask(Reg, 0);
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +000098 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
99 unsigned ID = RC.getID();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000100 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000101 auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
102 bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000103 switch (ID) {
104 case DoubleRegsRegClassID:
Krzysztof Parzyszek55772972017-09-15 15:46:05 +0000105 case HvxWRRegClassID:
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000106 return IsSubLo ? BT::BitMask(0, RW-1)
107 : BT::BitMask(RW, 2*RW-1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000108 default:
109 break;
110 }
111#ifndef NDEBUG
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +0000112 dbgs() << PrintReg(Reg, &TRI, Sub) << " in reg class "
113 << TRI.getRegClassName(&RC) << '\n';
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000114#endif
115 llvm_unreachable("Unexpected register/subregister");
116}
117
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000118namespace {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000119
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000120class RegisterRefs {
121 std::vector<BT::RegisterRef> Vector;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000122
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000123public:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000124 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000125 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000126 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000127 if (MO.isReg())
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000128 Vector[i] = BT::RegisterRef(MO);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000129 // For indices that don't correspond to registers, the entry will
130 // remain constructed via the default constructor.
131 }
132 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000133
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000134 size_t size() const { return Vector.size(); }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000135
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000136 const BT::RegisterRef &operator[](unsigned n) const {
137 // The main purpose of this operator is to assert with bad argument.
138 assert(n < Vector.size());
139 return Vector[n];
140 }
141};
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000142
143} // end anonymous namespace
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000144
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000145bool HexagonEvaluator::evaluate(const MachineInstr &MI,
146 const CellMapType &Inputs,
147 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000148 using namespace Hexagon;
149
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000150 unsigned NumDefs = 0;
151
152 // Sanity verification: there should not be any defs with subregisters.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000153 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
154 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000155 if (!MO.isReg() || !MO.isDef())
156 continue;
157 NumDefs++;
158 assert(MO.getSubReg() == 0);
159 }
160
161 if (NumDefs == 0)
162 return false;
163
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000164 unsigned Opc = MI.getOpcode();
165
166 if (MI.mayLoad()) {
167 switch (Opc) {
168 // These instructions may be marked as mayLoad, but they are generating
169 // immediate values, so skip them.
170 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000171 case CONST64:
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000172 break;
173 default:
174 return evaluateLoad(MI, Inputs, Outputs);
175 }
176 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000177
178 // Check COPY instructions that copy formal parameters into virtual
179 // registers. Such parameters can be sign- or zero-extended at the
180 // call site, and we should take advantage of this knowledge. The MRI
181 // keeps a list of pairs of live-in physical and virtual registers,
182 // which provides information about which virtual registers will hold
183 // the argument values. The function will still contain instructions
184 // defining those virtual registers, and in practice those are COPY
185 // instructions from a physical to a virtual register. In such cases,
186 // applying the argument extension to the virtual register can be seen
187 // as simply mirroring the extension that had already been applied to
188 // the physical register at the call site. If the defining instruction
189 // was not a COPY, it would not be clear how to mirror that extension
190 // on the callee's side. For that reason, only check COPY instructions
191 // for potential extensions.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000192 if (MI.isCopy()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000193 if (evaluateFormalCopy(MI, Inputs, Outputs))
194 return true;
195 }
196
197 // Beyond this point, if any operand is a global, skip that instruction.
198 // The reason is that certain instructions that can take an immediate
199 // operand can also have a global symbol in that operand. To avoid
200 // checking what kind of operand a given instruction has individually
201 // for each instruction, do it here. Global symbols as operands gene-
202 // rally do not provide any useful information.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000203 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
204 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000205 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
206 MO.isCPI())
207 return false;
208 }
209
210 RegisterRefs Reg(MI);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000211#define op(i) MI.getOperand(i)
212#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
213#define im(i) MI.getOperand(i).getImm()
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000214
215 // If the instruction has no register operands, skip it.
216 if (Reg.size() == 0)
217 return false;
218
219 // Record result for register in operand 0.
220 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
221 -> bool {
222 putCell(Reg[0], Val, Outputs);
223 return true;
224 };
225 // Get the cell corresponding to the N-th operand.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000226 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
227 uint16_t W) -> BT::RegisterCell {
228 const MachineOperand &Op = MI.getOperand(N);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000229 if (Op.isImm())
230 return eIMM(Op.getImm(), W);
231 if (!Op.isReg())
232 return RegisterCell::self(0, W);
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000233 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000234 return rc(N);
235 };
236 // Extract RW low bits of the cell.
237 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
238 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000239 assert(RW <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000240 return eXTR(RC, 0, RW);
241 };
242 // Extract RW high bits of the cell.
243 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
244 -> BT::RegisterCell {
245 uint16_t W = RC.width();
246 assert(RW <= W);
247 return eXTR(RC, W-RW, W);
248 };
249 // Extract N-th halfword (counting from the least significant position).
250 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
251 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000252 assert(N*16+16 <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000253 return eXTR(RC, N*16, N*16+16);
254 };
255 // Shuffle bits (pick even/odd from cells and merge into result).
256 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
257 uint16_t BW, bool Odd) -> BT::RegisterCell {
258 uint16_t I = Odd, Ws = Rs.width();
259 assert(Ws == Rt.width());
260 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
261 I += 2;
262 while (I*BW < Ws) {
263 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
264 I += 2;
265 }
266 return RC;
267 };
268
269 // The bitwidth of the 0th operand. In most (if not all) of the
270 // instructions below, the 0th operand is the defined register.
271 // Pre-compute the bitwidth here, because it is needed in many cases
272 // cases below.
273 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
274
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000275 // Register id of the 0th operand. It can be 0.
276 unsigned Reg0 = Reg[0].Reg;
277
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000278 switch (Opc) {
279 // Transfer immediate:
280
281 case A2_tfrsi:
282 case A2_tfrpi:
283 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000284 case CONST64:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000285 return rr0(eIMM(im(1), W0), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000286 case PS_false:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000287 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000288 case PS_true:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000289 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000290 case PS_fi: {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000291 int FI = op(1).getIndex();
292 int Off = op(2).getImm();
293 unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
294 unsigned L = Log2_32(A);
295 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
296 RC.fill(0, L, BT::BitValue::Zero);
297 return rr0(RC, Outputs);
298 }
299
300 // Transfer register:
301
302 case A2_tfr:
303 case A2_tfrp:
304 case C2_pxfer_map:
305 return rr0(rc(1), Outputs);
306 case C2_tfrpr: {
307 uint16_t RW = W0;
308 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
309 assert(PW <= RW);
310 RegisterCell PC = eXTR(rc(1), 0, PW);
311 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
312 RC.fill(PW, RW, BT::BitValue::Zero);
313 return rr0(RC, Outputs);
314 }
315 case C2_tfrrp: {
316 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
317 W0 = 8; // XXX Pred size
318 return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
319 }
320
321 // Arithmetic:
322
323 case A2_abs:
324 case A2_absp:
325 // TODO
326 break;
327
328 case A2_addsp: {
329 uint16_t W1 = getRegBitWidth(Reg[1]);
330 assert(W0 == 64 && W1 == 32);
331 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
332 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
333 return rr0(RC, Outputs);
334 }
335 case A2_add:
336 case A2_addp:
337 return rr0(eADD(rc(1), rc(2)), Outputs);
338 case A2_addi:
339 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
340 case S4_addi_asl_ri: {
341 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
342 return rr0(RC, Outputs);
343 }
344 case S4_addi_lsr_ri: {
345 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
346 return rr0(RC, Outputs);
347 }
348 case S4_addaddi: {
349 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
350 return rr0(RC, Outputs);
351 }
352 case M4_mpyri_addi: {
353 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
354 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
355 return rr0(RC, Outputs);
356 }
357 case M4_mpyrr_addi: {
358 RegisterCell M = eMLS(rc(2), rc(3));
359 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
360 return rr0(RC, Outputs);
361 }
362 case M4_mpyri_addr_u2: {
363 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
364 RegisterCell RC = eADD(rc(1), lo(M, W0));
365 return rr0(RC, Outputs);
366 }
367 case M4_mpyri_addr: {
368 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
369 RegisterCell RC = eADD(rc(1), lo(M, W0));
370 return rr0(RC, Outputs);
371 }
372 case M4_mpyrr_addr: {
373 RegisterCell M = eMLS(rc(2), rc(3));
374 RegisterCell RC = eADD(rc(1), lo(M, W0));
375 return rr0(RC, Outputs);
376 }
377 case S4_subaddi: {
378 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
379 return rr0(RC, Outputs);
380 }
381 case M2_accii: {
382 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
383 return rr0(RC, Outputs);
384 }
385 case M2_acci: {
386 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
387 return rr0(RC, Outputs);
388 }
389 case M2_subacc: {
390 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
391 return rr0(RC, Outputs);
392 }
393 case S2_addasl_rrri: {
394 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
395 return rr0(RC, Outputs);
396 }
397 case C4_addipc: {
398 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
399 RPC.fill(0, 2, BT::BitValue::Zero);
400 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
401 }
402 case A2_sub:
403 case A2_subp:
404 return rr0(eSUB(rc(1), rc(2)), Outputs);
405 case A2_subri:
406 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
407 case S4_subi_asl_ri: {
408 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
409 return rr0(RC, Outputs);
410 }
411 case S4_subi_lsr_ri: {
412 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
413 return rr0(RC, Outputs);
414 }
415 case M2_naccii: {
416 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
417 return rr0(RC, Outputs);
418 }
419 case M2_nacci: {
420 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
421 return rr0(RC, Outputs);
422 }
423 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
424 case A2_negp:
425 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
426
427 case M2_mpy_up: {
428 RegisterCell M = eMLS(rc(1), rc(2));
429 return rr0(hi(M, W0), Outputs);
430 }
431 case M2_dpmpyss_s0:
432 return rr0(eMLS(rc(1), rc(2)), Outputs);
433 case M2_dpmpyss_acc_s0:
434 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
435 case M2_dpmpyss_nac_s0:
436 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
437 case M2_mpyi: {
438 RegisterCell M = eMLS(rc(1), rc(2));
439 return rr0(lo(M, W0), Outputs);
440 }
441 case M2_macsip: {
442 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
443 RegisterCell RC = eADD(rc(1), lo(M, W0));
444 return rr0(RC, Outputs);
445 }
446 case M2_macsin: {
447 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
448 RegisterCell RC = eSUB(rc(1), lo(M, W0));
449 return rr0(RC, Outputs);
450 }
451 case M2_maci: {
452 RegisterCell M = eMLS(rc(2), rc(3));
453 RegisterCell RC = eADD(rc(1), lo(M, W0));
454 return rr0(RC, Outputs);
455 }
456 case M2_mpysmi: {
457 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
458 return rr0(lo(M, 32), Outputs);
459 }
460 case M2_mpysin: {
461 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
462 return rr0(lo(M, 32), Outputs);
463 }
464 case M2_mpysip: {
465 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
466 return rr0(lo(M, 32), Outputs);
467 }
468 case M2_mpyu_up: {
469 RegisterCell M = eMLU(rc(1), rc(2));
470 return rr0(hi(M, W0), Outputs);
471 }
472 case M2_dpmpyuu_s0:
473 return rr0(eMLU(rc(1), rc(2)), Outputs);
474 case M2_dpmpyuu_acc_s0:
475 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
476 case M2_dpmpyuu_nac_s0:
477 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
478 //case M2_mpysu_up:
479
480 // Logical/bitwise:
481
482 case A2_andir:
483 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
484 case A2_and:
485 case A2_andp:
486 return rr0(eAND(rc(1), rc(2)), Outputs);
487 case A4_andn:
488 case A4_andnp:
489 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
490 case S4_andi_asl_ri: {
491 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
492 return rr0(RC, Outputs);
493 }
494 case S4_andi_lsr_ri: {
495 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
496 return rr0(RC, Outputs);
497 }
498 case M4_and_and:
499 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
500 case M4_and_andn:
501 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
502 case M4_and_or:
503 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
504 case M4_and_xor:
505 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
506 case A2_orir:
507 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
508 case A2_or:
509 case A2_orp:
510 return rr0(eORL(rc(1), rc(2)), Outputs);
511 case A4_orn:
512 case A4_ornp:
513 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
514 case S4_ori_asl_ri: {
515 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
516 return rr0(RC, Outputs);
517 }
518 case S4_ori_lsr_ri: {
519 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
520 return rr0(RC, Outputs);
521 }
522 case M4_or_and:
523 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
524 case M4_or_andn:
525 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
526 case S4_or_andi:
527 case S4_or_andix: {
528 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
529 return rr0(RC, Outputs);
530 }
531 case S4_or_ori: {
532 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
533 return rr0(RC, Outputs);
534 }
535 case M4_or_or:
536 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
537 case M4_or_xor:
538 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
539 case A2_xor:
540 case A2_xorp:
541 return rr0(eXOR(rc(1), rc(2)), Outputs);
542 case M4_xor_and:
543 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
544 case M4_xor_andn:
545 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
546 case M4_xor_or:
547 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
548 case M4_xor_xacc:
549 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
550 case A2_not:
551 case A2_notp:
552 return rr0(eNOT(rc(1)), Outputs);
553
554 case S2_asl_i_r:
555 case S2_asl_i_p:
556 return rr0(eASL(rc(1), im(2)), Outputs);
557 case A2_aslh:
558 return rr0(eASL(rc(1), 16), Outputs);
559 case S2_asl_i_r_acc:
560 case S2_asl_i_p_acc:
561 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
562 case S2_asl_i_r_nac:
563 case S2_asl_i_p_nac:
564 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
565 case S2_asl_i_r_and:
566 case S2_asl_i_p_and:
567 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
568 case S2_asl_i_r_or:
569 case S2_asl_i_p_or:
570 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
571 case S2_asl_i_r_xacc:
572 case S2_asl_i_p_xacc:
573 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
574 case S2_asl_i_vh:
575 case S2_asl_i_vw:
576 // TODO
577 break;
578
579 case S2_asr_i_r:
580 case S2_asr_i_p:
581 return rr0(eASR(rc(1), im(2)), Outputs);
582 case A2_asrh:
583 return rr0(eASR(rc(1), 16), Outputs);
584 case S2_asr_i_r_acc:
585 case S2_asr_i_p_acc:
586 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
587 case S2_asr_i_r_nac:
588 case S2_asr_i_p_nac:
589 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
590 case S2_asr_i_r_and:
591 case S2_asr_i_p_and:
592 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
593 case S2_asr_i_r_or:
594 case S2_asr_i_p_or:
595 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
596 case S2_asr_i_r_rnd: {
597 // The input is first sign-extended to 64 bits, then the output
598 // is truncated back to 32 bits.
599 assert(W0 == 32);
600 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
601 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
602 return rr0(eXTR(RC, 0, W0), Outputs);
603 }
604 case S2_asr_i_r_rnd_goodsyntax: {
605 int64_t S = im(2);
606 if (S == 0)
607 return rr0(rc(1), Outputs);
608 // Result: S2_asr_i_r_rnd Rs, u5-1
609 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
610 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
611 return rr0(eXTR(RC, 0, W0), Outputs);
612 }
613 case S2_asr_r_vh:
614 case S2_asr_i_vw:
615 case S2_asr_i_svw_trun:
616 // TODO
617 break;
618
619 case S2_lsr_i_r:
620 case S2_lsr_i_p:
621 return rr0(eLSR(rc(1), im(2)), Outputs);
622 case S2_lsr_i_r_acc:
623 case S2_lsr_i_p_acc:
624 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
625 case S2_lsr_i_r_nac:
626 case S2_lsr_i_p_nac:
627 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
628 case S2_lsr_i_r_and:
629 case S2_lsr_i_p_and:
630 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
631 case S2_lsr_i_r_or:
632 case S2_lsr_i_p_or:
633 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
634 case S2_lsr_i_r_xacc:
635 case S2_lsr_i_p_xacc:
636 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
637
638 case S2_clrbit_i: {
639 RegisterCell RC = rc(1);
640 RC[im(2)] = BT::BitValue::Zero;
641 return rr0(RC, Outputs);
642 }
643 case S2_setbit_i: {
644 RegisterCell RC = rc(1);
645 RC[im(2)] = BT::BitValue::One;
646 return rr0(RC, Outputs);
647 }
648 case S2_togglebit_i: {
649 RegisterCell RC = rc(1);
650 uint16_t BX = im(2);
651 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
652 : RC[BX].is(1) ? BT::BitValue::Zero
653 : BT::BitValue::self();
654 return rr0(RC, Outputs);
655 }
656
657 case A4_bitspliti: {
658 uint16_t W1 = getRegBitWidth(Reg[1]);
659 uint16_t BX = im(2);
660 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
661 const BT::BitValue Zero = BT::BitValue::Zero;
662 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
663 .fill(W1+(W1-BX), W0, Zero);
664 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
665 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
666 return rr0(RC, Outputs);
667 }
668 case S4_extract:
669 case S4_extractp:
670 case S2_extractu:
671 case S2_extractup: {
672 uint16_t Wd = im(2), Of = im(3);
673 assert(Wd <= W0);
674 if (Wd == 0)
675 return rr0(eIMM(0, W0), Outputs);
676 // If the width extends beyond the register size, pad the register
677 // with 0 bits.
678 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
679 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
680 // Ext is short, need to extend it with 0s or sign bit.
681 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
682 if (Opc == S2_extractu || Opc == S2_extractup)
683 return rr0(eZXT(RC, Wd), Outputs);
684 return rr0(eSXT(RC, Wd), Outputs);
685 }
686 case S2_insert:
687 case S2_insertp: {
688 uint16_t Wd = im(3), Of = im(4);
689 assert(Wd < W0 && Of < W0);
690 // If Wd+Of exceeds W0, the inserted bits are truncated.
691 if (Wd+Of > W0)
692 Wd = W0-Of;
693 if (Wd == 0)
694 return rr0(rc(1), Outputs);
695 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
696 }
697
698 // Bit permutations:
699
700 case A2_combineii:
701 case A4_combineii:
702 case A4_combineir:
703 case A4_combineri:
704 case A2_combinew:
Krzysztof Parzyszek23ee12e2016-08-03 18:35:48 +0000705 case V6_vcombine:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000706 assert(W0 % 2 == 0);
707 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
708 case A2_combine_ll:
709 case A2_combine_lh:
710 case A2_combine_hl:
711 case A2_combine_hh: {
712 assert(W0 == 32);
713 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
714 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
715 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
716 // High half in the output is 0 for _ll and _lh, 1 otherwise:
717 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
718 RegisterCell R1 = rc(1);
719 RegisterCell R2 = rc(2);
720 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
721 return rr0(RC, Outputs);
722 }
723 case S2_packhl: {
724 assert(W0 == 64);
725 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
726 RegisterCell R1 = rc(1);
727 RegisterCell R2 = rc(2);
728 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
729 .cat(half(R1, 1));
730 return rr0(RC, Outputs);
731 }
732 case S2_shuffeb: {
733 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
734 return rr0(RC, Outputs);
735 }
736 case S2_shuffeh: {
737 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
738 return rr0(RC, Outputs);
739 }
740 case S2_shuffob: {
741 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
742 return rr0(RC, Outputs);
743 }
744 case S2_shuffoh: {
745 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
746 return rr0(RC, Outputs);
747 }
748 case C2_mask: {
749 uint16_t WR = W0;
750 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
751 assert(WR == 64 && WP == 8);
752 RegisterCell R1 = rc(1);
753 RegisterCell RC(WR);
754 for (uint16_t i = 0; i < WP; ++i) {
755 const BT::BitValue &V = R1[i];
756 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
757 RC.fill(i*8, i*8+8, F);
758 }
759 return rr0(RC, Outputs);
760 }
761
762 // Mux:
763
764 case C2_muxii:
765 case C2_muxir:
766 case C2_muxri:
767 case C2_mux: {
768 BT::BitValue PC0 = rc(1)[0];
769 RegisterCell R2 = cop(2, W0);
770 RegisterCell R3 = cop(3, W0);
771 if (PC0.is(0) || PC0.is(1))
772 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
773 R2.meet(R3, Reg[0].Reg);
774 return rr0(R2, Outputs);
775 }
776 case C2_vmux:
777 // TODO
778 break;
779
780 // Sign- and zero-extension:
781
782 case A2_sxtb:
783 return rr0(eSXT(rc(1), 8), Outputs);
784 case A2_sxth:
785 return rr0(eSXT(rc(1), 16), Outputs);
786 case A2_sxtw: {
787 uint16_t W1 = getRegBitWidth(Reg[1]);
788 assert(W0 == 64 && W1 == 32);
789 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
790 return rr0(RC, Outputs);
791 }
792 case A2_zxtb:
793 return rr0(eZXT(rc(1), 8), Outputs);
794 case A2_zxth:
795 return rr0(eZXT(rc(1), 16), Outputs);
796
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000797 // Saturations
798
799 case A2_satb:
800 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
801 case A2_sath:
802 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
803 case A2_satub:
804 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
805 case A2_satuh:
806 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
807
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000808 // Bit count:
809
810 case S2_cl0:
811 case S2_cl0p:
812 // Always produce a 32-bit result.
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000813 return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000814 case S2_cl1:
815 case S2_cl1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000816 return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000817 case S2_clb:
818 case S2_clbp: {
819 uint16_t W1 = getRegBitWidth(Reg[1]);
820 RegisterCell R1 = rc(1);
821 BT::BitValue TV = R1[W1-1];
822 if (TV.is(0) || TV.is(1))
823 return rr0(eCLB(R1, TV, 32), Outputs);
824 break;
825 }
826 case S2_ct0:
827 case S2_ct0p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000828 return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000829 case S2_ct1:
830 case S2_ct1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000831 return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000832 case S5_popcountp:
833 // TODO
834 break;
835
836 case C2_all8: {
837 RegisterCell P1 = rc(1);
838 bool Has0 = false, All1 = true;
839 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
840 if (!P1[i].is(1))
841 All1 = false;
842 if (!P1[i].is(0))
843 continue;
844 Has0 = true;
845 break;
846 }
847 if (!Has0 && !All1)
848 break;
849 RegisterCell RC(W0);
850 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
851 return rr0(RC, Outputs);
852 }
853 case C2_any8: {
854 RegisterCell P1 = rc(1);
855 bool Has1 = false, All0 = true;
856 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
857 if (!P1[i].is(0))
858 All0 = false;
859 if (!P1[i].is(1))
860 continue;
861 Has1 = true;
862 break;
863 }
864 if (!Has1 && !All0)
865 break;
866 RegisterCell RC(W0);
867 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
868 return rr0(RC, Outputs);
869 }
870 case C2_and:
871 return rr0(eAND(rc(1), rc(2)), Outputs);
872 case C2_andn:
873 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
874 case C2_not:
875 return rr0(eNOT(rc(1)), Outputs);
876 case C2_or:
877 return rr0(eORL(rc(1), rc(2)), Outputs);
878 case C2_orn:
879 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
880 case C2_xor:
881 return rr0(eXOR(rc(1), rc(2)), Outputs);
882 case C4_and_and:
883 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
884 case C4_and_andn:
885 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
886 case C4_and_or:
887 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
888 case C4_and_orn:
889 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
890 case C4_or_and:
891 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
892 case C4_or_andn:
893 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
894 case C4_or_or:
895 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
896 case C4_or_orn:
897 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
898 case C2_bitsclr:
899 case C2_bitsclri:
900 case C2_bitsset:
901 case C4_nbitsclr:
902 case C4_nbitsclri:
903 case C4_nbitsset:
904 // TODO
905 break;
906 case S2_tstbit_i:
907 case S4_ntstbit_i: {
908 BT::BitValue V = rc(1)[im(2)];
909 if (V.is(0) || V.is(1)) {
910 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
911 bool TV = (Opc == S2_tstbit_i);
912 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
913 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
914 }
915 break;
916 }
917
918 default:
919 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
920 }
921 #undef im
922 #undef rc
923 #undef op
924 return false;
925}
926
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000927bool HexagonEvaluator::evaluate(const MachineInstr &BI,
928 const CellMapType &Inputs,
929 BranchTargetList &Targets,
930 bool &FallsThru) const {
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000931 // We need to evaluate one branch at a time. TII::analyzeBranch checks
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000932 // all the branches in a basic block at once, so we cannot use it.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000933 unsigned Opc = BI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000934 bool SimpleBranch = false;
935 bool Negated = false;
936 switch (Opc) {
937 case Hexagon::J2_jumpf:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000938 case Hexagon::J2_jumpfpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000939 case Hexagon::J2_jumpfnew:
940 case Hexagon::J2_jumpfnewpt:
941 Negated = true;
Simon Pilgrim087e87d2017-07-07 13:21:43 +0000942 LLVM_FALLTHROUGH;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000943 case Hexagon::J2_jumpt:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000944 case Hexagon::J2_jumptpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000945 case Hexagon::J2_jumptnew:
946 case Hexagon::J2_jumptnewpt:
947 // Simple branch: if([!]Pn) jump ...
948 // i.e. Op0 = predicate, Op1 = branch target.
949 SimpleBranch = true;
950 break;
951 case Hexagon::J2_jump:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000952 Targets.insert(BI.getOperand(0).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000953 FallsThru = false;
954 return true;
955 default:
956 // If the branch is of unknown type, assume that all successors are
957 // executable.
958 return false;
959 }
960
961 if (!SimpleBranch)
962 return false;
963
964 // BI is a conditional branch if we got here.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000965 RegisterRef PR = BI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000966 RegisterCell PC = getCell(PR, Inputs);
967 const BT::BitValue &Test = PC[0];
968
969 // If the condition is neither true nor false, then it's unknown.
970 if (!Test.is(0) && !Test.is(1))
971 return false;
972
973 // "Test.is(!Negated)" means "branch condition is true".
974 if (!Test.is(!Negated)) {
975 // Condition known to be false.
976 FallsThru = true;
977 return true;
978 }
979
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000980 Targets.insert(BI.getOperand(1).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000981 FallsThru = false;
982 return true;
983}
984
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000985bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
986 const CellMapType &Inputs,
987 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000988 using namespace Hexagon;
989
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000990 if (TII.isPredicated(MI))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000991 return false;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000992 assert(MI.mayLoad() && "A load that mayn't?");
993 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000994
995 uint16_t BitNum;
996 bool SignEx;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000997
998 switch (Opc) {
999 default:
1000 return false;
1001
1002#if 0
1003 // memb_fifo
1004 case L2_loadalignb_pbr:
1005 case L2_loadalignb_pcr:
1006 case L2_loadalignb_pi:
1007 // memh_fifo
1008 case L2_loadalignh_pbr:
1009 case L2_loadalignh_pcr:
1010 case L2_loadalignh_pi:
1011 // membh
1012 case L2_loadbsw2_pbr:
1013 case L2_loadbsw2_pci:
1014 case L2_loadbsw2_pcr:
1015 case L2_loadbsw2_pi:
1016 case L2_loadbsw4_pbr:
1017 case L2_loadbsw4_pci:
1018 case L2_loadbsw4_pcr:
1019 case L2_loadbsw4_pi:
1020 // memubh
1021 case L2_loadbzw2_pbr:
1022 case L2_loadbzw2_pci:
1023 case L2_loadbzw2_pcr:
1024 case L2_loadbzw2_pi:
1025 case L2_loadbzw4_pbr:
1026 case L2_loadbzw4_pci:
1027 case L2_loadbzw4_pcr:
1028 case L2_loadbzw4_pi:
1029#endif
1030
1031 case L2_loadrbgp:
1032 case L2_loadrb_io:
1033 case L2_loadrb_pbr:
1034 case L2_loadrb_pci:
1035 case L2_loadrb_pcr:
1036 case L2_loadrb_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001037 case PS_loadrbabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001038 case L4_loadrb_ap:
1039 case L4_loadrb_rr:
1040 case L4_loadrb_ur:
1041 BitNum = 8;
1042 SignEx = true;
1043 break;
1044
1045 case L2_loadrubgp:
1046 case L2_loadrub_io:
1047 case L2_loadrub_pbr:
1048 case L2_loadrub_pci:
1049 case L2_loadrub_pcr:
1050 case L2_loadrub_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001051 case PS_loadrubabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001052 case L4_loadrub_ap:
1053 case L4_loadrub_rr:
1054 case L4_loadrub_ur:
1055 BitNum = 8;
1056 SignEx = false;
1057 break;
1058
1059 case L2_loadrhgp:
1060 case L2_loadrh_io:
1061 case L2_loadrh_pbr:
1062 case L2_loadrh_pci:
1063 case L2_loadrh_pcr:
1064 case L2_loadrh_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001065 case PS_loadrhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001066 case L4_loadrh_ap:
1067 case L4_loadrh_rr:
1068 case L4_loadrh_ur:
1069 BitNum = 16;
1070 SignEx = true;
1071 break;
1072
1073 case L2_loadruhgp:
1074 case L2_loadruh_io:
1075 case L2_loadruh_pbr:
1076 case L2_loadruh_pci:
1077 case L2_loadruh_pcr:
1078 case L2_loadruh_pi:
1079 case L4_loadruh_rr:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001080 case PS_loadruhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001081 case L4_loadruh_ap:
1082 case L4_loadruh_ur:
1083 BitNum = 16;
1084 SignEx = false;
1085 break;
1086
1087 case L2_loadrigp:
1088 case L2_loadri_io:
1089 case L2_loadri_pbr:
1090 case L2_loadri_pci:
1091 case L2_loadri_pcr:
1092 case L2_loadri_pi:
1093 case L2_loadw_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001094 case PS_loadriabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001095 case L4_loadri_ap:
1096 case L4_loadri_rr:
1097 case L4_loadri_ur:
1098 case LDriw_pred:
1099 BitNum = 32;
1100 SignEx = true;
1101 break;
1102
1103 case L2_loadrdgp:
1104 case L2_loadrd_io:
1105 case L2_loadrd_pbr:
1106 case L2_loadrd_pci:
1107 case L2_loadrd_pcr:
1108 case L2_loadrd_pi:
1109 case L4_loadd_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001110 case PS_loadrdabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001111 case L4_loadrd_ap:
1112 case L4_loadrd_rr:
1113 case L4_loadrd_ur:
1114 BitNum = 64;
1115 SignEx = true;
1116 break;
1117 }
1118
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001119 const MachineOperand &MD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001120 assert(MD.isReg() && MD.isDef());
1121 RegisterRef RD = MD;
1122
1123 uint16_t W = getRegBitWidth(RD);
1124 assert(W >= BitNum && BitNum > 0);
1125 RegisterCell Res(W);
1126
1127 for (uint16_t i = 0; i < BitNum; ++i)
1128 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1129
1130 if (SignEx) {
1131 const BT::BitValue &Sign = Res[BitNum-1];
1132 for (uint16_t i = BitNum; i < W; ++i)
1133 Res[i] = BT::BitValue::ref(Sign);
1134 } else {
1135 for (uint16_t i = BitNum; i < W; ++i)
1136 Res[i] = BT::BitValue::Zero;
1137 }
1138
1139 putCell(RD, Res, Outputs);
1140 return true;
1141}
1142
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001143bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1144 const CellMapType &Inputs,
1145 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001146 // If MI defines a formal parameter, but is not a copy (loads are handled
1147 // in evaluateLoad), then it's not clear what to do.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001148 assert(MI.isCopy());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001149
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001150 RegisterRef RD = MI.getOperand(0);
1151 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001152 assert(RD.Sub == 0);
1153 if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1154 return false;
1155 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1156 if (F == VRX.end())
1157 return false;
1158
1159 uint16_t EW = F->second.Width;
1160 // Store RD's cell into the map. This will associate the cell with a virtual
1161 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1162 // tending "self" bit values, which will have no effect, since "self" values
1163 // cannot be references to anything).
1164 putCell(RD, getCell(RS, Inputs), Outputs);
1165
1166 RegisterCell Res;
1167 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1168 if (F->second.Type == ExtType::SExt)
1169 Res = eSXT(getCell(RD, Outputs), EW);
1170 else if (F->second.Type == ExtType::ZExt)
1171 Res = eZXT(getCell(RD, Outputs), EW);
1172
1173 putCell(RD, Res, Outputs);
1174 return true;
1175}
1176
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001177unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1178 using namespace Hexagon;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001179
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001180 bool Is64 = DoubleRegsRegClass.contains(PReg);
1181 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1182
1183 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1184 static const unsigned Phys64[] = { D0, D1, D2 };
1185 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1186 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1187
1188 // Return the first parameter register of the required width.
1189 if (PReg == 0)
1190 return (Width <= 32) ? Phys32[0] : Phys64[0];
1191
1192 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1193 // next register.
1194 unsigned Idx32 = 0, Idx64 = 0;
1195 if (!Is64) {
1196 while (Idx32 < Num32) {
1197 if (Phys32[Idx32] == PReg)
1198 break;
1199 Idx32++;
1200 }
1201 Idx64 = Idx32/2;
1202 } else {
1203 while (Idx64 < Num64) {
1204 if (Phys64[Idx64] == PReg)
1205 break;
1206 Idx64++;
1207 }
1208 Idx32 = Idx64*2+1;
1209 }
1210
1211 if (Width <= 32)
1212 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1213 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1214}
1215
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001216unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001217 using iterator = MachineRegisterInfo::livein_iterator;
1218
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001219 for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1220 if (I->first == PReg)
1221 return I->second;
1222 }
1223 return 0;
1224}