Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1 | //===-- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===/ |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file |
| 11 | /// \brief Insert wait instructions for memory reads and writes. |
| 12 | /// |
| 13 | /// Memory reads and writes are issued asynchronously, so we need to insert |
| 14 | /// S_WAITCNT instructions when we want to access any of their results or |
| 15 | /// overwrite any register that's used asynchronously. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "AMDGPU.h" |
| 20 | #include "AMDGPUSubtarget.h" |
| 21 | #include "SIDefines.h" |
| 22 | #include "SIInstrInfo.h" |
| 23 | #include "SIMachineFunctionInfo.h" |
| 24 | #include "Utils/AMDGPUBaseInfo.h" |
| 25 | #include "llvm/ADT/PostOrderIterator.h" |
| 26 | #include "llvm/CodeGen/MachineFunction.h" |
| 27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 28 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | |
| 31 | #define DEBUG_TYPE "si-insert-waitcnts" |
| 32 | |
| 33 | using namespace llvm; |
| 34 | |
| 35 | namespace { |
| 36 | |
| 37 | // Class of object that encapsulates latest instruction counter score |
| 38 | // associated with the operand. Used for determining whether |
| 39 | // s_waitcnt instruction needs to be emited. |
| 40 | |
| 41 | #define CNT_MASK(t) (1u << (t)) |
| 42 | |
| 43 | enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; |
| 44 | |
| 45 | typedef std::pair<signed, signed> RegInterval; |
| 46 | |
| 47 | struct { |
| 48 | int32_t VmcntMax; |
| 49 | int32_t ExpcntMax; |
| 50 | int32_t LgkmcntMax; |
| 51 | int32_t NumVGPRsMax; |
| 52 | int32_t NumSGPRsMax; |
| 53 | } HardwareLimits; |
| 54 | |
| 55 | struct { |
| 56 | unsigned VGPR0; |
| 57 | unsigned VGPRL; |
| 58 | unsigned SGPR0; |
| 59 | unsigned SGPRL; |
| 60 | } RegisterEncoding; |
| 61 | |
| 62 | enum WaitEventType { |
| 63 | VMEM_ACCESS, // vector-memory read & write |
| 64 | LDS_ACCESS, // lds read & write |
| 65 | GDS_ACCESS, // gds read & write |
| 66 | SQ_MESSAGE, // send message |
| 67 | SMEM_ACCESS, // scalar-memory read & write |
| 68 | EXP_GPR_LOCK, // export holding on its data src |
| 69 | GDS_GPR_LOCK, // GDS holding on its data and addr src |
| 70 | EXP_POS_ACCESS, // write to export position |
| 71 | EXP_PARAM_ACCESS, // write to export parameter |
| 72 | VMW_GPR_LOCK, // vector-memory write holding on its data src |
| 73 | NUM_WAIT_EVENTS, |
| 74 | }; |
| 75 | |
| 76 | // The mapping is: |
| 77 | // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs |
| 78 | // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots |
| 79 | // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs |
| 80 | // We reserve a fixed number of VGPR slots in the scoring tables for |
| 81 | // special tokens like SCMEM_LDS (needed for buffer load to LDS). |
| 82 | enum RegisterMapping { |
| 83 | SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. |
| 84 | SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. |
| 85 | NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. |
| 86 | EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. |
| 87 | NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. |
| 88 | }; |
| 89 | |
| 90 | #define ForAllWaitEventType(w) \ |
| 91 | for (enum WaitEventType w = (enum WaitEventType)0; \ |
| 92 | (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ |
| 93 | (w) = (enum WaitEventType)((w) + 1)) |
| 94 | |
| 95 | // This is a per-basic-block object that maintains current score brackets |
| 96 | // of each wait-counter, and a per-register scoreboard for each wait-couner. |
| 97 | // We also maintain the latest score for every event type that can change the |
| 98 | // waitcnt in order to know if there are multiple types of events within |
| 99 | // the brackets. When multiple types of event happen in the bracket, |
| 100 | // wait-count may get decreased out of order, therefore we need to put in |
| 101 | // "s_waitcnt 0" before use. |
| 102 | class BlockWaitcntBrackets { |
| 103 | public: |
| 104 | static int32_t getWaitCountMax(InstCounterType T) { |
| 105 | switch (T) { |
| 106 | case VM_CNT: |
| 107 | return HardwareLimits.VmcntMax; |
| 108 | case LGKM_CNT: |
| 109 | return HardwareLimits.LgkmcntMax; |
| 110 | case EXP_CNT: |
| 111 | return HardwareLimits.ExpcntMax; |
| 112 | default: |
| 113 | break; |
| 114 | } |
| 115 | return 0; |
| 116 | }; |
| 117 | |
| 118 | void setScoreLB(InstCounterType T, int32_t Val) { |
| 119 | assert(T < NUM_INST_CNTS); |
| 120 | if (T >= NUM_INST_CNTS) |
| 121 | return; |
| 122 | ScoreLBs[T] = Val; |
| 123 | }; |
| 124 | |
| 125 | void setScoreUB(InstCounterType T, int32_t Val) { |
| 126 | assert(T < NUM_INST_CNTS); |
| 127 | if (T >= NUM_INST_CNTS) |
| 128 | return; |
| 129 | ScoreUBs[T] = Val; |
| 130 | if (T == EXP_CNT) { |
| 131 | int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); |
| 132 | if (ScoreLBs[T] < UB) |
| 133 | ScoreLBs[T] = UB; |
| 134 | } |
| 135 | }; |
| 136 | |
| 137 | int32_t getScoreLB(InstCounterType T) { |
| 138 | assert(T < NUM_INST_CNTS); |
| 139 | if (T >= NUM_INST_CNTS) |
| 140 | return 0; |
| 141 | return ScoreLBs[T]; |
| 142 | }; |
| 143 | |
| 144 | int32_t getScoreUB(InstCounterType T) { |
| 145 | assert(T < NUM_INST_CNTS); |
| 146 | if (T >= NUM_INST_CNTS) |
| 147 | return 0; |
| 148 | return ScoreUBs[T]; |
| 149 | }; |
| 150 | |
| 151 | // Mapping from event to counter. |
| 152 | InstCounterType eventCounter(WaitEventType E) { |
| 153 | switch (E) { |
| 154 | case VMEM_ACCESS: |
| 155 | return VM_CNT; |
| 156 | case LDS_ACCESS: |
| 157 | case GDS_ACCESS: |
| 158 | case SQ_MESSAGE: |
| 159 | case SMEM_ACCESS: |
| 160 | return LGKM_CNT; |
| 161 | case EXP_GPR_LOCK: |
| 162 | case GDS_GPR_LOCK: |
| 163 | case VMW_GPR_LOCK: |
| 164 | case EXP_POS_ACCESS: |
| 165 | case EXP_PARAM_ACCESS: |
| 166 | return EXP_CNT; |
| 167 | default: |
| 168 | llvm_unreachable("unhandled event type"); |
| 169 | } |
| 170 | return NUM_INST_CNTS; |
| 171 | } |
| 172 | |
| 173 | void setRegScore(int GprNo, InstCounterType T, int32_t Val) { |
| 174 | if (GprNo < NUM_ALL_VGPRS) { |
| 175 | if (GprNo > VgprUB) { |
| 176 | VgprUB = GprNo; |
| 177 | } |
| 178 | VgprScores[T][GprNo] = Val; |
| 179 | } else { |
| 180 | assert(T == LGKM_CNT); |
| 181 | if (GprNo - NUM_ALL_VGPRS > SgprUB) { |
| 182 | SgprUB = GprNo - NUM_ALL_VGPRS; |
| 183 | } |
| 184 | SgprScores[GprNo - NUM_ALL_VGPRS] = Val; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | int32_t getRegScore(int GprNo, InstCounterType T) { |
| 189 | if (GprNo < NUM_ALL_VGPRS) { |
| 190 | return VgprScores[T][GprNo]; |
| 191 | } |
| 192 | return SgprScores[GprNo - NUM_ALL_VGPRS]; |
| 193 | } |
| 194 | |
| 195 | void clear() { |
| 196 | memset(ScoreLBs, 0, sizeof(ScoreLBs)); |
| 197 | memset(ScoreUBs, 0, sizeof(ScoreUBs)); |
| 198 | memset(EventUBs, 0, sizeof(EventUBs)); |
| 199 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 200 | T = (enum InstCounterType)(T + 1)) { |
| 201 | memset(VgprScores[T], 0, sizeof(VgprScores[T])); |
| 202 | } |
| 203 | memset(SgprScores, 0, sizeof(SgprScores)); |
| 204 | } |
| 205 | |
| 206 | RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, |
| 207 | const MachineRegisterInfo *MRI, |
| 208 | const SIRegisterInfo *TRI, unsigned OpNo, |
| 209 | bool Def) const; |
| 210 | |
| 211 | void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, |
| 212 | const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, |
| 213 | unsigned OpNo, int32_t Val); |
| 214 | |
| 215 | void setWaitAtBeginning() { WaitAtBeginning = true; } |
| 216 | void clearWaitAtBeginning() { WaitAtBeginning = false; } |
| 217 | bool getWaitAtBeginning() const { return WaitAtBeginning; } |
| 218 | void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } |
| 219 | int32_t getMaxVGPR() const { return VgprUB; } |
| 220 | int32_t getMaxSGPR() const { return SgprUB; } |
| 221 | int32_t getEventUB(enum WaitEventType W) const { |
| 222 | assert(W < NUM_WAIT_EVENTS); |
| 223 | return EventUBs[W]; |
| 224 | } |
| 225 | bool counterOutOfOrder(InstCounterType T); |
| 226 | unsigned int updateByWait(InstCounterType T, int ScoreToWait); |
| 227 | void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, |
| 228 | const MachineRegisterInfo *MRI, WaitEventType E, |
| 229 | MachineInstr &MI); |
| 230 | |
| 231 | BlockWaitcntBrackets() |
Mark Searles | 602ee93 | 2017-06-05 19:29:01 +0000 | [diff] [blame] | 232 | : WaitAtBeginning(false), RevisitLoop(false), ValidLoop(false), MixedExpTypes(false), |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 233 | LoopRegion(NULL), PostOrder(0), Waitcnt(NULL), VgprUB(0), SgprUB(0) { |
| 234 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 235 | T = (enum InstCounterType)(T + 1)) { |
| 236 | memset(VgprScores[T], 0, sizeof(VgprScores[T])); |
| 237 | } |
| 238 | } |
| 239 | ~BlockWaitcntBrackets(){}; |
| 240 | |
| 241 | bool hasPendingSMEM() const { |
| 242 | return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && |
| 243 | EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); |
| 244 | } |
| 245 | |
| 246 | bool hasPendingFlat() const { |
| 247 | return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && |
| 248 | LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || |
| 249 | (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && |
| 250 | LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); |
| 251 | } |
| 252 | |
| 253 | void setPendingFlat() { |
| 254 | LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; |
| 255 | LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; |
| 256 | } |
| 257 | |
| 258 | int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } |
| 259 | |
| 260 | void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } |
| 261 | |
| 262 | bool getRevisitLoop() const { return RevisitLoop; } |
| 263 | void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } |
| 264 | |
| 265 | void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } |
| 266 | int32_t getPostOrder() const { return PostOrder; } |
| 267 | |
| 268 | void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } |
| 269 | void clearWaitcnt() { Waitcnt = NULL; } |
| 270 | MachineInstr *getWaitcnt() const { return Waitcnt; } |
| 271 | |
| 272 | bool mixedExpTypes() const { return MixedExpTypes; } |
| 273 | void setMixedExpTypes(bool MixedExpTypesIn) { |
| 274 | MixedExpTypes = MixedExpTypesIn; |
| 275 | } |
| 276 | |
| 277 | void print(raw_ostream &); |
| 278 | void dump() { print(dbgs()); } |
| 279 | |
| 280 | private: |
| 281 | bool WaitAtBeginning; |
| 282 | bool RevisitLoop; |
| 283 | bool ValidLoop; |
| 284 | bool MixedExpTypes; |
| 285 | MachineLoop *LoopRegion; |
| 286 | int32_t PostOrder; |
| 287 | MachineInstr *Waitcnt; |
| 288 | int32_t ScoreLBs[NUM_INST_CNTS] = {0}; |
| 289 | int32_t ScoreUBs[NUM_INST_CNTS] = {0}; |
| 290 | int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; |
| 291 | // Remember the last flat memory operation. |
| 292 | int32_t LastFlat[NUM_INST_CNTS] = {0}; |
| 293 | // wait_cnt scores for every vgpr. |
| 294 | // Keep track of the VgprUB and SgprUB to make merge at join efficient. |
| 295 | int32_t VgprUB; |
| 296 | int32_t SgprUB; |
| 297 | int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; |
| 298 | // Wait cnt scores for every sgpr, only lgkmcnt is relevant. |
| 299 | int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; |
| 300 | }; |
| 301 | |
| 302 | // This is a per-loop-region object that records waitcnt status at the end of |
| 303 | // loop footer from the previous iteration. We also maintain an iteration |
| 304 | // count to track the number of times the loop has been visited. When it |
| 305 | // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 |
| 306 | // at the end of the loop footer. |
| 307 | class LoopWaitcntData { |
| 308 | public: |
| 309 | void incIterCnt() { IterCnt++; } |
| 310 | void resetIterCnt() { IterCnt = 0; } |
| 311 | int32_t getIterCnt() { return IterCnt; } |
| 312 | |
| 313 | LoopWaitcntData() : LfWaitcnt(NULL), IterCnt(0) {} |
| 314 | ~LoopWaitcntData(){}; |
| 315 | |
| 316 | void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } |
| 317 | MachineInstr *getWaitcnt() const { return LfWaitcnt; } |
| 318 | |
| 319 | void print() { |
| 320 | DEBUG(dbgs() << " iteration " << IterCnt << '\n';); |
| 321 | return; |
| 322 | } |
| 323 | |
| 324 | private: |
| 325 | // s_waitcnt added at the end of loop footer to stablize wait scores |
| 326 | // at the end of the loop footer. |
| 327 | MachineInstr *LfWaitcnt; |
| 328 | // Number of iterations the loop has been visited, not including the initial |
| 329 | // walk over. |
| 330 | int32_t IterCnt; |
| 331 | }; |
| 332 | |
| 333 | class SIInsertWaitcnts : public MachineFunctionPass { |
| 334 | |
| 335 | private: |
| 336 | const SISubtarget *ST; |
| 337 | const SIInstrInfo *TII; |
| 338 | const SIRegisterInfo *TRI; |
| 339 | const MachineRegisterInfo *MRI; |
| 340 | const MachineLoopInfo *MLI; |
| 341 | AMDGPU::IsaInfo::IsaVersion IV; |
| 342 | AMDGPUAS AMDGPUASI; |
| 343 | |
| 344 | DenseSet<MachineBasicBlock *> BlockVisitedSet; |
| 345 | DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet; |
| 346 | DenseSet<MachineInstr *> VCCZBugHandledSet; |
| 347 | |
| 348 | DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> |
| 349 | BlockWaitcntBracketsMap; |
| 350 | |
| 351 | DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet; |
| 352 | |
| 353 | DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; |
| 354 | |
| 355 | std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; |
| 356 | |
| 357 | public: |
| 358 | static char ID; |
| 359 | |
| 360 | SIInsertWaitcnts() |
| 361 | : MachineFunctionPass(ID), ST(nullptr), TII(nullptr), TRI(nullptr), |
| 362 | MRI(nullptr), MLI(nullptr) {} |
| 363 | |
| 364 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 365 | |
| 366 | StringRef getPassName() const override { |
| 367 | return "SI insert wait instructions"; |
| 368 | } |
| 369 | |
| 370 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 371 | AU.setPreservesCFG(); |
| 372 | AU.addRequired<MachineLoopInfo>(); |
| 373 | MachineFunctionPass::getAnalysisUsage(AU); |
| 374 | } |
| 375 | |
| 376 | void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { |
| 377 | // The waitcnt information is copied because it changes as the block is |
| 378 | // traversed. |
| 379 | KillWaitBrackets.push_back(make_unique<BlockWaitcntBrackets>(*Bracket)); |
| 380 | } |
| 381 | |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 382 | bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 383 | MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI, |
| 384 | BlockWaitcntBrackets *ScoreBrackets); |
| 385 | void updateEventWaitCntAfter(MachineInstr &Inst, |
| 386 | BlockWaitcntBrackets *ScoreBrackets); |
| 387 | void mergeInputScoreBrackets(MachineBasicBlock &Block); |
| 388 | MachineBasicBlock *loopBottom(const MachineLoop *Loop); |
| 389 | void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); |
| 390 | void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); |
| 391 | }; |
| 392 | |
| 393 | } // End anonymous namespace. |
| 394 | |
| 395 | RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, |
| 396 | const SIInstrInfo *TII, |
| 397 | const MachineRegisterInfo *MRI, |
| 398 | const SIRegisterInfo *TRI, |
| 399 | unsigned OpNo, |
| 400 | bool Def) const { |
| 401 | const MachineOperand &Op = MI->getOperand(OpNo); |
| 402 | if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || |
| 403 | (Def && !Op.isDef())) |
| 404 | return {-1, -1}; |
| 405 | |
| 406 | // A use via a PW operand does not need a waitcnt. |
| 407 | // A partial write is not a WAW. |
| 408 | assert(!Op.getSubReg() || !Op.isUndef()); |
| 409 | |
| 410 | RegInterval Result; |
| 411 | const MachineRegisterInfo &MRIA = *MRI; |
| 412 | |
| 413 | unsigned Reg = TRI->getEncodingValue(Op.getReg()); |
| 414 | |
| 415 | if (TRI->isVGPR(MRIA, Op.getReg())) { |
| 416 | assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); |
| 417 | Result.first = Reg - RegisterEncoding.VGPR0; |
| 418 | assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); |
| 419 | } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { |
| 420 | assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); |
| 421 | Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; |
| 422 | assert(Result.first >= NUM_ALL_VGPRS && |
| 423 | Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); |
| 424 | } |
| 425 | // TODO: Handle TTMP |
| 426 | // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... |
| 427 | else |
| 428 | return {-1, -1}; |
| 429 | |
| 430 | const MachineInstr &MIA = *MI; |
| 431 | const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); |
Krzysztof Parzyszek | 44e25f3 | 2017-04-24 18:55:33 +0000 | [diff] [blame] | 432 | unsigned Size = TRI->getRegSizeInBits(*RC); |
| 433 | Result.second = Result.first + (Size / 32); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 434 | |
| 435 | return Result; |
| 436 | } |
| 437 | |
| 438 | void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, |
| 439 | const SIInstrInfo *TII, |
| 440 | const SIRegisterInfo *TRI, |
| 441 | const MachineRegisterInfo *MRI, |
| 442 | unsigned OpNo, int32_t Val) { |
| 443 | RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); |
| 444 | DEBUG({ |
| 445 | const MachineOperand &Opnd = MI->getOperand(OpNo); |
| 446 | assert(TRI->isVGPR(*MRI, Opnd.getReg())); |
| 447 | }); |
| 448 | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 449 | setRegScore(RegNo, EXP_CNT, Val); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, |
| 454 | const SIRegisterInfo *TRI, |
| 455 | const MachineRegisterInfo *MRI, |
| 456 | WaitEventType E, MachineInstr &Inst) { |
| 457 | const MachineRegisterInfo &MRIA = *MRI; |
| 458 | InstCounterType T = eventCounter(E); |
| 459 | int32_t CurrScore = getScoreUB(T) + 1; |
| 460 | // EventUB and ScoreUB need to be update regardless if this event changes |
| 461 | // the score of a register or not. |
| 462 | // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. |
| 463 | EventUBs[E] = CurrScore; |
| 464 | setScoreUB(T, CurrScore); |
| 465 | |
| 466 | if (T == EXP_CNT) { |
| 467 | // Check for mixed export types. If they are mixed, then a waitcnt exp(0) |
| 468 | // is required. |
| 469 | if (!MixedExpTypes) { |
| 470 | MixedExpTypes = counterOutOfOrder(EXP_CNT); |
| 471 | } |
| 472 | |
| 473 | // Put score on the source vgprs. If this is a store, just use those |
| 474 | // specific register(s). |
| 475 | if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { |
| 476 | // All GDS operations must protect their address register (same as |
| 477 | // export.) |
| 478 | if (Inst.getOpcode() != AMDGPU::DS_APPEND && |
| 479 | Inst.getOpcode() != AMDGPU::DS_CONSUME) { |
| 480 | setExpScore( |
| 481 | &Inst, TII, TRI, MRI, |
| 482 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), |
| 483 | CurrScore); |
| 484 | } |
| 485 | if (Inst.mayStore()) { |
| 486 | setExpScore( |
| 487 | &Inst, TII, TRI, MRI, |
| 488 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), |
| 489 | CurrScore); |
| 490 | if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), |
| 491 | AMDGPU::OpName::data1) != -1) { |
| 492 | setExpScore(&Inst, TII, TRI, MRI, |
| 493 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), |
| 494 | AMDGPU::OpName::data1), |
| 495 | CurrScore); |
| 496 | } |
| 497 | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && |
| 498 | Inst.getOpcode() != AMDGPU::DS_GWS_INIT && |
| 499 | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && |
| 500 | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && |
| 501 | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && |
| 502 | Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && |
| 503 | Inst.getOpcode() != AMDGPU::DS_APPEND && |
| 504 | Inst.getOpcode() != AMDGPU::DS_CONSUME && |
| 505 | Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { |
| 506 | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { |
| 507 | const MachineOperand &Op = Inst.getOperand(I); |
| 508 | if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { |
| 509 | setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | } else if (TII->isFLAT(Inst)) { |
| 514 | if (Inst.mayStore()) { |
| 515 | setExpScore( |
| 516 | &Inst, TII, TRI, MRI, |
| 517 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), |
| 518 | CurrScore); |
| 519 | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { |
| 520 | setExpScore( |
| 521 | &Inst, TII, TRI, MRI, |
| 522 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), |
| 523 | CurrScore); |
| 524 | } |
| 525 | } else if (TII->isMIMG(Inst)) { |
| 526 | if (Inst.mayStore()) { |
| 527 | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); |
| 528 | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { |
| 529 | setExpScore( |
| 530 | &Inst, TII, TRI, MRI, |
| 531 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), |
| 532 | CurrScore); |
| 533 | } |
| 534 | } else if (TII->isMTBUF(Inst)) { |
| 535 | if (Inst.mayStore()) { |
| 536 | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); |
| 537 | } |
| 538 | } else if (TII->isMUBUF(Inst)) { |
| 539 | if (Inst.mayStore()) { |
| 540 | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); |
| 541 | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { |
| 542 | setExpScore( |
| 543 | &Inst, TII, TRI, MRI, |
| 544 | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), |
| 545 | CurrScore); |
| 546 | } |
| 547 | } else { |
| 548 | if (TII->isEXP(Inst)) { |
| 549 | // For export the destination registers are really temps that |
| 550 | // can be used as the actual source after export patching, so |
| 551 | // we need to treat them like sources and set the EXP_CNT |
| 552 | // score. |
| 553 | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { |
| 554 | MachineOperand &DefMO = Inst.getOperand(I); |
| 555 | if (DefMO.isReg() && DefMO.isDef() && |
| 556 | TRI->isVGPR(MRIA, DefMO.getReg())) { |
| 557 | setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, |
| 558 | CurrScore); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { |
| 563 | MachineOperand &MO = Inst.getOperand(I); |
| 564 | if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { |
| 565 | setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); |
| 566 | } |
| 567 | } |
| 568 | } |
| 569 | #if 0 // TODO: check if this is handled by MUBUF code above. |
| 570 | } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || |
| 571 | Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || |
| 572 | Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { |
| 573 | MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); |
| 574 | unsigned OpNo;//TODO: find the OpNo for this operand; |
| 575 | RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); |
| 576 | for (signed RegNo = Interval.first; RegNo < Interval.second; |
| 577 | ++RegNo) { |
| 578 | setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); |
| 579 | } |
| 580 | #endif |
| 581 | } else { |
| 582 | // Match the score to the destination registers. |
| 583 | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { |
| 584 | RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); |
| 585 | if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) |
| 586 | continue; |
| 587 | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 588 | setRegScore(RegNo, T, CurrScore); |
| 589 | } |
| 590 | } |
| 591 | if (TII->isDS(Inst) && Inst.mayStore()) { |
| 592 | setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | void BlockWaitcntBrackets::print(raw_ostream &OS) { |
| 598 | OS << '\n'; |
| 599 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 600 | T = (enum InstCounterType)(T + 1)) { |
| 601 | int LB = getScoreLB(T); |
| 602 | int UB = getScoreUB(T); |
| 603 | |
| 604 | switch (T) { |
| 605 | case VM_CNT: |
| 606 | OS << " VM_CNT(" << UB - LB << "): "; |
| 607 | break; |
| 608 | case LGKM_CNT: |
| 609 | OS << " LGKM_CNT(" << UB - LB << "): "; |
| 610 | break; |
| 611 | case EXP_CNT: |
| 612 | OS << " EXP_CNT(" << UB - LB << "): "; |
| 613 | break; |
| 614 | default: |
| 615 | OS << " UNKNOWN(" << UB - LB << "): "; |
| 616 | break; |
| 617 | } |
| 618 | |
| 619 | if (LB < UB) { |
| 620 | // Print vgpr scores. |
| 621 | for (int J = 0; J <= getMaxVGPR(); J++) { |
| 622 | int RegScore = getRegScore(J, T); |
| 623 | if (RegScore <= LB) |
| 624 | continue; |
| 625 | int RelScore = RegScore - LB - 1; |
| 626 | if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { |
| 627 | OS << RelScore << ":v" << J << " "; |
| 628 | } else { |
| 629 | OS << RelScore << ":ds "; |
| 630 | } |
| 631 | } |
| 632 | // Also need to print sgpr scores for lgkm_cnt. |
| 633 | if (T == LGKM_CNT) { |
| 634 | for (int J = 0; J <= getMaxSGPR(); J++) { |
| 635 | int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); |
| 636 | if (RegScore <= LB) |
| 637 | continue; |
| 638 | int RelScore = RegScore - LB - 1; |
| 639 | OS << RelScore << ":s" << J << " "; |
| 640 | } |
| 641 | } |
| 642 | } |
| 643 | OS << '\n'; |
| 644 | } |
| 645 | OS << '\n'; |
| 646 | return; |
| 647 | } |
| 648 | |
| 649 | unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, |
| 650 | int ScoreToWait) { |
| 651 | unsigned int NeedWait = 0; |
| 652 | if (ScoreToWait == -1) { |
| 653 | // The score to wait is unknown. This implies that it was not encountered |
| 654 | // during the path of the CFG walk done during the current traversal but |
| 655 | // may be seen on a different path. Emit an s_wait counter with a |
| 656 | // conservative value of 0 for the counter. |
| 657 | NeedWait = CNT_MASK(T); |
| 658 | setScoreLB(T, getScoreUB(T)); |
| 659 | return NeedWait; |
| 660 | } |
| 661 | |
| 662 | // If the score of src_operand falls within the bracket, we need an |
| 663 | // s_waitcnt instruction. |
| 664 | const int32_t LB = getScoreLB(T); |
| 665 | const int32_t UB = getScoreUB(T); |
| 666 | if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { |
| 667 | if (T == VM_CNT && hasPendingFlat()) { |
| 668 | // If there is a pending FLAT operation, and this is a VM waitcnt, |
| 669 | // then we need to force a waitcnt 0 for VM. |
| 670 | NeedWait = CNT_MASK(T); |
| 671 | setScoreLB(T, getScoreUB(T)); |
| 672 | } else if (counterOutOfOrder(T)) { |
| 673 | // Counter can get decremented out-of-order when there |
| 674 | // are multiple types event in the brack. Also emit an s_wait counter |
| 675 | // with a conservative value of 0 for the counter. |
| 676 | NeedWait = CNT_MASK(T); |
| 677 | setScoreLB(T, getScoreUB(T)); |
| 678 | } else { |
| 679 | NeedWait = CNT_MASK(T); |
| 680 | setScoreLB(T, ScoreToWait); |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | return NeedWait; |
| 685 | } |
| 686 | |
| 687 | // Where there are multiple types of event in the bracket of a counter, |
| 688 | // the decrement may go out of order. |
| 689 | bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { |
| 690 | switch (T) { |
| 691 | case VM_CNT: |
| 692 | return false; |
| 693 | case LGKM_CNT: { |
| 694 | if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && |
| 695 | EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { |
| 696 | // Scalar memory read always can go out of order. |
| 697 | return true; |
| 698 | } |
| 699 | int NumEventTypes = 0; |
| 700 | if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && |
| 701 | EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { |
| 702 | NumEventTypes++; |
| 703 | } |
| 704 | if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && |
| 705 | EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { |
| 706 | NumEventTypes++; |
| 707 | } |
| 708 | if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && |
| 709 | EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { |
| 710 | NumEventTypes++; |
| 711 | } |
| 712 | if (NumEventTypes <= 1) { |
| 713 | return false; |
| 714 | } |
| 715 | break; |
| 716 | } |
| 717 | case EXP_CNT: { |
| 718 | // If there has been a mixture of export types, then a waitcnt exp(0) is |
| 719 | // required. |
| 720 | if (MixedExpTypes) |
| 721 | return true; |
| 722 | int NumEventTypes = 0; |
| 723 | if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && |
| 724 | EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { |
| 725 | NumEventTypes++; |
| 726 | } |
| 727 | if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && |
| 728 | EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { |
| 729 | NumEventTypes++; |
| 730 | } |
| 731 | if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && |
| 732 | EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { |
| 733 | NumEventTypes++; |
| 734 | } |
| 735 | if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && |
| 736 | EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { |
| 737 | NumEventTypes++; |
| 738 | } |
| 739 | |
| 740 | if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && |
| 741 | EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { |
| 742 | NumEventTypes++; |
| 743 | } |
| 744 | |
| 745 | if (NumEventTypes <= 1) { |
| 746 | return false; |
| 747 | } |
| 748 | break; |
| 749 | } |
| 750 | default: |
| 751 | break; |
| 752 | } |
| 753 | return true; |
| 754 | } |
| 755 | |
| 756 | INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, |
| 757 | false) |
| 758 | INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, |
| 759 | false) |
| 760 | |
| 761 | char SIInsertWaitcnts::ID = 0; |
| 762 | |
| 763 | char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; |
| 764 | |
| 765 | FunctionPass *llvm::createSIInsertWaitcntsPass() { |
| 766 | return new SIInsertWaitcnts(); |
| 767 | } |
| 768 | |
| 769 | static bool readsVCCZ(const MachineInstr &MI) { |
| 770 | unsigned Opc = MI.getOpcode(); |
| 771 | return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && |
| 772 | !MI.getOperand(1).isUndef(); |
| 773 | } |
| 774 | |
| 775 | /// \brief Generate s_waitcnt instruction to be placed before cur_Inst. |
| 776 | /// Instructions of a given type are returned in order, |
| 777 | /// but instructions of different types can complete out of order. |
| 778 | /// We rely on this in-order completion |
| 779 | /// and simply assign a score to the memory access instructions. |
| 780 | /// We keep track of the active "score bracket" to determine |
| 781 | /// if an access of a memory read requires an s_waitcnt |
| 782 | /// and if so what the value of each counter is. |
| 783 | /// The "score bracket" is bound by the lower bound and upper bound |
| 784 | /// scores (*_score_LB and *_score_ub respectively). |
| 785 | MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore( |
| 786 | MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { |
| 787 | // To emit, or not to emit - that's the question! |
| 788 | // Start with an assumption that there is no need to emit. |
| 789 | unsigned int EmitSwaitcnt = 0; |
| 790 | // s_waitcnt instruction to return; default is NULL. |
| 791 | MachineInstr *SWaitInst = nullptr; |
| 792 | // No need to wait before phi. If a phi-move exists, then the wait should |
| 793 | // has been inserted before the move. If a phi-move does not exist, then |
| 794 | // wait should be inserted before the real use. The same is true for |
| 795 | // sc-merge. It is not a coincident that all these cases correspond to the |
| 796 | // instructions that are skipped in the assembling loop. |
| 797 | bool NeedLineMapping = false; // TODO: Check on this. |
| 798 | if (MI.isDebugValue() && |
| 799 | // TODO: any other opcode? |
| 800 | !NeedLineMapping) { |
| 801 | return SWaitInst; |
| 802 | } |
| 803 | |
| 804 | // See if an s_waitcnt is forced at block entry, or is needed at |
| 805 | // program end. |
| 806 | if (ScoreBrackets->getWaitAtBeginning()) { |
| 807 | // Note that we have already cleared the state, so we don't need to update |
| 808 | // it. |
| 809 | ScoreBrackets->clearWaitAtBeginning(); |
| 810 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 811 | T = (enum InstCounterType)(T + 1)) { |
| 812 | EmitSwaitcnt |= CNT_MASK(T); |
| 813 | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | // See if this instruction has a forced S_WAITCNT VM. |
| 818 | // TODO: Handle other cases of NeedsWaitcntVmBefore() |
| 819 | else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || |
| 820 | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || |
| 821 | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { |
| 822 | EmitSwaitcnt |= |
| 823 | ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); |
| 824 | } |
| 825 | |
| 826 | // All waits must be resolved at call return. |
| 827 | // NOTE: this could be improved with knowledge of all call sites or |
| 828 | // with knowledge of the called routines. |
| 829 | if (MI.getOpcode() == AMDGPU::RETURN || |
Mark Searles | 11d0a04 | 2017-05-31 16:44:23 +0000 | [diff] [blame] | 830 | MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || |
| 831 | MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 832 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 833 | T = (enum InstCounterType)(T + 1)) { |
| 834 | if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { |
| 835 | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); |
| 836 | EmitSwaitcnt |= CNT_MASK(T); |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | // Resolve vm waits before gs-done. |
| 841 | else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || |
| 842 | MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && |
| 843 | ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == |
| 844 | AMDGPU::SendMsg::ID_GS_DONE)) { |
| 845 | if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { |
| 846 | ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); |
| 847 | EmitSwaitcnt |= CNT_MASK(VM_CNT); |
| 848 | } |
| 849 | } |
| 850 | #if 0 // TODO: the following blocks of logic when we have fence. |
| 851 | else if (MI.getOpcode() == SC_FENCE) { |
| 852 | const unsigned int group_size = |
| 853 | context->shader_info->GetMaxThreadGroupSize(); |
| 854 | // group_size == 0 means thread group size is unknown at compile time |
| 855 | const bool group_is_multi_wave = |
| 856 | (group_size == 0 || group_size > target_info->GetWaveFrontSize()); |
| 857 | const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); |
| 858 | |
| 859 | for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { |
| 860 | SCRegType src_type = Inst->GetSrcType(i); |
| 861 | switch (src_type) { |
| 862 | case SCMEM_LDS: |
| 863 | if (group_is_multi_wave || |
| 864 | context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { |
| 865 | EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, |
| 866 | ScoreBrackets->getScoreUB(LGKM_CNT)); |
| 867 | // LDS may have to wait for VM_CNT after buffer load to LDS |
| 868 | if (target_info->HasBufferLoadToLDS()) { |
| 869 | EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, |
| 870 | ScoreBrackets->getScoreUB(VM_CNT)); |
| 871 | } |
| 872 | } |
| 873 | break; |
| 874 | |
| 875 | case SCMEM_GDS: |
| 876 | if (group_is_multi_wave || fence_is_global) { |
| 877 | EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, |
| 878 | ScoreBrackets->getScoreUB(EXP_CNT)); |
| 879 | EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, |
| 880 | ScoreBrackets->getScoreUB(LGKM_CNT)); |
| 881 | } |
| 882 | break; |
| 883 | |
| 884 | case SCMEM_UAV: |
| 885 | case SCMEM_TFBUF: |
| 886 | case SCMEM_RING: |
| 887 | case SCMEM_SCATTER: |
| 888 | if (group_is_multi_wave || fence_is_global) { |
| 889 | EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, |
| 890 | ScoreBrackets->getScoreUB(EXP_CNT)); |
| 891 | EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, |
| 892 | ScoreBrackets->getScoreUB(VM_CNT)); |
| 893 | } |
| 894 | break; |
| 895 | |
| 896 | case SCMEM_SCRATCH: |
| 897 | default: |
| 898 | break; |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | #endif |
| 903 | |
| 904 | // Export & GDS instructions do not read the EXEC mask until after the export |
| 905 | // is granted (which can occur well after the instruction is issued). |
| 906 | // The shader program must flush all EXP operations on the export-count |
| 907 | // before overwriting the EXEC mask. |
| 908 | else { |
| 909 | if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { |
| 910 | // Export and GDS are tracked individually, either may trigger a waitcnt |
| 911 | // for EXEC. |
| 912 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 913 | EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); |
| 914 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 915 | EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); |
| 916 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 917 | EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); |
| 918 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 919 | EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); |
| 920 | } |
| 921 | |
| 922 | #if 0 // TODO: the following code to handle CALL. |
| 923 | // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. |
| 924 | // However, there is a problem with EXP_CNT, because the call cannot |
| 925 | // easily tell if a register is used in the function, and if it did, then |
| 926 | // the referring instruction would have to have an S_WAITCNT, which is |
| 927 | // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs |
| 928 | // before the call. |
| 929 | if (MI.getOpcode() == SC_CALL) { |
| 930 | if (ScoreBrackets->getScoreUB(EXP_CNT) > |
| 931 | ScoreBrackets->getScoreLB(EXP_CNT)) { |
| 932 | ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); |
| 933 | EmitSwaitcnt |= CNT_MASK(EXP_CNT); |
| 934 | } |
| 935 | } |
| 936 | #endif |
| 937 | |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 938 | // FIXME: Should not be relying on memoperands. |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 939 | // Look at the source operands of every instruction to see if |
| 940 | // any of them results from a previous memory operation that affects |
| 941 | // its current usage. If so, an s_waitcnt instruction needs to be |
| 942 | // emitted. |
| 943 | // If the source operand was defined by a load, add the s_waitcnt |
| 944 | // instruction. |
| 945 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
| 946 | unsigned AS = Memop->getAddrSpace(); |
| 947 | if (AS != AMDGPUASI.LOCAL_ADDRESS) |
| 948 | continue; |
| 949 | unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; |
| 950 | // VM_CNT is only relevant to vgpr or LDS. |
| 951 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 952 | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); |
| 953 | } |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 954 | |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 955 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
| 956 | const MachineOperand &Op = MI.getOperand(I); |
| 957 | const MachineRegisterInfo &MRIA = *MRI; |
| 958 | RegInterval Interval = |
| 959 | ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); |
| 960 | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 961 | if (TRI->isVGPR(MRIA, Op.getReg())) { |
| 962 | // VM_CNT is only relevant to vgpr or LDS. |
| 963 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 964 | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); |
| 965 | } |
| 966 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 967 | LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); |
| 968 | } |
| 969 | } |
| 970 | // End of for loop that looks at all source operands to decide vm_wait_cnt |
| 971 | // and lgk_wait_cnt. |
| 972 | |
| 973 | // Two cases are handled for destination operands: |
| 974 | // 1) If the destination operand was defined by a load, add the s_waitcnt |
| 975 | // instruction to guarantee the right WAW order. |
| 976 | // 2) If a destination operand that was used by a recent export/store ins, |
| 977 | // add s_waitcnt on exp_cnt to guarantee the WAR order. |
| 978 | if (MI.mayStore()) { |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 979 | // FIXME: Should not be relying on memoperands. |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 980 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
| 981 | unsigned AS = Memop->getAddrSpace(); |
| 982 | if (AS != AMDGPUASI.LOCAL_ADDRESS) |
| 983 | continue; |
| 984 | unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; |
| 985 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 986 | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); |
| 987 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 988 | EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); |
| 989 | } |
| 990 | } |
| 991 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
| 992 | MachineOperand &Def = MI.getOperand(I); |
| 993 | const MachineRegisterInfo &MRIA = *MRI; |
| 994 | RegInterval Interval = |
| 995 | ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); |
| 996 | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 997 | if (TRI->isVGPR(MRIA, Def.getReg())) { |
| 998 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 999 | VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); |
| 1000 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 1001 | EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); |
| 1002 | } |
| 1003 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 1004 | LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); |
| 1005 | } |
| 1006 | } // End of for loop that looks at all dest operands. |
| 1007 | } |
| 1008 | |
| 1009 | // TODO: Tie force zero to a compiler triage option. |
| 1010 | bool ForceZero = false; |
| 1011 | |
| 1012 | // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 |
| 1013 | // occurs before the instruction. Doing it here prevents any additional |
| 1014 | // S_WAITCNTs from being emitted if the instruction was marked as |
| 1015 | // requiring a WAITCNT beforehand. |
Konstantin Zhuravlyov | be6c0ca | 2017-06-02 17:40:26 +0000 | [diff] [blame] | 1016 | if (MI.getOpcode() == AMDGPU::S_BARRIER && |
| 1017 | !ST->hasAutoWaitcntBeforeBarrier()) { |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1018 | EmitSwaitcnt |= |
| 1019 | ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); |
| 1020 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 1021 | EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); |
| 1022 | EmitSwaitcnt |= ScoreBrackets->updateByWait( |
| 1023 | LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); |
| 1024 | } |
| 1025 | |
| 1026 | // TODO: Remove this work-around, enable the assert for Bug 457939 |
| 1027 | // after fixing the scheduler. Also, the Shader Compiler code is |
| 1028 | // independent of target. |
| 1029 | if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { |
| 1030 | if (ScoreBrackets->getScoreLB(LGKM_CNT) < |
| 1031 | ScoreBrackets->getScoreUB(LGKM_CNT) && |
| 1032 | ScoreBrackets->hasPendingSMEM()) { |
| 1033 | // Wait on everything, not just LGKM. vccz reads usually come from |
| 1034 | // terminators, and we always wait on everything at the end of the |
| 1035 | // block, so if we only wait on LGKM here, we might end up with |
| 1036 | // another s_waitcnt inserted right after this if there are non-LGKM |
| 1037 | // instructions still outstanding. |
| 1038 | ForceZero = true; |
| 1039 | EmitSwaitcnt = true; |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | // Does this operand processing indicate s_wait counter update? |
| 1044 | if (EmitSwaitcnt) { |
| 1045 | int CntVal[NUM_INST_CNTS]; |
| 1046 | |
| 1047 | bool UseDefaultWaitcntStrategy = true; |
| 1048 | if (ForceZero) { |
| 1049 | // Force all waitcnts to 0. |
| 1050 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1051 | T = (enum InstCounterType)(T + 1)) { |
| 1052 | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); |
| 1053 | } |
| 1054 | CntVal[VM_CNT] = 0; |
| 1055 | CntVal[EXP_CNT] = 0; |
| 1056 | CntVal[LGKM_CNT] = 0; |
| 1057 | UseDefaultWaitcntStrategy = false; |
| 1058 | } |
| 1059 | |
| 1060 | if (UseDefaultWaitcntStrategy) { |
| 1061 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1062 | T = (enum InstCounterType)(T + 1)) { |
| 1063 | if (EmitSwaitcnt & CNT_MASK(T)) { |
| 1064 | int Delta = |
| 1065 | ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); |
| 1066 | int MaxDelta = ScoreBrackets->getWaitCountMax(T); |
| 1067 | if (Delta >= MaxDelta) { |
| 1068 | Delta = -1; |
| 1069 | if (T != EXP_CNT) { |
| 1070 | ScoreBrackets->setScoreLB( |
| 1071 | T, ScoreBrackets->getScoreUB(T) - MaxDelta); |
| 1072 | } |
| 1073 | EmitSwaitcnt &= ~CNT_MASK(T); |
| 1074 | } |
| 1075 | CntVal[T] = Delta; |
| 1076 | } else { |
| 1077 | // If we are not waiting for a particular counter then encode |
| 1078 | // it as -1 which means "don't care." |
| 1079 | CntVal[T] = -1; |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | // If we are not waiting on any counter we can skip the wait altogether. |
| 1085 | if (EmitSwaitcnt != 0) { |
| 1086 | MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); |
| 1087 | int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); |
| 1088 | if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) != |
| 1089 | (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || |
| 1090 | (AMDGPU::decodeExpcnt(IV, Imm) != |
| 1091 | (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || |
| 1092 | (AMDGPU::decodeLgkmcnt(IV, Imm) != |
| 1093 | (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { |
| 1094 | MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); |
| 1095 | if (ContainingLoop) { |
Kannan Narayanan | 5e73b04 | 2017-05-05 21:10:17 +0000 | [diff] [blame] | 1096 | MachineBasicBlock *TBB = ContainingLoop->getHeader(); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1097 | BlockWaitcntBrackets *ScoreBracket = |
| 1098 | BlockWaitcntBracketsMap[TBB].get(); |
| 1099 | if (!ScoreBracket) { |
| 1100 | assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end()); |
| 1101 | BlockWaitcntBracketsMap[TBB] = make_unique<BlockWaitcntBrackets>(); |
| 1102 | ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); |
| 1103 | } |
| 1104 | ScoreBracket->setRevisitLoop(true); |
| 1105 | DEBUG(dbgs() << "set-revisit: block" |
Kannan Narayanan | 5e73b04 | 2017-05-05 21:10:17 +0000 | [diff] [blame] | 1106 | << ContainingLoop->getHeader()->getNumber() << '\n';); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | // Update an existing waitcount, or make a new one. |
| 1111 | MachineFunction &MF = *MI.getParent()->getParent(); |
| 1112 | if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) { |
| 1113 | SWaitInst = OldWaitcnt; |
| 1114 | } else { |
| 1115 | SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT), |
| 1116 | MI.getDebugLoc()); |
| 1117 | CompilerGeneratedWaitcntSet.insert(SWaitInst); |
| 1118 | } |
| 1119 | |
| 1120 | const MachineOperand &Op = |
| 1121 | MachineOperand::CreateImm(AMDGPU::encodeWaitcnt( |
| 1122 | IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT])); |
| 1123 | SWaitInst->addOperand(MF, Op); |
| 1124 | |
| 1125 | if (CntVal[EXP_CNT] == 0) { |
| 1126 | ScoreBrackets->setMixedExpTypes(false); |
| 1127 | } |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | return SWaitInst; |
| 1132 | } |
| 1133 | |
| 1134 | void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, |
| 1135 | MachineInstr *Waitcnt) { |
| 1136 | if (MBB.empty()) { |
| 1137 | MBB.push_back(Waitcnt); |
| 1138 | return; |
| 1139 | } |
| 1140 | |
| 1141 | MachineBasicBlock::iterator It = MBB.end(); |
| 1142 | MachineInstr *MI = &*(--It); |
| 1143 | if (MI->isBranch()) { |
| 1144 | MBB.insert(It, Waitcnt); |
| 1145 | } else { |
| 1146 | MBB.push_back(Waitcnt); |
| 1147 | } |
| 1148 | |
| 1149 | return; |
| 1150 | } |
| 1151 | |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 1152 | // This is a flat memory operation. Check to see if it has memory |
| 1153 | // tokens for both LDS and Memory, and if so mark it as a flat. |
| 1154 | bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { |
| 1155 | if (MI.memoperands_empty()) |
| 1156 | return true; |
| 1157 | |
| 1158 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
| 1159 | unsigned AS = Memop->getAddrSpace(); |
| 1160 | if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) |
| 1161 | return true; |
| 1162 | } |
| 1163 | |
| 1164 | return false; |
| 1165 | } |
| 1166 | |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1167 | void SIInsertWaitcnts::updateEventWaitCntAfter( |
| 1168 | MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { |
| 1169 | // Now look at the instruction opcode. If it is a memory access |
| 1170 | // instruction, update the upper-bound of the appropriate counter's |
| 1171 | // bracket and the destination operand scores. |
| 1172 | // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. |
Matt Arsenault | 6ab9ea9 | 2017-07-21 18:34:51 +0000 | [diff] [blame] | 1173 | if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 1174 | if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1175 | ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); |
| 1176 | ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); |
| 1177 | } else { |
| 1178 | ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); |
| 1179 | } |
| 1180 | } else if (TII->isFLAT(Inst)) { |
| 1181 | assert(Inst.mayLoad() || Inst.mayStore()); |
Matt Arsenault | 6ab9ea9 | 2017-07-21 18:34:51 +0000 | [diff] [blame] | 1182 | |
| 1183 | if (TII->usesVM_CNT(Inst)) |
| 1184 | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); |
| 1185 | |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 1186 | if (TII->usesLGKM_CNT(Inst)) { |
Matt Arsenault | 6ab9ea9 | 2017-07-21 18:34:51 +0000 | [diff] [blame] | 1187 | ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1188 | |
Matt Arsenault | 0ed39d3 | 2017-07-21 18:54:54 +0000 | [diff] [blame] | 1189 | // This is a flat memory operation, so note it - it will require |
| 1190 | // that both the VM and LGKM be flushed to zero if it is pending when |
| 1191 | // a VM or LGKM dependency occurs. |
| 1192 | if (mayAccessLDSThroughFlat(Inst)) |
| 1193 | ScoreBrackets->setPendingFlat(); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1194 | } |
| 1195 | } else if (SIInstrInfo::isVMEM(Inst) && |
| 1196 | // TODO: get a better carve out. |
| 1197 | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && |
| 1198 | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && |
| 1199 | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { |
| 1200 | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); |
| 1201 | if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() && |
Mark Searles | 11d0a04 | 2017-05-31 16:44:23 +0000 | [diff] [blame] | 1202 | (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1203 | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); |
| 1204 | } |
| 1205 | } else if (TII->isSMRD(Inst)) { |
| 1206 | ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); |
| 1207 | } else { |
| 1208 | switch (Inst.getOpcode()) { |
| 1209 | case AMDGPU::S_SENDMSG: |
| 1210 | case AMDGPU::S_SENDMSGHALT: |
| 1211 | ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); |
| 1212 | break; |
| 1213 | case AMDGPU::EXP: |
| 1214 | case AMDGPU::EXP_DONE: { |
| 1215 | int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); |
| 1216 | if (Imm >= 32 && Imm <= 63) |
| 1217 | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); |
| 1218 | else if (Imm >= 12 && Imm <= 15) |
| 1219 | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); |
| 1220 | else |
| 1221 | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); |
| 1222 | break; |
| 1223 | } |
| 1224 | case AMDGPU::S_MEMTIME: |
| 1225 | case AMDGPU::S_MEMREALTIME: |
| 1226 | ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); |
| 1227 | break; |
| 1228 | default: |
| 1229 | break; |
| 1230 | } |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { |
| 1235 | BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); |
| 1236 | int32_t MaxPending[NUM_INST_CNTS] = {0}; |
| 1237 | int32_t MaxFlat[NUM_INST_CNTS] = {0}; |
| 1238 | bool MixedExpTypes = false; |
| 1239 | |
| 1240 | // Clear the score bracket state. |
| 1241 | ScoreBrackets->clear(); |
| 1242 | |
| 1243 | // Compute the number of pending elements on block entry. |
| 1244 | |
| 1245 | // IMPORTANT NOTE: If iterative handling of loops is added, the code will |
| 1246 | // need to handle single BBs with backedges to themselves. This means that |
| 1247 | // they will need to retain and not clear their initial state. |
| 1248 | |
| 1249 | // See if there are any uninitialized predecessors. If so, emit an |
| 1250 | // s_waitcnt 0 at the beginning of the block. |
| 1251 | for (MachineBasicBlock *pred : Block.predecessors()) { |
| 1252 | BlockWaitcntBrackets *PredScoreBrackets = |
| 1253 | BlockWaitcntBracketsMap[pred].get(); |
| 1254 | bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end(); |
| 1255 | if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { |
| 1256 | break; |
| 1257 | } |
| 1258 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1259 | T = (enum InstCounterType)(T + 1)) { |
| 1260 | int span = |
| 1261 | PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); |
| 1262 | MaxPending[T] = std::max(MaxPending[T], span); |
| 1263 | span = |
| 1264 | PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); |
| 1265 | MaxFlat[T] = std::max(MaxFlat[T], span); |
| 1266 | } |
| 1267 | |
| 1268 | MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); |
| 1269 | } |
| 1270 | |
| 1271 | // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? |
| 1272 | // Also handle kills for exit block. |
| 1273 | if (Block.succ_empty() && !KillWaitBrackets.empty()) { |
| 1274 | for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { |
| 1275 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1276 | T = (enum InstCounterType)(T + 1)) { |
| 1277 | int Span = KillWaitBrackets[I]->getScoreUB(T) - |
| 1278 | KillWaitBrackets[I]->getScoreLB(T); |
| 1279 | MaxPending[T] = std::max(MaxPending[T], Span); |
| 1280 | Span = KillWaitBrackets[I]->pendingFlat(T) - |
| 1281 | KillWaitBrackets[I]->getScoreLB(T); |
| 1282 | MaxFlat[T] = std::max(MaxFlat[T], Span); |
| 1283 | } |
| 1284 | |
| 1285 | MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. |
| 1290 | for (MachineBasicBlock *Pred : Block.predecessors()) { |
| 1291 | BlockWaitcntBrackets *PredScoreBrackets = |
| 1292 | BlockWaitcntBracketsMap[Pred].get(); |
| 1293 | bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end(); |
| 1294 | if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { |
| 1295 | break; |
| 1296 | } |
| 1297 | |
| 1298 | int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - |
| 1299 | PredScoreBrackets->getScoreLB(EXP_CNT); |
| 1300 | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); |
| 1301 | int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - |
| 1302 | PredScoreBrackets->getScoreLB(EXP_CNT); |
| 1303 | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); |
| 1304 | } |
| 1305 | |
| 1306 | // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? |
| 1307 | if (Block.succ_empty() && !KillWaitBrackets.empty()) { |
| 1308 | for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { |
| 1309 | int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - |
| 1310 | KillWaitBrackets[I]->getScoreLB(EXP_CNT); |
| 1311 | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); |
| 1312 | int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - |
| 1313 | KillWaitBrackets[I]->getScoreLB(EXP_CNT); |
| 1314 | MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); |
| 1315 | } |
| 1316 | } |
| 1317 | |
| 1318 | #if 0 |
| 1319 | // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. |
| 1320 | // TODO: how does LC distinguish between function entry and main entry? |
| 1321 | // If this is the entry to a function, force a wait. |
| 1322 | MachineBasicBlock &Entry = Block.getParent()->front(); |
| 1323 | if (Entry.getNumber() == Block.getNumber()) { |
| 1324 | ScoreBrackets->setWaitAtBeginning(); |
| 1325 | return; |
| 1326 | } |
| 1327 | #endif |
| 1328 | |
| 1329 | // Now set the current Block's brackets to the largest ending bracket. |
| 1330 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1331 | T = (enum InstCounterType)(T + 1)) { |
| 1332 | ScoreBrackets->setScoreUB(T, MaxPending[T]); |
| 1333 | ScoreBrackets->setScoreLB(T, 0); |
| 1334 | ScoreBrackets->setLastFlat(T, MaxFlat[T]); |
| 1335 | } |
| 1336 | |
| 1337 | ScoreBrackets->setMixedExpTypes(MixedExpTypes); |
| 1338 | |
| 1339 | // Set the register scoreboard. |
| 1340 | for (MachineBasicBlock *Pred : Block.predecessors()) { |
| 1341 | if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { |
| 1342 | break; |
| 1343 | } |
| 1344 | |
| 1345 | BlockWaitcntBrackets *PredScoreBrackets = |
| 1346 | BlockWaitcntBracketsMap[Pred].get(); |
| 1347 | |
| 1348 | // Now merge the gpr_reg_score information |
| 1349 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1350 | T = (enum InstCounterType)(T + 1)) { |
| 1351 | int PredLB = PredScoreBrackets->getScoreLB(T); |
| 1352 | int PredUB = PredScoreBrackets->getScoreUB(T); |
| 1353 | if (PredLB < PredUB) { |
| 1354 | int PredScale = MaxPending[T] - PredUB; |
| 1355 | // Merge vgpr scores. |
| 1356 | for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { |
| 1357 | int PredRegScore = PredScoreBrackets->getRegScore(J, T); |
| 1358 | if (PredRegScore <= PredLB) |
| 1359 | continue; |
| 1360 | int NewRegScore = PredScale + PredRegScore; |
| 1361 | ScoreBrackets->setRegScore( |
| 1362 | J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); |
| 1363 | } |
| 1364 | // Also need to merge sgpr scores for lgkm_cnt. |
| 1365 | if (T == LGKM_CNT) { |
| 1366 | for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { |
| 1367 | int PredRegScore = |
| 1368 | PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); |
| 1369 | if (PredRegScore <= PredLB) |
| 1370 | continue; |
| 1371 | int NewRegScore = PredScale + PredRegScore; |
| 1372 | ScoreBrackets->setRegScore( |
| 1373 | J + NUM_ALL_VGPRS, LGKM_CNT, |
| 1374 | std::max( |
| 1375 | ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), |
| 1376 | NewRegScore)); |
| 1377 | } |
| 1378 | } |
| 1379 | } |
| 1380 | } |
| 1381 | |
| 1382 | // Also merge the WaitEvent information. |
| 1383 | ForAllWaitEventType(W) { |
| 1384 | enum InstCounterType T = PredScoreBrackets->eventCounter(W); |
| 1385 | int PredEventUB = PredScoreBrackets->getEventUB(W); |
| 1386 | if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { |
| 1387 | int NewEventUB = |
| 1388 | MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); |
| 1389 | if (NewEventUB > 0) { |
| 1390 | ScoreBrackets->setEventUB( |
| 1391 | W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); |
| 1392 | } |
| 1393 | } |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? |
| 1398 | // Set the register scoreboard. |
| 1399 | if (Block.succ_empty() && !KillWaitBrackets.empty()) { |
| 1400 | for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { |
| 1401 | // Now merge the gpr_reg_score information. |
| 1402 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1403 | T = (enum InstCounterType)(T + 1)) { |
| 1404 | int PredLB = KillWaitBrackets[I]->getScoreLB(T); |
| 1405 | int PredUB = KillWaitBrackets[I]->getScoreUB(T); |
| 1406 | if (PredLB < PredUB) { |
| 1407 | int PredScale = MaxPending[T] - PredUB; |
| 1408 | // Merge vgpr scores. |
| 1409 | for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { |
| 1410 | int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); |
| 1411 | if (PredRegScore <= PredLB) |
| 1412 | continue; |
| 1413 | int NewRegScore = PredScale + PredRegScore; |
| 1414 | ScoreBrackets->setRegScore( |
| 1415 | J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); |
| 1416 | } |
| 1417 | // Also need to merge sgpr scores for lgkm_cnt. |
| 1418 | if (T == LGKM_CNT) { |
| 1419 | for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { |
| 1420 | int PredRegScore = |
| 1421 | KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); |
| 1422 | if (PredRegScore <= PredLB) |
| 1423 | continue; |
| 1424 | int NewRegScore = PredScale + PredRegScore; |
| 1425 | ScoreBrackets->setRegScore( |
| 1426 | J + NUM_ALL_VGPRS, LGKM_CNT, |
| 1427 | std::max( |
| 1428 | ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), |
| 1429 | NewRegScore)); |
| 1430 | } |
| 1431 | } |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | // Also merge the WaitEvent information. |
| 1436 | ForAllWaitEventType(W) { |
| 1437 | enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); |
| 1438 | int PredEventUB = KillWaitBrackets[I]->getEventUB(W); |
| 1439 | if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { |
| 1440 | int NewEventUB = |
| 1441 | MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); |
| 1442 | if (NewEventUB > 0) { |
| 1443 | ScoreBrackets->setEventUB( |
| 1444 | W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); |
| 1445 | } |
| 1446 | } |
| 1447 | } |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the |
| 1452 | // sequencing predecessors, because changes to EXEC require waitcnts due to |
| 1453 | // the delayed nature of these operations. |
| 1454 | for (MachineBasicBlock *Pred : Block.predecessors()) { |
| 1455 | if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { |
| 1456 | break; |
| 1457 | } |
| 1458 | |
| 1459 | BlockWaitcntBrackets *PredScoreBrackets = |
| 1460 | BlockWaitcntBracketsMap[Pred].get(); |
| 1461 | |
| 1462 | int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); |
| 1463 | if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { |
| 1464 | int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - |
| 1465 | PredScoreBrackets->getScoreUB(EXP_CNT); |
| 1466 | if (new_gds_ub > 0) { |
| 1467 | ScoreBrackets->setEventUB( |
| 1468 | GDS_GPR_LOCK, |
| 1469 | std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); |
| 1470 | } |
| 1471 | } |
| 1472 | int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); |
| 1473 | if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { |
| 1474 | int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - |
| 1475 | PredScoreBrackets->getScoreUB(EXP_CNT); |
| 1476 | if (new_exp_ub > 0) { |
| 1477 | ScoreBrackets->setEventUB( |
| 1478 | EXP_GPR_LOCK, |
| 1479 | std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); |
| 1480 | } |
| 1481 | } |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | /// Return the "bottom" block of a loop. This differs from |
| 1486 | /// MachineLoop::getBottomBlock in that it works even if the loop is |
| 1487 | /// discontiguous. |
| 1488 | MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) { |
| 1489 | MachineBasicBlock *Bottom = Loop->getHeader(); |
| 1490 | for (MachineBasicBlock *MBB : Loop->blocks()) |
| 1491 | if (MBB->getNumber() > Bottom->getNumber()) |
| 1492 | Bottom = MBB; |
| 1493 | return Bottom; |
| 1494 | } |
| 1495 | |
| 1496 | // Generate s_waitcnt instructions where needed. |
| 1497 | void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, |
| 1498 | MachineBasicBlock &Block) { |
| 1499 | // Initialize the state information. |
| 1500 | mergeInputScoreBrackets(Block); |
| 1501 | |
| 1502 | BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); |
| 1503 | |
| 1504 | DEBUG({ |
| 1505 | dbgs() << "Block" << Block.getNumber(); |
| 1506 | ScoreBrackets->dump(); |
| 1507 | }); |
| 1508 | |
| 1509 | bool InsertNOP = false; |
| 1510 | |
| 1511 | // Walk over the instructions. |
| 1512 | for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); |
| 1513 | Iter != E;) { |
| 1514 | MachineInstr &Inst = *Iter; |
| 1515 | // Remove any previously existing waitcnts. |
| 1516 | if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { |
| 1517 | // TODO: Register the old waitcnt and optimize the following waitcnts. |
| 1518 | // Leaving the previously existing waitcnts is conservatively correct. |
| 1519 | if (CompilerGeneratedWaitcntSet.find(&Inst) == |
| 1520 | CompilerGeneratedWaitcntSet.end()) |
| 1521 | ++Iter; |
| 1522 | else { |
| 1523 | ScoreBrackets->setWaitcnt(&Inst); |
| 1524 | ++Iter; |
| 1525 | Inst.removeFromParent(); |
| 1526 | } |
| 1527 | continue; |
| 1528 | } |
| 1529 | |
| 1530 | // Kill instructions generate a conditional branch to the endmain block. |
| 1531 | // Merge the current waitcnt state into the endmain block information. |
| 1532 | // TODO: Are there other flavors of KILL instruction? |
| 1533 | if (Inst.getOpcode() == AMDGPU::KILL) { |
| 1534 | addKillWaitBracket(ScoreBrackets); |
| 1535 | } |
| 1536 | |
| 1537 | bool VCCZBugWorkAround = false; |
| 1538 | if (readsVCCZ(Inst) && |
| 1539 | (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) { |
| 1540 | if (ScoreBrackets->getScoreLB(LGKM_CNT) < |
| 1541 | ScoreBrackets->getScoreUB(LGKM_CNT) && |
| 1542 | ScoreBrackets->hasPendingSMEM()) { |
| 1543 | if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) |
| 1544 | VCCZBugWorkAround = true; |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | // Generate an s_waitcnt instruction to be placed before |
| 1549 | // cur_Inst, if needed. |
| 1550 | MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets); |
| 1551 | |
| 1552 | if (SWaitInst) { |
| 1553 | Block.insert(Inst, SWaitInst); |
| 1554 | if (ScoreBrackets->getWaitcnt() != SWaitInst) { |
| 1555 | DEBUG(dbgs() << "insertWaitcntInBlock\n" |
| 1556 | << "Old Instr: " << Inst << '\n' |
| 1557 | << "New Instr: " << *SWaitInst << '\n';); |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | updateEventWaitCntAfter(Inst, ScoreBrackets); |
| 1562 | |
| 1563 | #if 0 // TODO: implement resource type check controlled by options with ub = LB. |
| 1564 | // If this instruction generates a S_SETVSKIP because it is an |
| 1565 | // indexed resource, and we are on Tahiti, then it will also force |
| 1566 | // an S_WAITCNT vmcnt(0) |
| 1567 | if (RequireCheckResourceType(Inst, context)) { |
| 1568 | // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. |
| 1569 | ScoreBrackets->setScoreLB(VM_CNT, |
| 1570 | ScoreBrackets->getScoreUB(VM_CNT)); |
| 1571 | } |
| 1572 | #endif |
| 1573 | |
| 1574 | ScoreBrackets->clearWaitcnt(); |
| 1575 | |
| 1576 | if (SWaitInst) { |
| 1577 | DEBUG({ SWaitInst->print(dbgs() << '\n'); }); |
| 1578 | } |
| 1579 | DEBUG({ |
| 1580 | Inst.print(dbgs()); |
| 1581 | ScoreBrackets->dump(); |
| 1582 | }); |
| 1583 | |
| 1584 | // Check to see if this is a GWS instruction. If so, and if this is CI or |
| 1585 | // VI, then the generated code sequence will include an S_WAITCNT 0. |
| 1586 | // TODO: Are these the only GWS instructions? |
| 1587 | if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || |
| 1588 | Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || |
| 1589 | Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || |
| 1590 | Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || |
| 1591 | Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { |
| 1592 | // TODO: && context->target_info->GwsRequiresMemViolTest() ) { |
| 1593 | ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); |
| 1594 | ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); |
| 1595 | ScoreBrackets->updateByWait(LGKM_CNT, |
| 1596 | ScoreBrackets->getScoreUB(LGKM_CNT)); |
| 1597 | } |
| 1598 | |
| 1599 | // TODO: Remove this work-around after fixing the scheduler and enable the |
| 1600 | // assert above. |
| 1601 | if (VCCZBugWorkAround) { |
| 1602 | // Restore the vccz bit. Any time a value is written to vcc, the vcc |
| 1603 | // bit is updated, so we can restore the bit by reading the value of |
| 1604 | // vcc and then writing it back to the register. |
| 1605 | BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), |
| 1606 | AMDGPU::VCC) |
| 1607 | .addReg(AMDGPU::VCC); |
| 1608 | VCCZBugHandledSet.insert(&Inst); |
| 1609 | } |
| 1610 | |
| 1611 | if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { |
| 1612 | |
| 1613 | // This avoids a s_nop after a waitcnt has just been inserted. |
| 1614 | if (!SWaitInst && InsertNOP) { |
| 1615 | BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0); |
| 1616 | } |
| 1617 | InsertNOP = false; |
| 1618 | |
| 1619 | // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM |
| 1620 | // or SMEM clause, respectively. |
| 1621 | // |
| 1622 | // The temporary workaround is to break the clauses with S_NOP. |
| 1623 | // |
| 1624 | // The proper solution would be to allocate registers such that all source |
| 1625 | // and destination registers don't overlap, e.g. this is illegal: |
| 1626 | // r0 = load r2 |
| 1627 | // r2 = load r0 |
| 1628 | bool IsSMEM = false; |
| 1629 | bool IsVMEM = false; |
| 1630 | if (TII->isSMRD(Inst)) |
| 1631 | IsSMEM = true; |
| 1632 | else if (TII->usesVM_CNT(Inst)) |
| 1633 | IsVMEM = true; |
| 1634 | |
| 1635 | ++Iter; |
| 1636 | if (Iter == E) |
| 1637 | break; |
| 1638 | |
| 1639 | MachineInstr &Next = *Iter; |
| 1640 | |
| 1641 | // TODO: How about consecutive SMEM instructions? |
| 1642 | // The comments above says break the clause but the code does not. |
| 1643 | // if ((TII->isSMRD(next) && isSMEM) || |
| 1644 | if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM && |
| 1645 | // TODO: Enable this check when hasSoftClause is upstreamed. |
| 1646 | // ST->hasSoftClauses() && |
| 1647 | ST->isXNACKEnabled()) { |
| 1648 | // Insert a NOP to break the clause. |
| 1649 | InsertNOP = true; |
| 1650 | continue; |
| 1651 | } |
| 1652 | |
| 1653 | // There must be "S_NOP 0" between an instruction writing M0 and |
| 1654 | // S_SENDMSG. |
| 1655 | if ((Next.getOpcode() == AMDGPU::S_SENDMSG || |
| 1656 | Next.getOpcode() == AMDGPU::S_SENDMSGHALT) && |
| 1657 | Inst.definesRegister(AMDGPU::M0)) |
| 1658 | InsertNOP = true; |
| 1659 | |
| 1660 | continue; |
| 1661 | } |
| 1662 | |
| 1663 | ++Iter; |
| 1664 | } |
| 1665 | |
| 1666 | // Check if we need to force convergence at loop footer. |
| 1667 | MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); |
| 1668 | if (ContainingLoop && loopBottom(ContainingLoop) == &Block) { |
| 1669 | LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); |
| 1670 | WaitcntData->print(); |
| 1671 | DEBUG(dbgs() << '\n';); |
| 1672 | |
| 1673 | // The iterative waitcnt insertion algorithm aims for optimal waitcnt |
| 1674 | // placement and doesn't always guarantee convergence for a loop. Each |
| 1675 | // loop should take at most 2 iterations for it to converge naturally. |
| 1676 | // When this max is reached and result doesn't converge, we force |
| 1677 | // convergence by inserting a s_waitcnt at the end of loop footer. |
| 1678 | if (WaitcntData->getIterCnt() > 2) { |
| 1679 | // To ensure convergence, need to make wait events at loop footer be no |
| 1680 | // more than those from the previous iteration. |
| 1681 | // As a simplification, Instead of tracking individual scores and |
| 1682 | // generate the precise wait count, just wait on 0. |
| 1683 | bool HasPending = false; |
| 1684 | MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); |
| 1685 | for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; |
| 1686 | T = (enum InstCounterType)(T + 1)) { |
| 1687 | if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { |
| 1688 | ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); |
| 1689 | HasPending = true; |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | if (HasPending) { |
| 1694 | if (!SWaitInst) { |
| 1695 | SWaitInst = Block.getParent()->CreateMachineInstr( |
| 1696 | TII->get(AMDGPU::S_WAITCNT), DebugLoc()); |
| 1697 | CompilerGeneratedWaitcntSet.insert(SWaitInst); |
| 1698 | const MachineOperand &Op = MachineOperand::CreateImm(0); |
| 1699 | SWaitInst->addOperand(MF, Op); |
| 1700 | #if 0 // TODO: Format the debug output |
| 1701 | OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); |
| 1702 | OutputTransformAdd(SWaitInst, context); |
| 1703 | #endif |
| 1704 | } |
| 1705 | #if 0 // TODO: ?? |
| 1706 | _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) |
| 1707 | #endif |
| 1708 | } |
| 1709 | |
| 1710 | if (SWaitInst) { |
| 1711 | DEBUG({ |
| 1712 | SWaitInst->print(dbgs()); |
| 1713 | dbgs() << "\nAdjusted score board:"; |
| 1714 | ScoreBrackets->dump(); |
| 1715 | }); |
| 1716 | |
| 1717 | // Add this waitcnt to the block. It is either newly created or |
| 1718 | // created in previous iterations and added back since block traversal |
| 1719 | // always remove waitcnt. |
| 1720 | insertWaitcntBeforeCF(Block, SWaitInst); |
| 1721 | WaitcntData->setWaitcnt(SWaitInst); |
| 1722 | } |
| 1723 | } |
| 1724 | } |
| 1725 | } |
| 1726 | |
| 1727 | bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { |
| 1728 | ST = &MF.getSubtarget<SISubtarget>(); |
| 1729 | TII = ST->getInstrInfo(); |
| 1730 | TRI = &TII->getRegisterInfo(); |
| 1731 | MRI = &MF.getRegInfo(); |
| 1732 | MLI = &getAnalysis<MachineLoopInfo>(); |
| 1733 | IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); |
Mark Searles | 11d0a04 | 2017-05-31 16:44:23 +0000 | [diff] [blame] | 1734 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1735 | AMDGPUASI = ST->getAMDGPUAS(); |
| 1736 | |
| 1737 | HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); |
| 1738 | HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); |
| 1739 | HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); |
| 1740 | |
| 1741 | HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); |
| 1742 | HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); |
| 1743 | assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); |
| 1744 | assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); |
| 1745 | |
| 1746 | RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); |
| 1747 | RegisterEncoding.VGPRL = |
| 1748 | RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; |
| 1749 | RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); |
| 1750 | RegisterEncoding.SGPRL = |
| 1751 | RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; |
| 1752 | |
| 1753 | // Walk over the blocks in reverse post-dominator order, inserting |
| 1754 | // s_waitcnt where needed. |
| 1755 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
| 1756 | bool Modified = false; |
| 1757 | for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator |
| 1758 | I = RPOT.begin(), |
| 1759 | E = RPOT.end(), J = RPOT.begin(); |
| 1760 | I != E;) { |
| 1761 | MachineBasicBlock &MBB = **I; |
| 1762 | |
| 1763 | BlockVisitedSet.insert(&MBB); |
| 1764 | |
| 1765 | BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); |
| 1766 | if (!ScoreBrackets) { |
| 1767 | BlockWaitcntBracketsMap[&MBB] = make_unique<BlockWaitcntBrackets>(); |
| 1768 | ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); |
| 1769 | } |
| 1770 | ScoreBrackets->setPostOrder(MBB.getNumber()); |
| 1771 | MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); |
| 1772 | if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) |
| 1773 | LoopWaitcntDataMap[ContainingLoop] = make_unique<LoopWaitcntData>(); |
| 1774 | |
| 1775 | // If we are walking into the block from before the loop, then guarantee |
| 1776 | // at least 1 re-walk over the loop to propagate the information, even if |
| 1777 | // no S_WAITCNT instructions were generated. |
Kannan Narayanan | 5e73b04 | 2017-05-05 21:10:17 +0000 | [diff] [blame] | 1778 | if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I && |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1779 | (BlockWaitcntProcessedSet.find(&MBB) == |
| 1780 | BlockWaitcntProcessedSet.end())) { |
| 1781 | BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); |
| 1782 | DEBUG(dbgs() << "set-revisit: block" |
Kannan Narayanan | 5e73b04 | 2017-05-05 21:10:17 +0000 | [diff] [blame] | 1783 | << ContainingLoop->getHeader()->getNumber() << '\n';); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1784 | } |
| 1785 | |
| 1786 | // Walk over the instructions. |
| 1787 | insertWaitcntInBlock(MF, MBB); |
| 1788 | |
| 1789 | // Flag that waitcnts have been processed at least once. |
| 1790 | BlockWaitcntProcessedSet.insert(&MBB); |
| 1791 | |
| 1792 | // See if we want to revisit the loop. |
| 1793 | if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) { |
Kannan Narayanan | 5e73b04 | 2017-05-05 21:10:17 +0000 | [diff] [blame] | 1794 | MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1795 | BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); |
| 1796 | if (EntrySB && EntrySB->getRevisitLoop()) { |
| 1797 | EntrySB->setRevisitLoop(false); |
| 1798 | J = I; |
| 1799 | int32_t PostOrder = EntrySB->getPostOrder(); |
| 1800 | // TODO: Avoid this loop. Find another way to set I. |
| 1801 | for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator |
| 1802 | X = RPOT.begin(), |
| 1803 | Y = RPOT.end(); |
| 1804 | X != Y; ++X) { |
| 1805 | MachineBasicBlock &MBBX = **X; |
| 1806 | if (MBBX.getNumber() == PostOrder) { |
| 1807 | I = X; |
| 1808 | break; |
| 1809 | } |
| 1810 | } |
| 1811 | LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); |
| 1812 | WaitcntData->incIterCnt(); |
| 1813 | DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';); |
| 1814 | continue; |
| 1815 | } else { |
| 1816 | LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); |
| 1817 | // Loop converged, reset iteration count. If this loop gets revisited, |
| 1818 | // it must be from an outer loop, the counter will restart, this will |
| 1819 | // ensure we don't force convergence on such revisits. |
| 1820 | WaitcntData->resetIterCnt(); |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | J = I; |
| 1825 | ++I; |
| 1826 | } |
| 1827 | |
| 1828 | SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; |
| 1829 | |
| 1830 | bool HaveScalarStores = false; |
| 1831 | |
| 1832 | for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; |
| 1833 | ++BI) { |
| 1834 | |
| 1835 | MachineBasicBlock &MBB = *BI; |
| 1836 | |
| 1837 | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; |
| 1838 | ++I) { |
| 1839 | |
| 1840 | if (!HaveScalarStores && TII->isScalarStore(*I)) |
| 1841 | HaveScalarStores = true; |
| 1842 | |
| 1843 | if (I->getOpcode() == AMDGPU::S_ENDPGM || |
| 1844 | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) |
| 1845 | EndPgmBlocks.push_back(&MBB); |
| 1846 | } |
| 1847 | } |
| 1848 | |
| 1849 | if (HaveScalarStores) { |
| 1850 | // If scalar writes are used, the cache must be flushed or else the next |
| 1851 | // wave to reuse the same scratch memory can be clobbered. |
| 1852 | // |
| 1853 | // Insert s_dcache_wb at wave termination points if there were any scalar |
| 1854 | // stores, and only if the cache hasn't already been flushed. This could be |
| 1855 | // improved by looking across blocks for flushes in postdominating blocks |
| 1856 | // from the stores but an explicitly requested flush is probably very rare. |
| 1857 | for (MachineBasicBlock *MBB : EndPgmBlocks) { |
| 1858 | bool SeenDCacheWB = false; |
| 1859 | |
| 1860 | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; |
| 1861 | ++I) { |
| 1862 | |
| 1863 | if (I->getOpcode() == AMDGPU::S_DCACHE_WB) |
| 1864 | SeenDCacheWB = true; |
| 1865 | else if (TII->isScalarStore(*I)) |
| 1866 | SeenDCacheWB = false; |
| 1867 | |
| 1868 | // FIXME: It would be better to insert this before a waitcnt if any. |
| 1869 | if ((I->getOpcode() == AMDGPU::S_ENDPGM || |
| 1870 | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && |
| 1871 | !SeenDCacheWB) { |
| 1872 | Modified = true; |
| 1873 | BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); |
| 1874 | } |
| 1875 | } |
| 1876 | } |
| 1877 | } |
| 1878 | |
Mark Searles | 11d0a04 | 2017-05-31 16:44:23 +0000 | [diff] [blame] | 1879 | if (!MFI->isEntryFunction()) { |
| 1880 | // Wait for any outstanding memory operations that the input registers may |
| 1881 | // depend on. We can't track them and it's better to to the wait after the |
| 1882 | // costly call sequence. |
| 1883 | |
| 1884 | // TODO: Could insert earlier and schedule more liberally with operations |
| 1885 | // that only use caller preserved registers. |
| 1886 | MachineBasicBlock &EntryBB = MF.front(); |
| 1887 | BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) |
| 1888 | .addImm(0); |
| 1889 | |
| 1890 | Modified = true; |
| 1891 | } |
| 1892 | |
Kannan Narayanan | acb089e | 2017-04-12 03:25:12 +0000 | [diff] [blame] | 1893 | return Modified; |
| 1894 | } |