blob: 2f4f72aaa6ce4493e04532ba20a0333cbac02911 [file] [log] [blame]
David Blaikie1213dbf2015-06-26 16:57:30 +00001//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines vectorizer utilities.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carruth6bda14b2017-06-06 11:49:48 +000014#include "llvm/Analysis/VectorUtils.h"
James Molloy55d633b2015-10-12 12:34:45 +000015#include "llvm/ADT/EquivalenceClasses.h"
16#include "llvm/Analysis/DemandedBits.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000017#include "llvm/Analysis/LoopInfo.h"
Florian Hahn1086ce22018-09-12 08:01:57 +000018#include "llvm/Analysis/LoopIterator.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000019#include "llvm/Analysis/ScalarEvolution.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000020#include "llvm/Analysis/ScalarEvolutionExpressions.h"
James Molloy55d633b2015-10-12 12:34:45 +000021#include "llvm/Analysis/TargetTransformInfo.h"
David Majnemerb4b27232016-04-19 19:10:21 +000022#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000023#include "llvm/IR/Constants.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000024#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/IR/IRBuilder.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000026#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Value.h"
Renato Golin3b1d3b02015-08-30 10:49:04 +000028
Florian Hahn1086ce22018-09-12 08:01:57 +000029#define DEBUG_TYPE "vectorutils"
30
David Majnemer5eaf08f2015-08-18 22:07:20 +000031using namespace llvm;
32using namespace llvm::PatternMatch;
David Blaikie1213dbf2015-06-26 16:57:30 +000033
Florian Hahn1086ce22018-09-12 08:01:57 +000034/// Maximum factor for an interleaved memory access.
35static cl::opt<unsigned> MaxInterleaveGroupFactor(
36 "max-interleave-group-factor", cl::Hidden,
37 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38 cl::init(8));
39
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000040/// Identify if the intrinsic is trivially vectorizable.
David Blaikie1213dbf2015-06-26 16:57:30 +000041/// This method returns true if the intrinsic's argument types are all
42/// scalars for the scalar form of the intrinsic and all vectors for
43/// the vector form of the intrinsic.
44bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45 switch (ID) {
46 case Intrinsic::sqrt:
47 case Intrinsic::sin:
48 case Intrinsic::cos:
49 case Intrinsic::exp:
50 case Intrinsic::exp2:
51 case Intrinsic::log:
52 case Intrinsic::log10:
53 case Intrinsic::log2:
54 case Intrinsic::fabs:
55 case Intrinsic::minnum:
56 case Intrinsic::maxnum:
57 case Intrinsic::copysign:
58 case Intrinsic::floor:
59 case Intrinsic::ceil:
60 case Intrinsic::trunc:
61 case Intrinsic::rint:
62 case Intrinsic::nearbyint:
63 case Intrinsic::round:
64 case Intrinsic::bswap:
Simon Pilgrimba319de2016-06-04 20:21:07 +000065 case Intrinsic::bitreverse:
David Blaikie1213dbf2015-06-26 16:57:30 +000066 case Intrinsic::ctpop:
67 case Intrinsic::pow:
68 case Intrinsic::fma:
69 case Intrinsic::fmuladd:
70 case Intrinsic::ctlz:
71 case Intrinsic::cttz:
72 case Intrinsic::powi:
Matt Arsenault80ea6dd2018-09-17 13:24:30 +000073 case Intrinsic::canonicalize:
David Blaikie1213dbf2015-06-26 16:57:30 +000074 return true;
75 default:
76 return false;
77 }
78}
79
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000080/// Identifies if the intrinsic has a scalar operand. It check for
David Blaikie1213dbf2015-06-26 16:57:30 +000081/// ctlz,cttz and powi special intrinsics whose argument is scalar.
82bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
83 unsigned ScalarOpdIdx) {
84 switch (ID) {
85 case Intrinsic::ctlz:
86 case Intrinsic::cttz:
87 case Intrinsic::powi:
88 return (ScalarOpdIdx == 1);
89 default:
90 return false;
91 }
92}
93
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000094/// Returns intrinsic ID for call.
David Blaikie1213dbf2015-06-26 16:57:30 +000095/// For the input call instruction it finds mapping intrinsic and returns
96/// its ID, in case it does not found it return not_intrinsic.
David Majnemerb4b27232016-04-19 19:10:21 +000097Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
98 const TargetLibraryInfo *TLI) {
99 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
100 if (ID == Intrinsic::not_intrinsic)
David Blaikie1213dbf2015-06-26 16:57:30 +0000101 return Intrinsic::not_intrinsic;
102
David Majnemerb4b27232016-04-19 19:10:21 +0000103 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
Dan Gohman2c74fe92017-11-08 21:59:51 +0000104 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
105 ID == Intrinsic::sideeffect)
David Majnemerb4b27232016-04-19 19:10:21 +0000106 return ID;
David Blaikie1213dbf2015-06-26 16:57:30 +0000107 return Intrinsic::not_intrinsic;
108}
Hal Finkel9cf58c42015-07-11 10:52:42 +0000109
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000110/// Find the operand of the GEP that should be checked for consecutive
Hal Finkel9cf58c42015-07-11 10:52:42 +0000111/// stores. This ignores trailing indices that have no effect on the final
112/// pointer.
113unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
114 const DataLayout &DL = Gep->getModule()->getDataLayout();
115 unsigned LastOperand = Gep->getNumOperands() - 1;
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000116 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000117
118 // Walk backwards and try to peel off zeros.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000119 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000120 // Find the type we're currently indexing into.
121 gep_type_iterator GEPTI = gep_type_begin(Gep);
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000122 std::advance(GEPTI, LastOperand - 2);
Hal Finkel9cf58c42015-07-11 10:52:42 +0000123
124 // If it's a type with the same allocation size as the result of the GEP we
125 // can peel off the zero index.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000126 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
Hal Finkel9cf58c42015-07-11 10:52:42 +0000127 break;
128 --LastOperand;
129 }
130
131 return LastOperand;
132}
133
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000134/// If the argument is a GEP, then returns the operand identified by
Hal Finkel9cf58c42015-07-11 10:52:42 +0000135/// getGEPInductionOperand. However, if there is some other non-loop-invariant
136/// operand, it returns that instead.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000137Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000138 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
139 if (!GEP)
140 return Ptr;
141
142 unsigned InductionOperand = getGEPInductionOperand(GEP);
143
144 // Check that all of the gep indices are uniform except for our induction
145 // operand.
146 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
147 if (i != InductionOperand &&
148 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
149 return Ptr;
150 return GEP->getOperand(InductionOperand);
151}
152
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000153/// If a value has only one user that is a CastInst, return it.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000154Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
155 Value *UniqueCast = nullptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000156 for (User *U : Ptr->users()) {
157 CastInst *CI = dyn_cast<CastInst>(U);
158 if (CI && CI->getType() == Ty) {
159 if (!UniqueCast)
160 UniqueCast = CI;
161 else
162 return nullptr;
163 }
164 }
165 return UniqueCast;
166}
167
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000168/// Get the stride of a pointer access in a loop. Looks for symbolic
Hal Finkel9cf58c42015-07-11 10:52:42 +0000169/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000170Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000171 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000172 if (!PtrTy || PtrTy->isAggregateType())
173 return nullptr;
174
175 // Try to remove a gep instruction to make the pointer (actually index at this
Vedant Kumard3196742018-02-28 19:08:52 +0000176 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
Hal Finkel9cf58c42015-07-11 10:52:42 +0000177 // pointer, otherwise, we are analyzing the index.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000178 Value *OrigPtr = Ptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000179
180 // The size of the pointer access.
181 int64_t PtrAccessSize = 1;
182
183 Ptr = stripGetElementPtr(Ptr, SE, Lp);
184 const SCEV *V = SE->getSCEV(Ptr);
185
186 if (Ptr != OrigPtr)
187 // Strip off casts.
188 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
189 V = C->getOperand();
190
191 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
192 if (!S)
193 return nullptr;
194
195 V = S->getStepRecurrence(*SE);
196 if (!V)
197 return nullptr;
198
199 // Strip off the size of access multiplication if we are still analyzing the
200 // pointer.
201 if (OrigPtr == Ptr) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000202 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
203 if (M->getOperand(0)->getSCEVType() != scConstant)
204 return nullptr;
205
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000206 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000207
208 // Huge step value - give up.
209 if (APStepVal.getBitWidth() > 64)
210 return nullptr;
211
212 int64_t StepVal = APStepVal.getSExtValue();
213 if (PtrAccessSize != StepVal)
214 return nullptr;
215 V = M->getOperand(1);
216 }
217 }
218
219 // Strip off casts.
220 Type *StripedOffRecurrenceCast = nullptr;
221 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
222 StripedOffRecurrenceCast = C->getType();
223 V = C->getOperand();
224 }
225
226 // Look for the loop invariant symbolic value.
227 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
228 if (!U)
229 return nullptr;
230
David Majnemer5eaf08f2015-08-18 22:07:20 +0000231 Value *Stride = U->getValue();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000232 if (!Lp->isLoopInvariant(Stride))
233 return nullptr;
234
235 // If we have stripped off the recurrence cast we have to make sure that we
236 // return the value that is used in this loop so that we can replace it later.
237 if (StripedOffRecurrenceCast)
238 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
239
240 return Stride;
241}
David Majnemer599ca442015-07-13 01:15:53 +0000242
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000243/// Given a vector and an element number, see if the scalar value is
David Majnemer599ca442015-07-13 01:15:53 +0000244/// already around as a register, for example if it were inserted then extracted
245/// from the vector.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000246Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
David Majnemer599ca442015-07-13 01:15:53 +0000247 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
248 VectorType *VTy = cast<VectorType>(V->getType());
249 unsigned Width = VTy->getNumElements();
250 if (EltNo >= Width) // Out of range access.
251 return UndefValue::get(VTy->getElementType());
252
253 if (Constant *C = dyn_cast<Constant>(V))
254 return C->getAggregateElement(EltNo);
255
256 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
257 // If this is an insert to a variable element, we don't know what it is.
258 if (!isa<ConstantInt>(III->getOperand(2)))
259 return nullptr;
260 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
261
262 // If this is an insert to the element we are looking for, return the
263 // inserted value.
264 if (EltNo == IIElt)
265 return III->getOperand(1);
266
267 // Otherwise, the insertelement doesn't modify the value, recurse on its
268 // vector input.
269 return findScalarElement(III->getOperand(0), EltNo);
270 }
271
272 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
273 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
274 int InEl = SVI->getMaskValue(EltNo);
275 if (InEl < 0)
276 return UndefValue::get(VTy->getElementType());
277 if (InEl < (int)LHSWidth)
278 return findScalarElement(SVI->getOperand(0), InEl);
279 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
280 }
281
282 // Extract a value from a vector add operation with a constant zero.
283 Value *Val = nullptr; Constant *Con = nullptr;
David Majnemerc6bb0e22015-08-18 22:07:25 +0000284 if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
285 if (Constant *Elt = Con->getAggregateElement(EltNo))
286 if (Elt->isNullValue())
287 return findScalarElement(Val, EltNo);
David Majnemer599ca442015-07-13 01:15:53 +0000288
289 // Otherwise, we don't know.
290 return nullptr;
291}
Renato Golin3b1d3b02015-08-30 10:49:04 +0000292
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000293/// Get splat value if the input is a splat vector or return nullptr.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000294/// This function is not fully general. It checks only 2 cases:
295/// the input value is (1) a splat constants vector or (2) a sequence
296/// of instructions that broadcast a single value into a vector.
297///
Elena Demikhovsky0781d7b2015-12-01 12:08:36 +0000298const llvm::Value *llvm::getSplatValue(const Value *V) {
299
300 if (auto *C = dyn_cast<Constant>(V))
Elena Demikhovsky47fa2712015-12-01 12:30:40 +0000301 if (isa<VectorType>(V->getType()))
302 return C->getSplatValue();
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000303
304 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
Renato Golin3b1d3b02015-08-30 10:49:04 +0000305 if (!ShuffleInst)
306 return nullptr;
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000307 // All-zero (or undef) shuffle mask elements.
308 for (int MaskElt : ShuffleInst->getShuffleMask())
309 if (MaskElt != 0 && MaskElt != -1)
Renato Golin3b1d3b02015-08-30 10:49:04 +0000310 return nullptr;
311 // The first shuffle source is 'insertelement' with index 0.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000312 auto *InsertEltInst =
313 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
Renato Golin3b1d3b02015-08-30 10:49:04 +0000314 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
Craig Topper79ab6432017-07-06 18:39:47 +0000315 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
Renato Golin3b1d3b02015-08-30 10:49:04 +0000316 return nullptr;
317
318 return InsertEltInst->getOperand(1);
319}
James Molloy55d633b2015-10-12 12:34:45 +0000320
Charlie Turner54336a52015-11-26 20:39:51 +0000321MapVector<Instruction *, uint64_t>
James Molloy45f67d52015-11-09 14:32:05 +0000322llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
323 const TargetTransformInfo *TTI) {
James Molloy55d633b2015-10-12 12:34:45 +0000324
325 // DemandedBits will give us every value's live-out bits. But we want
326 // to ensure no extra casts would need to be inserted, so every DAG
327 // of connected values must have the same minimum bitwidth.
James Molloy45f67d52015-11-09 14:32:05 +0000328 EquivalenceClasses<Value *> ECs;
329 SmallVector<Value *, 16> Worklist;
330 SmallPtrSet<Value *, 4> Roots;
331 SmallPtrSet<Value *, 16> Visited;
332 DenseMap<Value *, uint64_t> DBits;
333 SmallPtrSet<Instruction *, 4> InstructionSet;
Charlie Turner54336a52015-11-26 20:39:51 +0000334 MapVector<Instruction *, uint64_t> MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000335
James Molloy55d633b2015-10-12 12:34:45 +0000336 // Determine the roots. We work bottom-up, from truncs or icmps.
337 bool SeenExtFromIllegalType = false;
338 for (auto *BB : Blocks)
339 for (auto &I : *BB) {
340 InstructionSet.insert(&I);
341
342 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
343 !TTI->isTypeLegal(I.getOperand(0)->getType()))
344 SeenExtFromIllegalType = true;
James Molloy45f67d52015-11-09 14:32:05 +0000345
James Molloy55d633b2015-10-12 12:34:45 +0000346 // Only deal with non-vector integers up to 64-bits wide.
347 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
348 !I.getType()->isVectorTy() &&
349 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
350 // Don't make work for ourselves. If we know the loaded type is legal,
351 // don't add it to the worklist.
352 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
353 continue;
James Molloy45f67d52015-11-09 14:32:05 +0000354
James Molloy55d633b2015-10-12 12:34:45 +0000355 Worklist.push_back(&I);
356 Roots.insert(&I);
357 }
358 }
359 // Early exit.
360 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
361 return MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000362
James Molloy55d633b2015-10-12 12:34:45 +0000363 // Now proceed breadth-first, unioning values together.
364 while (!Worklist.empty()) {
365 Value *Val = Worklist.pop_back_val();
366 Value *Leader = ECs.getOrInsertLeaderValue(Val);
James Molloy45f67d52015-11-09 14:32:05 +0000367
James Molloy55d633b2015-10-12 12:34:45 +0000368 if (Visited.count(Val))
369 continue;
370 Visited.insert(Val);
371
372 // Non-instructions terminate a chain successfully.
373 if (!isa<Instruction>(Val))
374 continue;
375 Instruction *I = cast<Instruction>(Val);
376
377 // If we encounter a type that is larger than 64 bits, we can't represent
378 // it so bail out.
James Molloyaa1d6382016-05-10 12:27:23 +0000379 if (DB.getDemandedBits(I).getBitWidth() > 64)
Charlie Turner54336a52015-11-26 20:39:51 +0000380 return MapVector<Instruction *, uint64_t>();
James Molloy45f67d52015-11-09 14:32:05 +0000381
James Molloyaa1d6382016-05-10 12:27:23 +0000382 uint64_t V = DB.getDemandedBits(I).getZExtValue();
383 DBits[Leader] |= V;
384 DBits[I] = V;
James Molloy45f67d52015-11-09 14:32:05 +0000385
James Molloy55d633b2015-10-12 12:34:45 +0000386 // Casts, loads and instructions outside of our range terminate a chain
387 // successfully.
388 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
389 !InstructionSet.count(I))
390 continue;
391
392 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
393 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
394 // transform anything that relies on them.
395 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
396 !I->getType()->isIntegerTy()) {
397 DBits[Leader] |= ~0ULL;
398 continue;
399 }
400
401 // We don't modify the types of PHIs. Reductions will already have been
402 // truncated if possible, and inductions' sizes will have been chosen by
403 // indvars.
404 if (isa<PHINode>(I))
405 continue;
406
407 if (DBits[Leader] == ~0ULL)
408 // All bits demanded, no point continuing.
409 continue;
410
411 for (Value *O : cast<User>(I)->operands()) {
412 ECs.unionSets(Leader, O);
413 Worklist.push_back(O);
414 }
415 }
416
417 // Now we've discovered all values, walk them to see if there are
418 // any users we didn't see. If there are, we can't optimize that
419 // chain.
420 for (auto &I : DBits)
421 for (auto *U : I.first->users())
422 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
423 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
James Molloy45f67d52015-11-09 14:32:05 +0000424
James Molloy55d633b2015-10-12 12:34:45 +0000425 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
426 uint64_t LeaderDemandedBits = 0;
427 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
428 LeaderDemandedBits |= DBits[*MI];
429
430 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
431 llvm::countLeadingZeros(LeaderDemandedBits);
432 // Round up to a power of 2
433 if (!isPowerOf2_64((uint64_t)MinBW))
434 MinBW = NextPowerOf2(MinBW);
James Molloy8e46cd02016-03-30 10:11:43 +0000435
436 // We don't modify the types of PHIs. Reductions will already have been
437 // truncated if possible, and inductions' sizes will have been chosen by
438 // indvars.
439 // If we are required to shrink a PHI, abandon this entire equivalence class.
440 bool Abort = false;
441 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
442 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
443 Abort = true;
444 break;
445 }
446 if (Abort)
447 continue;
448
James Molloy55d633b2015-10-12 12:34:45 +0000449 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
450 if (!isa<Instruction>(*MI))
451 continue;
452 Type *Ty = (*MI)->getType();
453 if (Roots.count(*MI))
454 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
455 if (MinBW < Ty->getScalarSizeInBits())
456 MinBWs[cast<Instruction>(*MI)] = MinBW;
457 }
458 }
459
460 return MinBWs;
461}
Matt Arsenault727e2792016-06-30 21:17:59 +0000462
463/// \returns \p I after propagating metadata from \p VL.
464Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
465 Instruction *I0 = cast<Instruction>(VL[0]);
466 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
467 I0->getAllMetadataOtherThanDebugLoc(Metadata);
468
Justin Lebar11a32042016-09-11 01:39:08 +0000469 for (auto Kind :
470 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
471 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
472 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
Matt Arsenault727e2792016-06-30 21:17:59 +0000473 MDNode *MD = I0->getMetadata(Kind);
474
475 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
476 const Instruction *IJ = cast<Instruction>(VL[J]);
477 MDNode *IMD = IJ->getMetadata(Kind);
478 switch (Kind) {
479 case LLVMContext::MD_tbaa:
480 MD = MDNode::getMostGenericTBAA(MD, IMD);
481 break;
482 case LLVMContext::MD_alias_scope:
483 MD = MDNode::getMostGenericAliasScope(MD, IMD);
484 break;
Matt Arsenault727e2792016-06-30 21:17:59 +0000485 case LLVMContext::MD_fpmath:
486 MD = MDNode::getMostGenericFPMath(MD, IMD);
487 break;
Justin Lebar11a32042016-09-11 01:39:08 +0000488 case LLVMContext::MD_noalias:
Matt Arsenault727e2792016-06-30 21:17:59 +0000489 case LLVMContext::MD_nontemporal:
Justin Lebar11a32042016-09-11 01:39:08 +0000490 case LLVMContext::MD_invariant_load:
Matt Arsenault727e2792016-06-30 21:17:59 +0000491 MD = MDNode::intersect(MD, IMD);
492 break;
493 default:
494 llvm_unreachable("unhandled metadata");
495 }
496 }
497
498 Inst->setMetadata(Kind, MD);
499 }
500
501 return Inst;
502}
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +0000503
504Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
505 unsigned NumVecs) {
506 SmallVector<Constant *, 16> Mask;
507 for (unsigned i = 0; i < VF; i++)
508 for (unsigned j = 0; j < NumVecs; j++)
509 Mask.push_back(Builder.getInt32(j * VF + i));
510
511 return ConstantVector::get(Mask);
512}
513
514Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
515 unsigned Stride, unsigned VF) {
516 SmallVector<Constant *, 16> Mask;
517 for (unsigned i = 0; i < VF; i++)
518 Mask.push_back(Builder.getInt32(Start + i * Stride));
519
520 return ConstantVector::get(Mask);
521}
522
523Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
524 unsigned NumInts, unsigned NumUndefs) {
525 SmallVector<Constant *, 16> Mask;
526 for (unsigned i = 0; i < NumInts; i++)
527 Mask.push_back(Builder.getInt32(Start + i));
528
529 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
530 for (unsigned i = 0; i < NumUndefs; i++)
531 Mask.push_back(Undef);
532
533 return ConstantVector::get(Mask);
534}
535
536/// A helper function for concatenating vectors. This function concatenates two
537/// vectors having the same element type. If the second vector has fewer
538/// elements than the first, it is padded with undefs.
539static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
540 Value *V2) {
541 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
542 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
543 assert(VecTy1 && VecTy2 &&
544 VecTy1->getScalarType() == VecTy2->getScalarType() &&
545 "Expect two vectors with the same element type");
546
547 unsigned NumElts1 = VecTy1->getNumElements();
548 unsigned NumElts2 = VecTy2->getNumElements();
549 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
550
551 if (NumElts1 > NumElts2) {
552 // Extend with UNDEFs.
553 Constant *ExtMask =
554 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
555 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
556 }
557
558 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
559 return Builder.CreateShuffleVector(V1, V2, Mask);
560}
561
562Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
563 unsigned NumVecs = Vecs.size();
564 assert(NumVecs > 1 && "Should be at least two vectors");
565
566 SmallVector<Value *, 8> ResList;
567 ResList.append(Vecs.begin(), Vecs.end());
568 do {
569 SmallVector<Value *, 8> TmpList;
570 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
571 Value *V0 = ResList[i], *V1 = ResList[i + 1];
572 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
573 "Only the last vector may have a different type");
574
575 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
576 }
577
578 // Push the last vector if the total number of vectors is odd.
579 if (NumVecs % 2 != 0)
580 TmpList.push_back(ResList[NumVecs - 1]);
581
582 ResList = TmpList;
583 NumVecs = ResList.size();
584 } while (NumVecs > 1);
585
586 return ResList[0];
587}
Florian Hahn1086ce22018-09-12 08:01:57 +0000588
589bool InterleavedAccessInfo::isStrided(int Stride) {
590 unsigned Factor = std::abs(Stride);
591 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
592}
593
594void InterleavedAccessInfo::collectConstStrideAccesses(
595 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
596 const ValueToValueMap &Strides) {
597 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
598
599 // Since it's desired that the load/store instructions be maintained in
600 // "program order" for the interleaved access analysis, we have to visit the
601 // blocks in the loop in reverse postorder (i.e., in a topological order).
602 // Such an ordering will ensure that any load/store that may be executed
603 // before a second load/store will precede the second load/store in
604 // AccessStrideInfo.
605 LoopBlocksDFS DFS(TheLoop);
606 DFS.perform(LI);
607 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
608 for (auto &I : *BB) {
609 auto *LI = dyn_cast<LoadInst>(&I);
610 auto *SI = dyn_cast<StoreInst>(&I);
611 if (!LI && !SI)
612 continue;
613
614 Value *Ptr = getLoadStorePointerOperand(&I);
615 // We don't check wrapping here because we don't know yet if Ptr will be
616 // part of a full group or a group with gaps. Checking wrapping for all
617 // pointers (even those that end up in groups with no gaps) will be overly
618 // conservative. For full groups, wrapping should be ok since if we would
619 // wrap around the address space we would do a memory access at nullptr
620 // even without the transformation. The wrapping checks are therefore
621 // deferred until after we've formed the interleaved groups.
622 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
623 /*Assume=*/true, /*ShouldCheckWrap=*/false);
624
625 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
626 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
627 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
628
629 // An alignment of 0 means target ABI alignment.
630 unsigned Align = getLoadStoreAlignment(&I);
631 if (!Align)
632 Align = DL.getABITypeAlignment(PtrTy->getElementType());
633
634 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
635 }
636}
637
638// Analyze interleaved accesses and collect them into interleaved load and
639// store groups.
640//
641// When generating code for an interleaved load group, we effectively hoist all
642// loads in the group to the location of the first load in program order. When
643// generating code for an interleaved store group, we sink all stores to the
644// location of the last store. This code motion can change the order of load
645// and store instructions and may break dependences.
646//
647// The code generation strategy mentioned above ensures that we won't violate
648// any write-after-read (WAR) dependences.
649//
650// E.g., for the WAR dependence: a = A[i]; // (1)
651// A[i] = b; // (2)
652//
653// The store group of (2) is always inserted at or below (2), and the load
654// group of (1) is always inserted at or above (1). Thus, the instructions will
655// never be reordered. All other dependences are checked to ensure the
656// correctness of the instruction reordering.
657//
658// The algorithm visits all memory accesses in the loop in bottom-up program
659// order. Program order is established by traversing the blocks in the loop in
660// reverse postorder when collecting the accesses.
661//
662// We visit the memory accesses in bottom-up order because it can simplify the
663// construction of store groups in the presence of write-after-write (WAW)
664// dependences.
665//
666// E.g., for the WAW dependence: A[i] = a; // (1)
667// A[i] = b; // (2)
668// A[i + 1] = c; // (3)
669//
670// We will first create a store group with (3) and (2). (1) can't be added to
671// this group because it and (2) are dependent. However, (1) can be grouped
672// with other accesses that may precede it in program order. Note that a
673// bottom-up order does not imply that WAW dependences should not be checked.
674void InterleavedAccessInfo::analyzeInterleaving() {
675 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
676 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
677
678 // Holds all accesses with a constant stride.
679 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
680 collectConstStrideAccesses(AccessStrideInfo, Strides);
681
682 if (AccessStrideInfo.empty())
683 return;
684
685 // Collect the dependences in the loop.
686 collectDependences();
687
688 // Holds all interleaved store groups temporarily.
689 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
690 // Holds all interleaved load groups temporarily.
691 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
692
693 // Search in bottom-up program order for pairs of accesses (A and B) that can
694 // form interleaved load or store groups. In the algorithm below, access A
695 // precedes access B in program order. We initialize a group for B in the
696 // outer loop of the algorithm, and then in the inner loop, we attempt to
697 // insert each A into B's group if:
698 //
699 // 1. A and B have the same stride,
700 // 2. A and B have the same memory object size, and
701 // 3. A belongs in B's group according to its distance from B.
702 //
703 // Special care is taken to ensure group formation will not break any
704 // dependences.
705 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
706 BI != E; ++BI) {
707 Instruction *B = BI->first;
708 StrideDescriptor DesB = BI->second;
709
710 // Initialize a group for B if it has an allowable stride. Even if we don't
711 // create a group for B, we continue with the bottom-up algorithm to ensure
712 // we don't break any of B's dependences.
713 InterleaveGroup *Group = nullptr;
714 if (isStrided(DesB.Stride)) {
715 Group = getInterleaveGroup(B);
716 if (!Group) {
717 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
718 << '\n');
719 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
720 }
721 if (B->mayWriteToMemory())
722 StoreGroups.insert(Group);
723 else
724 LoadGroups.insert(Group);
725 }
726
727 for (auto AI = std::next(BI); AI != E; ++AI) {
728 Instruction *A = AI->first;
729 StrideDescriptor DesA = AI->second;
730
731 // Our code motion strategy implies that we can't have dependences
732 // between accesses in an interleaved group and other accesses located
733 // between the first and last member of the group. Note that this also
734 // means that a group can't have more than one member at a given offset.
735 // The accesses in a group can have dependences with other accesses, but
736 // we must ensure we don't extend the boundaries of the group such that
737 // we encompass those dependent accesses.
738 //
739 // For example, assume we have the sequence of accesses shown below in a
740 // stride-2 loop:
741 //
742 // (1, 2) is a group | A[i] = a; // (1)
743 // | A[i-1] = b; // (2) |
744 // A[i-3] = c; // (3)
745 // A[i] = d; // (4) | (2, 4) is not a group
746 //
747 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
748 // but not with (4). If we did, the dependent access (3) would be within
749 // the boundaries of the (2, 4) group.
750 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
751 // If a dependence exists and A is already in a group, we know that A
752 // must be a store since A precedes B and WAR dependences are allowed.
753 // Thus, A would be sunk below B. We release A's group to prevent this
754 // illegal code motion. A will then be free to form another group with
755 // instructions that precede it.
756 if (isInterleaved(A)) {
757 InterleaveGroup *StoreGroup = getInterleaveGroup(A);
758 StoreGroups.remove(StoreGroup);
759 releaseGroup(StoreGroup);
760 }
761
762 // If a dependence exists and A is not already in a group (or it was
763 // and we just released it), B might be hoisted above A (if B is a
764 // load) or another store might be sunk below A (if B is a store). In
765 // either case, we can't add additional instructions to B's group. B
766 // will only form a group with instructions that it precedes.
767 break;
768 }
769
770 // At this point, we've checked for illegal code motion. If either A or B
771 // isn't strided, there's nothing left to do.
772 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
773 continue;
774
775 // Ignore A if it's already in a group or isn't the same kind of memory
776 // operation as B.
777 // Note that mayReadFromMemory() isn't mutually exclusive to
778 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
779 // here, canVectorizeMemory() should have returned false - except for the
780 // case we asked for optimization remarks.
781 if (isInterleaved(A) ||
782 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
783 (A->mayWriteToMemory() != B->mayWriteToMemory()))
784 continue;
785
786 // Check rules 1 and 2. Ignore A if its stride or size is different from
787 // that of B.
788 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
789 continue;
790
791 // Ignore A if the memory object of A and B don't belong to the same
792 // address space
793 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
794 continue;
795
796 // Calculate the distance from A to B.
797 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
798 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
799 if (!DistToB)
800 continue;
801 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
802
803 // Check rule 3. Ignore A if its distance to B is not a multiple of the
804 // size.
805 if (DistanceToB % static_cast<int64_t>(DesB.Size))
806 continue;
807
808 // Ignore A if either A or B is in a predicated block. Although we
809 // currently prevent group formation for predicated accesses, we may be
810 // able to relax this limitation in the future once we handle more
811 // complicated blocks.
812 if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
813 continue;
814
815 // The index of A is the index of B plus A's distance to B in multiples
816 // of the size.
817 int IndexA =
818 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
819
820 // Try to insert A into B's group.
821 if (Group->insertMember(A, IndexA, DesA.Align)) {
822 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
823 << " into the interleave group with" << *B
824 << '\n');
825 InterleaveGroupMap[A] = Group;
826
827 // Set the first load in program order as the insert position.
828 if (A->mayReadFromMemory())
829 Group->setInsertPos(A);
830 }
831 } // Iteration over A accesses.
832 } // Iteration over B accesses.
833
834 // Remove interleaved store groups with gaps.
835 for (InterleaveGroup *Group : StoreGroups)
836 if (Group->getNumMembers() != Group->getFactor()) {
837 LLVM_DEBUG(
838 dbgs() << "LV: Invalidate candidate interleaved store group due "
839 "to gaps.\n");
840 releaseGroup(Group);
841 }
842 // Remove interleaved groups with gaps (currently only loads) whose memory
843 // accesses may wrap around. We have to revisit the getPtrStride analysis,
844 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
845 // not check wrapping (see documentation there).
846 // FORNOW we use Assume=false;
847 // TODO: Change to Assume=true but making sure we don't exceed the threshold
848 // of runtime SCEV assumptions checks (thereby potentially failing to
849 // vectorize altogether).
850 // Additional optional optimizations:
851 // TODO: If we are peeling the loop and we know that the first pointer doesn't
852 // wrap then we can deduce that all pointers in the group don't wrap.
853 // This means that we can forcefully peel the loop in order to only have to
854 // check the first pointer for no-wrap. When we'll change to use Assume=true
855 // we'll only need at most one runtime check per interleaved group.
856 for (InterleaveGroup *Group : LoadGroups) {
857 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
858 // load would wrap around the address space we would do a memory access at
859 // nullptr even without the transformation.
860 if (Group->getNumMembers() == Group->getFactor())
861 continue;
862
863 // Case 2: If first and last members of the group don't wrap this implies
864 // that all the pointers in the group don't wrap.
865 // So we check only group member 0 (which is always guaranteed to exist),
866 // and group member Factor - 1; If the latter doesn't exist we rely on
867 // peeling (if it is a non-reveresed accsess -- see Case 3).
868 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
869 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
870 /*ShouldCheckWrap=*/true)) {
871 LLVM_DEBUG(
872 dbgs() << "LV: Invalidate candidate interleaved group due to "
873 "first group member potentially pointer-wrapping.\n");
874 releaseGroup(Group);
875 continue;
876 }
877 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
878 if (LastMember) {
879 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
880 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
881 /*ShouldCheckWrap=*/true)) {
882 LLVM_DEBUG(
883 dbgs() << "LV: Invalidate candidate interleaved group due to "
884 "last group member potentially pointer-wrapping.\n");
885 releaseGroup(Group);
886 }
887 } else {
888 // Case 3: A non-reversed interleaved load group with gaps: We need
889 // to execute at least one scalar epilogue iteration. This will ensure
890 // we don't speculatively access memory out-of-bounds. We only need
891 // to look for a member at index factor - 1, since every group must have
892 // a member at index zero.
893 if (Group->isReverse()) {
894 LLVM_DEBUG(
895 dbgs() << "LV: Invalidate candidate interleaved group due to "
896 "a reverse access with gaps.\n");
897 releaseGroup(Group);
898 continue;
899 }
900 LLVM_DEBUG(
901 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
902 RequiresScalarEpilogue = true;
903 }
904 }
905}