blob: 2881645825a3d4d00c2b93045dead0cfa0104941 [file] [log] [blame]
David Blaikie1213dbf2015-06-26 16:57:30 +00001//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines vectorizer utilities.
11//
12//===----------------------------------------------------------------------===//
13
James Molloy55d633b2015-10-12 12:34:45 +000014#include "llvm/ADT/EquivalenceClasses.h"
15#include "llvm/Analysis/DemandedBits.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000016#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/Analysis/ScalarEvolutionExpressions.h"
18#include "llvm/Analysis/ScalarEvolution.h"
James Molloy55d633b2015-10-12 12:34:45 +000019#include "llvm/Analysis/TargetTransformInfo.h"
David Blaikieb447ac62015-06-26 18:02:52 +000020#include "llvm/Analysis/VectorUtils.h"
Hal Finkel9cf58c42015-07-11 10:52:42 +000021#include "llvm/IR/GetElementPtrTypeIterator.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/IR/Value.h"
Renato Golin3b1d3b02015-08-30 10:49:04 +000024#include "llvm/IR/Constants.h"
25
David Majnemer5eaf08f2015-08-18 22:07:20 +000026using namespace llvm;
27using namespace llvm::PatternMatch;
David Blaikie1213dbf2015-06-26 16:57:30 +000028
29/// \brief Identify if the intrinsic is trivially vectorizable.
30/// This method returns true if the intrinsic's argument types are all
31/// scalars for the scalar form of the intrinsic and all vectors for
32/// the vector form of the intrinsic.
33bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
34 switch (ID) {
35 case Intrinsic::sqrt:
36 case Intrinsic::sin:
37 case Intrinsic::cos:
38 case Intrinsic::exp:
39 case Intrinsic::exp2:
40 case Intrinsic::log:
41 case Intrinsic::log10:
42 case Intrinsic::log2:
43 case Intrinsic::fabs:
44 case Intrinsic::minnum:
45 case Intrinsic::maxnum:
46 case Intrinsic::copysign:
47 case Intrinsic::floor:
48 case Intrinsic::ceil:
49 case Intrinsic::trunc:
50 case Intrinsic::rint:
51 case Intrinsic::nearbyint:
52 case Intrinsic::round:
53 case Intrinsic::bswap:
54 case Intrinsic::ctpop:
55 case Intrinsic::pow:
56 case Intrinsic::fma:
57 case Intrinsic::fmuladd:
58 case Intrinsic::ctlz:
59 case Intrinsic::cttz:
60 case Intrinsic::powi:
61 return true;
62 default:
63 return false;
64 }
65}
66
67/// \brief Identifies if the intrinsic has a scalar operand. It check for
68/// ctlz,cttz and powi special intrinsics whose argument is scalar.
69bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
70 unsigned ScalarOpdIdx) {
71 switch (ID) {
72 case Intrinsic::ctlz:
73 case Intrinsic::cttz:
74 case Intrinsic::powi:
75 return (ScalarOpdIdx == 1);
76 default:
77 return false;
78 }
79}
80
81/// \brief Check call has a unary float signature
82/// It checks following:
83/// a) call should have a single argument
84/// b) argument type should be floating point type
85/// c) call instruction type and argument type should be same
86/// d) call should only reads memory.
87/// If all these condition is met then return ValidIntrinsicID
88/// else return not_intrinsic.
David Majnemer5eaf08f2015-08-18 22:07:20 +000089Intrinsic::ID
David Blaikie1213dbf2015-06-26 16:57:30 +000090llvm::checkUnaryFloatSignature(const CallInst &I,
91 Intrinsic::ID ValidIntrinsicID) {
92 if (I.getNumArgOperands() != 1 ||
93 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
94 I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
95 return Intrinsic::not_intrinsic;
96
97 return ValidIntrinsicID;
98}
99
100/// \brief Check call has a binary float signature
101/// It checks following:
102/// a) call should have 2 arguments.
103/// b) arguments type should be floating point type
104/// c) call instruction type and arguments type should be same
105/// d) call should only reads memory.
106/// If all these condition is met then return ValidIntrinsicID
107/// else return not_intrinsic.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000108Intrinsic::ID
David Blaikie1213dbf2015-06-26 16:57:30 +0000109llvm::checkBinaryFloatSignature(const CallInst &I,
110 Intrinsic::ID ValidIntrinsicID) {
111 if (I.getNumArgOperands() != 2 ||
112 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
113 !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
114 I.getType() != I.getArgOperand(0)->getType() ||
115 I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
116 return Intrinsic::not_intrinsic;
117
118 return ValidIntrinsicID;
119}
120
121/// \brief Returns intrinsic ID for call.
122/// For the input call instruction it finds mapping intrinsic and returns
123/// its ID, in case it does not found it return not_intrinsic.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000124Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
125 const TargetLibraryInfo *TLI) {
David Blaikie1213dbf2015-06-26 16:57:30 +0000126 // If we have an intrinsic call, check if it is trivially vectorizable.
127 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
128 Intrinsic::ID ID = II->getIntrinsicID();
129 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
130 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
131 return ID;
132 return Intrinsic::not_intrinsic;
133 }
134
135 if (!TLI)
136 return Intrinsic::not_intrinsic;
137
138 LibFunc::Func Func;
139 Function *F = CI->getCalledFunction();
140 // We're going to make assumptions on the semantics of the functions, check
141 // that the target knows that it's available in this environment and it does
142 // not have local linkage.
143 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
144 return Intrinsic::not_intrinsic;
145
146 // Otherwise check if we have a call to a function that can be turned into a
147 // vector intrinsic.
148 switch (Func) {
149 default:
150 break;
151 case LibFunc::sin:
152 case LibFunc::sinf:
153 case LibFunc::sinl:
154 return checkUnaryFloatSignature(*CI, Intrinsic::sin);
155 case LibFunc::cos:
156 case LibFunc::cosf:
157 case LibFunc::cosl:
158 return checkUnaryFloatSignature(*CI, Intrinsic::cos);
159 case LibFunc::exp:
160 case LibFunc::expf:
161 case LibFunc::expl:
162 return checkUnaryFloatSignature(*CI, Intrinsic::exp);
163 case LibFunc::exp2:
164 case LibFunc::exp2f:
165 case LibFunc::exp2l:
166 return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
167 case LibFunc::log:
168 case LibFunc::logf:
169 case LibFunc::logl:
170 return checkUnaryFloatSignature(*CI, Intrinsic::log);
171 case LibFunc::log10:
172 case LibFunc::log10f:
173 case LibFunc::log10l:
174 return checkUnaryFloatSignature(*CI, Intrinsic::log10);
175 case LibFunc::log2:
176 case LibFunc::log2f:
177 case LibFunc::log2l:
178 return checkUnaryFloatSignature(*CI, Intrinsic::log2);
179 case LibFunc::fabs:
180 case LibFunc::fabsf:
181 case LibFunc::fabsl:
182 return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
183 case LibFunc::fmin:
184 case LibFunc::fminf:
185 case LibFunc::fminl:
186 return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
187 case LibFunc::fmax:
188 case LibFunc::fmaxf:
189 case LibFunc::fmaxl:
190 return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
191 case LibFunc::copysign:
192 case LibFunc::copysignf:
193 case LibFunc::copysignl:
194 return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
195 case LibFunc::floor:
196 case LibFunc::floorf:
197 case LibFunc::floorl:
198 return checkUnaryFloatSignature(*CI, Intrinsic::floor);
199 case LibFunc::ceil:
200 case LibFunc::ceilf:
201 case LibFunc::ceill:
202 return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
203 case LibFunc::trunc:
204 case LibFunc::truncf:
205 case LibFunc::truncl:
206 return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
207 case LibFunc::rint:
208 case LibFunc::rintf:
209 case LibFunc::rintl:
210 return checkUnaryFloatSignature(*CI, Intrinsic::rint);
211 case LibFunc::nearbyint:
212 case LibFunc::nearbyintf:
213 case LibFunc::nearbyintl:
214 return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
215 case LibFunc::round:
216 case LibFunc::roundf:
217 case LibFunc::roundl:
218 return checkUnaryFloatSignature(*CI, Intrinsic::round);
219 case LibFunc::pow:
220 case LibFunc::powf:
221 case LibFunc::powl:
222 return checkBinaryFloatSignature(*CI, Intrinsic::pow);
223 }
224
225 return Intrinsic::not_intrinsic;
226}
Hal Finkel9cf58c42015-07-11 10:52:42 +0000227
228/// \brief Find the operand of the GEP that should be checked for consecutive
229/// stores. This ignores trailing indices that have no effect on the final
230/// pointer.
231unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
232 const DataLayout &DL = Gep->getModule()->getDataLayout();
233 unsigned LastOperand = Gep->getNumOperands() - 1;
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000234 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000235
236 // Walk backwards and try to peel off zeros.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000237 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000238 // Find the type we're currently indexing into.
239 gep_type_iterator GEPTI = gep_type_begin(Gep);
240 std::advance(GEPTI, LastOperand - 1);
241
242 // If it's a type with the same allocation size as the result of the GEP we
243 // can peel off the zero index.
244 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
245 break;
246 --LastOperand;
247 }
248
249 return LastOperand;
250}
251
252/// \brief If the argument is a GEP, then returns the operand identified by
253/// getGEPInductionOperand. However, if there is some other non-loop-invariant
254/// operand, it returns that instead.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000255Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000256 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
257 if (!GEP)
258 return Ptr;
259
260 unsigned InductionOperand = getGEPInductionOperand(GEP);
261
262 // Check that all of the gep indices are uniform except for our induction
263 // operand.
264 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
265 if (i != InductionOperand &&
266 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
267 return Ptr;
268 return GEP->getOperand(InductionOperand);
269}
270
271/// \brief If a value has only one user that is a CastInst, return it.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000272Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
273 Value *UniqueCast = nullptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000274 for (User *U : Ptr->users()) {
275 CastInst *CI = dyn_cast<CastInst>(U);
276 if (CI && CI->getType() == Ty) {
277 if (!UniqueCast)
278 UniqueCast = CI;
279 else
280 return nullptr;
281 }
282 }
283 return UniqueCast;
284}
285
286/// \brief Get the stride of a pointer access in a loop. Looks for symbolic
287/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000288Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000289 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
Hal Finkel9cf58c42015-07-11 10:52:42 +0000290 if (!PtrTy || PtrTy->isAggregateType())
291 return nullptr;
292
293 // Try to remove a gep instruction to make the pointer (actually index at this
294 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
295 // pointer, otherwise, we are analyzing the index.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000296 Value *OrigPtr = Ptr;
Hal Finkel9cf58c42015-07-11 10:52:42 +0000297
298 // The size of the pointer access.
299 int64_t PtrAccessSize = 1;
300
301 Ptr = stripGetElementPtr(Ptr, SE, Lp);
302 const SCEV *V = SE->getSCEV(Ptr);
303
304 if (Ptr != OrigPtr)
305 // Strip off casts.
306 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
307 V = C->getOperand();
308
309 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
310 if (!S)
311 return nullptr;
312
313 V = S->getStepRecurrence(*SE);
314 if (!V)
315 return nullptr;
316
317 // Strip off the size of access multiplication if we are still analyzing the
318 // pointer.
319 if (OrigPtr == Ptr) {
Hal Finkel9cf58c42015-07-11 10:52:42 +0000320 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
321 if (M->getOperand(0)->getSCEVType() != scConstant)
322 return nullptr;
323
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000324 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000325
326 // Huge step value - give up.
327 if (APStepVal.getBitWidth() > 64)
328 return nullptr;
329
330 int64_t StepVal = APStepVal.getSExtValue();
331 if (PtrAccessSize != StepVal)
332 return nullptr;
333 V = M->getOperand(1);
334 }
335 }
336
337 // Strip off casts.
338 Type *StripedOffRecurrenceCast = nullptr;
339 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
340 StripedOffRecurrenceCast = C->getType();
341 V = C->getOperand();
342 }
343
344 // Look for the loop invariant symbolic value.
345 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
346 if (!U)
347 return nullptr;
348
David Majnemer5eaf08f2015-08-18 22:07:20 +0000349 Value *Stride = U->getValue();
Hal Finkel9cf58c42015-07-11 10:52:42 +0000350 if (!Lp->isLoopInvariant(Stride))
351 return nullptr;
352
353 // If we have stripped off the recurrence cast we have to make sure that we
354 // return the value that is used in this loop so that we can replace it later.
355 if (StripedOffRecurrenceCast)
356 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
357
358 return Stride;
359}
David Majnemer599ca442015-07-13 01:15:53 +0000360
361/// \brief Given a vector and an element number, see if the scalar value is
362/// already around as a register, for example if it were inserted then extracted
363/// from the vector.
David Majnemer5eaf08f2015-08-18 22:07:20 +0000364Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
David Majnemer599ca442015-07-13 01:15:53 +0000365 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
366 VectorType *VTy = cast<VectorType>(V->getType());
367 unsigned Width = VTy->getNumElements();
368 if (EltNo >= Width) // Out of range access.
369 return UndefValue::get(VTy->getElementType());
370
371 if (Constant *C = dyn_cast<Constant>(V))
372 return C->getAggregateElement(EltNo);
373
374 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
375 // If this is an insert to a variable element, we don't know what it is.
376 if (!isa<ConstantInt>(III->getOperand(2)))
377 return nullptr;
378 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
379
380 // If this is an insert to the element we are looking for, return the
381 // inserted value.
382 if (EltNo == IIElt)
383 return III->getOperand(1);
384
385 // Otherwise, the insertelement doesn't modify the value, recurse on its
386 // vector input.
387 return findScalarElement(III->getOperand(0), EltNo);
388 }
389
390 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
391 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
392 int InEl = SVI->getMaskValue(EltNo);
393 if (InEl < 0)
394 return UndefValue::get(VTy->getElementType());
395 if (InEl < (int)LHSWidth)
396 return findScalarElement(SVI->getOperand(0), InEl);
397 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
398 }
399
400 // Extract a value from a vector add operation with a constant zero.
401 Value *Val = nullptr; Constant *Con = nullptr;
David Majnemerc6bb0e22015-08-18 22:07:25 +0000402 if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
403 if (Constant *Elt = Con->getAggregateElement(EltNo))
404 if (Elt->isNullValue())
405 return findScalarElement(Val, EltNo);
David Majnemer599ca442015-07-13 01:15:53 +0000406
407 // Otherwise, we don't know.
408 return nullptr;
409}
Renato Golin3b1d3b02015-08-30 10:49:04 +0000410
411/// \brief Get splat value if the input is a splat vector or return nullptr.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000412/// This function is not fully general. It checks only 2 cases:
413/// the input value is (1) a splat constants vector or (2) a sequence
414/// of instructions that broadcast a single value into a vector.
415///
Elena Demikhovsky0781d7b2015-12-01 12:08:36 +0000416const llvm::Value *llvm::getSplatValue(const Value *V) {
417
418 if (auto *C = dyn_cast<Constant>(V))
Elena Demikhovsky47fa2712015-12-01 12:30:40 +0000419 if (isa<VectorType>(V->getType()))
420 return C->getSplatValue();
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000421
422 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
Renato Golin3b1d3b02015-08-30 10:49:04 +0000423 if (!ShuffleInst)
424 return nullptr;
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000425 // All-zero (or undef) shuffle mask elements.
426 for (int MaskElt : ShuffleInst->getShuffleMask())
427 if (MaskElt != 0 && MaskElt != -1)
Renato Golin3b1d3b02015-08-30 10:49:04 +0000428 return nullptr;
429 // The first shuffle source is 'insertelement' with index 0.
Elena Demikhovsky63a7ca92015-08-30 13:48:02 +0000430 auto *InsertEltInst =
431 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
Renato Golin3b1d3b02015-08-30 10:49:04 +0000432 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
433 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
434 return nullptr;
435
436 return InsertEltInst->getOperand(1);
437}
James Molloy55d633b2015-10-12 12:34:45 +0000438
Charlie Turner54336a52015-11-26 20:39:51 +0000439MapVector<Instruction *, uint64_t>
James Molloy45f67d52015-11-09 14:32:05 +0000440llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
441 const TargetTransformInfo *TTI) {
James Molloy55d633b2015-10-12 12:34:45 +0000442
443 // DemandedBits will give us every value's live-out bits. But we want
444 // to ensure no extra casts would need to be inserted, so every DAG
445 // of connected values must have the same minimum bitwidth.
James Molloy45f67d52015-11-09 14:32:05 +0000446 EquivalenceClasses<Value *> ECs;
447 SmallVector<Value *, 16> Worklist;
448 SmallPtrSet<Value *, 4> Roots;
449 SmallPtrSet<Value *, 16> Visited;
450 DenseMap<Value *, uint64_t> DBits;
451 SmallPtrSet<Instruction *, 4> InstructionSet;
Charlie Turner54336a52015-11-26 20:39:51 +0000452 MapVector<Instruction *, uint64_t> MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000453
James Molloy55d633b2015-10-12 12:34:45 +0000454 // Determine the roots. We work bottom-up, from truncs or icmps.
455 bool SeenExtFromIllegalType = false;
456 for (auto *BB : Blocks)
457 for (auto &I : *BB) {
458 InstructionSet.insert(&I);
459
460 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
461 !TTI->isTypeLegal(I.getOperand(0)->getType()))
462 SeenExtFromIllegalType = true;
James Molloy45f67d52015-11-09 14:32:05 +0000463
James Molloy55d633b2015-10-12 12:34:45 +0000464 // Only deal with non-vector integers up to 64-bits wide.
465 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
466 !I.getType()->isVectorTy() &&
467 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
468 // Don't make work for ourselves. If we know the loaded type is legal,
469 // don't add it to the worklist.
470 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
471 continue;
James Molloy45f67d52015-11-09 14:32:05 +0000472
James Molloy55d633b2015-10-12 12:34:45 +0000473 Worklist.push_back(&I);
474 Roots.insert(&I);
475 }
476 }
477 // Early exit.
478 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
479 return MinBWs;
James Molloy45f67d52015-11-09 14:32:05 +0000480
James Molloy55d633b2015-10-12 12:34:45 +0000481 // Now proceed breadth-first, unioning values together.
482 while (!Worklist.empty()) {
483 Value *Val = Worklist.pop_back_val();
484 Value *Leader = ECs.getOrInsertLeaderValue(Val);
James Molloy45f67d52015-11-09 14:32:05 +0000485
James Molloy55d633b2015-10-12 12:34:45 +0000486 if (Visited.count(Val))
487 continue;
488 Visited.insert(Val);
489
490 // Non-instructions terminate a chain successfully.
491 if (!isa<Instruction>(Val))
492 continue;
493 Instruction *I = cast<Instruction>(Val);
494
495 // If we encounter a type that is larger than 64 bits, we can't represent
496 // it so bail out.
497 if (DB.getDemandedBits(I).getBitWidth() > 64)
Charlie Turner54336a52015-11-26 20:39:51 +0000498 return MapVector<Instruction *, uint64_t>();
James Molloy45f67d52015-11-09 14:32:05 +0000499
James Molloy55d633b2015-10-12 12:34:45 +0000500 uint64_t V = DB.getDemandedBits(I).getZExtValue();
501 DBits[Leader] |= V;
James Molloy8e46cd02016-03-30 10:11:43 +0000502 DBits[I] = V;
James Molloy45f67d52015-11-09 14:32:05 +0000503
James Molloy55d633b2015-10-12 12:34:45 +0000504 // Casts, loads and instructions outside of our range terminate a chain
505 // successfully.
506 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
507 !InstructionSet.count(I))
508 continue;
509
510 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
511 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
512 // transform anything that relies on them.
513 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
514 !I->getType()->isIntegerTy()) {
515 DBits[Leader] |= ~0ULL;
516 continue;
517 }
518
519 // We don't modify the types of PHIs. Reductions will already have been
520 // truncated if possible, and inductions' sizes will have been chosen by
521 // indvars.
522 if (isa<PHINode>(I))
523 continue;
524
525 if (DBits[Leader] == ~0ULL)
526 // All bits demanded, no point continuing.
527 continue;
528
529 for (Value *O : cast<User>(I)->operands()) {
530 ECs.unionSets(Leader, O);
531 Worklist.push_back(O);
532 }
533 }
534
535 // Now we've discovered all values, walk them to see if there are
536 // any users we didn't see. If there are, we can't optimize that
537 // chain.
538 for (auto &I : DBits)
539 for (auto *U : I.first->users())
540 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
541 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
James Molloy45f67d52015-11-09 14:32:05 +0000542
James Molloy55d633b2015-10-12 12:34:45 +0000543 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
544 uint64_t LeaderDemandedBits = 0;
545 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
546 LeaderDemandedBits |= DBits[*MI];
547
548 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
549 llvm::countLeadingZeros(LeaderDemandedBits);
550 // Round up to a power of 2
551 if (!isPowerOf2_64((uint64_t)MinBW))
552 MinBW = NextPowerOf2(MinBW);
James Molloy8e46cd02016-03-30 10:11:43 +0000553
554 // We don't modify the types of PHIs. Reductions will already have been
555 // truncated if possible, and inductions' sizes will have been chosen by
556 // indvars.
557 // If we are required to shrink a PHI, abandon this entire equivalence class.
558 bool Abort = false;
559 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
560 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
561 Abort = true;
562 break;
563 }
564 if (Abort)
565 continue;
566
James Molloy55d633b2015-10-12 12:34:45 +0000567 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
568 if (!isa<Instruction>(*MI))
569 continue;
570 Type *Ty = (*MI)->getType();
571 if (Roots.count(*MI))
572 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
573 if (MinBW < Ty->getScalarSizeInBits())
574 MinBWs[cast<Instruction>(*MI)] = MinBW;
575 }
576 }
577
578 return MinBWs;
579}