blob: 149001e4514f747a7005fba6a384fcf3494f505e [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
Richard Sandiford97846492013-07-09 09:46:39 +000015#include "llvm/Analysis/AliasAnalysis.h"
Ulrich Weigand5f613df2013-05-06 16:15:19 +000016#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25 // The shape of the address.
26 enum AddrForm {
27 // base+displacement
28 FormBD,
29
30 // base+displacement+index for load and store operands
31 FormBDXNormal,
32
33 // base+displacement+index for load address operands
34 FormBDXLA,
35
36 // base+displacement+index+ADJDYNALLOC
37 FormBDXDynAlloc
38 };
39 AddrForm Form;
40
41 // The type of displacement. The enum names here correspond directly
42 // to the definitions in SystemZOperand.td. We could split them into
43 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44 enum DispRange {
45 Disp12Only,
46 Disp12Pair,
47 Disp20Only,
48 Disp20Only128,
49 Disp20Pair
50 };
51 DispRange DR;
52
53 // The parts of the address. The address is equivalent to:
54 //
55 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56 SDValue Base;
57 int64_t Disp;
58 SDValue Index;
59 bool IncludesDynAlloc;
60
61 SystemZAddressingMode(AddrForm form, DispRange dr)
62 : Form(form), DR(dr), Base(), Disp(0), Index(),
63 IncludesDynAlloc(false) {}
64
65 // True if the address can have an index register.
66 bool hasIndexField() { return Form != FormBD; }
67
68 // True if the address can (and must) include ADJDYNALLOC.
69 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71 void dump() {
72 errs() << "SystemZAddressingMode " << this << '\n';
73
74 errs() << " Base ";
75 if (Base.getNode() != 0)
76 Base.getNode()->dump();
77 else
78 errs() << "null\n";
79
80 if (hasIndexField()) {
81 errs() << " Index ";
82 if (Index.getNode() != 0)
83 Index.getNode()->dump();
84 else
85 errs() << "null\n";
86 }
87
88 errs() << " Disp " << Disp;
89 if (IncludesDynAlloc)
90 errs() << " + ADJDYNALLOC";
91 errs() << '\n';
92 }
93};
94
Richard Sandiford82ec87d2013-07-16 11:02:24 +000095// Return a mask with Count low bits set.
96static uint64_t allOnes(unsigned int Count) {
97 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98}
99
100// Represents operands 2 to 5 of a ROTATE AND ... SELECTED BITS operation.
101// The operands are: Input (R2), Start (I3), End (I4) and Rotate (I5).
102// The operand value is effectively (and (rotl Input Rotate) Mask) and
103// has BitSize bits.
104struct RISBGOperands {
105 RISBGOperands(SDValue N)
106 : BitSize(N.getValueType().getSizeInBits()), Mask(allOnes(BitSize)),
107 Input(N), Start(64 - BitSize), End(63), Rotate(0) {}
108
109 unsigned BitSize;
110 uint64_t Mask;
111 SDValue Input;
112 unsigned Start;
113 unsigned End;
114 unsigned Rotate;
115};
116
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000117class SystemZDAGToDAGISel : public SelectionDAGISel {
118 const SystemZTargetLowering &Lowering;
119 const SystemZSubtarget &Subtarget;
120
121 // Used by SystemZOperands.td to create integer constants.
122 inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
123 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
124 }
125
126 // Try to fold more of the base or index of AM into AM, where IsBase
127 // selects between the base and index.
128 bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
129
130 // Try to describe N in AM, returning true on success.
131 bool selectAddress(SDValue N, SystemZAddressingMode &AM);
132
133 // Extract individual target operands from matched address AM.
134 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
135 SDValue &Base, SDValue &Disp);
136 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
137 SDValue &Base, SDValue &Disp, SDValue &Index);
138
139 // Try to match Addr as a FormBD address with displacement type DR.
140 // Return true on success, storing the base and displacement in
141 // Base and Disp respectively.
142 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
143 SDValue &Base, SDValue &Disp);
144
145 // Try to match Addr as a FormBDX* address of form Form with
146 // displacement type DR. Return true on success, storing the base,
147 // displacement and index in Base, Disp and Index respectively.
148 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
149 SystemZAddressingMode::DispRange DR, SDValue Addr,
150 SDValue &Base, SDValue &Disp, SDValue &Index);
151
152 // PC-relative address matching routines used by SystemZOperands.td.
153 bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
154 if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
155 Target = Addr.getOperand(0);
156 return true;
157 }
158 return false;
159 }
160
161 // BD matching routines used by SystemZOperands.td.
162 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
163 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
164 }
165 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
166 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
167 }
168 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
169 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
170 }
171 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
172 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
173 }
174
175 // BDX matching routines used by SystemZOperands.td.
176 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
177 SDValue &Index) {
178 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
179 SystemZAddressingMode::Disp12Only,
180 Addr, Base, Disp, Index);
181 }
182 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
183 SDValue &Index) {
184 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
185 SystemZAddressingMode::Disp12Pair,
186 Addr, Base, Disp, Index);
187 }
188 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
189 SDValue &Index) {
190 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
191 SystemZAddressingMode::Disp12Only,
192 Addr, Base, Disp, Index);
193 }
194 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
195 SDValue &Index) {
196 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
197 SystemZAddressingMode::Disp20Only,
198 Addr, Base, Disp, Index);
199 }
200 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
201 SDValue &Index) {
202 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
203 SystemZAddressingMode::Disp20Only128,
204 Addr, Base, Disp, Index);
205 }
206 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
207 SDValue &Index) {
208 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
209 SystemZAddressingMode::Disp20Pair,
210 Addr, Base, Disp, Index);
211 }
212 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
213 SDValue &Index) {
214 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
215 SystemZAddressingMode::Disp12Pair,
216 Addr, Base, Disp, Index);
217 }
218 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
219 SDValue &Index) {
220 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
221 SystemZAddressingMode::Disp20Pair,
222 Addr, Base, Disp, Index);
223 }
224
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000225 // Try to fold some of Ops.Input into other fields of Ops. Return true
226 // on success.
227 bool expandRISBG(RISBGOperands &Ops);
228
Richard Sandiford84f54a32013-07-11 08:59:12 +0000229 // Return an undefined i64 value.
230 SDValue getUNDEF64(SDLoc DL);
231
232 // Convert N to VT, if it isn't already.
233 SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
234
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000235 // Try to implement AND or shift node N using RISBG with the zero flag set.
236 // Return the selected node on success, otherwise return null.
237 SDNode *tryRISBGZero(SDNode *N);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000238
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000239 // If Op0 is null, then Node is a constant that can be loaded using:
240 //
241 // (Opcode UpperVal LowerVal)
242 //
243 // If Op0 is nonnull, then Node can be implemented using:
244 //
245 // (Opcode (Opcode Op0 UpperVal) LowerVal)
246 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
247 uint64_t UpperVal, uint64_t LowerVal);
248
Richard Sandiford97846492013-07-09 09:46:39 +0000249 bool storeLoadCanUseMVC(SDNode *N) const;
250
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000251public:
252 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
253 : SelectionDAGISel(TM, OptLevel),
254 Lowering(*TM.getTargetLowering()),
255 Subtarget(*TM.getSubtargetImpl()) { }
256
257 // Override MachineFunctionPass.
258 virtual const char *getPassName() const LLVM_OVERRIDE {
259 return "SystemZ DAG->DAG Pattern Instruction Selection";
260 }
261
262 // Override SelectionDAGISel.
263 virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
264 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
265 char ConstraintCode,
266 std::vector<SDValue> &OutOps)
267 LLVM_OVERRIDE;
268
269 // Include the pieces autogenerated from the target description.
270 #include "SystemZGenDAGISel.inc"
271};
272} // end anonymous namespace
273
274FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
275 CodeGenOpt::Level OptLevel) {
276 return new SystemZDAGToDAGISel(TM, OptLevel);
277}
278
279// Return true if Val should be selected as a displacement for an address
280// with range DR. Here we're interested in the range of both the instruction
281// described by DR and of any pairing instruction.
282static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
283 switch (DR) {
284 case SystemZAddressingMode::Disp12Only:
285 return isUInt<12>(Val);
286
287 case SystemZAddressingMode::Disp12Pair:
288 case SystemZAddressingMode::Disp20Only:
289 case SystemZAddressingMode::Disp20Pair:
290 return isInt<20>(Val);
291
292 case SystemZAddressingMode::Disp20Only128:
293 return isInt<20>(Val) && isInt<20>(Val + 8);
294 }
295 llvm_unreachable("Unhandled displacement range");
296}
297
298// Change the base or index in AM to Value, where IsBase selects
299// between the base and index.
300static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
301 SDValue Value) {
302 if (IsBase)
303 AM.Base = Value;
304 else
305 AM.Index = Value;
306}
307
308// The base or index of AM is equivalent to Value + ADJDYNALLOC,
309// where IsBase selects between the base and index. Try to fold the
310// ADJDYNALLOC into AM.
311static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
312 SDValue Value) {
313 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
314 changeComponent(AM, IsBase, Value);
315 AM.IncludesDynAlloc = true;
316 return true;
317 }
318 return false;
319}
320
321// The base of AM is equivalent to Base + Index. Try to use Index as
322// the index register.
323static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
324 SDValue Index) {
325 if (AM.hasIndexField() && !AM.Index.getNode()) {
326 AM.Base = Base;
327 AM.Index = Index;
328 return true;
329 }
330 return false;
331}
332
333// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
334// between the base and index. Try to fold Op1 into AM's displacement.
335static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
336 SDValue Op0, ConstantSDNode *Op1) {
337 // First try adjusting the displacement.
338 int64_t TestDisp = AM.Disp + Op1->getSExtValue();
339 if (selectDisp(AM.DR, TestDisp)) {
340 changeComponent(AM, IsBase, Op0);
341 AM.Disp = TestDisp;
342 return true;
343 }
344
345 // We could consider forcing the displacement into a register and
346 // using it as an index, but it would need to be carefully tuned.
347 return false;
348}
349
350bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
351 bool IsBase) {
352 SDValue N = IsBase ? AM.Base : AM.Index;
353 unsigned Opcode = N.getOpcode();
354 if (Opcode == ISD::TRUNCATE) {
355 N = N.getOperand(0);
356 Opcode = N.getOpcode();
357 }
358 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
359 SDValue Op0 = N.getOperand(0);
360 SDValue Op1 = N.getOperand(1);
361
362 unsigned Op0Code = Op0->getOpcode();
363 unsigned Op1Code = Op1->getOpcode();
364
365 if (Op0Code == SystemZISD::ADJDYNALLOC)
366 return expandAdjDynAlloc(AM, IsBase, Op1);
367 if (Op1Code == SystemZISD::ADJDYNALLOC)
368 return expandAdjDynAlloc(AM, IsBase, Op0);
369
370 if (Op0Code == ISD::Constant)
371 return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
372 if (Op1Code == ISD::Constant)
373 return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
374
375 if (IsBase && expandIndex(AM, Op0, Op1))
376 return true;
377 }
378 return false;
379}
380
381// Return true if an instruction with displacement range DR should be
382// used for displacement value Val. selectDisp(DR, Val) must already hold.
383static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
384 assert(selectDisp(DR, Val) && "Invalid displacement");
385 switch (DR) {
386 case SystemZAddressingMode::Disp12Only:
387 case SystemZAddressingMode::Disp20Only:
388 case SystemZAddressingMode::Disp20Only128:
389 return true;
390
391 case SystemZAddressingMode::Disp12Pair:
392 // Use the other instruction if the displacement is too large.
393 return isUInt<12>(Val);
394
395 case SystemZAddressingMode::Disp20Pair:
396 // Use the other instruction if the displacement is small enough.
397 return !isUInt<12>(Val);
398 }
399 llvm_unreachable("Unhandled displacement range");
400}
401
402// Return true if Base + Disp + Index should be performed by LA(Y).
403static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
404 // Don't use LA(Y) for constants.
405 if (!Base)
406 return false;
407
408 // Always use LA(Y) for frame addresses, since we know that the destination
409 // register is almost always (perhaps always) going to be different from
410 // the frame register.
411 if (Base->getOpcode() == ISD::FrameIndex)
412 return true;
413
414 if (Disp) {
415 // Always use LA(Y) if there is a base, displacement and index.
416 if (Index)
417 return true;
418
419 // Always use LA if the displacement is small enough. It should always
420 // be no worse than AGHI (and better if it avoids a move).
421 if (isUInt<12>(Disp))
422 return true;
423
424 // For similar reasons, always use LAY if the constant is too big for AGHI.
425 // LAY should be no worse than AGFI.
426 if (!isInt<16>(Disp))
427 return true;
428 } else {
429 // Don't use LA for plain registers.
430 if (!Index)
431 return false;
432
433 // Don't use LA for plain addition if the index operand is only used
434 // once. It should be a natural two-operand addition in that case.
435 if (Index->hasOneUse())
436 return false;
437
438 // Prefer addition if the second operation is sign-extended, in the
439 // hope of using AGF.
440 unsigned IndexOpcode = Index->getOpcode();
441 if (IndexOpcode == ISD::SIGN_EXTEND ||
442 IndexOpcode == ISD::SIGN_EXTEND_INREG)
443 return false;
444 }
445
446 // Don't use LA for two-operand addition if either operand is only
447 // used once. The addition instructions are better in that case.
448 if (Base->hasOneUse())
449 return false;
450
451 return true;
452}
453
454// Return true if Addr is suitable for AM, updating AM if so.
455bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
456 SystemZAddressingMode &AM) {
457 // Start out assuming that the address will need to be loaded separately,
458 // then try to extend it as much as we can.
459 AM.Base = Addr;
460
461 // First try treating the address as a constant.
462 if (Addr.getOpcode() == ISD::Constant &&
463 expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
464 ;
465 else
466 // Otherwise try expanding each component.
467 while (expandAddress(AM, true) ||
468 (AM.Index.getNode() && expandAddress(AM, false)))
469 continue;
470
471 // Reject cases where it isn't profitable to use LA(Y).
472 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
473 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
474 return false;
475
476 // Reject cases where the other instruction in a pair should be used.
477 if (!isValidDisp(AM.DR, AM.Disp))
478 return false;
479
480 // Make sure that ADJDYNALLOC is included where necessary.
481 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
482 return false;
483
484 DEBUG(AM.dump());
485 return true;
486}
487
488// Insert a node into the DAG at least before Pos. This will reposition
489// the node as needed, and will assign it a node ID that is <= Pos's ID.
490// Note that this does *not* preserve the uniqueness of node IDs!
491// The selection DAG must no longer depend on their uniqueness when this
492// function is used.
493static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
494 if (N.getNode()->getNodeId() == -1 ||
495 N.getNode()->getNodeId() > Pos->getNodeId()) {
496 DAG->RepositionNode(Pos, N.getNode());
497 N.getNode()->setNodeId(Pos->getNodeId());
498 }
499}
500
501void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
502 EVT VT, SDValue &Base,
503 SDValue &Disp) {
504 Base = AM.Base;
505 if (!Base.getNode())
506 // Register 0 means "no base". This is mostly useful for shifts.
507 Base = CurDAG->getRegister(0, VT);
508 else if (Base.getOpcode() == ISD::FrameIndex) {
509 // Lower a FrameIndex to a TargetFrameIndex.
510 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
511 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
512 } else if (Base.getValueType() != VT) {
513 // Truncate values from i64 to i32, for shifts.
514 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
515 "Unexpected truncation");
Andrew Trickef9de2a2013-05-25 02:42:55 +0000516 SDLoc DL(Base);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000517 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
518 insertDAGNode(CurDAG, Base.getNode(), Trunc);
519 Base = Trunc;
520 }
521
522 // Lower the displacement to a TargetConstant.
523 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
524}
525
526void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
527 EVT VT, SDValue &Base,
528 SDValue &Disp, SDValue &Index) {
529 getAddressOperands(AM, VT, Base, Disp);
530
531 Index = AM.Index;
532 if (!Index.getNode())
533 // Register 0 means "no index".
534 Index = CurDAG->getRegister(0, VT);
535}
536
537bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
538 SDValue Addr, SDValue &Base,
539 SDValue &Disp) {
540 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
541 if (!selectAddress(Addr, AM))
542 return false;
543
544 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
545 return true;
546}
547
548bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
549 SystemZAddressingMode::DispRange DR,
550 SDValue Addr, SDValue &Base,
551 SDValue &Disp, SDValue &Index) {
552 SystemZAddressingMode AM(Form, DR);
553 if (!selectAddress(Addr, AM))
554 return false;
555
556 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
557 return true;
558}
559
Richard Sandiford84f54a32013-07-11 08:59:12 +0000560// Return true if Mask matches the regexp 0*1+0*, given that zero masks
561// have already been filtered out. Store the first set bit in LSB and
562// the number of set bits in Length if so.
563static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
564 unsigned First = findFirstSet(Mask);
565 uint64_t Top = (Mask >> First) + 1;
566 if ((Top & -Top) == Top)
567 {
568 LSB = First;
569 Length = findFirstSet(Top);
570 return true;
571 }
572 return false;
573}
574
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000575// Try to update RISBG so that only the bits of Ops.Input in Mask are used.
576// Return true on success.
577static bool refineRISBGMask(RISBGOperands &RISBG, uint64_t Mask) {
578 if (RISBG.Rotate != 0)
579 Mask = (Mask << RISBG.Rotate) | (Mask >> (64 - RISBG.Rotate));
580 Mask &= RISBG.Mask;
Richard Sandiford84f54a32013-07-11 08:59:12 +0000581
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000582 // Reject trivial all-zero masks.
583 if (Mask == 0)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000584 return false;
585
586 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
587 // the msb and End specifies the index of the lsb.
588 unsigned LSB, Length;
589 if (isStringOfOnes(Mask, LSB, Length))
590 {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000591 RISBG.Mask = Mask;
592 RISBG.Start = 63 - (LSB + Length - 1);
593 RISBG.End = 63 - LSB;
Richard Sandiford84f54a32013-07-11 08:59:12 +0000594 return true;
595 }
596
597 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
598 // of the low 1s and End specifies the lsb of the high 1s.
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000599 if (isStringOfOnes(Mask ^ allOnes(RISBG.BitSize), LSB, Length))
Richard Sandiford84f54a32013-07-11 08:59:12 +0000600 {
601 assert(LSB > 0 && "Bottom bit must be set");
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000602 assert(LSB + Length < RISBG.BitSize && "Top bit must be set");
603 RISBG.Mask = Mask;
604 RISBG.Start = 63 - (LSB - 1);
605 RISBG.End = 63 - (LSB + Length);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000606 return true;
607 }
608
609 return false;
610}
611
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000612bool SystemZDAGToDAGISel::expandRISBG(RISBGOperands &RISBG) {
613 SDValue N = RISBG.Input;
614 switch (N.getOpcode()) {
615 case ISD::AND: {
616 ConstantSDNode *MaskNode =
617 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
618 if (!MaskNode)
619 return false;
620
621 SDValue Input = N.getOperand(0);
622 uint64_t Mask = MaskNode->getZExtValue();
623 if (!refineRISBGMask(RISBG, Mask)) {
624 // If some bits of Input are already known zeros, those bits will have
625 // been removed from the mask. See if adding them back in makes the
626 // mask suitable.
627 APInt KnownZero, KnownOne;
628 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
629 Mask |= KnownZero.getZExtValue();
630 if (!refineRISBGMask(RISBG, Mask))
631 return false;
632 }
633 RISBG.Input = Input;
634 return true;
635 }
636
637 case ISD::ROTL: {
638 // Any 64-bit rotate left can be merged into the RISBG.
639 if (RISBG.BitSize != 64)
640 return false;
641 ConstantSDNode *CountNode
642 = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
643 if (!CountNode)
644 return false;
645
646 RISBG.Rotate = (RISBG.Rotate + CountNode->getZExtValue()) & 63;
647 RISBG.Input = N.getOperand(0);
648 return true;
649 }
650
651 case ISD::SHL: {
652 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
653 ConstantSDNode *CountNode =
654 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
655 if (!CountNode)
656 return false;
657
658 uint64_t Count = CountNode->getZExtValue();
659 if (Count < 1 ||
660 Count >= RISBG.BitSize ||
661 !refineRISBGMask(RISBG, allOnes(RISBG.BitSize - Count) << Count))
662 return false;
663
664 RISBG.Rotate = (RISBG.Rotate + Count) & 63;
665 RISBG.Input = N.getOperand(0);
666 return true;
667 }
668
669 case ISD::SRL: {
670 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
671 // which is similar to SLL above.
672 ConstantSDNode *CountNode =
673 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
674 if (!CountNode)
675 return false;
676
677 uint64_t Count = CountNode->getZExtValue();
678 if (Count < 1 ||
679 Count >= RISBG.BitSize ||
680 !refineRISBGMask(RISBG, allOnes(RISBG.BitSize - Count)))
681 return false;
682
683 RISBG.Rotate = (RISBG.Rotate - Count) & 63;
684 RISBG.Input = N.getOperand(0);
685 return true;
686 }
687
688 case ISD::SRA: {
689 // Treat (sra X, count) as (rotl X, size-count) as long as the top
690 // count bits from Ops.Input are ignored.
691 ConstantSDNode *CountNode =
692 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
693 if (!CountNode)
694 return false;
695
696 uint64_t Count = CountNode->getZExtValue();
697 if (RISBG.Rotate != 0 ||
698 Count < 1 ||
699 Count >= RISBG.BitSize ||
700 RISBG.Start < 64 - (RISBG.BitSize - Count))
701 return false;
702
703 RISBG.Rotate = -Count & 63;
704 RISBG.Input = N.getOperand(0);
705 return true;
706 }
707 default:
708 return false;
709 }
710}
711
Richard Sandiford84f54a32013-07-11 08:59:12 +0000712SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
713 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
714 return SDValue(N, 0);
715}
716
717SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
718 if (N.getValueType() == MVT::i32 && VT == MVT::i64) {
719 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
720 SDNode *Insert = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG,
721 DL, VT, getUNDEF64(DL), N, Index);
722 return SDValue(Insert, 0);
723 }
724 if (N.getValueType() == MVT::i64 && VT == MVT::i32) {
725 SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
726 SDNode *Extract = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
727 DL, VT, N, Index);
728 return SDValue(Extract, 0);
729 }
730 assert(N.getValueType() == VT && "Unexpected value types");
731 return N;
732}
733
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000734SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
735 RISBGOperands RISBG(SDValue(N, 0));
736 unsigned Count = 0;
737 while (expandRISBG(RISBG))
738 Count += 1;
739 // Prefer to use normal shift instructions over RISBG, since they can handle
740 // all cases and are sometimes shorter. Prefer to use RISBG for ANDs though,
741 // since it is effectively a three-operand instruction in this case,
742 // and since it can handle some masks that AND IMMEDIATE can't.
743 if (Count < (N->getOpcode() == ISD::AND ? 1 : 2))
744 return 0;
745
746 // Prefer register extensions like LLC over RISBG.
747 if (RISBG.Rotate == 0 &&
748 (RISBG.Start == 32 || RISBG.Start == 48 || RISBG.Start == 56) &&
749 RISBG.End == 63)
750 return 0;
751
Richard Sandiford84f54a32013-07-11 08:59:12 +0000752 EVT VT = N->getValueType(0);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000753 SDValue Ops[5] = {
754 getUNDEF64(SDLoc(N)),
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000755 convertTo(SDLoc(N), MVT::i64, RISBG.Input),
756 CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
757 CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
758 CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000759 };
760 N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
761 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
762}
763
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000764SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
765 SDValue Op0, uint64_t UpperVal,
766 uint64_t LowerVal) {
767 EVT VT = Node->getValueType(0);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000768 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000769 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
770 if (Op0.getNode())
771 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
772 Upper = SDValue(Select(Upper.getNode()), 0);
773
774 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
775 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
776 return Or.getNode();
777}
778
Richard Sandiford97846492013-07-09 09:46:39 +0000779// N is a (store (load ...), ...) pattern. Return true if it can use MVC.
780bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
781 StoreSDNode *Store = cast<StoreSDNode>(N);
782 LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
783
784 // MVC is logically a bytewise copy, so can't be used for volatile accesses.
785 if (Load->isVolatile() || Store->isVolatile())
786 return false;
787
788 // Prefer not to use MVC if either address can use ... RELATIVE LONG
789 // instructions.
790 assert(Load->getMemoryVT() == Store->getMemoryVT() &&
791 "Should already have checked that the types match");
792 uint64_t Size = Load->getMemoryVT().getStoreSize();
793 if (Size > 1 && Size <= 8) {
794 // Prefer LHRL, LRL and LGRL.
795 if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
796 return false;
797 // Prefer STHRL, STRL and STGRL.
798 if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
799 return false;
800 }
801
802 // There's no chance of overlap if the load is invariant.
803 if (Load->isInvariant())
804 return true;
805
806 // If both operands are aligned, they must be equal or not overlap.
807 if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
808 return true;
809
810 // Otherwise we need to check whether there's an alias.
811 const Value *V1 = Load->getSrcValue();
812 const Value *V2 = Store->getSrcValue();
813 if (!V1 || !V2)
814 return false;
815
816 int64_t End1 = Load->getSrcValueOffset() + Size;
817 int64_t End2 = Store->getSrcValueOffset() + Size;
818 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
819 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
820}
821
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000822SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
823 // Dump information about the Node being selected
824 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
825
826 // If we have a custom node, we already have selected!
827 if (Node->isMachineOpcode()) {
828 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
829 return 0;
830 }
831
832 unsigned Opcode = Node->getOpcode();
Richard Sandiford84f54a32013-07-11 08:59:12 +0000833 SDNode *ResNode = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000834 switch (Opcode) {
835 case ISD::OR:
836 case ISD::XOR:
837 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
838 // split the operation into two.
839 if (Node->getValueType(0) == MVT::i64)
840 if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
841 uint64_t Val = Op1->getZExtValue();
842 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
843 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
844 Val - uint32_t(Val), uint32_t(Val));
845 }
846 break;
847
Richard Sandiford84f54a32013-07-11 08:59:12 +0000848 case ISD::AND:
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000849 case ISD::ROTL:
850 case ISD::SHL:
851 case ISD::SRL:
852 ResNode = tryRISBGZero(Node);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000853 break;
854
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000855 case ISD::Constant:
856 // If this is a 64-bit constant that is out of the range of LLILF,
857 // LLIHF and LGFI, split it into two 32-bit pieces.
858 if (Node->getValueType(0) == MVT::i64) {
859 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
860 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
861 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
862 Val - uint32_t(Val), uint32_t(Val));
863 }
864 break;
865
866 case ISD::ATOMIC_LOAD_SUB:
867 // Try to convert subtractions of constants to additions.
868 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
869 uint64_t Value = -Op2->getZExtValue();
870 EVT VT = Node->getValueType(0);
871 if (VT == MVT::i32 || isInt<32>(Value)) {
872 SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
873 CurDAG->getConstant(int32_t(Value), VT) };
874 Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
875 Node->getVTList(), Ops, array_lengthof(Ops));
876 }
877 }
878 break;
879 }
880
881 // Select the default instruction
Richard Sandiford84f54a32013-07-11 08:59:12 +0000882 if (!ResNode)
883 ResNode = SelectCode(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000884
885 DEBUG(errs() << "=> ";
886 if (ResNode == NULL || ResNode == Node)
887 Node->dump(CurDAG);
888 else
889 ResNode->dump(CurDAG);
890 errs() << "\n";
891 );
892 return ResNode;
893}
894
895bool SystemZDAGToDAGISel::
896SelectInlineAsmMemoryOperand(const SDValue &Op,
897 char ConstraintCode,
898 std::vector<SDValue> &OutOps) {
899 assert(ConstraintCode == 'm' && "Unexpected constraint code");
900 // Accept addresses with short displacements, which are compatible
901 // with Q, R, S and T. But keep the index operand for future expansion.
902 SDValue Base, Disp, Index;
903 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
904 SystemZAddressingMode::Disp12Only,
905 Op, Base, Disp, Index))
906 return true;
907 OutOps.push_back(Base);
908 OutOps.push_back(Disp);
909 OutOps.push_back(Index);
910 return false;
911}