Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 1 | //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass reassociates n-ary add expressions and eliminates the redundancy |
| 11 | // exposed by the reassociation. |
| 12 | // |
| 13 | // A motivating example: |
| 14 | // |
| 15 | // void foo(int a, int b) { |
| 16 | // bar(a + b); |
| 17 | // bar((a + 2) + b); |
| 18 | // } |
| 19 | // |
| 20 | // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify |
| 21 | // the above code to |
| 22 | // |
| 23 | // int t = a + b; |
| 24 | // bar(t); |
| 25 | // bar(t + 2); |
| 26 | // |
| 27 | // However, the Reassociate pass is unable to do that because it processes each |
| 28 | // instruction individually and believes (a + 2) + b is the best form according |
| 29 | // to its rank system. |
| 30 | // |
| 31 | // To address this limitation, NaryReassociate reassociates an expression in a |
| 32 | // form that reuses existing instructions. As a result, NaryReassociate can |
| 33 | // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that |
| 34 | // (a + b) is computed before. |
| 35 | // |
| 36 | // NaryReassociate works as follows. For every instruction in the form of (a + |
| 37 | // b) + c, it checks whether a + c or b + c is already computed by a dominating |
| 38 | // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 39 | // c) + a and removes the redundancy accordingly. To efficiently look up whether |
| 40 | // an expression is computed before, we store each instruction seen and its SCEV |
| 41 | // into an SCEV-to-instruction map. |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 42 | // |
| 43 | // Although the algorithm pattern-matches only ternary additions, it |
| 44 | // automatically handles many >3-ary expressions by walking through the function |
| 45 | // in the depth-first order. For example, given |
| 46 | // |
| 47 | // (a + c) + d |
| 48 | // ((a + b) + c) + d |
| 49 | // |
| 50 | // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites |
| 51 | // ((a + c) + b) + d into ((a + c) + d) + b. |
| 52 | // |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 53 | // Finally, the above dominator-based algorithm may need to be run multiple |
| 54 | // iterations before emitting optimal code. One source of this need is that we |
| 55 | // only split an operand when it is used only once. The above algorithm can |
| 56 | // eliminate an instruction and decrease the usage count of its operands. As a |
| 57 | // result, an instruction that previously had multiple uses may become a |
| 58 | // single-use instruction and thus eligible for split consideration. For |
| 59 | // example, |
| 60 | // |
| 61 | // ac = a + c |
| 62 | // ab = a + b |
| 63 | // abc = ab + c |
| 64 | // ab2 = ab + b |
| 65 | // ab2c = ab2 + c |
| 66 | // |
| 67 | // In the first iteration, we cannot reassociate abc to ac+b because ab is used |
| 68 | // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a |
| 69 | // result, ab2 becomes dead and ab will be used only once in the second |
| 70 | // iteration. |
| 71 | // |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 72 | // Limitations and TODO items: |
| 73 | // |
| 74 | // 1) We only considers n-ary adds for now. This should be extended and |
| 75 | // generalized. |
| 76 | // |
| 77 | // 2) Besides arithmetic operations, similar reassociation can be applied to |
| 78 | // GEPs. For example, if |
| 79 | // X = &arr[a] |
| 80 | // dominates |
| 81 | // Y = &arr[a + b] |
| 82 | // we may rewrite Y into X + b. |
| 83 | // |
| 84 | //===----------------------------------------------------------------------===// |
| 85 | |
| 86 | #include "llvm/Analysis/ScalarEvolution.h" |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 87 | #include "llvm/Analysis/TargetLibraryInfo.h" |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 88 | #include "llvm/IR/Dominators.h" |
| 89 | #include "llvm/IR/Module.h" |
| 90 | #include "llvm/IR/PatternMatch.h" |
| 91 | #include "llvm/Transforms/Scalar.h" |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 92 | #include "llvm/Transforms/Utils/Local.h" |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 93 | using namespace llvm; |
| 94 | using namespace PatternMatch; |
| 95 | |
| 96 | #define DEBUG_TYPE "nary-reassociate" |
| 97 | |
| 98 | namespace { |
| 99 | class NaryReassociate : public FunctionPass { |
| 100 | public: |
| 101 | static char ID; |
| 102 | |
| 103 | NaryReassociate(): FunctionPass(ID) { |
| 104 | initializeNaryReassociatePass(*PassRegistry::getPassRegistry()); |
| 105 | } |
| 106 | |
| 107 | bool runOnFunction(Function &F) override; |
| 108 | |
| 109 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 110 | AU.addPreserved<DominatorTreeWrapperPass>(); |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 111 | AU.addPreserved<ScalarEvolution>(); |
| 112 | AU.addPreserved<TargetLibraryInfoWrapperPass>(); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 113 | AU.addRequired<DominatorTreeWrapperPass>(); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 114 | AU.addRequired<ScalarEvolution>(); |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 115 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 116 | AU.setPreservesCFG(); |
| 117 | } |
| 118 | |
| 119 | private: |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 120 | // Runs only one iteration of the dominator-based algorithm. See the header |
| 121 | // comments for why we need multiple iterations. |
| 122 | bool doOneIteration(Function &F); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 123 | // Reasssociates I to a better form. |
| 124 | Instruction *tryReassociateAdd(Instruction *I); |
| 125 | // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed. |
| 126 | Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I); |
| 127 | // Rewrites I to LHS + RHS if LHS is computed already. |
| 128 | Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I); |
| 129 | |
| 130 | DominatorTree *DT; |
| 131 | ScalarEvolution *SE; |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 132 | TargetLibraryInfo *TLI; |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 133 | // A lookup table quickly telling which instructions compute the given SCEV. |
| 134 | // Note that there can be multiple instructions at different locations |
Jingyue Wu | 771dfe9 | 2015-04-16 18:42:31 +0000 | [diff] [blame] | 135 | // computing to the same SCEV, so we map a SCEV to an instruction list. For |
| 136 | // example, |
| 137 | // |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 138 | // if (p1) |
| 139 | // foo(a + b); |
| 140 | // if (p2) |
| 141 | // bar(a + b); |
| 142 | DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs; |
| 143 | }; |
| 144 | } // anonymous namespace |
| 145 | |
| 146 | char NaryReassociate::ID = 0; |
| 147 | INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation", |
| 148 | false, false) |
| 149 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 150 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 151 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 152 | INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation", |
| 153 | false, false) |
| 154 | |
| 155 | FunctionPass *llvm::createNaryReassociatePass() { |
| 156 | return new NaryReassociate(); |
| 157 | } |
| 158 | |
| 159 | bool NaryReassociate::runOnFunction(Function &F) { |
| 160 | if (skipOptnoneFunction(F)) |
| 161 | return false; |
| 162 | |
| 163 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 164 | SE = &getAnalysis<ScalarEvolution>(); |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 165 | TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 166 | |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 167 | bool Changed = false, ChangedInThisIteration; |
| 168 | do { |
| 169 | ChangedInThisIteration = doOneIteration(F); |
| 170 | Changed |= ChangedInThisIteration; |
| 171 | } while (ChangedInThisIteration); |
| 172 | return Changed; |
| 173 | } |
| 174 | |
| 175 | bool NaryReassociate::doOneIteration(Function &F) { |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 176 | bool Changed = false; |
| 177 | SeenExprs.clear(); |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 178 | // Traverse the dominator tree in the depth-first order. This order makes sure |
| 179 | // all bases of a candidate are in Candidates when we process it. |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 180 | for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT); |
| 181 | Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) { |
| 182 | BasicBlock *BB = Node->getBlock(); |
| 183 | for (auto I = BB->begin(); I != BB->end(); ++I) { |
| 184 | if (I->getOpcode() == Instruction::Add) { |
| 185 | if (Instruction *NewI = tryReassociateAdd(I)) { |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 186 | Changed = true; |
| 187 | SE->forgetValue(I); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 188 | I->replaceAllUsesWith(NewI); |
Jingyue Wu | 8579b81 | 2015-04-17 00:25:10 +0000 | [diff] [blame^] | 189 | RecursivelyDeleteTriviallyDeadInstructions(I, TLI); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 190 | I = NewI; |
| 191 | } |
| 192 | // We should add the rewritten instruction because tryReassociateAdd may |
| 193 | // have invalidated the original one. |
| 194 | SeenExprs[SE->getSCEV(I)].push_back(I); |
| 195 | } |
| 196 | } |
| 197 | } |
| 198 | return Changed; |
| 199 | } |
| 200 | |
| 201 | Instruction *NaryReassociate::tryReassociateAdd(Instruction *I) { |
| 202 | Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); |
| 203 | if (auto *NewI = tryReassociateAdd(LHS, RHS, I)) |
| 204 | return NewI; |
| 205 | if (auto *NewI = tryReassociateAdd(RHS, LHS, I)) |
| 206 | return NewI; |
| 207 | return nullptr; |
| 208 | } |
| 209 | |
| 210 | Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS, |
| 211 | Instruction *I) { |
| 212 | Value *A = nullptr, *B = nullptr; |
| 213 | // To be conservative, we reassociate I only when it is the only user of A+B. |
| 214 | if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) { |
| 215 | // I = (A + B) + RHS |
| 216 | // = (A + RHS) + B or (B + RHS) + A |
| 217 | const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); |
| 218 | const SCEV *RHSExpr = SE->getSCEV(RHS); |
| 219 | if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I)) |
| 220 | return NewI; |
| 221 | if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I)) |
| 222 | return NewI; |
| 223 | } |
| 224 | return nullptr; |
| 225 | } |
| 226 | |
| 227 | Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr, |
| 228 | Value *RHS, Instruction *I) { |
| 229 | auto Pos = SeenExprs.find(LHSExpr); |
| 230 | // Bail out if LHSExpr is not previously seen. |
| 231 | if (Pos == SeenExprs.end()) |
| 232 | return nullptr; |
| 233 | |
| 234 | auto &LHSCandidates = Pos->second; |
Jingyue Wu | 771dfe9 | 2015-04-16 18:42:31 +0000 | [diff] [blame] | 235 | // Look for the closest dominator LHS of I that computes LHSExpr, and replace |
| 236 | // I with LHS + RHS. |
| 237 | // |
| 238 | // Because we traverse the dominator tree in the pre-order, a |
| 239 | // candidate that doesn't dominate the current instruction won't dominate any |
| 240 | // future instruction either. Therefore, we pop it out of the stack. This |
| 241 | // optimization makes the algorithm O(n). |
| 242 | while (!LHSCandidates.empty()) { |
| 243 | Instruction *LHS = LHSCandidates.back(); |
| 244 | if (DT->dominates(LHS, I)) { |
| 245 | Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 246 | NewI->takeName(I); |
| 247 | return NewI; |
| 248 | } |
Jingyue Wu | 771dfe9 | 2015-04-16 18:42:31 +0000 | [diff] [blame] | 249 | LHSCandidates.pop_back(); |
Jingyue Wu | 8cb6b2a | 2015-04-14 04:59:22 +0000 | [diff] [blame] | 250 | } |
| 251 | return nullptr; |
| 252 | } |