blob: 111cfa9c6d17b9c5a753f5af1db114b57d41fb82 [file] [log] [blame]
Quentin Colombet8e8e85c2016-04-05 19:06:01 +00001//===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the RegBankSelect class.
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
Quentin Colombetcfd97b92016-05-20 00:35:26 +000014#include "llvm/ADT/PostOrderIterator.h"
Tim Northover69fa84a2016-10-14 22:18:18 +000015#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000016#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
Quentin Colombet55650752016-05-20 00:49:10 +000017#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
18#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000019#include "llvm/CodeGen/MachineRegisterInfo.h"
Quentin Colombetacb857b2016-08-27 02:38:27 +000020#include "llvm/CodeGen/TargetPassConfig.h"
Quentin Colombeta5530122016-05-20 17:36:54 +000021#include "llvm/IR/Function.h"
Quentin Colombetcfd97b92016-05-20 00:35:26 +000022#include "llvm/Support/BlockFrequency.h"
Quentin Colombeta41272f2016-06-08 15:49:23 +000023#include "llvm/Support/CommandLine.h"
Quentin Colombete16f5612016-04-07 23:53:55 +000024#include "llvm/Support/Debug.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000025#include "llvm/Target/TargetSubtargetInfo.h"
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000026
27#define DEBUG_TYPE "regbankselect"
28
29using namespace llvm;
30
Quentin Colombeta41272f2016-06-08 15:49:23 +000031static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
32 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
33 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
34 "Run the Fast mode (default mapping)"),
35 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
Mehdi Amini732afdd2016-10-08 19:41:06 +000036 "Use the Greedy mode (best local mapping)")));
Quentin Colombeta41272f2016-06-08 15:49:23 +000037
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000038char RegBankSelect::ID = 0;
Quentin Colombetc13ea882016-09-23 17:50:06 +000039INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
Quentin Colombet25fcef72016-05-20 17:54:09 +000040 "Assign register bank of generic virtual registers",
41 false, false);
42INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
43INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
Quentin Colombetacb857b2016-08-27 02:38:27 +000044INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
Quentin Colombetc13ea882016-09-23 17:50:06 +000045INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
Quentin Colombet25fcef72016-05-20 17:54:09 +000046 "Assign register bank of generic virtual registers", false,
Tim Northover884b47e2016-07-26 03:29:18 +000047 false)
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000048
Quentin Colombet46df7222016-05-20 16:55:35 +000049RegBankSelect::RegBankSelect(Mode RunningMode)
Quentin Colombet25fcef72016-05-20 17:54:09 +000050 : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr),
51 MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) {
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000052 initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
Quentin Colombeta41272f2016-06-08 15:49:23 +000053 if (RegBankSelectMode.getNumOccurrences() != 0) {
54 OptMode = RegBankSelectMode;
55 if (RegBankSelectMode != RunningMode)
56 DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
57 }
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000058}
59
Quentin Colombet40ad5732016-04-07 18:19:27 +000060void RegBankSelect::init(MachineFunction &MF) {
61 RBI = MF.getSubtarget().getRegBankInfo();
62 assert(RBI && "Cannot work without RegisterBankInfo");
63 MRI = &MF.getRegInfo();
Quentin Colombetaac71a42016-04-07 21:32:23 +000064 TRI = MF.getSubtarget().getRegisterInfo();
Quentin Colombetacb857b2016-08-27 02:38:27 +000065 TPC = &getAnalysis<TargetPassConfig>();
Quentin Colombet25fcef72016-05-20 17:54:09 +000066 if (OptMode != Mode::Fast) {
67 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
68 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
69 } else {
70 MBFI = nullptr;
71 MBPI = nullptr;
72 }
Quentin Colombet40ad5732016-04-07 18:19:27 +000073 MIRBuilder.setMF(MF);
74}
75
Quentin Colombet25fcef72016-05-20 17:54:09 +000076void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
77 if (OptMode != Mode::Fast) {
78 // We could preserve the information from these two analysis but
79 // the APIs do not allow to do so yet.
80 AU.addRequired<MachineBlockFrequencyInfo>();
81 AU.addRequired<MachineBranchProbabilityInfo>();
82 }
Quentin Colombetacb857b2016-08-27 02:38:27 +000083 AU.addRequired<TargetPassConfig>();
Quentin Colombet25fcef72016-05-20 17:54:09 +000084 MachineFunctionPass::getAnalysisUsage(AU);
85}
86
Quentin Colombet40ad5732016-04-07 18:19:27 +000087bool RegBankSelect::assignmentMatch(
Quentin Colombet0d77da42016-05-20 00:42:57 +000088 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
89 bool &OnlyAssign) const {
90 // By default we assume we will have to repair something.
91 OnlyAssign = false;
Quentin Colombet40ad5732016-04-07 18:19:27 +000092 // Each part of a break down needs to end up in a different register.
93 // In other word, Reg assignement does not match.
Quentin Colombet0afa7d62016-09-23 00:14:30 +000094 if (ValMapping.NumBreakDowns > 1)
Quentin Colombet40ad5732016-04-07 18:19:27 +000095 return false;
96
Quentin Colombet6d6d6af2016-04-08 16:48:16 +000097 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
98 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
Quentin Colombet0d77da42016-05-20 00:42:57 +000099 // Reg is free of assignment, a simple assignment will make the
100 // register bank to match.
101 OnlyAssign = CurRegBank == nullptr;
Quentin Colombet6d6d6af2016-04-08 16:48:16 +0000102 DEBUG(dbgs() << "Does assignment already match: ";
103 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
104 dbgs() << " against ";
105 assert(DesiredRegBrank && "The mapping must be valid");
106 dbgs() << *DesiredRegBrank << '\n';);
107 return CurRegBank == DesiredRegBrank;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000108}
109
Quentin Colombetacb857b2016-08-27 02:38:27 +0000110bool RegBankSelect::repairReg(
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000111 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
112 RegBankSelect::RepairingPlacement &RepairPt,
Quentin Colombet06ef4e22016-06-08 16:24:55 +0000113 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000114 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
Quentin Colombetacb857b2016-08-27 02:38:27 +0000115 return false;
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000116 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
Quentin Colombetf33e3652016-06-08 16:30:55 +0000117 // An empty range of new register means no repairing.
118 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
119
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000120 // Assume we are repairing a use and thus, the original reg will be
121 // the source of the repairing.
122 unsigned Src = MO.getReg();
123 unsigned Dst = *NewVRegs.begin();
Quentin Colombet904a2c72016-04-12 00:12:59 +0000124
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000125 // If we repair a definition, swap the source and destination for
126 // the repairing.
127 if (MO.isDef())
Quentin Colombet904a2c72016-04-12 00:12:59 +0000128 std::swap(Src, Dst);
Quentin Colombet904a2c72016-04-12 00:12:59 +0000129
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000130 assert((RepairPt.getNumInsertPoints() == 1 ||
131 TargetRegisterInfo::isPhysicalRegister(Dst)) &&
132 "We are about to create several defs for Dst");
Quentin Colombet904a2c72016-04-12 00:12:59 +0000133
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000134 // Build the instruction used to repair, then clone it at the right places.
Tim Northover756eca32016-07-26 16:45:30 +0000135 MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000136 MI->removeFromParent();
137 DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst)
138 << '\n');
139 // TODO:
140 // Check if MI is legal. if not, we need to legalize all the
141 // instructions we are going to insert.
142 std::unique_ptr<MachineInstr *[]> NewInstrs(
143 new MachineInstr *[RepairPt.getNumInsertPoints()]);
144 bool IsFirst = true;
145 unsigned Idx = 0;
146 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
147 MachineInstr *CurMI;
148 if (IsFirst)
149 CurMI = MI;
150 else
151 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
152 InsertPt->insert(*CurMI);
153 NewInstrs[Idx++] = CurMI;
154 IsFirst = false;
155 }
156 // TODO:
157 // Legalize NewInstrs if need be.
Quentin Colombetacb857b2016-08-27 02:38:27 +0000158 return true;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000159}
160
Quentin Colombetf2723a22016-05-21 01:43:25 +0000161uint64_t RegBankSelect::getRepairCost(
162 const MachineOperand &MO,
163 const RegisterBankInfo::ValueMapping &ValMapping) const {
164 assert(MO.isReg() && "We should only repair register operand");
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000165 assert(ValMapping.NumBreakDowns && "Nothing to map??");
Quentin Colombetf2723a22016-05-21 01:43:25 +0000166
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000167 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
Quentin Colombetf2723a22016-05-21 01:43:25 +0000168 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
169 // If MO does not have a register bank, we should have just been
170 // able to set one unless we have to break the value down.
171 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
172 // Def: Val <- NewDefs
173 // Same number of values: copy
174 // Different number: Val = build_sequence Defs1, Defs2, ...
175 // Use: NewSources <- Val.
176 // Same number of values: copy.
177 // Different number: Src1, Src2, ... =
178 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
179 // We should remember that this value is available somewhere else to
180 // coalesce the value.
181
182 if (IsSameNumOfValues) {
183 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
184 // If we repair a definition, swap the source and destination for
185 // the repairing.
186 if (MO.isDef())
187 std::swap(CurRegBank, DesiredRegBrank);
Quentin Colombetd6886bd2016-06-08 17:39:43 +0000188 // TODO: It may be possible to actually avoid the copy.
189 // If we repair something where the source is defined by a copy
190 // and the source of that copy is on the right bank, we can reuse
191 // it for free.
192 // E.g.,
193 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
194 // = op RegToRepair<BankA>
195 // We can simply propagate AlternativeSrc instead of copying RegToRepair
196 // into a new virtual register.
197 // We would also need to propagate this information in the
198 // repairing placement.
Quentin Colombetcfbdee22016-06-08 01:11:03 +0000199 unsigned Cost =
200 RBI->copyCost(*DesiredRegBrank, *CurRegBank,
201 RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI));
Quentin Colombetf2723a22016-05-21 01:43:25 +0000202 // TODO: use a dedicated constant for ImpossibleCost.
203 if (Cost != UINT_MAX)
204 return Cost;
Quentin Colombetacb857b2016-08-27 02:38:27 +0000205 assert(!TPC->isGlobalISelAbortEnabled() &&
206 "Legalization not available yet");
Quentin Colombetf2723a22016-05-21 01:43:25 +0000207 // Return the legalization cost of that repairing.
208 }
Quentin Colombetacb857b2016-08-27 02:38:27 +0000209 assert(!TPC->isGlobalISelAbortEnabled() &&
210 "Complex repairing not implemented yet");
211 return UINT_MAX;
Quentin Colombetf2723a22016-05-21 01:43:25 +0000212}
213
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000214RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
215 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
216 SmallVectorImpl<RepairingPlacement> &RepairPts) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000217 assert(!PossibleMappings.empty() &&
218 "Do not know how to map this instruction");
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000219
220 RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
221 MappingCost Cost = MappingCost::ImpossibleCost();
222 SmallVector<RepairingPlacement, 4> LocalRepairPts;
223 for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) {
224 MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost);
225 if (CurCost < Cost) {
Quentin Colombet0b63b312017-01-11 00:48:41 +0000226 DEBUG(dbgs() << "New best: " << CurCost << '\n');
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000227 Cost = CurCost;
228 BestMapping = &CurMapping;
229 RepairPts.clear();
230 for (RepairingPlacement &RepairPt : LocalRepairPts)
231 RepairPts.emplace_back(std::move(RepairPt));
232 }
233 }
Quentin Colombetacb857b2016-08-27 02:38:27 +0000234 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
235 // If none of the mapping worked that means they are all impossible.
236 // Thus, pick the first one and set an impossible repairing point.
237 // It will trigger the failed isel mode.
238 BestMapping = &(*PossibleMappings.begin());
239 RepairPts.emplace_back(
240 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
241 } else
242 assert(BestMapping && "No suitable mapping for instruction");
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000243 return *BestMapping;
244}
245
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000246void RegBankSelect::tryAvoidingSplit(
247 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
248 const RegisterBankInfo::ValueMapping &ValMapping) const {
249 const MachineInstr &MI = *MO.getParent();
250 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
251 // Splitting should only occur for PHIs or between terminators,
252 // because we only do local repairing.
253 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
254
255 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
256 "Repairing placement does not match operand");
257
258 // If we need splitting for phis, that means it is because we
259 // could not find an insertion point before the terminators of
260 // the predecessor block for this argument. In other words,
261 // the input value is defined by one of the terminators.
262 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
263
264 // We split to repair the use of a phi or a terminator.
265 if (!MO.isDef()) {
266 if (MI.isTerminator()) {
267 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
268 "Need to split for the first terminator?!");
269 } else {
270 // For the PHI case, the split may not be actually required.
271 // In the copy case, a phi is already a copy on the incoming edge,
272 // therefore there is no need to split.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000273 if (ValMapping.NumBreakDowns == 1)
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000274 // This is a already a copy, there is nothing to do.
275 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
276 }
277 return;
278 }
279
280 // At this point, we need to repair a defintion of a terminator.
281
282 // Technically we need to fix the def of MI on all outgoing
283 // edges of MI to keep the repairing local. In other words, we
284 // will create several definitions of the same register. This
285 // does not work for SSA unless that definition is a physical
286 // register.
287 // However, there are other cases where we can get away with
288 // that while still keeping the repairing local.
289 assert(MI.isTerminator() && MO.isDef() &&
290 "This code is for the def of a terminator");
291
292 // Since we use RPO traversal, if we need to repair a definition
293 // this means this definition could be:
294 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
295 // uses of a phi.), or
296 // 2. Part of a target specific instruction (i.e., the target applied
297 // some register class constraints when creating the instruction.)
298 // If the constraints come for #2, the target said that another mapping
299 // is supported so we may just drop them. Indeed, if we do not change
300 // the number of registers holding that value, the uses will get fixed
301 // when we get to them.
302 // Uses in PHIs may have already been proceeded though.
303 // If the constraints come for #1, then, those are weak constraints and
304 // no actual uses may rely on them. However, the problem remains mainly
305 // the same as for #2. If the value stays in one register, we could
306 // just switch the register bank of the definition, but we would need to
307 // account for a repairing cost for each phi we silently change.
308 //
309 // In any case, if the value needs to be broken down into several
310 // registers, the repairing is not local anymore as we need to patch
311 // every uses to rebuild the value in just one register.
312 //
313 // To summarize:
314 // - If the value is in a physical register, we can do the split and
315 // fix locally.
316 // Otherwise if the value is in a virtual register:
317 // - If the value remains in one register, we do not have to split
318 // just switching the register bank would do, but we need to account
319 // in the repairing cost all the phi we changed.
320 // - If the value spans several registers, then we cannot do a local
321 // repairing.
322
323 // Check if this is a physical or virtual register.
324 unsigned Reg = MO.getReg();
325 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
326 // We are going to split every outgoing edges.
327 // Check that this is possible.
328 // FIXME: The machine representation is currently broken
329 // since it also several terminators in one basic block.
330 // Because of that we would technically need a way to get
331 // the targets of just one terminator to know which edges
332 // we have to split.
333 // Assert that we do not hit the ill-formed representation.
334
335 // If there are other terminators before that one, some of
336 // the outgoing edges may not be dominated by this definition.
337 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
338 "Do not know which outgoing edges are relevant");
339 const MachineInstr *Next = MI.getNextNode();
340 assert((!Next || Next->isUnconditionalBranch()) &&
341 "Do not know where each terminator ends up");
342 if (Next)
343 // If the next terminator uses Reg, this means we have
344 // to split right after MI and thus we need a way to ask
345 // which outgoing edges are affected.
346 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
347 // We will split all the edges and repair there.
348 } else {
349 // This is a virtual register defined by a terminator.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000350 if (ValMapping.NumBreakDowns == 1) {
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000351 // There is nothing to repair, but we may actually lie on
352 // the repairing cost because of the PHIs already proceeded
353 // as already stated.
354 // Though the code will be correct.
355 assert(0 && "Repairing cost may not be accurate");
356 } else {
357 // We need to do non-local repairing. Basically, patch all
358 // the uses (i.e., phis) that we already proceeded.
359 // For now, just say this mapping is not possible.
360 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
361 }
362 }
363}
364
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000365RegBankSelect::MappingCost RegBankSelect::computeMapping(
366 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000367 SmallVectorImpl<RepairingPlacement> &RepairPts,
368 const RegBankSelect::MappingCost *BestCost) {
369 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
Quentin Colombete16f5612016-04-07 23:53:55 +0000370
Tim Northoverc1a23852016-12-06 18:38:38 +0000371 if (!InstrMapping.isValid())
372 return MappingCost::ImpossibleCost();
373
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000374 // If mapped with InstrMapping, MI will have the recorded cost.
Quentin Colombet25fcef72016-05-20 17:54:09 +0000375 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000376 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
377 assert(!Saturated && "Possible mapping saturated the cost");
378 DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
379 DEBUG(dbgs() << "With: " << InstrMapping << '\n');
380 RepairPts.clear();
Quentin Colombet0b63b312017-01-11 00:48:41 +0000381 if (BestCost && Cost > *BestCost) {
382 DEBUG(dbgs() << "Mapping is too expensive from the start\n");
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000383 return Cost;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000384 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000385
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000386 // Moreover, to realize this mapping, the register bank of each operand must
387 // match this mapping. In other words, we may need to locally reassign the
388 // register banks. Account for that repairing cost as well.
389 // In this context, local means in the surrounding of MI.
Quentin Colombet1b016772016-09-29 19:51:46 +0000390 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
391 OpIdx != EndOpIdx; ++OpIdx) {
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000392 const MachineOperand &MO = MI.getOperand(OpIdx);
Quentin Colombet40ad5732016-04-07 18:19:27 +0000393 if (!MO.isReg())
394 continue;
395 unsigned Reg = MO.getReg();
396 if (!Reg)
397 continue;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000398 DEBUG(dbgs() << "Opd" << OpIdx << '\n');
Quentin Colombet40ad5732016-04-07 18:19:27 +0000399 const RegisterBankInfo::ValueMapping &ValMapping =
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000400 InstrMapping.getOperandMapping(OpIdx);
401 // If Reg is already properly mapped, this is free.
402 bool Assign;
403 if (assignmentMatch(Reg, ValMapping, Assign)) {
Quentin Colombet0b63b312017-01-11 00:48:41 +0000404 DEBUG(dbgs() << "=> is free (match).\n");
Quentin Colombet40ad5732016-04-07 18:19:27 +0000405 continue;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000406 }
407 if (Assign) {
Quentin Colombet0b63b312017-01-11 00:48:41 +0000408 DEBUG(dbgs() << "=> is free (simple assignment).\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000409 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
410 RepairingPlacement::Reassign));
411 continue;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000412 }
Quentin Colombet904a2c72016-04-12 00:12:59 +0000413
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000414 // Find the insertion point for the repairing code.
415 RepairPts.emplace_back(
416 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
417 RepairingPlacement &RepairPt = RepairPts.back();
418
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000419 // If we need to split a basic block to materialize this insertion point,
420 // we may give a higher cost to this mapping.
421 // Nevertheless, we may get away with the split, so try that first.
422 if (RepairPt.hasSplit())
423 tryAvoidingSplit(RepairPt, MO, ValMapping);
424
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000425 // Check that the materialization of the repairing is possible.
Quentin Colombet0b63b312017-01-11 00:48:41 +0000426 if (!RepairPt.canMaterialize()) {
427 DEBUG(dbgs() << "Mapping involves impossible repairing\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000428 return MappingCost::ImpossibleCost();
Quentin Colombet0b63b312017-01-11 00:48:41 +0000429 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000430
431 // Account for the split cost and repair cost.
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000432 // Unless the cost is already saturated or we do not care about the cost.
433 if (!BestCost || Saturated)
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000434 continue;
435
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000436 // To get accurate information we need MBFI and MBPI.
437 // Thus, if we end up here this information should be here.
438 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
439
Quentin Colombet6feaf8202016-06-08 15:40:32 +0000440 // FIXME: We will have to rework the repairing cost model.
441 // The repairing cost depends on the register bank that MO has.
442 // However, when we break down the value into different values,
443 // MO may not have a register bank while still needing repairing.
444 // For the fast mode, we don't compute the cost so that is fine,
445 // but still for the repairing code, we will have to make a choice.
446 // For the greedy mode, we should choose greedily what is the best
447 // choice based on the next use of MO.
448
Quentin Colombetf2723a22016-05-21 01:43:25 +0000449 // Sums up the repairing cost of MO at each insertion point.
450 uint64_t RepairCost = getRepairCost(MO, ValMapping);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000451 // Bias used for splitting: 5%.
452 const uint64_t PercentageForBias = 5;
453 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
454 // We should not need more than a couple of instructions to repair
455 // an assignment. In other words, the computation should not
456 // overflow because the repairing cost is free of basic block
457 // frequency.
458 assert(((RepairCost < RepairCost * PercentageForBias) &&
459 (RepairCost * PercentageForBias <
460 RepairCost * PercentageForBias + 99)) &&
461 "Repairing involves more than a billion of instructions?!");
462 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
463 assert(InsertPt->canMaterialize() && "We should not have made it here");
464 // We will applied some basic block frequency and those uses uint64_t.
465 if (!InsertPt->isSplit())
466 Saturated = Cost.addLocalCost(RepairCost);
467 else {
468 uint64_t CostForInsertPt = RepairCost;
469 // Again we shouldn't overflow here givent that
470 // CostForInsertPt is frequency free at this point.
471 assert(CostForInsertPt + Bias > CostForInsertPt &&
472 "Repairing + split bias overflows");
473 CostForInsertPt += Bias;
474 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
475 // Check if we just overflowed.
476 if ((Saturated = PtCost < CostForInsertPt))
477 Cost.saturate();
478 else
479 Saturated = Cost.addNonLocalCost(PtCost);
480 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000481
482 // Stop looking into what it takes to repair, this is already
483 // too expensive.
Quentin Colombet0b63b312017-01-11 00:48:41 +0000484 if (BestCost && Cost > *BestCost) {
485 DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000486 return Cost;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000487 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000488
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000489 // No need to accumulate more cost information.
490 // We need to still gather the repairing information though.
491 if (Saturated)
492 break;
493 }
Quentin Colombet40ad5732016-04-07 18:19:27 +0000494 }
Quentin Colombet0b63b312017-01-11 00:48:41 +0000495 DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000496 return Cost;
497}
498
Quentin Colombetacb857b2016-08-27 02:38:27 +0000499bool RegBankSelect::applyMapping(
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000500 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
501 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
Quentin Colombetf33e3652016-06-08 16:30:55 +0000502 // OpdMapper will hold all the information needed for the rewritting.
503 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
504
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000505 // First, place the repairing code.
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000506 for (RepairingPlacement &RepairPt : RepairPts) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000507 if (!RepairPt.canMaterialize() ||
508 RepairPt.getKind() == RepairingPlacement::Impossible)
509 return false;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000510 assert(RepairPt.getKind() != RepairingPlacement::None &&
511 "This should not make its way in the list");
512 unsigned OpIdx = RepairPt.getOpIdx();
513 MachineOperand &MO = MI.getOperand(OpIdx);
514 const RegisterBankInfo::ValueMapping &ValMapping =
515 InstrMapping.getOperandMapping(OpIdx);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000516 unsigned Reg = MO.getReg();
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000517
518 switch (RepairPt.getKind()) {
519 case RepairingPlacement::Reassign:
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000520 assert(ValMapping.NumBreakDowns == 1 &&
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000521 "Reassignment should only be for simple mapping");
522 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
523 break;
524 case RepairingPlacement::Insert:
Quentin Colombetf33e3652016-06-08 16:30:55 +0000525 OpdMapper.createVRegs(OpIdx);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000526 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
527 return false;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000528 break;
529 default:
530 llvm_unreachable("Other kind should not happen");
531 }
532 }
533 // Second, rewrite the instruction.
Quentin Colombet33406452016-06-08 21:55:30 +0000534 DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000535 RBI->applyMapping(OpdMapper);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000536 return true;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000537}
538
Quentin Colombetacb857b2016-08-27 02:38:27 +0000539bool RegBankSelect::assignInstr(MachineInstr &MI) {
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000540 DEBUG(dbgs() << "Assign: " << MI);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000541 // Remember the repairing placement for all the operands.
542 SmallVector<RepairingPlacement, 4> RepairPts;
543
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000544 RegisterBankInfo::InstructionMapping BestMapping;
545 if (OptMode == RegBankSelect::Mode::Fast) {
546 BestMapping = RBI->getInstrMapping(MI);
547 MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts);
548 (void)DefaultCost;
Quentin Colombetacb857b2016-08-27 02:38:27 +0000549 if (DefaultCost == MappingCost::ImpossibleCost())
550 return false;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000551 } else {
552 RegisterBankInfo::InstructionMappings PossibleMappings =
553 RBI->getInstrPossibleMappings(MI);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000554 if (PossibleMappings.empty())
555 return false;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000556 BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts));
557 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000558 // Make sure the mapping is valid for MI.
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000559 assert(BestMapping.verify(MI) && "Invalid instruction mapping");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000560
Quentin Colombet0b63b312017-01-11 00:48:41 +0000561 DEBUG(dbgs() << "Best Mapping: " << BestMapping << '\n');
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000562
Quentin Colombet9400bfb2016-06-08 21:55:29 +0000563 // After this call, MI may not be valid anymore.
564 // Do not use it.
Quentin Colombetacb857b2016-08-27 02:38:27 +0000565 return applyMapping(MI, BestMapping, RepairPts);
Quentin Colombet40ad5732016-04-07 18:19:27 +0000566}
567
Quentin Colombet8e8e85c2016-04-05 19:06:01 +0000568bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
Quentin Colombet60495242016-08-27 00:18:24 +0000569 // If the ISel pipeline failed, do not bother running that pass.
570 if (MF.getProperties().hasProperty(
571 MachineFunctionProperties::Property::FailedISel))
572 return false;
573
Quentin Colombete16f5612016-04-07 23:53:55 +0000574 DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
Quentin Colombeta5530122016-05-20 17:36:54 +0000575 const Function *F = MF.getFunction();
576 Mode SaveOptMode = OptMode;
577 if (F->hasFnAttribute(Attribute::OptimizeNone))
578 OptMode = Mode::Fast;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000579 init(MF);
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000580
581#ifndef NDEBUG
582 // Check that our input is fully legal: we require the function to have the
583 // Legalized property, so it should be.
584 // FIXME: This should be in the MachineVerifier, but it can't use the
Tim Northover69fa84a2016-10-14 22:18:18 +0000585 // LegalizerInfo as it's currently in the separate GlobalISel library.
Tim Northover0f140c72016-09-09 11:46:34 +0000586 const MachineRegisterInfo &MRI = MF.getRegInfo();
Tim Northover69fa84a2016-10-14 22:18:18 +0000587 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000588 for (const MachineBasicBlock &MBB : MF) {
589 for (const MachineInstr &MI : MBB) {
Tim Northover0f140c72016-09-09 11:46:34 +0000590 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000591 if (!TPC->isGlobalISelAbortEnabled()) {
592 MF.getProperties().set(
593 MachineFunctionProperties::Property::FailedISel);
594 return false;
595 }
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000596 std::string ErrStorage;
597 raw_string_ostream Err(ErrStorage);
598 Err << "Instruction is not legal: " << MI << '\n';
599 report_fatal_error(Err.str());
600 }
601 }
602 }
603 }
604#endif
605
Quentin Colombet40ad5732016-04-07 18:19:27 +0000606 // Walk the function and assign register banks to all operands.
Quentin Colombetab8c21f2016-04-08 17:19:10 +0000607 // Use a RPOT to make sure all registers are assigned before we choose
608 // the best mapping of the current instruction.
609 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000610 for (MachineBasicBlock *MBB : RPOT) {
611 // Set a sensible insertion point so that subsequent calls to
612 // MIRBuilder.
613 MIRBuilder.setMBB(*MBB);
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000614 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
615 MII != End;) {
616 // MI might be invalidated by the assignment, so move the
617 // iterator before hand.
Ahmed Bougacha45eb3b92016-08-02 11:41:16 +0000618 MachineInstr &MI = *MII++;
619
620 // Ignore target-specific instructions: they should use proper regclasses.
621 if (isTargetSpecificOpcode(MI.getOpcode()))
622 continue;
623
Quentin Colombetacb857b2016-08-27 02:38:27 +0000624 if (!assignInstr(MI)) {
625 if (TPC->isGlobalISelAbortEnabled())
626 report_fatal_error("Unable to map instruction");
627 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
628 return false;
629 }
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000630 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000631 }
Quentin Colombeta5530122016-05-20 17:36:54 +0000632 OptMode = SaveOptMode;
Quentin Colombet8e8e85c2016-04-05 19:06:01 +0000633 return false;
634}
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000635
636//------------------------------------------------------------------------------
Quentin Colombet55650752016-05-20 00:49:10 +0000637// Helper Classes Implementation
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000638//------------------------------------------------------------------------------
Quentin Colombet55650752016-05-20 00:49:10 +0000639RegBankSelect::RepairingPlacement::RepairingPlacement(
640 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
641 RepairingPlacement::RepairingKind Kind)
642 // Default is, we are going to insert code to repair OpIdx.
643 : Kind(Kind),
644 OpIdx(OpIdx),
645 CanMaterialize(Kind != RepairingKind::Impossible),
646 HasSplit(false),
647 P(P) {
648 const MachineOperand &MO = MI.getOperand(OpIdx);
649 assert(MO.isReg() && "Trying to repair a non-reg operand");
650
651 if (Kind != RepairingKind::Insert)
652 return;
653
654 // Repairings for definitions happen after MI, uses happen before.
655 bool Before = !MO.isDef();
656
657 // Check if we are done with MI.
658 if (!MI.isPHI() && !MI.isTerminator()) {
659 addInsertPoint(MI, Before);
660 // We are done with the initialization.
661 return;
662 }
663
664 // Now, look for the special cases.
665 if (MI.isPHI()) {
666 // - PHI must be the first instructions:
667 // * Before, we have to split the related incoming edge.
668 // * After, move the insertion point past the last phi.
669 if (!Before) {
670 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
671 if (It != MI.getParent()->end())
672 addInsertPoint(*It, /*Before*/ true);
673 else
674 addInsertPoint(*(--It), /*Before*/ false);
675 return;
676 }
677 // We repair a use of a phi, we may need to split the related edge.
678 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
679 // Check if we can move the insertion point prior to the
680 // terminators of the predecessor.
681 unsigned Reg = MO.getReg();
682 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
683 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
684 if (It->modifiesRegister(Reg, &TRI)) {
685 // We cannot hoist the repairing code in the predecessor.
686 // Split the edge.
687 addInsertPoint(Pred, *MI.getParent());
688 return;
689 }
690 // At this point, we can insert in Pred.
691
692 // - If It is invalid, Pred is empty and we can insert in Pred
693 // wherever we want.
694 // - If It is valid, It is the first non-terminator, insert after It.
695 if (It == Pred.end())
696 addInsertPoint(Pred, /*Beginning*/ false);
697 else
698 addInsertPoint(*It, /*Before*/ false);
699 } else {
700 // - Terminators must be the last instructions:
701 // * Before, move the insert point before the first terminator.
702 // * After, we have to split the outcoming edges.
703 unsigned Reg = MO.getReg();
704 if (Before) {
705 // Check whether Reg is defined by any terminator.
706 MachineBasicBlock::iterator It = MI;
707 for (auto Begin = MI.getParent()->begin();
708 --It != Begin && It->isTerminator();)
709 if (It->modifiesRegister(Reg, &TRI)) {
710 // Insert the repairing code right after the definition.
711 addInsertPoint(*It, /*Before*/ false);
712 return;
713 }
714 addInsertPoint(*It, /*Before*/ true);
715 return;
716 }
717 // Make sure Reg is not redefined by other terminators, otherwise
718 // we do not know how to split.
719 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
720 ++It != End;)
721 // The machine verifier should reject this kind of code.
722 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
723 // Split each outcoming edges.
724 MachineBasicBlock &Src = *MI.getParent();
725 for (auto &Succ : Src.successors())
726 addInsertPoint(Src, Succ);
727 }
728}
729
730void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
731 bool Before) {
732 addInsertPoint(*new InstrInsertPoint(MI, Before));
733}
734
735void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
736 bool Beginning) {
737 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
738}
739
740void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
741 MachineBasicBlock &Dst) {
742 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
743}
744
745void RegBankSelect::RepairingPlacement::addInsertPoint(
746 RegBankSelect::InsertPoint &Point) {
747 CanMaterialize &= Point.canMaterialize();
748 HasSplit |= Point.isSplit();
749 InsertPoints.emplace_back(&Point);
750}
751
752RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
753 bool Before)
754 : InsertPoint(), Instr(Instr), Before(Before) {
755 // Since we do not support splitting, we do not need to update
756 // liveness and such, so do not do anything with P.
757 assert((!Before || !Instr.isPHI()) &&
758 "Splitting before phis requires more points");
759 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
760 "Splitting between phis does not make sense");
761}
762
763void RegBankSelect::InstrInsertPoint::materialize() {
764 if (isSplit()) {
765 // Slice and return the beginning of the new block.
766 // If we need to split between the terminators, we theoritically
767 // need to know where the first and second set of terminators end
768 // to update the successors properly.
769 // Now, in pratice, we should have a maximum of 2 branch
770 // instructions; one conditional and one unconditional. Therefore
771 // we know how to update the successor by looking at the target of
772 // the unconditional branch.
773 // If we end up splitting at some point, then, we should update
774 // the liveness information and such. I.e., we would need to
775 // access P here.
776 // The machine verifier should actually make sure such cases
777 // cannot happen.
778 llvm_unreachable("Not yet implemented");
779 }
780 // Otherwise the insertion point is just the current or next
781 // instruction depending on Before. I.e., there is nothing to do
782 // here.
783}
784
785bool RegBankSelect::InstrInsertPoint::isSplit() const {
786 // If the insertion point is after a terminator, we need to split.
787 if (!Before)
788 return Instr.isTerminator();
789 // If we insert before an instruction that is after a terminator,
790 // we are still after a terminator.
791 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
792}
793
794uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
795 // Even if we need to split, because we insert between terminators,
796 // this split has actually the same frequency as the instruction.
797 const MachineBlockFrequencyInfo *MBFI =
798 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
799 if (!MBFI)
800 return 1;
801 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
802}
803
804uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
805 const MachineBlockFrequencyInfo *MBFI =
806 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
807 if (!MBFI)
808 return 1;
809 return MBFI->getBlockFreq(&MBB).getFrequency();
810}
811
812void RegBankSelect::EdgeInsertPoint::materialize() {
813 // If we end up repairing twice at the same place before materializing the
814 // insertion point, we may think we have to split an edge twice.
815 // We should have a factory for the insert point such that identical points
816 // are the same instance.
817 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
818 "This point has already been split");
819 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
820 assert(NewBB && "Invalid call to materialize");
821 // We reuse the destination block to hold the information of the new block.
822 DstOrSplit = NewBB;
823}
824
825uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
826 const MachineBlockFrequencyInfo *MBFI =
827 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
828 if (!MBFI)
829 return 1;
830 if (WasMaterialized)
831 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
832
833 const MachineBranchProbabilityInfo *MBPI =
834 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
835 if (!MBPI)
836 return 1;
837 // The basic block will be on the edge.
838 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
839 .getFrequency();
840}
841
842bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
843 // If this is not a critical edge, we should not have used this insert
844 // point. Indeed, either the successor or the predecessor should
845 // have do.
846 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
847 "Edge is not critical");
848 return Src.canSplitCriticalEdge(DstOrSplit);
849}
850
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000851RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
852 : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {}
853
854bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
855 // Check if this overflows.
856 if (LocalCost + Cost < LocalCost) {
857 saturate();
858 return true;
859 }
860 LocalCost += Cost;
861 return isSaturated();
862}
863
864bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
865 // Check if this overflows.
866 if (NonLocalCost + Cost < NonLocalCost) {
867 saturate();
868 return true;
869 }
870 NonLocalCost += Cost;
871 return isSaturated();
872}
873
874bool RegBankSelect::MappingCost::isSaturated() const {
875 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
876 LocalFreq == UINT64_MAX;
877}
878
879void RegBankSelect::MappingCost::saturate() {
880 *this = ImpossibleCost();
881 --LocalCost;
882}
883
884RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
885 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
886}
887
888bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
889 // Sort out the easy cases.
890 if (*this == Cost)
891 return false;
892 // If one is impossible to realize the other is cheaper unless it is
893 // impossible as well.
894 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
895 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
896 // If one is saturated the other is cheaper, unless it is saturated
897 // as well.
898 if (isSaturated() || Cost.isSaturated())
899 return isSaturated() < Cost.isSaturated();
900 // At this point we know both costs hold sensible values.
901
902 // If both values have a different base frequency, there is no much
903 // we can do but to scale everything.
904 // However, if they have the same base frequency we can avoid making
905 // complicated computation.
906 uint64_t ThisLocalAdjust;
907 uint64_t OtherLocalAdjust;
908 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
909
910 // At this point, we know the local costs are comparable.
911 // Do the case that do not involve potential overflow first.
912 if (NonLocalCost == Cost.NonLocalCost)
913 // Since the non-local costs do not discriminate on the result,
914 // just compare the local costs.
915 return LocalCost < Cost.LocalCost;
916
917 // The base costs are comparable so we may only keep the relative
918 // value to increase our chances of avoiding overflows.
919 ThisLocalAdjust = 0;
920 OtherLocalAdjust = 0;
921 if (LocalCost < Cost.LocalCost)
922 OtherLocalAdjust = Cost.LocalCost - LocalCost;
923 else
924 ThisLocalAdjust = LocalCost - Cost.LocalCost;
925
926 } else {
927 ThisLocalAdjust = LocalCost;
928 OtherLocalAdjust = Cost.LocalCost;
929 }
930
931 // The non-local costs are comparable, just keep the relative value.
932 uint64_t ThisNonLocalAdjust = 0;
933 uint64_t OtherNonLocalAdjust = 0;
934 if (NonLocalCost < Cost.NonLocalCost)
935 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
936 else
937 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
938 // Scale everything to make them comparable.
939 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
940 // Check for overflow on that operation.
941 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
942 ThisScaledCost < LocalFreq);
943 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
944 // Check for overflow on the last operation.
945 bool OtherOverflows =
946 OtherLocalAdjust &&
947 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
948 // Add the non-local costs.
949 ThisOverflows |= ThisNonLocalAdjust &&
950 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
951 ThisScaledCost += ThisNonLocalAdjust;
952 OtherOverflows |= OtherNonLocalAdjust &&
953 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
954 OtherScaledCost += OtherNonLocalAdjust;
955 // If both overflows, we cannot compare without additional
956 // precision, e.g., APInt. Just give up on that case.
957 if (ThisOverflows && OtherOverflows)
958 return false;
959 // If one overflows but not the other, we can still compare.
960 if (ThisOverflows || OtherOverflows)
961 return ThisOverflows < OtherOverflows;
962 // Otherwise, just compare the values.
963 return ThisScaledCost < OtherScaledCost;
964}
965
966bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
967 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
968 LocalFreq == Cost.LocalFreq;
969}
Quentin Colombet0b63b312017-01-11 00:48:41 +0000970
Matthias Braun8c209aa2017-01-28 02:02:38 +0000971#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
972LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
Quentin Colombet0b63b312017-01-11 00:48:41 +0000973 print(dbgs());
974 dbgs() << '\n';
975}
Matthias Braun8c209aa2017-01-28 02:02:38 +0000976#endif
Quentin Colombet0b63b312017-01-11 00:48:41 +0000977
978void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
979 if (*this == ImpossibleCost()) {
980 OS << "impossible";
981 return;
982 }
983 if (isSaturated()) {
984 OS << "saturated";
985 return;
986 }
987 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
988}