blob: b279752a21f4d987a8222558deb48db9a3d07b22 [file] [log] [blame]
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001//===--- RDFGraph.h -------------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent, SSA-based data flow graph for register data flow (RDF)
11// for a non-SSA program representation (e.g. post-RA machine code).
12//
13//
14// *** Introduction
15//
16// The RDF graph is a collection of nodes, each of which denotes some element
17// of the program. There are two main types of such elements: code and refe-
18// rences. Conceptually, "code" is something that represents the structure
19// of the program, e.g. basic block or a statement, while "reference" is an
20// instance of accessing a register, e.g. a definition or a use. Nodes are
21// connected with each other based on the structure of the program (such as
22// blocks, instructions, etc.), and based on the data flow (e.g. reaching
23// definitions, reached uses, etc.). The single-reaching-definition principle
24// of SSA is generally observed, although, due to the non-SSA representation
25// of the program, there are some differences between the graph and a "pure"
26// SSA representation.
27//
28//
29// *** Implementation remarks
30//
31// Since the graph can contain a large number of nodes, memory consumption
32// was one of the major design considerations. As a result, there is a single
33// base class NodeBase which defines all members used by all possible derived
34// classes. The members are arranged in a union, and a derived class cannot
35// add any data members of its own. Each derived class only defines the
36// functional interface, i.e. member functions. NodeBase must be a POD,
37// which implies that all of its members must also be PODs.
38// Since nodes need to be connected with other nodes, pointers have been
39// replaced with 32-bit identifiers: each node has an id of type NodeId.
40// There are mapping functions in the graph that translate between actual
41// memory addresses and the corresponding identifiers.
42// A node id of 0 is equivalent to nullptr.
43//
44//
45// *** Structure of the graph
46//
47// A code node is always a collection of other nodes. For example, a code
48// node corresponding to a basic block will contain code nodes corresponding
49// to instructions. In turn, a code node corresponding to an instruction will
50// contain a list of reference nodes that correspond to the definitions and
51// uses of registers in that instruction. The members are arranged into a
52// circular list, which is yet another consequence of the effort to save
53// memory: for each member node it should be possible to obtain its owner,
54// and it should be possible to access all other members. There are other
55// ways to accomplish that, but the circular list seemed the most natural.
56//
57// +- CodeNode -+
58// | | <---------------------------------------------------+
59// +-+--------+-+ |
60// |FirstM |LastM |
61// | +-------------------------------------+ |
62// | | |
63// V V |
64// +----------+ Next +----------+ Next Next +----------+ Next |
65// | |----->| |-----> ... ----->| |----->-+
66// +- Member -+ +- Member -+ +- Member -+
67//
68// The order of members is such that related reference nodes (see below)
69// should be contiguous on the member list.
70//
71// A reference node is a node that encapsulates an access to a register,
72// in other words, data flowing into or out of a register. There are two
73// major kinds of reference nodes: defs and uses. A def node will contain
74// the id of the first reached use, and the id of the first reached def.
75// Each def and use will contain the id of the reaching def, and also the
76// id of the next reached def (for def nodes) or use (for use nodes).
77// The "next node sharing the same reaching def" is denoted as "sibling".
78// In summary:
79// - Def node contains: reaching def, sibling, first reached def, and first
80// reached use.
81// - Use node contains: reaching def and sibling.
82//
83// +-- DefNode --+
84// | R2 = ... | <---+--------------------+
85// ++---------+--+ | |
86// |Reached |Reached | |
87// |Def |Use | |
88// | | |Reaching |Reaching
89// | V |Def |Def
90// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
91// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
92// | +-------------+ +-------------+
93// V
94// +-- DefNode --+ Sib
95// | R2 = ... |----> ...
96// ++---------+--+
97// | |
98// | |
99// ... ...
100//
101// To get a full picture, the circular lists connecting blocks within a
102// function, instructions within a block, etc. should be superimposed with
103// the def-def, def-use links shown above.
104// To illustrate this, consider a small example in a pseudo-assembly:
105// foo:
106// add r2, r0, r1 ; r2 = r0+r1
107// addi r0, r2, 1 ; r0 = r2+1
108// ret r0 ; return value in r0
109//
110// The graph (in a format used by the debugging functions) would look like:
111//
112// DFG dump:[
113// f1: Function foo
114// b2: === BB#0 === preds(0), succs(0):
115// p3: phi [d4<r0>(,d12,u9):]
116// p5: phi [d6<r1>(,,u10):]
117// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
118// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
119// s14: ret [u15<r0>(d12):]
120// ]
121//
122// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
123// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
124// ment, d - def, u - use).
125// The format of a def node is:
126// dN<R>(rd,d,u):sib,
127// where
128// N - numeric node id,
129// R - register being defined
130// rd - reaching def,
131// d - reached def,
132// u - reached use,
133// sib - sibling.
134// The format of a use node is:
135// uN<R>[!](rd):sib,
136// where
137// N - numeric node id,
138// R - register being used,
139// rd - reaching def,
140// sib - sibling.
141// Possible annotations (usually preceding the node id):
142// + - preserving def,
143// ~ - clobbering def,
144// " - shadow ref (follows the node id),
145// ! - fixed register (appears after register name).
146//
147// The circular lists are not explicit in the dump.
148//
149//
150// *** Node attributes
151//
152// NodeBase has a member "Attrs", which is the primary way of determining
153// the node's characteristics. The fields in this member decide whether
154// the node is a code node or a reference node (i.e. node's "type"), then
155// within each type, the "kind" determines what specifically this node
156// represents. The remaining bits, "flags", contain additional information
157// that is even more detailed than the "kind".
158// CodeNode's kinds are:
159// - Phi: Phi node, members are reference nodes.
160// - Stmt: Statement, members are reference nodes.
161// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
162// - Func: The whole function. The members are basic block nodes.
163// RefNode's kinds are:
164// - Use.
165// - Def.
166//
167// Meaning of flags:
168// - Preserving: applies only to defs. A preserving def is one that can
169// preserve some of the original bits among those that are included in
170// the register associated with that def. For example, if R0 is a 32-bit
171// register, but a def can only change the lower 16 bits, then it will
172// be marked as preserving.
173// - Shadow: a reference that has duplicates holding additional reaching
174// defs (see more below).
175// - Clobbering: applied only to defs, indicates that the value generated
176// by this def is unspecified. A typical example would be volatile registers
177// after function calls.
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +0000178// - Fixed: the register in this def/use cannot be replaced with any other
179// register. A typical case would be a parameter register to a call, or
180// the register with the return value from a function.
181// - Undef: the register in this reference the register is assumed to have
182// no pre-existing value, even if it appears to be reached by some def.
183// This is typically used to prevent keeping registers artificially live
184// in cases when they are defined via predicated instructions. For example:
185// r0 = add-if-true cond, r10, r11 (1)
186// r0 = add-if-false cond, r12, r13, r0<imp-use> (2)
187// ... = r0 (3)
188// Before (1), r0 is not intended to be live, and the use of r0 in (3) is
189// not meant to be reached by any def preceding (1). However, since the
190// defs in (1) and (2) are both preserving, these properties alone would
191// imply that the use in (3) may indeed be reached by some prior def.
192// Adding Undef flag to the def in (1) prevents that. The Undef flag
193// may be applied to both defs and uses.
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +0000194// - Dead: applies only to defs. The value coming out of a "dead" def is
195// assumed to be unused, even if the def appears to be reaching other defs
196// or uses. The motivation for this flag comes from dead defs on function
197// calls: there is no way to determine if such a def is dead without
198// analyzing the target's ABI. Hence the graph should contain this info,
199// as it is unavailable otherwise. On the other hand, a def without any
200// uses on a typical instruction is not the intended target for this flag.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000201//
202// *** Shadow references
203//
204// It may happen that a super-register can have two (or more) non-overlapping
205// sub-registers. When both of these sub-registers are defined and followed
206// by a use of the super-register, the use of the super-register will not
207// have a unique reaching def: both defs of the sub-registers need to be
208// accounted for. In such cases, a duplicate use of the super-register is
209// added and it points to the extra reaching def. Both uses are marked with
210// a flag "shadow". Example:
211// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
212// set r0, 1 ; r0 = 1
213// set r1, 1 ; r1 = 1
214// addi t1, t0, 1 ; t1 = t0+1
215//
216// The DFG:
217// s1: set [d2<r0>(,,u9):]
218// s3: set [d4<r1>(,,u10):]
219// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
220//
221// The statement s5 has two use nodes for t0: u7" and u9". The quotation
222// mark " indicates that the node is a shadow.
223//
224#ifndef RDF_GRAPH_H
225#define RDF_GRAPH_H
226
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000227#include "llvm/ADT/BitVector.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000228#include "llvm/Support/Allocator.h"
229#include "llvm/Support/Debug.h"
230#include "llvm/Support/raw_ostream.h"
231#include "llvm/Support/Timer.h"
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000232#include "llvm/Target/TargetRegisterInfo.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000233
234#include <functional>
235#include <map>
236#include <set>
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000237#include <unordered_map>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000238#include <vector>
239
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000240// RDF uses uint32_t to refer to registers. This is to ensure that the type
241// size remains specific. In other places, registers are often stored using
242// unsigned.
243static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
244
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000245namespace llvm {
246 class MachineBasicBlock;
247 class MachineFunction;
248 class MachineInstr;
249 class MachineOperand;
250 class MachineDominanceFrontier;
251 class MachineDominatorTree;
252 class TargetInstrInfo;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000253
254namespace rdf {
255 typedef uint32_t NodeId;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000256 typedef uint32_t RegisterId;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000257
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000258 struct DataFlowGraph;
259
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000260 struct NodeAttrs {
261 enum : uint16_t {
262 None = 0x0000, // Nothing
263
264 // Types: 2 bits
265 TypeMask = 0x0003,
266 Code = 0x0001, // 01, Container
267 Ref = 0x0002, // 10, Reference
268
269 // Kind: 3 bits
270 KindMask = 0x0007 << 2,
271 Def = 0x0001 << 2, // 001
272 Use = 0x0002 << 2, // 010
273 Phi = 0x0003 << 2, // 011
274 Stmt = 0x0004 << 2, // 100
275 Block = 0x0005 << 2, // 101
276 Func = 0x0006 << 2, // 110
277
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +0000278 // Flags: 7 bits for now
279 FlagMask = 0x007F << 5,
280 Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs.
281 Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values.
282 PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode.
283 Preserving = 0x0008 << 5, // 0001000, Def can keep original bits.
284 Fixed = 0x0010 << 5, // 0010000, Fixed register.
285 Undef = 0x0020 << 5, // 0100000, Has no pre-existing value.
286 Dead = 0x0040 << 5, // 1000000, Does not define a value.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000287 };
288
289 static uint16_t type(uint16_t T) { return T & TypeMask; }
290 static uint16_t kind(uint16_t T) { return T & KindMask; }
291 static uint16_t flags(uint16_t T) { return T & FlagMask; }
292
293 static uint16_t set_type(uint16_t A, uint16_t T) {
294 return (A & ~TypeMask) | T;
295 }
296 static uint16_t set_kind(uint16_t A, uint16_t K) {
297 return (A & ~KindMask) | K;
298 }
299 static uint16_t set_flags(uint16_t A, uint16_t F) {
300 return (A & ~FlagMask) | F;
301 }
302
303 // Test if A contains B.
304 static bool contains(uint16_t A, uint16_t B) {
305 if (type(A) != Code)
306 return false;
307 uint16_t KB = kind(B);
308 switch (kind(A)) {
309 case Func:
310 return KB == Block;
311 case Block:
312 return KB == Phi || KB == Stmt;
313 case Phi:
314 case Stmt:
315 return type(B) == Ref;
316 }
317 return false;
318 }
319 };
320
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000321 struct BuildOptions {
322 enum : unsigned {
323 None = 0x00,
324 KeepDeadPhis = 0x01, // Do not remove dead phis during build.
325 };
326 };
327
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000328 template <typename T> struct NodeAddr {
329 NodeAddr() : Addr(nullptr), Id(0) {}
330 NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000331
332 bool operator== (const NodeAddr<T> &NA) const {
333 assert((Addr == NA.Addr) == (Id == NA.Id));
334 return Addr == NA.Addr;
335 }
336 bool operator!= (const NodeAddr<T> &NA) const {
337 return !operator==(NA);
338 }
339 // Type cast (casting constructor). The reason for having this class
340 // instead of std::pair.
341 template <typename S> NodeAddr(const NodeAddr<S> &NA)
342 : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
343
344 T Addr;
345 NodeId Id;
346 };
347
348 struct NodeBase;
349
350 // Fast memory allocation and translation between node id and node address.
351 // This is really the same idea as the one underlying the "bump pointer
352 // allocator", the difference being in the translation. A node id is
353 // composed of two components: the index of the block in which it was
354 // allocated, and the index within the block. With the default settings,
355 // where the number of nodes per block is 4096, the node id (minus 1) is:
356 //
357 // bit position: 11 0
358 // +----------------------------+--------------+
359 // | Index of the block |Index in block|
360 // +----------------------------+--------------+
361 //
362 // The actual node id is the above plus 1, to avoid creating a node id of 0.
363 //
364 // This method significantly improved the build time, compared to using maps
365 // (std::unordered_map or DenseMap) to translate between pointers and ids.
366 struct NodeAllocator {
367 // Amount of storage for a single node.
368 enum { NodeMemSize = 32 };
369 NodeAllocator(uint32_t NPB = 4096)
370 : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
371 IndexMask((1 << BitsPerIndex)-1), ActiveEnd(nullptr) {
372 assert(isPowerOf2_32(NPB));
373 }
374 NodeBase *ptr(NodeId N) const {
375 uint32_t N1 = N-1;
376 uint32_t BlockN = N1 >> BitsPerIndex;
377 uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
378 return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
379 }
380 NodeId id(const NodeBase *P) const;
381 NodeAddr<NodeBase*> New();
382 void clear();
383
384 private:
385 void startNewBlock();
386 bool needNewBlock();
387 uint32_t makeId(uint32_t Block, uint32_t Index) const {
388 // Add 1 to the id, to avoid the id of 0, which is treated as "null".
389 return ((Block << BitsPerIndex) | Index) + 1;
390 }
391
392 const uint32_t NodesPerBlock;
393 const uint32_t BitsPerIndex;
394 const uint32_t IndexMask;
395 char *ActiveEnd;
396 std::vector<char*> Blocks;
397 typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
398 AllocatorTy MemPool;
399 };
400
401 struct RegisterRef {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000402 RegisterId Reg;
403 LaneBitmask Mask;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000404
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000405 RegisterRef() : RegisterRef(0) {}
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000406 explicit RegisterRef(RegisterId R, LaneBitmask M = LaneBitmask::getAll())
407 : Reg(R), Mask(R != 0 ? M : LaneBitmask::getNone()) {}
408 operator bool() const { return Reg != 0 && !Mask.none(); }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000409 bool operator== (const RegisterRef &RR) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000410 return Reg == RR.Reg && Mask == RR.Mask;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000411 }
412 bool operator!= (const RegisterRef &RR) const {
413 return !operator==(RR);
414 }
415 bool operator< (const RegisterRef &RR) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000416 return Reg < RR.Reg || (Reg == RR.Reg && Mask < RR.Mask);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000417 }
418 };
419 typedef std::set<RegisterRef> RegisterSet;
420
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000421 struct TargetOperandInfo {
422 TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
423 virtual ~TargetOperandInfo() {}
424 virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
425 virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
426 virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
427
428 const TargetInstrInfo &TII;
429 };
430
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000431
432 // Packed register reference. Only used for storage.
433 struct PackedRegisterRef {
434 RegisterId Reg;
435 uint32_t MaskId;
436 };
437
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000438 // Template class for a map translating uint32_t into arbitrary types.
439 // The map will act like an indexed set: upon insertion of a new object,
440 // it will automatically assign a new index to it. Index of 0 is treated
441 // as invalid and is never allocated.
442 template <typename T, unsigned N = 32>
443 struct IndexedSet {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000444 IndexedSet() : Map() { Map.reserve(N); }
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000445 T get(uint32_t Idx) const {
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000446 // Index Idx corresponds to Map[Idx-1].
447 assert(Idx != 0 && !Map.empty() && Idx-1 < Map.size());
448 return Map[Idx-1];
449 }
450 uint32_t insert(T Val) {
451 // Linear search.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000452 auto F = llvm::find(Map, Val);
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000453 if (F != Map.end())
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000454 return F - Map.begin() + 1;
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000455 Map.push_back(Val);
456 return Map.size(); // Return actual_index + 1.
457 }
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000458 uint32_t find(T Val) const {
459 auto F = llvm::find(Map, Val);
460 assert(F != Map.end());
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000461 return F - Map.begin();
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000462 }
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000463 private:
464 std::vector<T> Map;
465 };
466
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000467 struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000468 LaneMaskIndex() = default;
469
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000470 LaneBitmask getLaneMaskForIndex(uint32_t K) const {
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000471 return K == 0 ? LaneBitmask::getAll() : get(K);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000472 }
473 uint32_t getIndexForLaneMask(LaneBitmask LM) {
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000474 assert(!LM.none());
475 return LM.all() ? 0 : insert(LM);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000476 }
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000477 uint32_t getIndexForLaneMask(LaneBitmask LM) const {
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000478 assert(!LM.none());
479 return LM.all() ? 0 : find(LM);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000480 }
481 PackedRegisterRef pack(RegisterRef RR) {
482 return { RR.Reg, getIndexForLaneMask(RR.Mask) };
483 }
484 PackedRegisterRef pack(RegisterRef RR) const {
485 return { RR.Reg, getIndexForLaneMask(RR.Mask) };
486 }
487 RegisterRef unpack(PackedRegisterRef PR) const {
488 return RegisterRef(PR.Reg, getLaneMaskForIndex(PR.MaskId));
489 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000490 };
491
492 struct RegisterAggr {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000493 RegisterAggr(const TargetRegisterInfo &tri)
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000494 : Masks(), ExpAliasUnits(tri.getNumRegUnits()), CheckUnits(false),
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000495 TRI(tri) {}
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000496 RegisterAggr(const RegisterAggr &RG)
497 : Masks(RG.Masks), ExpAliasUnits(RG.ExpAliasUnits),
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000498 CheckUnits(RG.CheckUnits), TRI(RG.TRI) {}
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000499
500 bool empty() const { return Masks.empty(); }
501 bool hasAliasOf(RegisterRef RR) const;
502 bool hasCoverOf(RegisterRef RR) const;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000503 static bool isCoverOf(RegisterRef RA, RegisterRef RB,
504 const TargetRegisterInfo &TRI) {
505 return RegisterAggr(TRI).insert(RA).hasCoverOf(RB);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000506 }
507
508 RegisterAggr &insert(RegisterRef RR);
509 RegisterAggr &insert(const RegisterAggr &RG);
510 RegisterAggr &clear(RegisterRef RR);
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000511 RegisterAggr &clear(const RegisterAggr &RG);
512
513 RegisterRef clearIn(RegisterRef RR) const;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000514
515 void print(raw_ostream &OS) const;
516
517 private:
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000518 typedef std::unordered_map<RegisterId, LaneBitmask> MapType;
519
520 public:
521 typedef MapType::const_iterator iterator;
522 iterator begin() const { return Masks.begin(); }
523 iterator end() const { return Masks.end(); }
524 RegisterRef normalize(RegisterRef RR) const;
525
526 private:
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000527 MapType Masks;
528 BitVector ExpAliasUnits; // Register units for explicit aliases.
529 bool CheckUnits;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000530 const TargetRegisterInfo &TRI;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000531 };
532
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000533
534 struct NodeBase {
535 public:
536 // Make sure this is a POD.
537 NodeBase() = default;
538 uint16_t getType() const { return NodeAttrs::type(Attrs); }
539 uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
540 uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
541 NodeId getNext() const { return Next; }
542
543 uint16_t getAttrs() const { return Attrs; }
544 void setAttrs(uint16_t A) { Attrs = A; }
545 void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
546
547 // Insert node NA after "this" in the circular chain.
548 void append(NodeAddr<NodeBase*> NA);
549 // Initialize all members to 0.
550 void init() { memset(this, 0, sizeof *this); }
551 void setNext(NodeId N) { Next = N; }
552
553 protected:
554 uint16_t Attrs;
555 uint16_t Reserved;
556 NodeId Next; // Id of the next node in the circular chain.
557 // Definitions of nested types. Using anonymous nested structs would make
558 // this class definition clearer, but unnamed structs are not a part of
559 // the standard.
560 struct Def_struct {
561 NodeId DD, DU; // Ids of the first reached def and use.
562 };
563 struct PhiU_struct {
564 NodeId PredB; // Id of the predecessor block for a phi use.
565 };
566 struct Code_struct {
567 void *CP; // Pointer to the actual code.
568 NodeId FirstM, LastM; // Id of the first member and last.
569 };
570 struct Ref_struct {
571 NodeId RD, Sib; // Ids of the reaching def and the sibling.
572 union {
573 Def_struct Def;
574 PhiU_struct PhiU;
575 };
576 union {
577 MachineOperand *Op; // Non-phi refs point to a machine operand.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000578 PackedRegisterRef PR; // Phi refs store register info directly.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000579 };
580 };
581
582 // The actual payload.
583 union {
584 Ref_struct Ref;
585 Code_struct Code;
586 };
587 };
588 // The allocator allocates chunks of 32 bytes for each node. The fact that
589 // each node takes 32 bytes in memory is used for fast translation between
590 // the node id and the node address.
591 static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
592 "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
593
594 typedef std::vector<NodeAddr<NodeBase*>> NodeList;
595 typedef std::set<NodeId> NodeSet;
596
597 struct RefNode : public NodeBase {
598 RefNode() = default;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000599 RegisterRef getRegRef(const DataFlowGraph &G) const;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000600 MachineOperand &getOp() {
601 assert(!(getFlags() & NodeAttrs::PhiRef));
602 return *Ref.Op;
603 }
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000604 void setRegRef(RegisterRef RR, DataFlowGraph &G);
605 void setRegRef(MachineOperand *Op, DataFlowGraph &G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000606 NodeId getReachingDef() const {
607 return Ref.RD;
608 }
609 void setReachingDef(NodeId RD) {
610 Ref.RD = RD;
611 }
612 NodeId getSibling() const {
613 return Ref.Sib;
614 }
615 void setSibling(NodeId Sib) {
616 Ref.Sib = Sib;
617 }
618 bool isUse() const {
619 assert(getType() == NodeAttrs::Ref);
620 return getKind() == NodeAttrs::Use;
621 }
622 bool isDef() const {
623 assert(getType() == NodeAttrs::Ref);
624 return getKind() == NodeAttrs::Def;
625 }
626
627 template <typename Predicate>
628 NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
629 const DataFlowGraph &G);
630 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
631 };
632
633 struct DefNode : public RefNode {
634 NodeId getReachedDef() const {
635 return Ref.Def.DD;
636 }
637 void setReachedDef(NodeId D) {
638 Ref.Def.DD = D;
639 }
640 NodeId getReachedUse() const {
641 return Ref.Def.DU;
642 }
643 void setReachedUse(NodeId U) {
644 Ref.Def.DU = U;
645 }
646
647 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
648 };
649
650 struct UseNode : public RefNode {
651 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
652 };
653
654 struct PhiUseNode : public UseNode {
655 NodeId getPredecessor() const {
656 assert(getFlags() & NodeAttrs::PhiRef);
657 return Ref.PhiU.PredB;
658 }
659 void setPredecessor(NodeId B) {
660 assert(getFlags() & NodeAttrs::PhiRef);
661 Ref.PhiU.PredB = B;
662 }
663 };
664
665 struct CodeNode : public NodeBase {
666 template <typename T> T getCode() const {
667 return static_cast<T>(Code.CP);
668 }
669 void setCode(void *C) {
670 Code.CP = C;
671 }
672
673 NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
674 NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
675 void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
676 void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
677 const DataFlowGraph &G);
678 void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
679
680 NodeList members(const DataFlowGraph &G) const;
681 template <typename Predicate>
682 NodeList members_if(Predicate P, const DataFlowGraph &G) const;
683 };
684
685 struct InstrNode : public CodeNode {
686 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
687 };
688
689 struct PhiNode : public InstrNode {
690 MachineInstr *getCode() const {
691 return nullptr;
692 }
693 };
694
695 struct StmtNode : public InstrNode {
696 MachineInstr *getCode() const {
697 return CodeNode::getCode<MachineInstr*>();
698 }
699 };
700
701 struct BlockNode : public CodeNode {
702 MachineBasicBlock *getCode() const {
703 return CodeNode::getCode<MachineBasicBlock*>();
704 }
705 void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
706 };
707
708 struct FuncNode : public CodeNode {
709 MachineFunction *getCode() const {
710 return CodeNode::getCode<MachineFunction*>();
711 }
712 NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
713 const DataFlowGraph &G) const;
714 NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
715 };
716
717 struct DataFlowGraph {
718 DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
719 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000720 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000721
722 NodeBase *ptr(NodeId N) const;
723 template <typename T> T ptr(NodeId N) const {
724 return static_cast<T>(ptr(N));
725 }
726 NodeId id(const NodeBase *P) const;
727
728 template <typename T> NodeAddr<T> addr(NodeId N) const {
729 return { ptr<T>(N), N };
730 }
731
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000732 NodeAddr<FuncNode*> getFunc() const { return Func; }
733 MachineFunction &getMF() const { return MF; }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000734 const TargetInstrInfo &getTII() const { return TII; }
735 const TargetRegisterInfo &getTRI() const { return TRI; }
736 const MachineDominatorTree &getDT() const { return MDT; }
737 const MachineDominanceFrontier &getDF() const { return MDF; }
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000738
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000739 struct DefStack {
740 DefStack() = default;
741 bool empty() const { return Stack.empty() || top() == bottom(); }
742 private:
743 typedef NodeAddr<DefNode*> value_type;
744 struct Iterator {
745 typedef DefStack::value_type value_type;
746 Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
747 Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
748 value_type operator*() const {
749 assert(Pos >= 1);
750 return DS.Stack[Pos-1];
751 }
752 const value_type *operator->() const {
753 assert(Pos >= 1);
754 return &DS.Stack[Pos-1];
755 }
756 bool operator==(const Iterator &It) const { return Pos == It.Pos; }
757 bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
758 private:
759 Iterator(const DefStack &S, bool Top);
760 // Pos-1 is the index in the StorageType object that corresponds to
761 // the top of the DefStack.
762 const DefStack &DS;
763 unsigned Pos;
764 friend struct DefStack;
765 };
766 public:
767 typedef Iterator iterator;
768 iterator top() const { return Iterator(*this, true); }
769 iterator bottom() const { return Iterator(*this, false); }
770 unsigned size() const;
771
772 void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
773 void pop();
774 void start_block(NodeId N);
775 void clear_block(NodeId N);
776 private:
777 friend struct Iterator;
778 typedef std::vector<value_type> StorageType;
779 bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
780 return (P.Addr == nullptr) && (N == 0 || P.Id == N);
781 }
782 unsigned nextUp(unsigned P) const;
783 unsigned nextDown(unsigned P) const;
784 StorageType Stack;
785 };
786
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000787 // Make this std::unordered_map for speed of accessing elements.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000788 // Map: Register (physical or virtual) -> DefStack
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000789 typedef std::unordered_map<RegisterId,DefStack> DefStackMap;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000790
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000791 void build(unsigned Options = BuildOptions::None);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000792 void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
793 void markBlock(NodeId B, DefStackMap &DefM);
794 void releaseBlock(NodeId B, DefStackMap &DefM);
795
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000796 PackedRegisterRef pack(RegisterRef RR) { return LMI.pack(RR); }
797 PackedRegisterRef pack(RegisterRef RR) const { return LMI.pack(RR); }
798 RegisterRef unpack(PackedRegisterRef PR) const { return LMI.unpack(PR); }
799 RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000800 RegisterRef normalizeRef(RegisterRef RR) const;
801 RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000802
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000803 NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
804 NodeAddr<RefNode*> RA) const;
805 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
806 NodeAddr<RefNode*> RA, bool Create);
807 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
808 NodeAddr<RefNode*> RA) const;
809 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
810 NodeAddr<RefNode*> RA, bool Create);
811 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
812 NodeAddr<RefNode*> RA) const;
813
814 NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
815 NodeAddr<RefNode*> RA) const;
816
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +0000817 void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
818 unlinkUseDF(UA);
819 if (RemoveFromOwner)
820 removeFromOwner(UA);
821 }
822 void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
823 unlinkDefDF(DA);
824 if (RemoveFromOwner)
825 removeFromOwner(DA);
826 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000827
828 // Some useful filters.
829 template <uint16_t Kind>
830 static bool IsRef(const NodeAddr<NodeBase*> BA) {
831 return BA.Addr->getType() == NodeAttrs::Ref &&
832 BA.Addr->getKind() == Kind;
833 }
834 template <uint16_t Kind>
835 static bool IsCode(const NodeAddr<NodeBase*> BA) {
836 return BA.Addr->getType() == NodeAttrs::Code &&
837 BA.Addr->getKind() == Kind;
838 }
839 static bool IsDef(const NodeAddr<NodeBase*> BA) {
840 return BA.Addr->getType() == NodeAttrs::Ref &&
841 BA.Addr->getKind() == NodeAttrs::Def;
842 }
843 static bool IsUse(const NodeAddr<NodeBase*> BA) {
844 return BA.Addr->getType() == NodeAttrs::Ref &&
845 BA.Addr->getKind() == NodeAttrs::Use;
846 }
847 static bool IsPhi(const NodeAddr<NodeBase*> BA) {
848 return BA.Addr->getType() == NodeAttrs::Code &&
849 BA.Addr->getKind() == NodeAttrs::Phi;
850 }
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +0000851 static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
852 uint16_t Flags = DA.Addr->getFlags();
853 return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
854 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000855
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000856 // Register aliasing.
857 bool alias(RegisterRef RA, RegisterRef RB) const;
858
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000859 private:
860 void reset();
861
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000862 RegisterSet getAliasSet(RegisterId Reg) const;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000863 RegisterSet getLandingPadLiveIns() const;
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000864
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000865 NodeAddr<NodeBase*> newNode(uint16_t Attrs);
866 NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
867 NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
868 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
869 NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
870 RegisterRef RR, NodeAddr<BlockNode*> PredB,
871 uint16_t Flags = NodeAttrs::PhiRef);
872 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
873 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
874 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
875 RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
876 NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
877 NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
878 MachineInstr *MI);
879 NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
880 MachineBasicBlock *BB);
881 NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
882
883 template <typename Predicate>
884 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
885 locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
886 Predicate P) const;
887
888 typedef std::map<NodeId,RegisterSet> BlockRefsMap;
889
890 void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
891 void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
892 void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
893 NodeAddr<BlockNode*> BA);
894 void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
895 NodeAddr<BlockNode*> BA);
896 void removeUnusedPhis();
897
898 template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
899 NodeAddr<T> TA, DefStack &DS);
900 void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
901 void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
902
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +0000903 void unlinkUseDF(NodeAddr<UseNode*> UA);
904 void unlinkDefDF(NodeAddr<DefNode*> DA);
905 void removeFromOwner(NodeAddr<RefNode*> RA) {
906 NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
907 IA.Addr->removeMember(RA, *this);
908 }
909
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000910 NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) {
911 return BlockNodes[BB];
912 }
913
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000914 NodeAddr<FuncNode*> Func;
915 NodeAllocator Memory;
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000916 // Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
917 std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
Krzysztof Parzyszek29e93f32016-09-22 21:01:24 +0000918 // Lane mask map.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000919 LaneMaskIndex LMI;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000920
921 MachineFunction &MF;
922 const TargetInstrInfo &TII;
923 const TargetRegisterInfo &TRI;
924 const MachineDominatorTree &MDT;
925 const MachineDominanceFrontier &MDF;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000926 const TargetOperandInfo &TOI;
927 }; // struct DataFlowGraph
928
929 template <typename Predicate>
930 NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
931 bool NextOnly, const DataFlowGraph &G) {
932 // Get the "Next" reference in the circular list that references RR and
933 // satisfies predicate "Pred".
934 auto NA = G.addr<NodeBase*>(getNext());
935
936 while (NA.Addr != this) {
937 if (NA.Addr->getType() == NodeAttrs::Ref) {
938 NodeAddr<RefNode*> RA = NA;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000939 if (RA.Addr->getRegRef(G) == RR && P(NA))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000940 return NA;
941 if (NextOnly)
942 break;
943 NA = G.addr<NodeBase*>(NA.Addr->getNext());
944 } else {
945 // We've hit the beginning of the chain.
946 assert(NA.Addr->getType() == NodeAttrs::Code);
947 NodeAddr<CodeNode*> CA = NA;
948 NA = CA.Addr->getFirstMember(G);
949 }
950 }
951 // Return the equivalent of "nullptr" if such a node was not found.
952 return NodeAddr<RefNode*>();
953 }
954
955 template <typename Predicate>
956 NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
957 NodeList MM;
958 auto M = getFirstMember(G);
959 if (M.Id == 0)
960 return MM;
961
962 while (M.Addr != this) {
963 if (P(M))
964 MM.push_back(M);
965 M = G.addr<NodeBase*>(M.Addr->getNext());
966 }
967 return MM;
968 }
969
970
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000971 // Optionally print the lane mask, if it is not ~0.
972 struct PrintLaneMaskOpt {
973 PrintLaneMaskOpt(LaneBitmask M) : Mask(M) {}
974 LaneBitmask Mask;
975 };
976 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P);
977
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000978 template <typename T> struct Print;
979 template <typename T>
980 raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
981
982 template <typename T>
983 struct Print {
984 Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
985 const T &Obj;
986 const DataFlowGraph &G;
987 };
988
989 template <typename T>
990 struct PrintNode : Print<NodeAddr<T>> {
991 PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
992 : Print<NodeAddr<T>>(x, g) {}
993 };
994} // namespace rdf
Benjamin Kramer922efd72016-05-27 10:06:40 +0000995} // namespace llvm
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000996
997#endif // RDF_GRAPH_H