blob: 0621d7b1ad868bdaad433a1b3ae09eb09e0cde09 [file] [log] [blame]
Guy Benyei11169dd2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
Eli Friedman0cd23352013-07-10 01:33:19 +000059
60 // Perform the same check for block literals.
61 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62 if (ParmVarDecl *ContextParam
63 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64 return ContextParam->getDeclContext();
65 }
Guy Benyei11169dd2012-12-18 14:30:41 +000066
Eli Friedman95f50122013-07-02 17:52:28 +000067 const DeclContext *DC = D->getDeclContext();
68 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69 return getEffectiveDeclContext(CD);
70
71 return DC;
Guy Benyei11169dd2012-12-18 14:30:41 +000072}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75 return getEffectiveDeclContext(cast<Decl>(DC));
76}
Eli Friedman95f50122013-07-02 17:52:28 +000077
78static bool isLocalContainerContext(const DeclContext *DC) {
79 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
Eli Friedmaneecc09a2013-07-05 20:27:40 +000082static const RecordDecl *GetLocalClassDecl(const Decl *D) {
Eli Friedman92821742013-07-02 02:01:18 +000083 const DeclContext *DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000084 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
Eli Friedman95f50122013-07-02 17:52:28 +000085 if (isLocalContainerContext(DC))
Eli Friedmaneecc09a2013-07-05 20:27:40 +000086 return dyn_cast<RecordDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +000087 D = cast<Decl>(DC);
88 DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000089 }
90 return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95 return ftd->getTemplatedDecl();
96
97 return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102 return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000107class ItaniumMangleContextImpl : public ItaniumMangleContext {
Guy Benyei11169dd2012-12-18 14:30:41 +0000108 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000109 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
Guy Benyei11169dd2012-12-18 14:30:41 +0000111 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000114 explicit ItaniumMangleContextImpl(ASTContext &Context,
115 DiagnosticsEngine &Diags)
116 : ItaniumMangleContext(Context, Diags) {}
Guy Benyei11169dd2012-12-18 14:30:41 +0000117
118 uint64_t getAnonymousStructId(const TagDecl *TD) {
119 std::pair<llvm::DenseMap<const TagDecl *,
120 uint64_t>::iterator, bool> Result =
121 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122 return Result.first->second;
123 }
124
Guy Benyei11169dd2012-12-18 14:30:41 +0000125 /// @name Mangler Entry Points
126 /// @{
127
Rafael Espindola002667c2013-10-16 01:40:34 +0000128 bool shouldMangleCXXName(const NamedDecl *D);
129 void mangleCXXName(const NamedDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000130 void mangleThunk(const CXXMethodDecl *MD,
131 const ThunkInfo &Thunk,
132 raw_ostream &);
133 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134 const ThisAdjustment &ThisAdjustment,
135 raw_ostream &);
136 void mangleReferenceTemporary(const VarDecl *D,
137 raw_ostream &);
138 void mangleCXXVTable(const CXXRecordDecl *RD,
139 raw_ostream &);
140 void mangleCXXVTT(const CXXRecordDecl *RD,
141 raw_ostream &);
142 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
143 const CXXRecordDecl *Type,
144 raw_ostream &);
145 void mangleCXXRTTI(QualType T, raw_ostream &);
146 void mangleCXXRTTIName(QualType T, raw_ostream &);
Reid Klecknercc99e262013-11-19 23:23:00 +0000147 void mangleTypeName(QualType T, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000148 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
149 raw_ostream &);
150 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
151 raw_ostream &);
152
Reid Klecknerd8110b62013-09-10 20:14:30 +0000153 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &);
Reid Kleckner1ece9fc2013-09-10 20:43:12 +0000154 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out);
Reid Klecknerd8110b62013-09-10 20:14:30 +0000155 void mangleDynamicAtExitDestructor(const VarDecl *D, raw_ostream &Out);
Richard Smith2fd1d7a2013-04-19 16:42:07 +0000156 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
157 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000158
Guy Benyei11169dd2012-12-18 14:30:41 +0000159 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000160 // Lambda closure types are already numbered.
Guy Benyei11169dd2012-12-18 14:30:41 +0000161 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000162 if (RD->isLambda())
Guy Benyei11169dd2012-12-18 14:30:41 +0000163 return false;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000164
165 // Anonymous tags are already numbered.
166 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
167 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
168 return false;
169 }
170
171 // Use the canonical number for externally visible decls.
172 if (ND->isExternallyVisible()) {
173 unsigned discriminator = getASTContext().getManglingNumber(ND);
174 if (discriminator == 1)
175 return false;
176 disc = discriminator - 2;
177 return true;
178 }
179
180 // Make up a reasonable number for internal decls.
Guy Benyei11169dd2012-12-18 14:30:41 +0000181 unsigned &discriminator = Uniquifier[ND];
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000182 if (!discriminator) {
183 const DeclContext *DC = getEffectiveDeclContext(ND);
184 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
185 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000186 if (discriminator == 1)
187 return false;
188 disc = discriminator-2;
189 return true;
190 }
191 /// @}
192};
193
194/// CXXNameMangler - Manage the mangling of a single name.
195class CXXNameMangler {
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000196 ItaniumMangleContextImpl &Context;
Guy Benyei11169dd2012-12-18 14:30:41 +0000197 raw_ostream &Out;
198
199 /// The "structor" is the top-level declaration being mangled, if
200 /// that's not a template specialization; otherwise it's the pattern
201 /// for that specialization.
202 const NamedDecl *Structor;
203 unsigned StructorType;
204
205 /// SeqID - The next subsitution sequence number.
206 unsigned SeqID;
207
208 class FunctionTypeDepthState {
209 unsigned Bits;
210
211 enum { InResultTypeMask = 1 };
212
213 public:
214 FunctionTypeDepthState() : Bits(0) {}
215
216 /// The number of function types we're inside.
217 unsigned getDepth() const {
218 return Bits >> 1;
219 }
220
221 /// True if we're in the return type of the innermost function type.
222 bool isInResultType() const {
223 return Bits & InResultTypeMask;
224 }
225
226 FunctionTypeDepthState push() {
227 FunctionTypeDepthState tmp = *this;
228 Bits = (Bits & ~InResultTypeMask) + 2;
229 return tmp;
230 }
231
232 void enterResultType() {
233 Bits |= InResultTypeMask;
234 }
235
236 void leaveResultType() {
237 Bits &= ~InResultTypeMask;
238 }
239
240 void pop(FunctionTypeDepthState saved) {
241 assert(getDepth() == saved.getDepth() + 1);
242 Bits = saved.Bits;
243 }
244
245 } FunctionTypeDepth;
246
247 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
248
249 ASTContext &getASTContext() const { return Context.getASTContext(); }
250
251public:
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000252 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000253 const NamedDecl *D = 0)
254 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
255 SeqID(0) {
256 // These can't be mangled without a ctor type or dtor type.
257 assert(!D || (!isa<CXXDestructorDecl>(D) &&
258 !isa<CXXConstructorDecl>(D)));
259 }
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000260 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000261 const CXXConstructorDecl *D, CXXCtorType Type)
262 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
263 SeqID(0) { }
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000264 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000265 const CXXDestructorDecl *D, CXXDtorType Type)
266 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
267 SeqID(0) { }
268
269#if MANGLE_CHECKER
270 ~CXXNameMangler() {
271 if (Out.str()[0] == '\01')
272 return;
273
274 int status = 0;
275 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
276 assert(status == 0 && "Could not demangle mangled name!");
277 free(result);
278 }
279#endif
280 raw_ostream &getStream() { return Out; }
281
282 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
283 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
284 void mangleNumber(const llvm::APSInt &I);
285 void mangleNumber(int64_t Number);
286 void mangleFloat(const llvm::APFloat &F);
287 void mangleFunctionEncoding(const FunctionDecl *FD);
288 void mangleName(const NamedDecl *ND);
289 void mangleType(QualType T);
290 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
291
292private:
293 bool mangleSubstitution(const NamedDecl *ND);
294 bool mangleSubstitution(QualType T);
295 bool mangleSubstitution(TemplateName Template);
296 bool mangleSubstitution(uintptr_t Ptr);
297
298 void mangleExistingSubstitution(QualType type);
299 void mangleExistingSubstitution(TemplateName name);
300
301 bool mangleStandardSubstitution(const NamedDecl *ND);
302
303 void addSubstitution(const NamedDecl *ND) {
304 ND = cast<NamedDecl>(ND->getCanonicalDecl());
305
306 addSubstitution(reinterpret_cast<uintptr_t>(ND));
307 }
308 void addSubstitution(QualType T);
309 void addSubstitution(TemplateName Template);
310 void addSubstitution(uintptr_t Ptr);
311
312 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
313 NamedDecl *firstQualifierLookup,
314 bool recursive = false);
315 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
316 NamedDecl *firstQualifierLookup,
317 DeclarationName name,
318 unsigned KnownArity = UnknownArity);
319
320 void mangleName(const TemplateDecl *TD,
321 const TemplateArgument *TemplateArgs,
322 unsigned NumTemplateArgs);
323 void mangleUnqualifiedName(const NamedDecl *ND) {
324 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
325 }
326 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
327 unsigned KnownArity);
328 void mangleUnscopedName(const NamedDecl *ND);
329 void mangleUnscopedTemplateName(const TemplateDecl *ND);
330 void mangleUnscopedTemplateName(TemplateName);
331 void mangleSourceName(const IdentifierInfo *II);
Eli Friedman95f50122013-07-02 17:52:28 +0000332 void mangleLocalName(const Decl *D);
333 void mangleBlockForPrefix(const BlockDecl *Block);
334 void mangleUnqualifiedBlock(const BlockDecl *Block);
Guy Benyei11169dd2012-12-18 14:30:41 +0000335 void mangleLambda(const CXXRecordDecl *Lambda);
336 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
337 bool NoFunction=false);
338 void mangleNestedName(const TemplateDecl *TD,
339 const TemplateArgument *TemplateArgs,
340 unsigned NumTemplateArgs);
341 void manglePrefix(NestedNameSpecifier *qualifier);
342 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
343 void manglePrefix(QualType type);
Eli Friedman86af13f02013-07-05 18:41:30 +0000344 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
Guy Benyei11169dd2012-12-18 14:30:41 +0000345 void mangleTemplatePrefix(TemplateName Template);
346 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
347 void mangleQualifiers(Qualifiers Quals);
348 void mangleRefQualifier(RefQualifierKind RefQualifier);
349
350 void mangleObjCMethodName(const ObjCMethodDecl *MD);
351
352 // Declare manglers for every type class.
353#define ABSTRACT_TYPE(CLASS, PARENT)
354#define NON_CANONICAL_TYPE(CLASS, PARENT)
355#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
356#include "clang/AST/TypeNodes.def"
357
358 void mangleType(const TagType*);
359 void mangleType(TemplateName);
360 void mangleBareFunctionType(const FunctionType *T,
361 bool MangleReturnType);
362 void mangleNeonVectorType(const VectorType *T);
Tim Northover2fe823a2013-08-01 09:23:19 +0000363 void mangleAArch64NeonVectorType(const VectorType *T);
Guy Benyei11169dd2012-12-18 14:30:41 +0000364
365 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
366 void mangleMemberExpr(const Expr *base, bool isArrow,
367 NestedNameSpecifier *qualifier,
368 NamedDecl *firstQualifierLookup,
369 DeclarationName name,
370 unsigned knownArity);
371 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
372 void mangleCXXCtorType(CXXCtorType T);
373 void mangleCXXDtorType(CXXDtorType T);
374
375 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
376 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
377 unsigned NumTemplateArgs);
378 void mangleTemplateArgs(const TemplateArgumentList &AL);
379 void mangleTemplateArg(TemplateArgument A);
380
381 void mangleTemplateParameter(unsigned Index);
382
383 void mangleFunctionParam(const ParmVarDecl *parm);
384};
385
386}
387
Rafael Espindola002667c2013-10-16 01:40:34 +0000388bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000389 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000390 if (FD) {
391 LanguageLinkage L = FD->getLanguageLinkage();
392 // Overloadable functions need mangling.
393 if (FD->hasAttr<OverloadableAttr>())
394 return true;
395
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000396 // "main" is not mangled.
397 if (FD->isMain())
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000398 return false;
399
400 // C++ functions and those whose names are not a simple identifier need
401 // mangling.
402 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
403 return true;
Rafael Espindola46d2b6b2013-02-14 03:31:26 +0000404
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000405 // C functions are not mangled.
406 if (L == CLanguageLinkage)
407 return false;
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000408 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000409
410 // Otherwise, no mangling is done outside C++ mode.
411 if (!getASTContext().getLangOpts().CPlusPlus)
412 return false;
413
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000414 const VarDecl *VD = dyn_cast<VarDecl>(D);
415 if (VD) {
416 // C variables are not mangled.
417 if (VD->isExternC())
418 return false;
419
420 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei11169dd2012-12-18 14:30:41 +0000421 const DeclContext *DC = getEffectiveDeclContext(D);
422 // Check for extern variable declared locally.
423 if (DC->isFunctionOrMethod() && D->hasLinkage())
424 while (!DC->isNamespace() && !DC->isTranslationUnit())
425 DC = getEffectiveParentContext(DC);
Larisse Voufo39a1e502013-08-06 01:03:05 +0000426 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
427 !isa<VarTemplateSpecializationDecl>(D))
Guy Benyei11169dd2012-12-18 14:30:41 +0000428 return false;
429 }
430
Guy Benyei11169dd2012-12-18 14:30:41 +0000431 return true;
432}
433
434void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000435 // <mangled-name> ::= _Z <encoding>
436 // ::= <data name>
437 // ::= <special-name>
438 Out << Prefix;
439 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
440 mangleFunctionEncoding(FD);
441 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
442 mangleName(VD);
David Majnemer0eb8bbd2013-10-23 20:52:43 +0000443 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
444 mangleName(IFD->getAnonField());
Guy Benyei11169dd2012-12-18 14:30:41 +0000445 else
446 mangleName(cast<FieldDecl>(D));
447}
448
449void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
450 // <encoding> ::= <function name> <bare-function-type>
451 mangleName(FD);
452
453 // Don't mangle in the type if this isn't a decl we should typically mangle.
454 if (!Context.shouldMangleDeclName(FD))
455 return;
456
457 // Whether the mangling of a function type includes the return type depends on
458 // the context and the nature of the function. The rules for deciding whether
459 // the return type is included are:
460 //
461 // 1. Template functions (names or types) have return types encoded, with
462 // the exceptions listed below.
463 // 2. Function types not appearing as part of a function name mangling,
464 // e.g. parameters, pointer types, etc., have return type encoded, with the
465 // exceptions listed below.
466 // 3. Non-template function names do not have return types encoded.
467 //
468 // The exceptions mentioned in (1) and (2) above, for which the return type is
469 // never included, are
470 // 1. Constructors.
471 // 2. Destructors.
472 // 3. Conversion operator functions, e.g. operator int.
473 bool MangleReturnType = false;
474 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
475 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
476 isa<CXXConversionDecl>(FD)))
477 MangleReturnType = true;
478
479 // Mangle the type of the primary template.
480 FD = PrimaryTemplate->getTemplatedDecl();
481 }
482
483 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
484 MangleReturnType);
485}
486
487static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
488 while (isa<LinkageSpecDecl>(DC)) {
489 DC = getEffectiveParentContext(DC);
490 }
491
492 return DC;
493}
494
495/// isStd - Return whether a given namespace is the 'std' namespace.
496static bool isStd(const NamespaceDecl *NS) {
497 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
498 ->isTranslationUnit())
499 return false;
500
501 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
502 return II && II->isStr("std");
503}
504
505// isStdNamespace - Return whether a given decl context is a toplevel 'std'
506// namespace.
507static bool isStdNamespace(const DeclContext *DC) {
508 if (!DC->isNamespace())
509 return false;
510
511 return isStd(cast<NamespaceDecl>(DC));
512}
513
514static const TemplateDecl *
515isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
516 // Check if we have a function template.
517 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
518 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
519 TemplateArgs = FD->getTemplateSpecializationArgs();
520 return TD;
521 }
522 }
523
524 // Check if we have a class template.
525 if (const ClassTemplateSpecializationDecl *Spec =
526 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
527 TemplateArgs = &Spec->getTemplateArgs();
528 return Spec->getSpecializedTemplate();
529 }
530
Larisse Voufo39a1e502013-08-06 01:03:05 +0000531 // Check if we have a variable template.
532 if (const VarTemplateSpecializationDecl *Spec =
533 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
534 TemplateArgs = &Spec->getTemplateArgs();
535 return Spec->getSpecializedTemplate();
536 }
537
Guy Benyei11169dd2012-12-18 14:30:41 +0000538 return 0;
539}
540
541static bool isLambda(const NamedDecl *ND) {
542 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
543 if (!Record)
544 return false;
545
546 return Record->isLambda();
547}
548
549void CXXNameMangler::mangleName(const NamedDecl *ND) {
550 // <name> ::= <nested-name>
551 // ::= <unscoped-name>
552 // ::= <unscoped-template-name> <template-args>
553 // ::= <local-name>
554 //
555 const DeclContext *DC = getEffectiveDeclContext(ND);
556
557 // If this is an extern variable declared locally, the relevant DeclContext
558 // is that of the containing namespace, or the translation unit.
559 // FIXME: This is a hack; extern variables declared locally should have
560 // a proper semantic declaration context!
Eli Friedman95f50122013-07-02 17:52:28 +0000561 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
Guy Benyei11169dd2012-12-18 14:30:41 +0000562 while (!DC->isNamespace() && !DC->isTranslationUnit())
563 DC = getEffectiveParentContext(DC);
564 else if (GetLocalClassDecl(ND)) {
565 mangleLocalName(ND);
566 return;
567 }
568
569 DC = IgnoreLinkageSpecDecls(DC);
570
571 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
572 // Check if we have a template.
573 const TemplateArgumentList *TemplateArgs = 0;
574 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
575 mangleUnscopedTemplateName(TD);
576 mangleTemplateArgs(*TemplateArgs);
577 return;
578 }
579
580 mangleUnscopedName(ND);
581 return;
582 }
583
Eli Friedman95f50122013-07-02 17:52:28 +0000584 if (isLocalContainerContext(DC)) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000585 mangleLocalName(ND);
586 return;
587 }
588
589 mangleNestedName(ND, DC);
590}
591void CXXNameMangler::mangleName(const TemplateDecl *TD,
592 const TemplateArgument *TemplateArgs,
593 unsigned NumTemplateArgs) {
594 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
595
596 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
597 mangleUnscopedTemplateName(TD);
598 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
599 } else {
600 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
601 }
602}
603
604void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
605 // <unscoped-name> ::= <unqualified-name>
606 // ::= St <unqualified-name> # ::std::
607
608 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
609 Out << "St";
610
611 mangleUnqualifiedName(ND);
612}
613
614void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
615 // <unscoped-template-name> ::= <unscoped-name>
616 // ::= <substitution>
617 if (mangleSubstitution(ND))
618 return;
619
620 // <template-template-param> ::= <template-param>
621 if (const TemplateTemplateParmDecl *TTP
622 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
623 mangleTemplateParameter(TTP->getIndex());
624 return;
625 }
626
627 mangleUnscopedName(ND->getTemplatedDecl());
628 addSubstitution(ND);
629}
630
631void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
632 // <unscoped-template-name> ::= <unscoped-name>
633 // ::= <substitution>
634 if (TemplateDecl *TD = Template.getAsTemplateDecl())
635 return mangleUnscopedTemplateName(TD);
636
637 if (mangleSubstitution(Template))
638 return;
639
640 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
641 assert(Dependent && "Not a dependent template name?");
642 if (const IdentifierInfo *Id = Dependent->getIdentifier())
643 mangleSourceName(Id);
644 else
645 mangleOperatorName(Dependent->getOperator(), UnknownArity);
646
647 addSubstitution(Template);
648}
649
650void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
651 // ABI:
652 // Floating-point literals are encoded using a fixed-length
653 // lowercase hexadecimal string corresponding to the internal
654 // representation (IEEE on Itanium), high-order bytes first,
655 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
656 // on Itanium.
657 // The 'without leading zeroes' thing seems to be an editorial
658 // mistake; see the discussion on cxx-abi-dev beginning on
659 // 2012-01-16.
660
661 // Our requirements here are just barely weird enough to justify
662 // using a custom algorithm instead of post-processing APInt::toString().
663
664 llvm::APInt valueBits = f.bitcastToAPInt();
665 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
666 assert(numCharacters != 0);
667
668 // Allocate a buffer of the right number of characters.
Dmitri Gribenkof8579502013-01-12 19:30:44 +0000669 SmallVector<char, 20> buffer;
Guy Benyei11169dd2012-12-18 14:30:41 +0000670 buffer.set_size(numCharacters);
671
672 // Fill the buffer left-to-right.
673 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
674 // The bit-index of the next hex digit.
675 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
676
677 // Project out 4 bits starting at 'digitIndex'.
678 llvm::integerPart hexDigit
679 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
680 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
681 hexDigit &= 0xF;
682
683 // Map that over to a lowercase hex digit.
684 static const char charForHex[16] = {
685 '0', '1', '2', '3', '4', '5', '6', '7',
686 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
687 };
688 buffer[stringIndex] = charForHex[hexDigit];
689 }
690
691 Out.write(buffer.data(), numCharacters);
692}
693
694void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
695 if (Value.isSigned() && Value.isNegative()) {
696 Out << 'n';
697 Value.abs().print(Out, /*signed*/ false);
698 } else {
699 Value.print(Out, /*signed*/ false);
700 }
701}
702
703void CXXNameMangler::mangleNumber(int64_t Number) {
704 // <number> ::= [n] <non-negative decimal integer>
705 if (Number < 0) {
706 Out << 'n';
707 Number = -Number;
708 }
709
710 Out << Number;
711}
712
713void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
714 // <call-offset> ::= h <nv-offset> _
715 // ::= v <v-offset> _
716 // <nv-offset> ::= <offset number> # non-virtual base override
717 // <v-offset> ::= <offset number> _ <virtual offset number>
718 // # virtual base override, with vcall offset
719 if (!Virtual) {
720 Out << 'h';
721 mangleNumber(NonVirtual);
722 Out << '_';
723 return;
724 }
725
726 Out << 'v';
727 mangleNumber(NonVirtual);
728 Out << '_';
729 mangleNumber(Virtual);
730 Out << '_';
731}
732
733void CXXNameMangler::manglePrefix(QualType type) {
734 if (const TemplateSpecializationType *TST =
735 type->getAs<TemplateSpecializationType>()) {
736 if (!mangleSubstitution(QualType(TST, 0))) {
737 mangleTemplatePrefix(TST->getTemplateName());
738
739 // FIXME: GCC does not appear to mangle the template arguments when
740 // the template in question is a dependent template name. Should we
741 // emulate that badness?
742 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
743 addSubstitution(QualType(TST, 0));
744 }
745 } else if (const DependentTemplateSpecializationType *DTST
746 = type->getAs<DependentTemplateSpecializationType>()) {
747 TemplateName Template
748 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
749 DTST->getIdentifier());
750 mangleTemplatePrefix(Template);
751
752 // FIXME: GCC does not appear to mangle the template arguments when
753 // the template in question is a dependent template name. Should we
754 // emulate that badness?
755 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
756 } else {
757 // We use the QualType mangle type variant here because it handles
758 // substitutions.
759 mangleType(type);
760 }
761}
762
763/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
764///
765/// \param firstQualifierLookup - the entity found by unqualified lookup
766/// for the first name in the qualifier, if this is for a member expression
767/// \param recursive - true if this is being called recursively,
768/// i.e. if there is more prefix "to the right".
769void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
770 NamedDecl *firstQualifierLookup,
771 bool recursive) {
772
773 // x, ::x
774 // <unresolved-name> ::= [gs] <base-unresolved-name>
775
776 // T::x / decltype(p)::x
777 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
778
779 // T::N::x /decltype(p)::N::x
780 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
781 // <base-unresolved-name>
782
783 // A::x, N::y, A<T>::z; "gs" means leading "::"
784 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
785 // <base-unresolved-name>
786
787 switch (qualifier->getKind()) {
788 case NestedNameSpecifier::Global:
789 Out << "gs";
790
791 // We want an 'sr' unless this is the entire NNS.
792 if (recursive)
793 Out << "sr";
794
795 // We never want an 'E' here.
796 return;
797
798 case NestedNameSpecifier::Namespace:
799 if (qualifier->getPrefix())
800 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
801 /*recursive*/ true);
802 else
803 Out << "sr";
804 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
805 break;
806 case NestedNameSpecifier::NamespaceAlias:
807 if (qualifier->getPrefix())
808 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
809 /*recursive*/ true);
810 else
811 Out << "sr";
812 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
813 break;
814
815 case NestedNameSpecifier::TypeSpec:
816 case NestedNameSpecifier::TypeSpecWithTemplate: {
817 const Type *type = qualifier->getAsType();
818
819 // We only want to use an unresolved-type encoding if this is one of:
820 // - a decltype
821 // - a template type parameter
822 // - a template template parameter with arguments
823 // In all of these cases, we should have no prefix.
824 if (qualifier->getPrefix()) {
825 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
826 /*recursive*/ true);
827 } else {
828 // Otherwise, all the cases want this.
829 Out << "sr";
830 }
831
832 // Only certain other types are valid as prefixes; enumerate them.
833 switch (type->getTypeClass()) {
834 case Type::Builtin:
835 case Type::Complex:
Reid Kleckner8a365022013-06-24 17:51:48 +0000836 case Type::Decayed:
Guy Benyei11169dd2012-12-18 14:30:41 +0000837 case Type::Pointer:
838 case Type::BlockPointer:
839 case Type::LValueReference:
840 case Type::RValueReference:
841 case Type::MemberPointer:
842 case Type::ConstantArray:
843 case Type::IncompleteArray:
844 case Type::VariableArray:
845 case Type::DependentSizedArray:
846 case Type::DependentSizedExtVector:
847 case Type::Vector:
848 case Type::ExtVector:
849 case Type::FunctionProto:
850 case Type::FunctionNoProto:
851 case Type::Enum:
852 case Type::Paren:
853 case Type::Elaborated:
854 case Type::Attributed:
855 case Type::Auto:
856 case Type::PackExpansion:
857 case Type::ObjCObject:
858 case Type::ObjCInterface:
859 case Type::ObjCObjectPointer:
860 case Type::Atomic:
861 llvm_unreachable("type is illegal as a nested name specifier");
862
863 case Type::SubstTemplateTypeParmPack:
864 // FIXME: not clear how to mangle this!
865 // template <class T...> class A {
866 // template <class U...> void foo(decltype(T::foo(U())) x...);
867 // };
868 Out << "_SUBSTPACK_";
869 break;
870
871 // <unresolved-type> ::= <template-param>
872 // ::= <decltype>
873 // ::= <template-template-param> <template-args>
874 // (this last is not official yet)
875 case Type::TypeOfExpr:
876 case Type::TypeOf:
877 case Type::Decltype:
878 case Type::TemplateTypeParm:
879 case Type::UnaryTransform:
880 case Type::SubstTemplateTypeParm:
881 unresolvedType:
882 assert(!qualifier->getPrefix());
883
884 // We only get here recursively if we're followed by identifiers.
885 if (recursive) Out << 'N';
886
887 // This seems to do everything we want. It's not really
888 // sanctioned for a substituted template parameter, though.
889 mangleType(QualType(type, 0));
890
891 // We never want to print 'E' directly after an unresolved-type,
892 // so we return directly.
893 return;
894
895 case Type::Typedef:
896 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
897 break;
898
899 case Type::UnresolvedUsing:
900 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
901 ->getIdentifier());
902 break;
903
904 case Type::Record:
905 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
906 break;
907
908 case Type::TemplateSpecialization: {
909 const TemplateSpecializationType *tst
910 = cast<TemplateSpecializationType>(type);
911 TemplateName name = tst->getTemplateName();
912 switch (name.getKind()) {
913 case TemplateName::Template:
914 case TemplateName::QualifiedTemplate: {
915 TemplateDecl *temp = name.getAsTemplateDecl();
916
917 // If the base is a template template parameter, this is an
918 // unresolved type.
919 assert(temp && "no template for template specialization type");
920 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
921
922 mangleSourceName(temp->getIdentifier());
923 break;
924 }
925
926 case TemplateName::OverloadedTemplate:
927 case TemplateName::DependentTemplate:
928 llvm_unreachable("invalid base for a template specialization type");
929
930 case TemplateName::SubstTemplateTemplateParm: {
931 SubstTemplateTemplateParmStorage *subst
932 = name.getAsSubstTemplateTemplateParm();
933 mangleExistingSubstitution(subst->getReplacement());
934 break;
935 }
936
937 case TemplateName::SubstTemplateTemplateParmPack: {
938 // FIXME: not clear how to mangle this!
939 // template <template <class U> class T...> class A {
940 // template <class U...> void foo(decltype(T<U>::foo) x...);
941 // };
942 Out << "_SUBSTPACK_";
943 break;
944 }
945 }
946
947 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
948 break;
949 }
950
951 case Type::InjectedClassName:
952 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
953 ->getIdentifier());
954 break;
955
956 case Type::DependentName:
957 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
958 break;
959
960 case Type::DependentTemplateSpecialization: {
961 const DependentTemplateSpecializationType *tst
962 = cast<DependentTemplateSpecializationType>(type);
963 mangleSourceName(tst->getIdentifier());
964 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
965 break;
966 }
967 }
968 break;
969 }
970
971 case NestedNameSpecifier::Identifier:
972 // Member expressions can have these without prefixes.
973 if (qualifier->getPrefix()) {
974 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
975 /*recursive*/ true);
976 } else if (firstQualifierLookup) {
977
978 // Try to make a proper qualifier out of the lookup result, and
979 // then just recurse on that.
980 NestedNameSpecifier *newQualifier;
981 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
982 QualType type = getASTContext().getTypeDeclType(typeDecl);
983
984 // Pretend we had a different nested name specifier.
985 newQualifier = NestedNameSpecifier::Create(getASTContext(),
986 /*prefix*/ 0,
987 /*template*/ false,
988 type.getTypePtr());
989 } else if (NamespaceDecl *nspace =
990 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
991 newQualifier = NestedNameSpecifier::Create(getASTContext(),
992 /*prefix*/ 0,
993 nspace);
994 } else if (NamespaceAliasDecl *alias =
995 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
996 newQualifier = NestedNameSpecifier::Create(getASTContext(),
997 /*prefix*/ 0,
998 alias);
999 } else {
1000 // No sensible mangling to do here.
1001 newQualifier = 0;
1002 }
1003
1004 if (newQualifier)
1005 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1006
1007 } else {
1008 Out << "sr";
1009 }
1010
1011 mangleSourceName(qualifier->getAsIdentifier());
1012 break;
1013 }
1014
1015 // If this was the innermost part of the NNS, and we fell out to
1016 // here, append an 'E'.
1017 if (!recursive)
1018 Out << 'E';
1019}
1020
1021/// Mangle an unresolved-name, which is generally used for names which
1022/// weren't resolved to specific entities.
1023void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1024 NamedDecl *firstQualifierLookup,
1025 DeclarationName name,
1026 unsigned knownArity) {
1027 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1028 mangleUnqualifiedName(0, name, knownArity);
1029}
1030
1031static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1032 assert(RD->isAnonymousStructOrUnion() &&
1033 "Expected anonymous struct or union!");
1034
1035 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1036 I != E; ++I) {
1037 if (I->getIdentifier())
1038 return *I;
1039
1040 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1041 if (const FieldDecl *NamedDataMember =
1042 FindFirstNamedDataMember(RT->getDecl()))
1043 return NamedDataMember;
1044 }
1045
1046 // We didn't find a named data member.
1047 return 0;
1048}
1049
1050void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1051 DeclarationName Name,
1052 unsigned KnownArity) {
1053 // <unqualified-name> ::= <operator-name>
1054 // ::= <ctor-dtor-name>
1055 // ::= <source-name>
1056 switch (Name.getNameKind()) {
1057 case DeclarationName::Identifier: {
1058 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1059 // We must avoid conflicts between internally- and externally-
1060 // linked variable and function declaration names in the same TU:
1061 // void test() { extern void foo(); }
1062 // static void foo();
1063 // This naming convention is the same as that followed by GCC,
1064 // though it shouldn't actually matter.
Rafael Espindola3ae00052013-05-13 00:12:11 +00001065 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei11169dd2012-12-18 14:30:41 +00001066 getEffectiveDeclContext(ND)->isFileContext())
1067 Out << 'L';
1068
1069 mangleSourceName(II);
1070 break;
1071 }
1072
1073 // Otherwise, an anonymous entity. We must have a declaration.
1074 assert(ND && "mangling empty name without declaration");
1075
1076 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1077 if (NS->isAnonymousNamespace()) {
1078 // This is how gcc mangles these names.
1079 Out << "12_GLOBAL__N_1";
1080 break;
1081 }
1082 }
1083
1084 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1085 // We must have an anonymous union or struct declaration.
1086 const RecordDecl *RD =
1087 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1088
1089 // Itanium C++ ABI 5.1.2:
1090 //
1091 // For the purposes of mangling, the name of an anonymous union is
1092 // considered to be the name of the first named data member found by a
1093 // pre-order, depth-first, declaration-order walk of the data members of
1094 // the anonymous union. If there is no such data member (i.e., if all of
1095 // the data members in the union are unnamed), then there is no way for
1096 // a program to refer to the anonymous union, and there is therefore no
1097 // need to mangle its name.
1098 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1099
1100 // It's actually possible for various reasons for us to get here
1101 // with an empty anonymous struct / union. Fortunately, it
1102 // doesn't really matter what name we generate.
1103 if (!FD) break;
1104 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1105
1106 mangleSourceName(FD->getIdentifier());
1107 break;
1108 }
John McCall924046f2013-04-10 06:08:21 +00001109
1110 // Class extensions have no name as a category, and it's possible
1111 // for them to be the semantic parent of certain declarations
1112 // (primarily, tag decls defined within declarations). Such
1113 // declarations will always have internal linkage, so the name
1114 // doesn't really matter, but we shouldn't crash on them. For
1115 // safety, just handle all ObjC containers here.
1116 if (isa<ObjCContainerDecl>(ND))
1117 break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001118
1119 // We must have an anonymous struct.
1120 const TagDecl *TD = cast<TagDecl>(ND);
1121 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1122 assert(TD->getDeclContext() == D->getDeclContext() &&
1123 "Typedef should not be in another decl context!");
1124 assert(D->getDeclName().getAsIdentifierInfo() &&
1125 "Typedef was not named!");
1126 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1127 break;
1128 }
1129
1130 // <unnamed-type-name> ::= <closure-type-name>
1131 //
1132 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1133 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1134 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1135 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1136 mangleLambda(Record);
1137 break;
1138 }
1139 }
1140
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001141 if (TD->isExternallyVisible()) {
1142 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Guy Benyei11169dd2012-12-18 14:30:41 +00001143 Out << "Ut";
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001144 if (UnnamedMangle > 1)
1145 Out << llvm::utostr(UnnamedMangle - 2);
Guy Benyei11169dd2012-12-18 14:30:41 +00001146 Out << '_';
1147 break;
1148 }
1149
1150 // Get a unique id for the anonymous struct.
1151 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1152
1153 // Mangle it as a source name in the form
1154 // [n] $_<id>
1155 // where n is the length of the string.
1156 SmallString<8> Str;
1157 Str += "$_";
1158 Str += llvm::utostr(AnonStructId);
1159
1160 Out << Str.size();
1161 Out << Str.str();
1162 break;
1163 }
1164
1165 case DeclarationName::ObjCZeroArgSelector:
1166 case DeclarationName::ObjCOneArgSelector:
1167 case DeclarationName::ObjCMultiArgSelector:
1168 llvm_unreachable("Can't mangle Objective-C selector names here!");
1169
1170 case DeclarationName::CXXConstructorName:
1171 if (ND == Structor)
1172 // If the named decl is the C++ constructor we're mangling, use the type
1173 // we were given.
1174 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1175 else
1176 // Otherwise, use the complete constructor name. This is relevant if a
1177 // class with a constructor is declared within a constructor.
1178 mangleCXXCtorType(Ctor_Complete);
1179 break;
1180
1181 case DeclarationName::CXXDestructorName:
1182 if (ND == Structor)
1183 // If the named decl is the C++ destructor we're mangling, use the type we
1184 // were given.
1185 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1186 else
1187 // Otherwise, use the complete destructor name. This is relevant if a
1188 // class with a destructor is declared within a destructor.
1189 mangleCXXDtorType(Dtor_Complete);
1190 break;
1191
1192 case DeclarationName::CXXConversionFunctionName:
1193 // <operator-name> ::= cv <type> # (cast)
1194 Out << "cv";
1195 mangleType(Name.getCXXNameType());
1196 break;
1197
1198 case DeclarationName::CXXOperatorName: {
1199 unsigned Arity;
1200 if (ND) {
1201 Arity = cast<FunctionDecl>(ND)->getNumParams();
1202
1203 // If we have a C++ member function, we need to include the 'this' pointer.
1204 // FIXME: This does not make sense for operators that are static, but their
1205 // names stay the same regardless of the arity (operator new for instance).
1206 if (isa<CXXMethodDecl>(ND))
1207 Arity++;
1208 } else
1209 Arity = KnownArity;
1210
1211 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1212 break;
1213 }
1214
1215 case DeclarationName::CXXLiteralOperatorName:
1216 // FIXME: This mangling is not yet official.
1217 Out << "li";
1218 mangleSourceName(Name.getCXXLiteralIdentifier());
1219 break;
1220
1221 case DeclarationName::CXXUsingDirective:
1222 llvm_unreachable("Can't mangle a using directive name!");
1223 }
1224}
1225
1226void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1227 // <source-name> ::= <positive length number> <identifier>
1228 // <number> ::= [n] <non-negative decimal integer>
1229 // <identifier> ::= <unqualified source code identifier>
1230 Out << II->getLength() << II->getName();
1231}
1232
1233void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1234 const DeclContext *DC,
1235 bool NoFunction) {
1236 // <nested-name>
1237 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1238 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1239 // <template-args> E
1240
1241 Out << 'N';
1242 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
David Majnemer42350df2013-11-03 23:51:28 +00001243 Qualifiers MethodQuals =
1244 Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1245 // We do not consider restrict a distinguishing attribute for overloading
1246 // purposes so we must not mangle it.
1247 MethodQuals.removeRestrict();
1248 mangleQualifiers(MethodQuals);
Guy Benyei11169dd2012-12-18 14:30:41 +00001249 mangleRefQualifier(Method->getRefQualifier());
1250 }
1251
1252 // Check if we have a template.
1253 const TemplateArgumentList *TemplateArgs = 0;
1254 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
Eli Friedman86af13f02013-07-05 18:41:30 +00001255 mangleTemplatePrefix(TD, NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001256 mangleTemplateArgs(*TemplateArgs);
1257 }
1258 else {
1259 manglePrefix(DC, NoFunction);
1260 mangleUnqualifiedName(ND);
1261 }
1262
1263 Out << 'E';
1264}
1265void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1266 const TemplateArgument *TemplateArgs,
1267 unsigned NumTemplateArgs) {
1268 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1269
1270 Out << 'N';
1271
1272 mangleTemplatePrefix(TD);
1273 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1274
1275 Out << 'E';
1276}
1277
Eli Friedman95f50122013-07-02 17:52:28 +00001278void CXXNameMangler::mangleLocalName(const Decl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001279 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1280 // := Z <function encoding> E s [<discriminator>]
1281 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1282 // _ <entity name>
1283 // <discriminator> := _ <non-negative number>
Eli Friedman95f50122013-07-02 17:52:28 +00001284 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001285 const RecordDecl *RD = GetLocalClassDecl(D);
Eli Friedman95f50122013-07-02 17:52:28 +00001286 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Guy Benyei11169dd2012-12-18 14:30:41 +00001287
1288 Out << 'Z';
1289
Eli Friedman92821742013-07-02 02:01:18 +00001290 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1291 mangleObjCMethodName(MD);
1292 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
Eli Friedman95f50122013-07-02 17:52:28 +00001293 mangleBlockForPrefix(BD);
Eli Friedman92821742013-07-02 02:01:18 +00001294 else
1295 mangleFunctionEncoding(cast<FunctionDecl>(DC));
Guy Benyei11169dd2012-12-18 14:30:41 +00001296
Eli Friedman92821742013-07-02 02:01:18 +00001297 Out << 'E';
1298
1299 if (RD) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001300 // The parameter number is omitted for the last parameter, 0 for the
1301 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1302 // <entity name> will of course contain a <closure-type-name>: Its
1303 // numbering will be local to the particular argument in which it appears
1304 // -- other default arguments do not affect its encoding.
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001305 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1306 if (CXXRD->isLambda()) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001307 if (const ParmVarDecl *Parm
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001308 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001309 if (const FunctionDecl *Func
1310 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1311 Out << 'd';
1312 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1313 if (Num > 1)
1314 mangleNumber(Num - 2);
1315 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001316 }
1317 }
1318 }
1319
1320 // Mangle the name relative to the closest enclosing function.
Eli Friedman95f50122013-07-02 17:52:28 +00001321 // equality ok because RD derived from ND above
1322 if (D == RD) {
1323 mangleUnqualifiedName(RD);
1324 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1325 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1326 mangleUnqualifiedBlock(BD);
1327 } else {
1328 const NamedDecl *ND = cast<NamedDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +00001329 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
Eli Friedman95f50122013-07-02 17:52:28 +00001330 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001331 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1332 // Mangle a block in a default parameter; see above explanation for
1333 // lambdas.
1334 if (const ParmVarDecl *Parm
1335 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1336 if (const FunctionDecl *Func
1337 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1338 Out << 'd';
1339 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1340 if (Num > 1)
1341 mangleNumber(Num - 2);
1342 Out << '_';
1343 }
1344 }
1345
1346 mangleUnqualifiedBlock(BD);
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001347 } else {
Eli Friedman0cd23352013-07-10 01:33:19 +00001348 mangleUnqualifiedName(cast<NamedDecl>(D));
Guy Benyei11169dd2012-12-18 14:30:41 +00001349 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001350
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001351 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1352 unsigned disc;
1353 if (Context.getNextDiscriminator(ND, disc)) {
1354 if (disc < 10)
1355 Out << '_' << disc;
1356 else
1357 Out << "__" << disc << '_';
1358 }
1359 }
Eli Friedman95f50122013-07-02 17:52:28 +00001360}
1361
1362void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1363 if (GetLocalClassDecl(Block)) {
1364 mangleLocalName(Block);
1365 return;
1366 }
1367 const DeclContext *DC = getEffectiveDeclContext(Block);
1368 if (isLocalContainerContext(DC)) {
1369 mangleLocalName(Block);
1370 return;
1371 }
1372 manglePrefix(getEffectiveDeclContext(Block));
1373 mangleUnqualifiedBlock(Block);
1374}
1375
1376void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1377 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1378 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1379 Context->getDeclContext()->isRecord()) {
1380 if (const IdentifierInfo *Name
1381 = cast<NamedDecl>(Context)->getIdentifier()) {
1382 mangleSourceName(Name);
1383 Out << 'M';
1384 }
1385 }
1386 }
1387
1388 // If we have a block mangling number, use it.
1389 unsigned Number = Block->getBlockManglingNumber();
1390 // Otherwise, just make up a number. It doesn't matter what it is because
1391 // the symbol in question isn't externally visible.
1392 if (!Number)
1393 Number = Context.getBlockId(Block, false);
1394 Out << "Ub";
1395 if (Number > 1)
1396 Out << Number - 2;
1397 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001398}
1399
1400void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1401 // If the context of a closure type is an initializer for a class member
1402 // (static or nonstatic), it is encoded in a qualified name with a final
1403 // <prefix> of the form:
1404 //
1405 // <data-member-prefix> := <member source-name> M
1406 //
1407 // Technically, the data-member-prefix is part of the <prefix>. However,
1408 // since a closure type will always be mangled with a prefix, it's easier
1409 // to emit that last part of the prefix here.
1410 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1411 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1412 Context->getDeclContext()->isRecord()) {
1413 if (const IdentifierInfo *Name
1414 = cast<NamedDecl>(Context)->getIdentifier()) {
1415 mangleSourceName(Name);
1416 Out << 'M';
1417 }
1418 }
1419 }
1420
1421 Out << "Ul";
1422 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1423 getAs<FunctionProtoType>();
1424 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1425 Out << "E";
1426
1427 // The number is omitted for the first closure type with a given
1428 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1429 // (in lexical order) with that same <lambda-sig> and context.
1430 //
1431 // The AST keeps track of the number for us.
1432 unsigned Number = Lambda->getLambdaManglingNumber();
1433 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1434 if (Number > 1)
1435 mangleNumber(Number - 2);
1436 Out << '_';
1437}
1438
1439void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1440 switch (qualifier->getKind()) {
1441 case NestedNameSpecifier::Global:
1442 // nothing
1443 return;
1444
1445 case NestedNameSpecifier::Namespace:
1446 mangleName(qualifier->getAsNamespace());
1447 return;
1448
1449 case NestedNameSpecifier::NamespaceAlias:
1450 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1451 return;
1452
1453 case NestedNameSpecifier::TypeSpec:
1454 case NestedNameSpecifier::TypeSpecWithTemplate:
1455 manglePrefix(QualType(qualifier->getAsType(), 0));
1456 return;
1457
1458 case NestedNameSpecifier::Identifier:
1459 // Member expressions can have these without prefixes, but that
1460 // should end up in mangleUnresolvedPrefix instead.
1461 assert(qualifier->getPrefix());
1462 manglePrefix(qualifier->getPrefix());
1463
1464 mangleSourceName(qualifier->getAsIdentifier());
1465 return;
1466 }
1467
1468 llvm_unreachable("unexpected nested name specifier");
1469}
1470
1471void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1472 // <prefix> ::= <prefix> <unqualified-name>
1473 // ::= <template-prefix> <template-args>
1474 // ::= <template-param>
1475 // ::= # empty
1476 // ::= <substitution>
1477
1478 DC = IgnoreLinkageSpecDecls(DC);
1479
1480 if (DC->isTranslationUnit())
1481 return;
1482
Eli Friedman95f50122013-07-02 17:52:28 +00001483 if (NoFunction && isLocalContainerContext(DC))
1484 return;
Eli Friedman7e346a82013-07-01 20:22:57 +00001485
Eli Friedman95f50122013-07-02 17:52:28 +00001486 assert(!isLocalContainerContext(DC));
1487
Guy Benyei11169dd2012-12-18 14:30:41 +00001488 const NamedDecl *ND = cast<NamedDecl>(DC);
1489 if (mangleSubstitution(ND))
1490 return;
1491
1492 // Check if we have a template.
1493 const TemplateArgumentList *TemplateArgs = 0;
1494 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1495 mangleTemplatePrefix(TD);
1496 mangleTemplateArgs(*TemplateArgs);
Eli Friedman95f50122013-07-02 17:52:28 +00001497 } else {
Guy Benyei11169dd2012-12-18 14:30:41 +00001498 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1499 mangleUnqualifiedName(ND);
1500 }
1501
1502 addSubstitution(ND);
1503}
1504
1505void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1506 // <template-prefix> ::= <prefix> <template unqualified-name>
1507 // ::= <template-param>
1508 // ::= <substitution>
1509 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1510 return mangleTemplatePrefix(TD);
1511
1512 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1513 manglePrefix(Qualified->getQualifier());
1514
1515 if (OverloadedTemplateStorage *Overloaded
1516 = Template.getAsOverloadedTemplate()) {
1517 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1518 UnknownArity);
1519 return;
1520 }
1521
1522 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1523 assert(Dependent && "Unknown template name kind?");
1524 manglePrefix(Dependent->getQualifier());
1525 mangleUnscopedTemplateName(Template);
1526}
1527
Eli Friedman86af13f02013-07-05 18:41:30 +00001528void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1529 bool NoFunction) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001530 // <template-prefix> ::= <prefix> <template unqualified-name>
1531 // ::= <template-param>
1532 // ::= <substitution>
1533 // <template-template-param> ::= <template-param>
1534 // <substitution>
1535
1536 if (mangleSubstitution(ND))
1537 return;
1538
1539 // <template-template-param> ::= <template-param>
1540 if (const TemplateTemplateParmDecl *TTP
1541 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1542 mangleTemplateParameter(TTP->getIndex());
1543 return;
1544 }
1545
Eli Friedman86af13f02013-07-05 18:41:30 +00001546 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001547 mangleUnqualifiedName(ND->getTemplatedDecl());
1548 addSubstitution(ND);
1549}
1550
1551/// Mangles a template name under the production <type>. Required for
1552/// template template arguments.
1553/// <type> ::= <class-enum-type>
1554/// ::= <template-param>
1555/// ::= <substitution>
1556void CXXNameMangler::mangleType(TemplateName TN) {
1557 if (mangleSubstitution(TN))
1558 return;
1559
1560 TemplateDecl *TD = 0;
1561
1562 switch (TN.getKind()) {
1563 case TemplateName::QualifiedTemplate:
1564 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1565 goto HaveDecl;
1566
1567 case TemplateName::Template:
1568 TD = TN.getAsTemplateDecl();
1569 goto HaveDecl;
1570
1571 HaveDecl:
1572 if (isa<TemplateTemplateParmDecl>(TD))
1573 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1574 else
1575 mangleName(TD);
1576 break;
1577
1578 case TemplateName::OverloadedTemplate:
1579 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1580
1581 case TemplateName::DependentTemplate: {
1582 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1583 assert(Dependent->isIdentifier());
1584
1585 // <class-enum-type> ::= <name>
1586 // <name> ::= <nested-name>
1587 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1588 mangleSourceName(Dependent->getIdentifier());
1589 break;
1590 }
1591
1592 case TemplateName::SubstTemplateTemplateParm: {
1593 // Substituted template parameters are mangled as the substituted
1594 // template. This will check for the substitution twice, which is
1595 // fine, but we have to return early so that we don't try to *add*
1596 // the substitution twice.
1597 SubstTemplateTemplateParmStorage *subst
1598 = TN.getAsSubstTemplateTemplateParm();
1599 mangleType(subst->getReplacement());
1600 return;
1601 }
1602
1603 case TemplateName::SubstTemplateTemplateParmPack: {
1604 // FIXME: not clear how to mangle this!
1605 // template <template <class> class T...> class A {
1606 // template <template <class> class U...> void foo(B<T,U> x...);
1607 // };
1608 Out << "_SUBSTPACK_";
1609 break;
1610 }
1611 }
1612
1613 addSubstitution(TN);
1614}
1615
1616void
1617CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1618 switch (OO) {
1619 // <operator-name> ::= nw # new
1620 case OO_New: Out << "nw"; break;
1621 // ::= na # new[]
1622 case OO_Array_New: Out << "na"; break;
1623 // ::= dl # delete
1624 case OO_Delete: Out << "dl"; break;
1625 // ::= da # delete[]
1626 case OO_Array_Delete: Out << "da"; break;
1627 // ::= ps # + (unary)
1628 // ::= pl # + (binary or unknown)
1629 case OO_Plus:
1630 Out << (Arity == 1? "ps" : "pl"); break;
1631 // ::= ng # - (unary)
1632 // ::= mi # - (binary or unknown)
1633 case OO_Minus:
1634 Out << (Arity == 1? "ng" : "mi"); break;
1635 // ::= ad # & (unary)
1636 // ::= an # & (binary or unknown)
1637 case OO_Amp:
1638 Out << (Arity == 1? "ad" : "an"); break;
1639 // ::= de # * (unary)
1640 // ::= ml # * (binary or unknown)
1641 case OO_Star:
1642 // Use binary when unknown.
1643 Out << (Arity == 1? "de" : "ml"); break;
1644 // ::= co # ~
1645 case OO_Tilde: Out << "co"; break;
1646 // ::= dv # /
1647 case OO_Slash: Out << "dv"; break;
1648 // ::= rm # %
1649 case OO_Percent: Out << "rm"; break;
1650 // ::= or # |
1651 case OO_Pipe: Out << "or"; break;
1652 // ::= eo # ^
1653 case OO_Caret: Out << "eo"; break;
1654 // ::= aS # =
1655 case OO_Equal: Out << "aS"; break;
1656 // ::= pL # +=
1657 case OO_PlusEqual: Out << "pL"; break;
1658 // ::= mI # -=
1659 case OO_MinusEqual: Out << "mI"; break;
1660 // ::= mL # *=
1661 case OO_StarEqual: Out << "mL"; break;
1662 // ::= dV # /=
1663 case OO_SlashEqual: Out << "dV"; break;
1664 // ::= rM # %=
1665 case OO_PercentEqual: Out << "rM"; break;
1666 // ::= aN # &=
1667 case OO_AmpEqual: Out << "aN"; break;
1668 // ::= oR # |=
1669 case OO_PipeEqual: Out << "oR"; break;
1670 // ::= eO # ^=
1671 case OO_CaretEqual: Out << "eO"; break;
1672 // ::= ls # <<
1673 case OO_LessLess: Out << "ls"; break;
1674 // ::= rs # >>
1675 case OO_GreaterGreater: Out << "rs"; break;
1676 // ::= lS # <<=
1677 case OO_LessLessEqual: Out << "lS"; break;
1678 // ::= rS # >>=
1679 case OO_GreaterGreaterEqual: Out << "rS"; break;
1680 // ::= eq # ==
1681 case OO_EqualEqual: Out << "eq"; break;
1682 // ::= ne # !=
1683 case OO_ExclaimEqual: Out << "ne"; break;
1684 // ::= lt # <
1685 case OO_Less: Out << "lt"; break;
1686 // ::= gt # >
1687 case OO_Greater: Out << "gt"; break;
1688 // ::= le # <=
1689 case OO_LessEqual: Out << "le"; break;
1690 // ::= ge # >=
1691 case OO_GreaterEqual: Out << "ge"; break;
1692 // ::= nt # !
1693 case OO_Exclaim: Out << "nt"; break;
1694 // ::= aa # &&
1695 case OO_AmpAmp: Out << "aa"; break;
1696 // ::= oo # ||
1697 case OO_PipePipe: Out << "oo"; break;
1698 // ::= pp # ++
1699 case OO_PlusPlus: Out << "pp"; break;
1700 // ::= mm # --
1701 case OO_MinusMinus: Out << "mm"; break;
1702 // ::= cm # ,
1703 case OO_Comma: Out << "cm"; break;
1704 // ::= pm # ->*
1705 case OO_ArrowStar: Out << "pm"; break;
1706 // ::= pt # ->
1707 case OO_Arrow: Out << "pt"; break;
1708 // ::= cl # ()
1709 case OO_Call: Out << "cl"; break;
1710 // ::= ix # []
1711 case OO_Subscript: Out << "ix"; break;
1712
1713 // ::= qu # ?
1714 // The conditional operator can't be overloaded, but we still handle it when
1715 // mangling expressions.
1716 case OO_Conditional: Out << "qu"; break;
1717
1718 case OO_None:
1719 case NUM_OVERLOADED_OPERATORS:
1720 llvm_unreachable("Not an overloaded operator");
1721 }
1722}
1723
1724void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1725 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1726 if (Quals.hasRestrict())
1727 Out << 'r';
1728 if (Quals.hasVolatile())
1729 Out << 'V';
1730 if (Quals.hasConst())
1731 Out << 'K';
1732
1733 if (Quals.hasAddressSpace()) {
David Tweed31d09b02013-09-13 12:04:22 +00001734 // Address space extension:
Guy Benyei11169dd2012-12-18 14:30:41 +00001735 //
David Tweed31d09b02013-09-13 12:04:22 +00001736 // <type> ::= U <target-addrspace>
1737 // <type> ::= U <OpenCL-addrspace>
1738 // <type> ::= U <CUDA-addrspace>
1739
Guy Benyei11169dd2012-12-18 14:30:41 +00001740 SmallString<64> ASString;
David Tweed31d09b02013-09-13 12:04:22 +00001741 unsigned AS = Quals.getAddressSpace();
David Tweed31d09b02013-09-13 12:04:22 +00001742
1743 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1744 // <target-addrspace> ::= "AS" <address-space-number>
1745 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1746 ASString = "AS" + llvm::utostr_32(TargetAS);
1747 } else {
1748 switch (AS) {
1749 default: llvm_unreachable("Not a language specific address space");
1750 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1751 case LangAS::opencl_global: ASString = "CLglobal"; break;
1752 case LangAS::opencl_local: ASString = "CLlocal"; break;
1753 case LangAS::opencl_constant: ASString = "CLconstant"; break;
1754 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1755 case LangAS::cuda_device: ASString = "CUdevice"; break;
1756 case LangAS::cuda_constant: ASString = "CUconstant"; break;
1757 case LangAS::cuda_shared: ASString = "CUshared"; break;
1758 }
1759 }
Guy Benyei11169dd2012-12-18 14:30:41 +00001760 Out << 'U' << ASString.size() << ASString;
1761 }
1762
1763 StringRef LifetimeName;
1764 switch (Quals.getObjCLifetime()) {
1765 // Objective-C ARC Extension:
1766 //
1767 // <type> ::= U "__strong"
1768 // <type> ::= U "__weak"
1769 // <type> ::= U "__autoreleasing"
1770 case Qualifiers::OCL_None:
1771 break;
1772
1773 case Qualifiers::OCL_Weak:
1774 LifetimeName = "__weak";
1775 break;
1776
1777 case Qualifiers::OCL_Strong:
1778 LifetimeName = "__strong";
1779 break;
1780
1781 case Qualifiers::OCL_Autoreleasing:
1782 LifetimeName = "__autoreleasing";
1783 break;
1784
1785 case Qualifiers::OCL_ExplicitNone:
1786 // The __unsafe_unretained qualifier is *not* mangled, so that
1787 // __unsafe_unretained types in ARC produce the same manglings as the
1788 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1789 // better ABI compatibility.
1790 //
1791 // It's safe to do this because unqualified 'id' won't show up
1792 // in any type signatures that need to be mangled.
1793 break;
1794 }
1795 if (!LifetimeName.empty())
1796 Out << 'U' << LifetimeName.size() << LifetimeName;
1797}
1798
1799void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1800 // <ref-qualifier> ::= R # lvalue reference
1801 // ::= O # rvalue-reference
Guy Benyei11169dd2012-12-18 14:30:41 +00001802 switch (RefQualifier) {
1803 case RQ_None:
1804 break;
1805
1806 case RQ_LValue:
1807 Out << 'R';
1808 break;
1809
1810 case RQ_RValue:
1811 Out << 'O';
1812 break;
1813 }
1814}
1815
1816void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1817 Context.mangleObjCMethodName(MD, Out);
1818}
1819
1820void CXXNameMangler::mangleType(QualType T) {
1821 // If our type is instantiation-dependent but not dependent, we mangle
1822 // it as it was written in the source, removing any top-level sugar.
1823 // Otherwise, use the canonical type.
1824 //
1825 // FIXME: This is an approximation of the instantiation-dependent name
1826 // mangling rules, since we should really be using the type as written and
1827 // augmented via semantic analysis (i.e., with implicit conversions and
1828 // default template arguments) for any instantiation-dependent type.
1829 // Unfortunately, that requires several changes to our AST:
1830 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1831 // uniqued, so that we can handle substitutions properly
1832 // - Default template arguments will need to be represented in the
1833 // TemplateSpecializationType, since they need to be mangled even though
1834 // they aren't written.
1835 // - Conversions on non-type template arguments need to be expressed, since
1836 // they can affect the mangling of sizeof/alignof.
1837 if (!T->isInstantiationDependentType() || T->isDependentType())
1838 T = T.getCanonicalType();
1839 else {
1840 // Desugar any types that are purely sugar.
1841 do {
1842 // Don't desugar through template specialization types that aren't
1843 // type aliases. We need to mangle the template arguments as written.
1844 if (const TemplateSpecializationType *TST
1845 = dyn_cast<TemplateSpecializationType>(T))
1846 if (!TST->isTypeAlias())
1847 break;
1848
1849 QualType Desugared
1850 = T.getSingleStepDesugaredType(Context.getASTContext());
1851 if (Desugared == T)
1852 break;
1853
1854 T = Desugared;
1855 } while (true);
1856 }
1857 SplitQualType split = T.split();
1858 Qualifiers quals = split.Quals;
1859 const Type *ty = split.Ty;
1860
1861 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1862 if (isSubstitutable && mangleSubstitution(T))
1863 return;
1864
1865 // If we're mangling a qualified array type, push the qualifiers to
1866 // the element type.
1867 if (quals && isa<ArrayType>(T)) {
1868 ty = Context.getASTContext().getAsArrayType(T);
1869 quals = Qualifiers();
1870
1871 // Note that we don't update T: we want to add the
1872 // substitution at the original type.
1873 }
1874
1875 if (quals) {
1876 mangleQualifiers(quals);
1877 // Recurse: even if the qualified type isn't yet substitutable,
1878 // the unqualified type might be.
1879 mangleType(QualType(ty, 0));
1880 } else {
1881 switch (ty->getTypeClass()) {
1882#define ABSTRACT_TYPE(CLASS, PARENT)
1883#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1884 case Type::CLASS: \
1885 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1886 return;
1887#define TYPE(CLASS, PARENT) \
1888 case Type::CLASS: \
1889 mangleType(static_cast<const CLASS##Type*>(ty)); \
1890 break;
1891#include "clang/AST/TypeNodes.def"
1892 }
1893 }
1894
1895 // Add the substitution.
1896 if (isSubstitutable)
1897 addSubstitution(T);
1898}
1899
1900void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1901 if (!mangleStandardSubstitution(ND))
1902 mangleName(ND);
1903}
1904
1905void CXXNameMangler::mangleType(const BuiltinType *T) {
1906 // <type> ::= <builtin-type>
1907 // <builtin-type> ::= v # void
1908 // ::= w # wchar_t
1909 // ::= b # bool
1910 // ::= c # char
1911 // ::= a # signed char
1912 // ::= h # unsigned char
1913 // ::= s # short
1914 // ::= t # unsigned short
1915 // ::= i # int
1916 // ::= j # unsigned int
1917 // ::= l # long
1918 // ::= m # unsigned long
1919 // ::= x # long long, __int64
1920 // ::= y # unsigned long long, __int64
1921 // ::= n # __int128
1922 // UNSUPPORTED: ::= o # unsigned __int128
1923 // ::= f # float
1924 // ::= d # double
1925 // ::= e # long double, __float80
1926 // UNSUPPORTED: ::= g # __float128
1927 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1928 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1929 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1930 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1931 // ::= Di # char32_t
1932 // ::= Ds # char16_t
1933 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1934 // ::= u <source-name> # vendor extended type
1935 switch (T->getKind()) {
1936 case BuiltinType::Void: Out << 'v'; break;
1937 case BuiltinType::Bool: Out << 'b'; break;
1938 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1939 case BuiltinType::UChar: Out << 'h'; break;
1940 case BuiltinType::UShort: Out << 't'; break;
1941 case BuiltinType::UInt: Out << 'j'; break;
1942 case BuiltinType::ULong: Out << 'm'; break;
1943 case BuiltinType::ULongLong: Out << 'y'; break;
1944 case BuiltinType::UInt128: Out << 'o'; break;
1945 case BuiltinType::SChar: Out << 'a'; break;
1946 case BuiltinType::WChar_S:
1947 case BuiltinType::WChar_U: Out << 'w'; break;
1948 case BuiltinType::Char16: Out << "Ds"; break;
1949 case BuiltinType::Char32: Out << "Di"; break;
1950 case BuiltinType::Short: Out << 's'; break;
1951 case BuiltinType::Int: Out << 'i'; break;
1952 case BuiltinType::Long: Out << 'l'; break;
1953 case BuiltinType::LongLong: Out << 'x'; break;
1954 case BuiltinType::Int128: Out << 'n'; break;
1955 case BuiltinType::Half: Out << "Dh"; break;
1956 case BuiltinType::Float: Out << 'f'; break;
1957 case BuiltinType::Double: Out << 'd'; break;
1958 case BuiltinType::LongDouble: Out << 'e'; break;
1959 case BuiltinType::NullPtr: Out << "Dn"; break;
1960
1961#define BUILTIN_TYPE(Id, SingletonId)
1962#define PLACEHOLDER_TYPE(Id, SingletonId) \
1963 case BuiltinType::Id:
1964#include "clang/AST/BuiltinTypes.def"
1965 case BuiltinType::Dependent:
1966 llvm_unreachable("mangling a placeholder type");
1967 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1968 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1969 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeid8a08ea2012-12-18 14:38:23 +00001970 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1971 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1972 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1973 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1974 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1975 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei61054192013-02-07 10:55:47 +00001976 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyei1b4fb3e2013-01-20 12:31:11 +00001977 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001978 }
1979}
1980
1981// <type> ::= <function-type>
1982// <function-type> ::= [<CV-qualifiers>] F [Y]
1983// <bare-function-type> [<ref-qualifier>] E
Guy Benyei11169dd2012-12-18 14:30:41 +00001984void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1985 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1986 // e.g. "const" in "int (A::*)() const".
1987 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1988
1989 Out << 'F';
1990
1991 // FIXME: We don't have enough information in the AST to produce the 'Y'
1992 // encoding for extern "C" function types.
1993 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1994
1995 // Mangle the ref-qualifier, if present.
1996 mangleRefQualifier(T->getRefQualifier());
1997
1998 Out << 'E';
1999}
2000void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2001 llvm_unreachable("Can't mangle K&R function prototypes");
2002}
2003void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2004 bool MangleReturnType) {
2005 // We should never be mangling something without a prototype.
2006 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2007
2008 // Record that we're in a function type. See mangleFunctionParam
2009 // for details on what we're trying to achieve here.
2010 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2011
2012 // <bare-function-type> ::= <signature type>+
2013 if (MangleReturnType) {
2014 FunctionTypeDepth.enterResultType();
2015 mangleType(Proto->getResultType());
2016 FunctionTypeDepth.leaveResultType();
2017 }
2018
2019 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2020 // <builtin-type> ::= v # void
2021 Out << 'v';
2022
2023 FunctionTypeDepth.pop(saved);
2024 return;
2025 }
2026
2027 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2028 ArgEnd = Proto->arg_type_end();
2029 Arg != ArgEnd; ++Arg)
2030 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2031
2032 FunctionTypeDepth.pop(saved);
2033
2034 // <builtin-type> ::= z # ellipsis
2035 if (Proto->isVariadic())
2036 Out << 'z';
2037}
2038
2039// <type> ::= <class-enum-type>
2040// <class-enum-type> ::= <name>
2041void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2042 mangleName(T->getDecl());
2043}
2044
2045// <type> ::= <class-enum-type>
2046// <class-enum-type> ::= <name>
2047void CXXNameMangler::mangleType(const EnumType *T) {
2048 mangleType(static_cast<const TagType*>(T));
2049}
2050void CXXNameMangler::mangleType(const RecordType *T) {
2051 mangleType(static_cast<const TagType*>(T));
2052}
2053void CXXNameMangler::mangleType(const TagType *T) {
2054 mangleName(T->getDecl());
2055}
2056
2057// <type> ::= <array-type>
2058// <array-type> ::= A <positive dimension number> _ <element type>
2059// ::= A [<dimension expression>] _ <element type>
2060void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2061 Out << 'A' << T->getSize() << '_';
2062 mangleType(T->getElementType());
2063}
2064void CXXNameMangler::mangleType(const VariableArrayType *T) {
2065 Out << 'A';
2066 // decayed vla types (size 0) will just be skipped.
2067 if (T->getSizeExpr())
2068 mangleExpression(T->getSizeExpr());
2069 Out << '_';
2070 mangleType(T->getElementType());
2071}
2072void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2073 Out << 'A';
2074 mangleExpression(T->getSizeExpr());
2075 Out << '_';
2076 mangleType(T->getElementType());
2077}
2078void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2079 Out << "A_";
2080 mangleType(T->getElementType());
2081}
2082
2083// <type> ::= <pointer-to-member-type>
2084// <pointer-to-member-type> ::= M <class type> <member type>
2085void CXXNameMangler::mangleType(const MemberPointerType *T) {
2086 Out << 'M';
2087 mangleType(QualType(T->getClass(), 0));
2088 QualType PointeeType = T->getPointeeType();
2089 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2090 mangleType(FPT);
2091
2092 // Itanium C++ ABI 5.1.8:
2093 //
2094 // The type of a non-static member function is considered to be different,
2095 // for the purposes of substitution, from the type of a namespace-scope or
2096 // static member function whose type appears similar. The types of two
2097 // non-static member functions are considered to be different, for the
2098 // purposes of substitution, if the functions are members of different
2099 // classes. In other words, for the purposes of substitution, the class of
2100 // which the function is a member is considered part of the type of
2101 // function.
2102
2103 // Given that we already substitute member function pointers as a
2104 // whole, the net effect of this rule is just to unconditionally
2105 // suppress substitution on the function type in a member pointer.
2106 // We increment the SeqID here to emulate adding an entry to the
2107 // substitution table.
2108 ++SeqID;
2109 } else
2110 mangleType(PointeeType);
2111}
2112
2113// <type> ::= <template-param>
2114void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2115 mangleTemplateParameter(T->getIndex());
2116}
2117
2118// <type> ::= <template-param>
2119void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2120 // FIXME: not clear how to mangle this!
2121 // template <class T...> class A {
2122 // template <class U...> void foo(T(*)(U) x...);
2123 // };
2124 Out << "_SUBSTPACK_";
2125}
2126
2127// <type> ::= P <type> # pointer-to
2128void CXXNameMangler::mangleType(const PointerType *T) {
2129 Out << 'P';
2130 mangleType(T->getPointeeType());
2131}
2132void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2133 Out << 'P';
2134 mangleType(T->getPointeeType());
2135}
2136
2137// <type> ::= R <type> # reference-to
2138void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2139 Out << 'R';
2140 mangleType(T->getPointeeType());
2141}
2142
2143// <type> ::= O <type> # rvalue reference-to (C++0x)
2144void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2145 Out << 'O';
2146 mangleType(T->getPointeeType());
2147}
2148
2149// <type> ::= C <type> # complex pair (C 2000)
2150void CXXNameMangler::mangleType(const ComplexType *T) {
2151 Out << 'C';
2152 mangleType(T->getElementType());
2153}
2154
2155// ARM's ABI for Neon vector types specifies that they should be mangled as
2156// if they are structs (to match ARM's initial implementation). The
2157// vector type must be one of the special types predefined by ARM.
2158void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2159 QualType EltType = T->getElementType();
2160 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2161 const char *EltName = 0;
2162 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2163 switch (cast<BuiltinType>(EltType)->getKind()) {
2164 case BuiltinType::SChar: EltName = "poly8_t"; break;
2165 case BuiltinType::Short: EltName = "poly16_t"; break;
2166 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2167 }
2168 } else {
2169 switch (cast<BuiltinType>(EltType)->getKind()) {
2170 case BuiltinType::SChar: EltName = "int8_t"; break;
2171 case BuiltinType::UChar: EltName = "uint8_t"; break;
2172 case BuiltinType::Short: EltName = "int16_t"; break;
2173 case BuiltinType::UShort: EltName = "uint16_t"; break;
2174 case BuiltinType::Int: EltName = "int32_t"; break;
2175 case BuiltinType::UInt: EltName = "uint32_t"; break;
2176 case BuiltinType::LongLong: EltName = "int64_t"; break;
2177 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2178 case BuiltinType::Float: EltName = "float32_t"; break;
Tim Northover2fe823a2013-08-01 09:23:19 +00002179 case BuiltinType::Half: EltName = "float16_t";break;
2180 default:
2181 llvm_unreachable("unexpected Neon vector element type");
Guy Benyei11169dd2012-12-18 14:30:41 +00002182 }
2183 }
2184 const char *BaseName = 0;
2185 unsigned BitSize = (T->getNumElements() *
2186 getASTContext().getTypeSize(EltType));
2187 if (BitSize == 64)
2188 BaseName = "__simd64_";
2189 else {
2190 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2191 BaseName = "__simd128_";
2192 }
2193 Out << strlen(BaseName) + strlen(EltName);
2194 Out << BaseName << EltName;
2195}
2196
Tim Northover2fe823a2013-08-01 09:23:19 +00002197static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2198 switch (EltType->getKind()) {
2199 case BuiltinType::SChar:
2200 return "Int8";
2201 case BuiltinType::Short:
2202 return "Int16";
2203 case BuiltinType::Int:
2204 return "Int32";
2205 case BuiltinType::LongLong:
2206 return "Int64";
2207 case BuiltinType::UChar:
2208 return "Uint8";
2209 case BuiltinType::UShort:
2210 return "Uint16";
2211 case BuiltinType::UInt:
2212 return "Uint32";
2213 case BuiltinType::ULongLong:
2214 return "Uint64";
2215 case BuiltinType::Half:
2216 return "Float16";
2217 case BuiltinType::Float:
2218 return "Float32";
2219 case BuiltinType::Double:
2220 return "Float64";
2221 default:
2222 llvm_unreachable("Unexpected vector element base type");
2223 }
2224}
2225
2226// AArch64's ABI for Neon vector types specifies that they should be mangled as
2227// the equivalent internal name. The vector type must be one of the special
2228// types predefined by ARM.
2229void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2230 QualType EltType = T->getElementType();
2231 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2232 unsigned BitSize =
2233 (T->getNumElements() * getASTContext().getTypeSize(EltType));
Daniel Jasper8698af42013-08-01 10:30:11 +00002234 (void)BitSize; // Silence warning.
Tim Northover2fe823a2013-08-01 09:23:19 +00002235
2236 assert((BitSize == 64 || BitSize == 128) &&
2237 "Neon vector type not 64 or 128 bits");
2238
Tim Northover2fe823a2013-08-01 09:23:19 +00002239 StringRef EltName;
2240 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2241 switch (cast<BuiltinType>(EltType)->getKind()) {
2242 case BuiltinType::UChar:
2243 EltName = "Poly8";
2244 break;
2245 case BuiltinType::UShort:
2246 EltName = "Poly16";
2247 break;
Hao Liu90ee2f12013-11-17 09:14:46 +00002248 case BuiltinType::ULongLong:
2249 EltName = "Poly64";
2250 break;
Tim Northover2fe823a2013-08-01 09:23:19 +00002251 default:
2252 llvm_unreachable("unexpected Neon polynomial vector element type");
2253 }
2254 } else
2255 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2256
2257 std::string TypeName =
2258 ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2259 Out << TypeName.length() << TypeName;
2260}
2261
Guy Benyei11169dd2012-12-18 14:30:41 +00002262// GNU extension: vector types
2263// <type> ::= <vector-type>
2264// <vector-type> ::= Dv <positive dimension number> _
2265// <extended element type>
2266// ::= Dv [<dimension expression>] _ <element type>
2267// <extended element type> ::= <element type>
2268// ::= p # AltiVec vector pixel
2269// ::= b # Altivec vector bool
2270void CXXNameMangler::mangleType(const VectorType *T) {
2271 if ((T->getVectorKind() == VectorType::NeonVector ||
2272 T->getVectorKind() == VectorType::NeonPolyVector)) {
Tim Northover2fe823a2013-08-01 09:23:19 +00002273 if (getASTContext().getTargetInfo().getTriple().getArch() ==
2274 llvm::Triple::aarch64)
2275 mangleAArch64NeonVectorType(T);
2276 else
2277 mangleNeonVectorType(T);
Guy Benyei11169dd2012-12-18 14:30:41 +00002278 return;
2279 }
2280 Out << "Dv" << T->getNumElements() << '_';
2281 if (T->getVectorKind() == VectorType::AltiVecPixel)
2282 Out << 'p';
2283 else if (T->getVectorKind() == VectorType::AltiVecBool)
2284 Out << 'b';
2285 else
2286 mangleType(T->getElementType());
2287}
2288void CXXNameMangler::mangleType(const ExtVectorType *T) {
2289 mangleType(static_cast<const VectorType*>(T));
2290}
2291void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2292 Out << "Dv";
2293 mangleExpression(T->getSizeExpr());
2294 Out << '_';
2295 mangleType(T->getElementType());
2296}
2297
2298void CXXNameMangler::mangleType(const PackExpansionType *T) {
2299 // <type> ::= Dp <type> # pack expansion (C++0x)
2300 Out << "Dp";
2301 mangleType(T->getPattern());
2302}
2303
2304void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2305 mangleSourceName(T->getDecl()->getIdentifier());
2306}
2307
2308void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman5f508952013-06-18 22:41:37 +00002309 if (!T->qual_empty()) {
2310 // Mangle protocol qualifiers.
2311 SmallString<64> QualStr;
2312 llvm::raw_svector_ostream QualOS(QualStr);
2313 QualOS << "objcproto";
2314 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2315 for ( ; i != e; ++i) {
2316 StringRef name = (*i)->getName();
2317 QualOS << name.size() << name;
2318 }
2319 QualOS.flush();
2320 Out << 'U' << QualStr.size() << QualStr;
2321 }
Guy Benyei11169dd2012-12-18 14:30:41 +00002322 mangleType(T->getBaseType());
2323}
2324
2325void CXXNameMangler::mangleType(const BlockPointerType *T) {
2326 Out << "U13block_pointer";
2327 mangleType(T->getPointeeType());
2328}
2329
2330void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2331 // Mangle injected class name types as if the user had written the
2332 // specialization out fully. It may not actually be possible to see
2333 // this mangling, though.
2334 mangleType(T->getInjectedSpecializationType());
2335}
2336
2337void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2338 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2339 mangleName(TD, T->getArgs(), T->getNumArgs());
2340 } else {
2341 if (mangleSubstitution(QualType(T, 0)))
2342 return;
2343
2344 mangleTemplatePrefix(T->getTemplateName());
2345
2346 // FIXME: GCC does not appear to mangle the template arguments when
2347 // the template in question is a dependent template name. Should we
2348 // emulate that badness?
2349 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2350 addSubstitution(QualType(T, 0));
2351 }
2352}
2353
2354void CXXNameMangler::mangleType(const DependentNameType *T) {
2355 // Typename types are always nested
2356 Out << 'N';
2357 manglePrefix(T->getQualifier());
2358 mangleSourceName(T->getIdentifier());
2359 Out << 'E';
2360}
2361
2362void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2363 // Dependently-scoped template types are nested if they have a prefix.
2364 Out << 'N';
2365
2366 // TODO: avoid making this TemplateName.
2367 TemplateName Prefix =
2368 getASTContext().getDependentTemplateName(T->getQualifier(),
2369 T->getIdentifier());
2370 mangleTemplatePrefix(Prefix);
2371
2372 // FIXME: GCC does not appear to mangle the template arguments when
2373 // the template in question is a dependent template name. Should we
2374 // emulate that badness?
2375 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2376 Out << 'E';
2377}
2378
2379void CXXNameMangler::mangleType(const TypeOfType *T) {
2380 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2381 // "extension with parameters" mangling.
2382 Out << "u6typeof";
2383}
2384
2385void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2386 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2387 // "extension with parameters" mangling.
2388 Out << "u6typeof";
2389}
2390
2391void CXXNameMangler::mangleType(const DecltypeType *T) {
2392 Expr *E = T->getUnderlyingExpr();
2393
2394 // type ::= Dt <expression> E # decltype of an id-expression
2395 // # or class member access
2396 // ::= DT <expression> E # decltype of an expression
2397
2398 // This purports to be an exhaustive list of id-expressions and
2399 // class member accesses. Note that we do not ignore parentheses;
2400 // parentheses change the semantics of decltype for these
2401 // expressions (and cause the mangler to use the other form).
2402 if (isa<DeclRefExpr>(E) ||
2403 isa<MemberExpr>(E) ||
2404 isa<UnresolvedLookupExpr>(E) ||
2405 isa<DependentScopeDeclRefExpr>(E) ||
2406 isa<CXXDependentScopeMemberExpr>(E) ||
2407 isa<UnresolvedMemberExpr>(E))
2408 Out << "Dt";
2409 else
2410 Out << "DT";
2411 mangleExpression(E);
2412 Out << 'E';
2413}
2414
2415void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2416 // If this is dependent, we need to record that. If not, we simply
2417 // mangle it as the underlying type since they are equivalent.
2418 if (T->isDependentType()) {
2419 Out << 'U';
2420
2421 switch (T->getUTTKind()) {
2422 case UnaryTransformType::EnumUnderlyingType:
2423 Out << "3eut";
2424 break;
2425 }
2426 }
2427
2428 mangleType(T->getUnderlyingType());
2429}
2430
2431void CXXNameMangler::mangleType(const AutoType *T) {
2432 QualType D = T->getDeducedType();
2433 // <builtin-type> ::= Da # dependent auto
2434 if (D.isNull())
Richard Smith74aeef52013-04-26 16:15:35 +00002435 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei11169dd2012-12-18 14:30:41 +00002436 else
2437 mangleType(D);
2438}
2439
2440void CXXNameMangler::mangleType(const AtomicType *T) {
2441 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2442 // (Until there's a standardized mangling...)
2443 Out << "U7_Atomic";
2444 mangleType(T->getValueType());
2445}
2446
2447void CXXNameMangler::mangleIntegerLiteral(QualType T,
2448 const llvm::APSInt &Value) {
2449 // <expr-primary> ::= L <type> <value number> E # integer literal
2450 Out << 'L';
2451
2452 mangleType(T);
2453 if (T->isBooleanType()) {
2454 // Boolean values are encoded as 0/1.
2455 Out << (Value.getBoolValue() ? '1' : '0');
2456 } else {
2457 mangleNumber(Value);
2458 }
2459 Out << 'E';
2460
2461}
2462
2463/// Mangles a member expression.
2464void CXXNameMangler::mangleMemberExpr(const Expr *base,
2465 bool isArrow,
2466 NestedNameSpecifier *qualifier,
2467 NamedDecl *firstQualifierLookup,
2468 DeclarationName member,
2469 unsigned arity) {
2470 // <expression> ::= dt <expression> <unresolved-name>
2471 // ::= pt <expression> <unresolved-name>
2472 if (base) {
2473 if (base->isImplicitCXXThis()) {
2474 // Note: GCC mangles member expressions to the implicit 'this' as
2475 // *this., whereas we represent them as this->. The Itanium C++ ABI
2476 // does not specify anything here, so we follow GCC.
2477 Out << "dtdefpT";
2478 } else {
2479 Out << (isArrow ? "pt" : "dt");
2480 mangleExpression(base);
2481 }
2482 }
2483 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2484}
2485
2486/// Look at the callee of the given call expression and determine if
2487/// it's a parenthesized id-expression which would have triggered ADL
2488/// otherwise.
2489static bool isParenthesizedADLCallee(const CallExpr *call) {
2490 const Expr *callee = call->getCallee();
2491 const Expr *fn = callee->IgnoreParens();
2492
2493 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2494 // too, but for those to appear in the callee, it would have to be
2495 // parenthesized.
2496 if (callee == fn) return false;
2497
2498 // Must be an unresolved lookup.
2499 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2500 if (!lookup) return false;
2501
2502 assert(!lookup->requiresADL());
2503
2504 // Must be an unqualified lookup.
2505 if (lookup->getQualifier()) return false;
2506
2507 // Must not have found a class member. Note that if one is a class
2508 // member, they're all class members.
2509 if (lookup->getNumDecls() > 0 &&
2510 (*lookup->decls_begin())->isCXXClassMember())
2511 return false;
2512
2513 // Otherwise, ADL would have been triggered.
2514 return true;
2515}
2516
2517void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2518 // <expression> ::= <unary operator-name> <expression>
2519 // ::= <binary operator-name> <expression> <expression>
2520 // ::= <trinary operator-name> <expression> <expression> <expression>
2521 // ::= cv <type> expression # conversion with one argument
2522 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2523 // ::= st <type> # sizeof (a type)
2524 // ::= at <type> # alignof (a type)
2525 // ::= <template-param>
2526 // ::= <function-param>
2527 // ::= sr <type> <unqualified-name> # dependent name
2528 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2529 // ::= ds <expression> <expression> # expr.*expr
2530 // ::= sZ <template-param> # size of a parameter pack
2531 // ::= sZ <function-param> # size of a function parameter pack
2532 // ::= <expr-primary>
2533 // <expr-primary> ::= L <type> <value number> E # integer literal
2534 // ::= L <type <value float> E # floating literal
2535 // ::= L <mangled-name> E # external name
2536 // ::= fpT # 'this' expression
2537 QualType ImplicitlyConvertedToType;
2538
2539recurse:
2540 switch (E->getStmtClass()) {
2541 case Expr::NoStmtClass:
2542#define ABSTRACT_STMT(Type)
2543#define EXPR(Type, Base)
2544#define STMT(Type, Base) \
2545 case Expr::Type##Class:
2546#include "clang/AST/StmtNodes.inc"
2547 // fallthrough
2548
2549 // These all can only appear in local or variable-initialization
2550 // contexts and so should never appear in a mangling.
2551 case Expr::AddrLabelExprClass:
2552 case Expr::DesignatedInitExprClass:
2553 case Expr::ImplicitValueInitExprClass:
2554 case Expr::ParenListExprClass:
2555 case Expr::LambdaExprClass:
John McCall5e77d762013-04-16 07:28:30 +00002556 case Expr::MSPropertyRefExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002557 llvm_unreachable("unexpected statement kind");
2558
2559 // FIXME: invent manglings for all these.
2560 case Expr::BlockExprClass:
2561 case Expr::CXXPseudoDestructorExprClass:
2562 case Expr::ChooseExprClass:
2563 case Expr::CompoundLiteralExprClass:
2564 case Expr::ExtVectorElementExprClass:
2565 case Expr::GenericSelectionExprClass:
2566 case Expr::ObjCEncodeExprClass:
2567 case Expr::ObjCIsaExprClass:
2568 case Expr::ObjCIvarRefExprClass:
2569 case Expr::ObjCMessageExprClass:
2570 case Expr::ObjCPropertyRefExprClass:
2571 case Expr::ObjCProtocolExprClass:
2572 case Expr::ObjCSelectorExprClass:
2573 case Expr::ObjCStringLiteralClass:
2574 case Expr::ObjCBoxedExprClass:
2575 case Expr::ObjCArrayLiteralClass:
2576 case Expr::ObjCDictionaryLiteralClass:
2577 case Expr::ObjCSubscriptRefExprClass:
2578 case Expr::ObjCIndirectCopyRestoreExprClass:
2579 case Expr::OffsetOfExprClass:
2580 case Expr::PredefinedExprClass:
2581 case Expr::ShuffleVectorExprClass:
Hal Finkelc4d7c822013-09-18 03:29:45 +00002582 case Expr::ConvertVectorExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002583 case Expr::StmtExprClass:
2584 case Expr::UnaryTypeTraitExprClass:
2585 case Expr::BinaryTypeTraitExprClass:
2586 case Expr::TypeTraitExprClass:
2587 case Expr::ArrayTypeTraitExprClass:
2588 case Expr::ExpressionTraitExprClass:
2589 case Expr::VAArgExprClass:
2590 case Expr::CXXUuidofExprClass:
2591 case Expr::CUDAKernelCallExprClass:
2592 case Expr::AsTypeExprClass:
2593 case Expr::PseudoObjectExprClass:
2594 case Expr::AtomicExprClass:
2595 {
2596 // As bad as this diagnostic is, it's better than crashing.
2597 DiagnosticsEngine &Diags = Context.getDiags();
2598 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2599 "cannot yet mangle expression type %0");
2600 Diags.Report(E->getExprLoc(), DiagID)
2601 << E->getStmtClassName() << E->getSourceRange();
2602 break;
2603 }
2604
2605 // Even gcc-4.5 doesn't mangle this.
2606 case Expr::BinaryConditionalOperatorClass: {
2607 DiagnosticsEngine &Diags = Context.getDiags();
2608 unsigned DiagID =
2609 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2610 "?: operator with omitted middle operand cannot be mangled");
2611 Diags.Report(E->getExprLoc(), DiagID)
2612 << E->getStmtClassName() << E->getSourceRange();
2613 break;
2614 }
2615
2616 // These are used for internal purposes and cannot be meaningfully mangled.
2617 case Expr::OpaqueValueExprClass:
2618 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2619
2620 case Expr::InitListExprClass: {
2621 // Proposal by Jason Merrill, 2012-01-03
2622 Out << "il";
2623 const InitListExpr *InitList = cast<InitListExpr>(E);
2624 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2625 mangleExpression(InitList->getInit(i));
2626 Out << "E";
2627 break;
2628 }
2629
2630 case Expr::CXXDefaultArgExprClass:
2631 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2632 break;
2633
Richard Smith852c9db2013-04-20 22:23:05 +00002634 case Expr::CXXDefaultInitExprClass:
2635 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2636 break;
2637
Richard Smithcc1b96d2013-06-12 22:31:48 +00002638 case Expr::CXXStdInitializerListExprClass:
2639 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2640 break;
2641
Guy Benyei11169dd2012-12-18 14:30:41 +00002642 case Expr::SubstNonTypeTemplateParmExprClass:
2643 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2644 Arity);
2645 break;
2646
2647 case Expr::UserDefinedLiteralClass:
2648 // We follow g++'s approach of mangling a UDL as a call to the literal
2649 // operator.
2650 case Expr::CXXMemberCallExprClass: // fallthrough
2651 case Expr::CallExprClass: {
2652 const CallExpr *CE = cast<CallExpr>(E);
2653
2654 // <expression> ::= cp <simple-id> <expression>* E
2655 // We use this mangling only when the call would use ADL except
2656 // for being parenthesized. Per discussion with David
2657 // Vandervoorde, 2011.04.25.
2658 if (isParenthesizedADLCallee(CE)) {
2659 Out << "cp";
2660 // The callee here is a parenthesized UnresolvedLookupExpr with
2661 // no qualifier and should always get mangled as a <simple-id>
2662 // anyway.
2663
2664 // <expression> ::= cl <expression>* E
2665 } else {
2666 Out << "cl";
2667 }
2668
2669 mangleExpression(CE->getCallee(), CE->getNumArgs());
2670 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2671 mangleExpression(CE->getArg(I));
2672 Out << 'E';
2673 break;
2674 }
2675
2676 case Expr::CXXNewExprClass: {
2677 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2678 if (New->isGlobalNew()) Out << "gs";
2679 Out << (New->isArray() ? "na" : "nw");
2680 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2681 E = New->placement_arg_end(); I != E; ++I)
2682 mangleExpression(*I);
2683 Out << '_';
2684 mangleType(New->getAllocatedType());
2685 if (New->hasInitializer()) {
2686 // Proposal by Jason Merrill, 2012-01-03
2687 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2688 Out << "il";
2689 else
2690 Out << "pi";
2691 const Expr *Init = New->getInitializer();
2692 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2693 // Directly inline the initializers.
2694 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2695 E = CCE->arg_end();
2696 I != E; ++I)
2697 mangleExpression(*I);
2698 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2699 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2700 mangleExpression(PLE->getExpr(i));
2701 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2702 isa<InitListExpr>(Init)) {
2703 // Only take InitListExprs apart for list-initialization.
2704 const InitListExpr *InitList = cast<InitListExpr>(Init);
2705 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2706 mangleExpression(InitList->getInit(i));
2707 } else
2708 mangleExpression(Init);
2709 }
2710 Out << 'E';
2711 break;
2712 }
2713
2714 case Expr::MemberExprClass: {
2715 const MemberExpr *ME = cast<MemberExpr>(E);
2716 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2717 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2718 Arity);
2719 break;
2720 }
2721
2722 case Expr::UnresolvedMemberExprClass: {
2723 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2724 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2725 ME->getQualifier(), 0, ME->getMemberName(),
2726 Arity);
2727 if (ME->hasExplicitTemplateArgs())
2728 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2729 break;
2730 }
2731
2732 case Expr::CXXDependentScopeMemberExprClass: {
2733 const CXXDependentScopeMemberExpr *ME
2734 = cast<CXXDependentScopeMemberExpr>(E);
2735 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2736 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2737 ME->getMember(), Arity);
2738 if (ME->hasExplicitTemplateArgs())
2739 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2740 break;
2741 }
2742
2743 case Expr::UnresolvedLookupExprClass: {
2744 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2745 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2746
2747 // All the <unresolved-name> productions end in a
2748 // base-unresolved-name, where <template-args> are just tacked
2749 // onto the end.
2750 if (ULE->hasExplicitTemplateArgs())
2751 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2752 break;
2753 }
2754
2755 case Expr::CXXUnresolvedConstructExprClass: {
2756 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2757 unsigned N = CE->arg_size();
2758
2759 Out << "cv";
2760 mangleType(CE->getType());
2761 if (N != 1) Out << '_';
2762 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2763 if (N != 1) Out << 'E';
2764 break;
2765 }
2766
2767 case Expr::CXXTemporaryObjectExprClass:
2768 case Expr::CXXConstructExprClass: {
2769 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2770 unsigned N = CE->getNumArgs();
2771
2772 // Proposal by Jason Merrill, 2012-01-03
2773 if (CE->isListInitialization())
2774 Out << "tl";
2775 else
2776 Out << "cv";
2777 mangleType(CE->getType());
2778 if (N != 1) Out << '_';
2779 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2780 if (N != 1) Out << 'E';
2781 break;
2782 }
2783
2784 case Expr::CXXScalarValueInitExprClass:
2785 Out <<"cv";
2786 mangleType(E->getType());
2787 Out <<"_E";
2788 break;
2789
2790 case Expr::CXXNoexceptExprClass:
2791 Out << "nx";
2792 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2793 break;
2794
2795 case Expr::UnaryExprOrTypeTraitExprClass: {
2796 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2797
2798 if (!SAE->isInstantiationDependent()) {
2799 // Itanium C++ ABI:
2800 // If the operand of a sizeof or alignof operator is not
2801 // instantiation-dependent it is encoded as an integer literal
2802 // reflecting the result of the operator.
2803 //
2804 // If the result of the operator is implicitly converted to a known
2805 // integer type, that type is used for the literal; otherwise, the type
2806 // of std::size_t or std::ptrdiff_t is used.
2807 QualType T = (ImplicitlyConvertedToType.isNull() ||
2808 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2809 : ImplicitlyConvertedToType;
2810 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2811 mangleIntegerLiteral(T, V);
2812 break;
2813 }
2814
2815 switch(SAE->getKind()) {
2816 case UETT_SizeOf:
2817 Out << 's';
2818 break;
2819 case UETT_AlignOf:
2820 Out << 'a';
2821 break;
2822 case UETT_VecStep:
2823 DiagnosticsEngine &Diags = Context.getDiags();
2824 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2825 "cannot yet mangle vec_step expression");
2826 Diags.Report(DiagID);
2827 return;
2828 }
2829 if (SAE->isArgumentType()) {
2830 Out << 't';
2831 mangleType(SAE->getArgumentType());
2832 } else {
2833 Out << 'z';
2834 mangleExpression(SAE->getArgumentExpr());
2835 }
2836 break;
2837 }
2838
2839 case Expr::CXXThrowExprClass: {
2840 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002841 // <expression> ::= tw <expression> # throw expression
2842 // ::= tr # rethrow
Guy Benyei11169dd2012-12-18 14:30:41 +00002843 if (TE->getSubExpr()) {
2844 Out << "tw";
2845 mangleExpression(TE->getSubExpr());
2846 } else {
2847 Out << "tr";
2848 }
2849 break;
2850 }
2851
2852 case Expr::CXXTypeidExprClass: {
2853 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002854 // <expression> ::= ti <type> # typeid (type)
2855 // ::= te <expression> # typeid (expression)
Guy Benyei11169dd2012-12-18 14:30:41 +00002856 if (TIE->isTypeOperand()) {
2857 Out << "ti";
David Majnemer143c55e2013-09-27 07:04:31 +00002858 mangleType(TIE->getTypeOperand(Context.getASTContext()));
Guy Benyei11169dd2012-12-18 14:30:41 +00002859 } else {
2860 Out << "te";
2861 mangleExpression(TIE->getExprOperand());
2862 }
2863 break;
2864 }
2865
2866 case Expr::CXXDeleteExprClass: {
2867 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002868 // <expression> ::= [gs] dl <expression> # [::] delete expr
2869 // ::= [gs] da <expression> # [::] delete [] expr
Guy Benyei11169dd2012-12-18 14:30:41 +00002870 if (DE->isGlobalDelete()) Out << "gs";
2871 Out << (DE->isArrayForm() ? "da" : "dl");
2872 mangleExpression(DE->getArgument());
2873 break;
2874 }
2875
2876 case Expr::UnaryOperatorClass: {
2877 const UnaryOperator *UO = cast<UnaryOperator>(E);
2878 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2879 /*Arity=*/1);
2880 mangleExpression(UO->getSubExpr());
2881 break;
2882 }
2883
2884 case Expr::ArraySubscriptExprClass: {
2885 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2886
2887 // Array subscript is treated as a syntactically weird form of
2888 // binary operator.
2889 Out << "ix";
2890 mangleExpression(AE->getLHS());
2891 mangleExpression(AE->getRHS());
2892 break;
2893 }
2894
2895 case Expr::CompoundAssignOperatorClass: // fallthrough
2896 case Expr::BinaryOperatorClass: {
2897 const BinaryOperator *BO = cast<BinaryOperator>(E);
2898 if (BO->getOpcode() == BO_PtrMemD)
2899 Out << "ds";
2900 else
2901 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2902 /*Arity=*/2);
2903 mangleExpression(BO->getLHS());
2904 mangleExpression(BO->getRHS());
2905 break;
2906 }
2907
2908 case Expr::ConditionalOperatorClass: {
2909 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2910 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2911 mangleExpression(CO->getCond());
2912 mangleExpression(CO->getLHS(), Arity);
2913 mangleExpression(CO->getRHS(), Arity);
2914 break;
2915 }
2916
2917 case Expr::ImplicitCastExprClass: {
2918 ImplicitlyConvertedToType = E->getType();
2919 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2920 goto recurse;
2921 }
2922
2923 case Expr::ObjCBridgedCastExprClass: {
2924 // Mangle ownership casts as a vendor extended operator __bridge,
2925 // __bridge_transfer, or __bridge_retain.
2926 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2927 Out << "v1U" << Kind.size() << Kind;
2928 }
2929 // Fall through to mangle the cast itself.
2930
2931 case Expr::CStyleCastExprClass:
2932 case Expr::CXXStaticCastExprClass:
2933 case Expr::CXXDynamicCastExprClass:
2934 case Expr::CXXReinterpretCastExprClass:
2935 case Expr::CXXConstCastExprClass:
2936 case Expr::CXXFunctionalCastExprClass: {
2937 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2938 Out << "cv";
2939 mangleType(ECE->getType());
2940 mangleExpression(ECE->getSubExpr());
2941 break;
2942 }
2943
2944 case Expr::CXXOperatorCallExprClass: {
2945 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2946 unsigned NumArgs = CE->getNumArgs();
2947 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2948 // Mangle the arguments.
2949 for (unsigned i = 0; i != NumArgs; ++i)
2950 mangleExpression(CE->getArg(i));
2951 break;
2952 }
2953
2954 case Expr::ParenExprClass:
2955 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2956 break;
2957
2958 case Expr::DeclRefExprClass: {
2959 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2960
2961 switch (D->getKind()) {
2962 default:
2963 // <expr-primary> ::= L <mangled-name> E # external name
2964 Out << 'L';
2965 mangle(D, "_Z");
2966 Out << 'E';
2967 break;
2968
2969 case Decl::ParmVar:
2970 mangleFunctionParam(cast<ParmVarDecl>(D));
2971 break;
2972
2973 case Decl::EnumConstant: {
2974 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2975 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2976 break;
2977 }
2978
2979 case Decl::NonTypeTemplateParm: {
2980 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2981 mangleTemplateParameter(PD->getIndex());
2982 break;
2983 }
2984
2985 }
2986
2987 break;
2988 }
2989
2990 case Expr::SubstNonTypeTemplateParmPackExprClass:
2991 // FIXME: not clear how to mangle this!
2992 // template <unsigned N...> class A {
2993 // template <class U...> void foo(U (&x)[N]...);
2994 // };
2995 Out << "_SUBSTPACK_";
2996 break;
2997
2998 case Expr::FunctionParmPackExprClass: {
2999 // FIXME: not clear how to mangle this!
3000 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3001 Out << "v110_SUBSTPACK";
3002 mangleFunctionParam(FPPE->getParameterPack());
3003 break;
3004 }
3005
3006 case Expr::DependentScopeDeclRefExprClass: {
3007 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3008 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
3009
3010 // All the <unresolved-name> productions end in a
3011 // base-unresolved-name, where <template-args> are just tacked
3012 // onto the end.
3013 if (DRE->hasExplicitTemplateArgs())
3014 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3015 break;
3016 }
3017
3018 case Expr::CXXBindTemporaryExprClass:
3019 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3020 break;
3021
3022 case Expr::ExprWithCleanupsClass:
3023 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3024 break;
3025
3026 case Expr::FloatingLiteralClass: {
3027 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3028 Out << 'L';
3029 mangleType(FL->getType());
3030 mangleFloat(FL->getValue());
3031 Out << 'E';
3032 break;
3033 }
3034
3035 case Expr::CharacterLiteralClass:
3036 Out << 'L';
3037 mangleType(E->getType());
3038 Out << cast<CharacterLiteral>(E)->getValue();
3039 Out << 'E';
3040 break;
3041
3042 // FIXME. __objc_yes/__objc_no are mangled same as true/false
3043 case Expr::ObjCBoolLiteralExprClass:
3044 Out << "Lb";
3045 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3046 Out << 'E';
3047 break;
3048
3049 case Expr::CXXBoolLiteralExprClass:
3050 Out << "Lb";
3051 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3052 Out << 'E';
3053 break;
3054
3055 case Expr::IntegerLiteralClass: {
3056 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3057 if (E->getType()->isSignedIntegerType())
3058 Value.setIsSigned(true);
3059 mangleIntegerLiteral(E->getType(), Value);
3060 break;
3061 }
3062
3063 case Expr::ImaginaryLiteralClass: {
3064 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3065 // Mangle as if a complex literal.
3066 // Proposal from David Vandevoorde, 2010.06.30.
3067 Out << 'L';
3068 mangleType(E->getType());
3069 if (const FloatingLiteral *Imag =
3070 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3071 // Mangle a floating-point zero of the appropriate type.
3072 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3073 Out << '_';
3074 mangleFloat(Imag->getValue());
3075 } else {
3076 Out << "0_";
3077 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3078 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3079 Value.setIsSigned(true);
3080 mangleNumber(Value);
3081 }
3082 Out << 'E';
3083 break;
3084 }
3085
3086 case Expr::StringLiteralClass: {
3087 // Revised proposal from David Vandervoorde, 2010.07.15.
3088 Out << 'L';
3089 assert(isa<ConstantArrayType>(E->getType()));
3090 mangleType(E->getType());
3091 Out << 'E';
3092 break;
3093 }
3094
3095 case Expr::GNUNullExprClass:
3096 // FIXME: should this really be mangled the same as nullptr?
3097 // fallthrough
3098
3099 case Expr::CXXNullPtrLiteralExprClass: {
Guy Benyei11169dd2012-12-18 14:30:41 +00003100 Out << "LDnE";
3101 break;
3102 }
3103
3104 case Expr::PackExpansionExprClass:
3105 Out << "sp";
3106 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3107 break;
3108
3109 case Expr::SizeOfPackExprClass: {
3110 Out << "sZ";
3111 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3112 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3113 mangleTemplateParameter(TTP->getIndex());
3114 else if (const NonTypeTemplateParmDecl *NTTP
3115 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3116 mangleTemplateParameter(NTTP->getIndex());
3117 else if (const TemplateTemplateParmDecl *TempTP
3118 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3119 mangleTemplateParameter(TempTP->getIndex());
3120 else
3121 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3122 break;
3123 }
3124
3125 case Expr::MaterializeTemporaryExprClass: {
3126 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3127 break;
3128 }
3129
3130 case Expr::CXXThisExprClass:
3131 Out << "fpT";
3132 break;
3133 }
3134}
3135
3136/// Mangle an expression which refers to a parameter variable.
3137///
3138/// <expression> ::= <function-param>
3139/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3140/// <function-param> ::= fp <top-level CV-qualifiers>
3141/// <parameter-2 non-negative number> _ # L == 0, I > 0
3142/// <function-param> ::= fL <L-1 non-negative number>
3143/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3144/// <function-param> ::= fL <L-1 non-negative number>
3145/// p <top-level CV-qualifiers>
3146/// <I-1 non-negative number> _ # L > 0, I > 0
3147///
3148/// L is the nesting depth of the parameter, defined as 1 if the
3149/// parameter comes from the innermost function prototype scope
3150/// enclosing the current context, 2 if from the next enclosing
3151/// function prototype scope, and so on, with one special case: if
3152/// we've processed the full parameter clause for the innermost
3153/// function type, then L is one less. This definition conveniently
3154/// makes it irrelevant whether a function's result type was written
3155/// trailing or leading, but is otherwise overly complicated; the
3156/// numbering was first designed without considering references to
3157/// parameter in locations other than return types, and then the
3158/// mangling had to be generalized without changing the existing
3159/// manglings.
3160///
3161/// I is the zero-based index of the parameter within its parameter
3162/// declaration clause. Note that the original ABI document describes
3163/// this using 1-based ordinals.
3164void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3165 unsigned parmDepth = parm->getFunctionScopeDepth();
3166 unsigned parmIndex = parm->getFunctionScopeIndex();
3167
3168 // Compute 'L'.
3169 // parmDepth does not include the declaring function prototype.
3170 // FunctionTypeDepth does account for that.
3171 assert(parmDepth < FunctionTypeDepth.getDepth());
3172 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3173 if (FunctionTypeDepth.isInResultType())
3174 nestingDepth--;
3175
3176 if (nestingDepth == 0) {
3177 Out << "fp";
3178 } else {
3179 Out << "fL" << (nestingDepth - 1) << 'p';
3180 }
3181
3182 // Top-level qualifiers. We don't have to worry about arrays here,
3183 // because parameters declared as arrays should already have been
3184 // transformed to have pointer type. FIXME: apparently these don't
3185 // get mangled if used as an rvalue of a known non-class type?
3186 assert(!parm->getType()->isArrayType()
3187 && "parameter's type is still an array type?");
3188 mangleQualifiers(parm->getType().getQualifiers());
3189
3190 // Parameter index.
3191 if (parmIndex != 0) {
3192 Out << (parmIndex - 1);
3193 }
3194 Out << '_';
3195}
3196
3197void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3198 // <ctor-dtor-name> ::= C1 # complete object constructor
3199 // ::= C2 # base object constructor
3200 // ::= C3 # complete object allocating constructor
3201 //
3202 switch (T) {
3203 case Ctor_Complete:
3204 Out << "C1";
3205 break;
3206 case Ctor_Base:
3207 Out << "C2";
3208 break;
3209 case Ctor_CompleteAllocating:
3210 Out << "C3";
3211 break;
3212 }
3213}
3214
3215void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3216 // <ctor-dtor-name> ::= D0 # deleting destructor
3217 // ::= D1 # complete object destructor
3218 // ::= D2 # base object destructor
3219 //
3220 switch (T) {
3221 case Dtor_Deleting:
3222 Out << "D0";
3223 break;
3224 case Dtor_Complete:
3225 Out << "D1";
3226 break;
3227 case Dtor_Base:
3228 Out << "D2";
3229 break;
3230 }
3231}
3232
3233void CXXNameMangler::mangleTemplateArgs(
3234 const ASTTemplateArgumentListInfo &TemplateArgs) {
3235 // <template-args> ::= I <template-arg>+ E
3236 Out << 'I';
3237 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3238 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3239 Out << 'E';
3240}
3241
3242void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3243 // <template-args> ::= I <template-arg>+ E
3244 Out << 'I';
3245 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3246 mangleTemplateArg(AL[i]);
3247 Out << 'E';
3248}
3249
3250void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3251 unsigned NumTemplateArgs) {
3252 // <template-args> ::= I <template-arg>+ E
3253 Out << 'I';
3254 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3255 mangleTemplateArg(TemplateArgs[i]);
3256 Out << 'E';
3257}
3258
3259void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3260 // <template-arg> ::= <type> # type or template
3261 // ::= X <expression> E # expression
3262 // ::= <expr-primary> # simple expressions
3263 // ::= J <template-arg>* E # argument pack
Guy Benyei11169dd2012-12-18 14:30:41 +00003264 if (!A.isInstantiationDependent() || A.isDependent())
3265 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3266
3267 switch (A.getKind()) {
3268 case TemplateArgument::Null:
3269 llvm_unreachable("Cannot mangle NULL template argument");
3270
3271 case TemplateArgument::Type:
3272 mangleType(A.getAsType());
3273 break;
3274 case TemplateArgument::Template:
3275 // This is mangled as <type>.
3276 mangleType(A.getAsTemplate());
3277 break;
3278 case TemplateArgument::TemplateExpansion:
3279 // <type> ::= Dp <type> # pack expansion (C++0x)
3280 Out << "Dp";
3281 mangleType(A.getAsTemplateOrTemplatePattern());
3282 break;
3283 case TemplateArgument::Expression: {
3284 // It's possible to end up with a DeclRefExpr here in certain
3285 // dependent cases, in which case we should mangle as a
3286 // declaration.
3287 const Expr *E = A.getAsExpr()->IgnoreParens();
3288 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3289 const ValueDecl *D = DRE->getDecl();
3290 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3291 Out << "L";
3292 mangle(D, "_Z");
3293 Out << 'E';
3294 break;
3295 }
3296 }
3297
3298 Out << 'X';
3299 mangleExpression(E);
3300 Out << 'E';
3301 break;
3302 }
3303 case TemplateArgument::Integral:
3304 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3305 break;
3306 case TemplateArgument::Declaration: {
3307 // <expr-primary> ::= L <mangled-name> E # external name
3308 // Clang produces AST's where pointer-to-member-function expressions
3309 // and pointer-to-function expressions are represented as a declaration not
3310 // an expression. We compensate for it here to produce the correct mangling.
3311 ValueDecl *D = A.getAsDecl();
3312 bool compensateMangling = !A.isDeclForReferenceParam();
3313 if (compensateMangling) {
3314 Out << 'X';
3315 mangleOperatorName(OO_Amp, 1);
3316 }
3317
3318 Out << 'L';
3319 // References to external entities use the mangled name; if the name would
3320 // not normally be manged then mangle it as unqualified.
3321 //
3322 // FIXME: The ABI specifies that external names here should have _Z, but
3323 // gcc leaves this off.
3324 if (compensateMangling)
3325 mangle(D, "_Z");
3326 else
3327 mangle(D, "Z");
3328 Out << 'E';
3329
3330 if (compensateMangling)
3331 Out << 'E';
3332
3333 break;
3334 }
3335 case TemplateArgument::NullPtr: {
3336 // <expr-primary> ::= L <type> 0 E
3337 Out << 'L';
3338 mangleType(A.getNullPtrType());
3339 Out << "0E";
3340 break;
3341 }
3342 case TemplateArgument::Pack: {
Richard Smitheb0133c2013-08-27 01:03:46 +00003343 // <template-arg> ::= J <template-arg>* E
Guy Benyei11169dd2012-12-18 14:30:41 +00003344 Out << 'J';
Richard Smitheb0133c2013-08-27 01:03:46 +00003345 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
Guy Benyei11169dd2012-12-18 14:30:41 +00003346 PAEnd = A.pack_end();
3347 PA != PAEnd; ++PA)
3348 mangleTemplateArg(*PA);
3349 Out << 'E';
3350 }
3351 }
3352}
3353
3354void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3355 // <template-param> ::= T_ # first template parameter
3356 // ::= T <parameter-2 non-negative number> _
3357 if (Index == 0)
3358 Out << "T_";
3359 else
3360 Out << 'T' << (Index - 1) << '_';
3361}
3362
3363void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3364 bool result = mangleSubstitution(type);
3365 assert(result && "no existing substitution for type");
3366 (void) result;
3367}
3368
3369void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3370 bool result = mangleSubstitution(tname);
3371 assert(result && "no existing substitution for template name");
3372 (void) result;
3373}
3374
3375// <substitution> ::= S <seq-id> _
3376// ::= S_
3377bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3378 // Try one of the standard substitutions first.
3379 if (mangleStandardSubstitution(ND))
3380 return true;
3381
3382 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3383 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3384}
3385
3386/// \brief Determine whether the given type has any qualifiers that are
3387/// relevant for substitutions.
3388static bool hasMangledSubstitutionQualifiers(QualType T) {
3389 Qualifiers Qs = T.getQualifiers();
3390 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3391}
3392
3393bool CXXNameMangler::mangleSubstitution(QualType T) {
3394 if (!hasMangledSubstitutionQualifiers(T)) {
3395 if (const RecordType *RT = T->getAs<RecordType>())
3396 return mangleSubstitution(RT->getDecl());
3397 }
3398
3399 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3400
3401 return mangleSubstitution(TypePtr);
3402}
3403
3404bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3405 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3406 return mangleSubstitution(TD);
3407
3408 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3409 return mangleSubstitution(
3410 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3411}
3412
3413bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3414 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3415 if (I == Substitutions.end())
3416 return false;
3417
3418 unsigned SeqID = I->second;
3419 if (SeqID == 0)
3420 Out << "S_";
3421 else {
3422 SeqID--;
3423
3424 // <seq-id> is encoded in base-36, using digits and upper case letters.
3425 char Buffer[10];
3426 char *BufferPtr = llvm::array_endof(Buffer);
3427
3428 if (SeqID == 0) *--BufferPtr = '0';
3429
3430 while (SeqID) {
3431 assert(BufferPtr > Buffer && "Buffer overflow!");
3432
3433 char c = static_cast<char>(SeqID % 36);
3434
3435 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3436 SeqID /= 36;
3437 }
3438
3439 Out << 'S'
3440 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3441 << '_';
3442 }
3443
3444 return true;
3445}
3446
3447static bool isCharType(QualType T) {
3448 if (T.isNull())
3449 return false;
3450
3451 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3452 T->isSpecificBuiltinType(BuiltinType::Char_U);
3453}
3454
3455/// isCharSpecialization - Returns whether a given type is a template
3456/// specialization of a given name with a single argument of type char.
3457static bool isCharSpecialization(QualType T, const char *Name) {
3458 if (T.isNull())
3459 return false;
3460
3461 const RecordType *RT = T->getAs<RecordType>();
3462 if (!RT)
3463 return false;
3464
3465 const ClassTemplateSpecializationDecl *SD =
3466 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3467 if (!SD)
3468 return false;
3469
3470 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3471 return false;
3472
3473 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3474 if (TemplateArgs.size() != 1)
3475 return false;
3476
3477 if (!isCharType(TemplateArgs[0].getAsType()))
3478 return false;
3479
3480 return SD->getIdentifier()->getName() == Name;
3481}
3482
3483template <std::size_t StrLen>
3484static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3485 const char (&Str)[StrLen]) {
3486 if (!SD->getIdentifier()->isStr(Str))
3487 return false;
3488
3489 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3490 if (TemplateArgs.size() != 2)
3491 return false;
3492
3493 if (!isCharType(TemplateArgs[0].getAsType()))
3494 return false;
3495
3496 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3497 return false;
3498
3499 return true;
3500}
3501
3502bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3503 // <substitution> ::= St # ::std::
3504 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3505 if (isStd(NS)) {
3506 Out << "St";
3507 return true;
3508 }
3509 }
3510
3511 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3512 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3513 return false;
3514
3515 // <substitution> ::= Sa # ::std::allocator
3516 if (TD->getIdentifier()->isStr("allocator")) {
3517 Out << "Sa";
3518 return true;
3519 }
3520
3521 // <<substitution> ::= Sb # ::std::basic_string
3522 if (TD->getIdentifier()->isStr("basic_string")) {
3523 Out << "Sb";
3524 return true;
3525 }
3526 }
3527
3528 if (const ClassTemplateSpecializationDecl *SD =
3529 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3530 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3531 return false;
3532
3533 // <substitution> ::= Ss # ::std::basic_string<char,
3534 // ::std::char_traits<char>,
3535 // ::std::allocator<char> >
3536 if (SD->getIdentifier()->isStr("basic_string")) {
3537 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3538
3539 if (TemplateArgs.size() != 3)
3540 return false;
3541
3542 if (!isCharType(TemplateArgs[0].getAsType()))
3543 return false;
3544
3545 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3546 return false;
3547
3548 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3549 return false;
3550
3551 Out << "Ss";
3552 return true;
3553 }
3554
3555 // <substitution> ::= Si # ::std::basic_istream<char,
3556 // ::std::char_traits<char> >
3557 if (isStreamCharSpecialization(SD, "basic_istream")) {
3558 Out << "Si";
3559 return true;
3560 }
3561
3562 // <substitution> ::= So # ::std::basic_ostream<char,
3563 // ::std::char_traits<char> >
3564 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3565 Out << "So";
3566 return true;
3567 }
3568
3569 // <substitution> ::= Sd # ::std::basic_iostream<char,
3570 // ::std::char_traits<char> >
3571 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3572 Out << "Sd";
3573 return true;
3574 }
3575 }
3576 return false;
3577}
3578
3579void CXXNameMangler::addSubstitution(QualType T) {
3580 if (!hasMangledSubstitutionQualifiers(T)) {
3581 if (const RecordType *RT = T->getAs<RecordType>()) {
3582 addSubstitution(RT->getDecl());
3583 return;
3584 }
3585 }
3586
3587 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3588 addSubstitution(TypePtr);
3589}
3590
3591void CXXNameMangler::addSubstitution(TemplateName Template) {
3592 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3593 return addSubstitution(TD);
3594
3595 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3596 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3597}
3598
3599void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3600 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3601 Substitutions[Ptr] = SeqID++;
3602}
3603
3604//
3605
3606/// \brief Mangles the name of the declaration D and emits that name to the
3607/// given output stream.
3608///
3609/// If the declaration D requires a mangled name, this routine will emit that
3610/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3611/// and this routine will return false. In this case, the caller should just
3612/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3613/// name.
Rafael Espindola002667c2013-10-16 01:40:34 +00003614void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3615 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003616 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3617 "Invalid mangleName() call, argument is not a variable or function!");
3618 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3619 "Invalid mangleName() call on 'structor decl!");
3620
3621 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3622 getASTContext().getSourceManager(),
3623 "Mangling declaration");
3624
3625 CXXNameMangler Mangler(*this, Out, D);
3626 return Mangler.mangle(D);
3627}
3628
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003629void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3630 CXXCtorType Type,
3631 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003632 CXXNameMangler Mangler(*this, Out, D, Type);
3633 Mangler.mangle(D);
3634}
3635
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003636void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3637 CXXDtorType Type,
3638 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003639 CXXNameMangler Mangler(*this, Out, D, Type);
3640 Mangler.mangle(D);
3641}
3642
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003643void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3644 const ThunkInfo &Thunk,
3645 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003646 // <special-name> ::= T <call-offset> <base encoding>
3647 // # base is the nominal target function of thunk
3648 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3649 // # base is the nominal target function of thunk
3650 // # first call-offset is 'this' adjustment
3651 // # second call-offset is result adjustment
3652
3653 assert(!isa<CXXDestructorDecl>(MD) &&
3654 "Use mangleCXXDtor for destructor decls!");
3655 CXXNameMangler Mangler(*this, Out);
3656 Mangler.getStream() << "_ZT";
3657 if (!Thunk.Return.isEmpty())
3658 Mangler.getStream() << 'c';
3659
3660 // Mangle the 'this' pointer adjustment.
Timur Iskhodzhanov053142a2013-11-06 06:24:31 +00003661 Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3662 Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3663
Guy Benyei11169dd2012-12-18 14:30:41 +00003664 // Mangle the return pointer adjustment if there is one.
3665 if (!Thunk.Return.isEmpty())
3666 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
Timur Iskhodzhanov02014322013-10-30 11:55:43 +00003667 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3668
Guy Benyei11169dd2012-12-18 14:30:41 +00003669 Mangler.mangleFunctionEncoding(MD);
3670}
3671
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003672void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3673 const CXXDestructorDecl *DD, CXXDtorType Type,
3674 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003675 // <special-name> ::= T <call-offset> <base encoding>
3676 // # base is the nominal target function of thunk
3677 CXXNameMangler Mangler(*this, Out, DD, Type);
3678 Mangler.getStream() << "_ZT";
3679
3680 // Mangle the 'this' pointer adjustment.
3681 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
Timur Iskhodzhanov053142a2013-11-06 06:24:31 +00003682 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
Guy Benyei11169dd2012-12-18 14:30:41 +00003683
3684 Mangler.mangleFunctionEncoding(DD);
3685}
3686
3687/// mangleGuardVariable - Returns the mangled name for a guard variable
3688/// for the passed in VarDecl.
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003689void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3690 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003691 // <special-name> ::= GV <object name> # Guard variable for one-time
3692 // # initialization
3693 CXXNameMangler Mangler(*this, Out);
3694 Mangler.getStream() << "_ZGV";
3695 Mangler.mangleName(D);
3696}
3697
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003698void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3699 raw_ostream &Out) {
Reid Kleckner1ece9fc2013-09-10 20:43:12 +00003700 // These symbols are internal in the Itanium ABI, so the names don't matter.
3701 // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3702 // avoid duplicate symbols.
3703 Out << "__cxx_global_var_init";
3704}
3705
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003706void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3707 raw_ostream &Out) {
Reid Klecknerd8110b62013-09-10 20:14:30 +00003708 // Prefix the mangling of D with __dtor_.
3709 CXXNameMangler Mangler(*this, Out);
3710 Mangler.getStream() << "__dtor_";
3711 if (shouldMangleDeclName(D))
3712 Mangler.mangle(D);
3713 else
3714 Mangler.getStream() << D->getName();
3715}
3716
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003717void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3718 raw_ostream &Out) {
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003719 // <special-name> ::= TH <object name>
3720 CXXNameMangler Mangler(*this, Out);
3721 Mangler.getStream() << "_ZTH";
3722 Mangler.mangleName(D);
3723}
3724
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003725void
3726ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3727 raw_ostream &Out) {
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003728 // <special-name> ::= TW <object name>
3729 CXXNameMangler Mangler(*this, Out);
3730 Mangler.getStream() << "_ZTW";
3731 Mangler.mangleName(D);
3732}
3733
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003734void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3735 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003736 // We match the GCC mangling here.
3737 // <special-name> ::= GR <object name>
3738 CXXNameMangler Mangler(*this, Out);
3739 Mangler.getStream() << "_ZGR";
3740 Mangler.mangleName(D);
3741}
3742
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003743void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3744 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003745 // <special-name> ::= TV <type> # virtual table
3746 CXXNameMangler Mangler(*this, Out);
3747 Mangler.getStream() << "_ZTV";
3748 Mangler.mangleNameOrStandardSubstitution(RD);
3749}
3750
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003751void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3752 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003753 // <special-name> ::= TT <type> # VTT structure
3754 CXXNameMangler Mangler(*this, Out);
3755 Mangler.getStream() << "_ZTT";
3756 Mangler.mangleNameOrStandardSubstitution(RD);
3757}
3758
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003759void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3760 int64_t Offset,
3761 const CXXRecordDecl *Type,
3762 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003763 // <special-name> ::= TC <type> <offset number> _ <base type>
3764 CXXNameMangler Mangler(*this, Out);
3765 Mangler.getStream() << "_ZTC";
3766 Mangler.mangleNameOrStandardSubstitution(RD);
3767 Mangler.getStream() << Offset;
3768 Mangler.getStream() << '_';
3769 Mangler.mangleNameOrStandardSubstitution(Type);
3770}
3771
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003772void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003773 // <special-name> ::= TI <type> # typeinfo structure
3774 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3775 CXXNameMangler Mangler(*this, Out);
3776 Mangler.getStream() << "_ZTI";
3777 Mangler.mangleType(Ty);
3778}
3779
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003780void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3781 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003782 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3783 CXXNameMangler Mangler(*this, Out);
3784 Mangler.getStream() << "_ZTS";
3785 Mangler.mangleType(Ty);
3786}
3787
Reid Klecknercc99e262013-11-19 23:23:00 +00003788void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
3789 mangleCXXRTTIName(Ty, Out);
3790}
3791
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003792ItaniumMangleContext *
3793ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3794 return new ItaniumMangleContextImpl(Context, Diags);
Guy Benyei11169dd2012-12-18 14:30:41 +00003795}