blob: bda755e495d32e8fc68d5c81b9d385788fe38313 [file] [log] [blame]
Hal Finkelbf45efd2013-11-16 23:59:05 +00001//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop reroller.
11//
12//===----------------------------------------------------------------------===//
13
Hal Finkelbf45efd2013-11-16 23:59:05 +000014#include "llvm/Transforms/Scalar.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000015#include "llvm/ADT/STLExtras.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000016#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/Statistic.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000018#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/AliasSetTracker.h"
20#include "llvm/Analysis/LoopPass.h"
21#include "llvm/Analysis/ScalarEvolution.h"
22#include "llvm/Analysis/ScalarEvolutionExpander.h"
23#include "llvm/Analysis/ScalarEvolutionExpressions.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/DataLayout.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000026#include "llvm/IR/Dominators.h"
Hal Finkelbf45efd2013-11-16 23:59:05 +000027#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetLibraryInfo.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Transforms/Utils/LoopUtils.h"
35
36using namespace llvm;
37
Chandler Carruth964daaa2014-04-22 02:55:47 +000038#define DEBUG_TYPE "loop-reroll"
39
Hal Finkelbf45efd2013-11-16 23:59:05 +000040STATISTIC(NumRerolledLoops, "Number of rerolled loops");
41
42static cl::opt<unsigned>
43MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
44 cl::desc("The maximum increment for loop rerolling"));
45
46// This loop re-rolling transformation aims to transform loops like this:
47//
48// int foo(int a);
49// void bar(int *x) {
50// for (int i = 0; i < 500; i += 3) {
51// foo(i);
52// foo(i+1);
53// foo(i+2);
54// }
55// }
56//
57// into a loop like this:
58//
59// void bar(int *x) {
60// for (int i = 0; i < 500; ++i)
61// foo(i);
62// }
63//
64// It does this by looking for loops that, besides the latch code, are composed
65// of isomorphic DAGs of instructions, with each DAG rooted at some increment
66// to the induction variable, and where each DAG is isomorphic to the DAG
67// rooted at the induction variable (excepting the sub-DAGs which root the
68// other induction-variable increments). In other words, we're looking for loop
69// bodies of the form:
70//
71// %iv = phi [ (preheader, ...), (body, %iv.next) ]
72// f(%iv)
73// %iv.1 = add %iv, 1 <-- a root increment
74// f(%iv.1)
75// %iv.2 = add %iv, 2 <-- a root increment
76// f(%iv.2)
77// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
78// f(%iv.scale_m_1)
79// ...
80// %iv.next = add %iv, scale
81// %cmp = icmp(%iv, ...)
82// br %cmp, header, exit
83//
84// where each f(i) is a set of instructions that, collectively, are a function
85// only of i (and other loop-invariant values).
86//
87// As a special case, we can also reroll loops like this:
88//
89// int foo(int);
90// void bar(int *x) {
91// for (int i = 0; i < 500; ++i) {
92// x[3*i] = foo(0);
93// x[3*i+1] = foo(0);
94// x[3*i+2] = foo(0);
95// }
96// }
97//
98// into this:
99//
100// void bar(int *x) {
101// for (int i = 0; i < 1500; ++i)
102// x[i] = foo(0);
103// }
104//
105// in which case, we're looking for inputs like this:
106//
107// %iv = phi [ (preheader, ...), (body, %iv.next) ]
108// %scaled.iv = mul %iv, scale
109// f(%scaled.iv)
110// %scaled.iv.1 = add %scaled.iv, 1
111// f(%scaled.iv.1)
112// %scaled.iv.2 = add %scaled.iv, 2
113// f(%scaled.iv.2)
114// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
115// f(%scaled.iv.scale_m_1)
116// ...
117// %iv.next = add %iv, 1
118// %cmp = icmp(%iv, ...)
119// br %cmp, header, exit
120
121namespace {
122 class LoopReroll : public LoopPass {
123 public:
124 static char ID; // Pass ID, replacement for typeid
125 LoopReroll() : LoopPass(ID) {
126 initializeLoopRerollPass(*PassRegistry::getPassRegistry());
127 }
128
Craig Topper3e4c6972014-03-05 09:10:37 +0000129 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000130
Craig Topper3e4c6972014-03-05 09:10:37 +0000131 void getAnalysisUsage(AnalysisUsage &AU) const override {
Hal Finkelbf45efd2013-11-16 23:59:05 +0000132 AU.addRequired<AliasAnalysis>();
133 AU.addRequired<LoopInfo>();
134 AU.addPreserved<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +0000135 AU.addRequired<DominatorTreeWrapperPass>();
136 AU.addPreserved<DominatorTreeWrapperPass>();
Hal Finkelbf45efd2013-11-16 23:59:05 +0000137 AU.addRequired<ScalarEvolution>();
138 AU.addRequired<TargetLibraryInfo>();
139 }
140
141protected:
142 AliasAnalysis *AA;
143 LoopInfo *LI;
144 ScalarEvolution *SE;
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000145 const DataLayout *DL;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000146 TargetLibraryInfo *TLI;
147 DominatorTree *DT;
148
149 typedef SmallVector<Instruction *, 16> SmallInstructionVector;
150 typedef SmallSet<Instruction *, 16> SmallInstructionSet;
151
152 // A chain of isomorphic instructions, indentified by a single-use PHI,
153 // representing a reduction. Only the last value may be used outside the
154 // loop.
155 struct SimpleLoopReduction {
156 SimpleLoopReduction(Instruction *P, Loop *L)
157 : Valid(false), Instructions(1, P) {
158 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
159 add(L);
160 }
161
162 bool valid() const {
163 return Valid;
164 }
165
166 Instruction *getPHI() const {
167 assert(Valid && "Using invalid reduction");
168 return Instructions.front();
169 }
170
171 Instruction *getReducedValue() const {
172 assert(Valid && "Using invalid reduction");
173 return Instructions.back();
174 }
175
176 Instruction *get(size_t i) const {
177 assert(Valid && "Using invalid reduction");
178 return Instructions[i+1];
179 }
180
181 Instruction *operator [] (size_t i) const { return get(i); }
182
183 // The size, ignoring the initial PHI.
184 size_t size() const {
185 assert(Valid && "Using invalid reduction");
186 return Instructions.size()-1;
187 }
188
189 typedef SmallInstructionVector::iterator iterator;
190 typedef SmallInstructionVector::const_iterator const_iterator;
191
192 iterator begin() {
193 assert(Valid && "Using invalid reduction");
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000194 return std::next(Instructions.begin());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000195 }
196
197 const_iterator begin() const {
198 assert(Valid && "Using invalid reduction");
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000199 return std::next(Instructions.begin());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000200 }
201
202 iterator end() { return Instructions.end(); }
203 const_iterator end() const { return Instructions.end(); }
204
205 protected:
206 bool Valid;
207 SmallInstructionVector Instructions;
208
209 void add(Loop *L);
210 };
211
212 // The set of all reductions, and state tracking of possible reductions
213 // during loop instruction processing.
214 struct ReductionTracker {
215 typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
216
217 // Add a new possible reduction.
218 void addSLR(SimpleLoopReduction &SLR) {
219 PossibleReds.push_back(SLR);
220 }
221
222 // Setup to track possible reductions corresponding to the provided
223 // rerolling scale. Only reductions with a number of non-PHI instructions
224 // that is divisible by the scale are considered. Three instructions sets
225 // are filled in:
226 // - A set of all possible instructions in eligible reductions.
227 // - A set of all PHIs in eligible reductions
228 // - A set of all reduced values (last instructions) in eligible reductions.
229 void restrictToScale(uint64_t Scale,
230 SmallInstructionSet &PossibleRedSet,
231 SmallInstructionSet &PossibleRedPHISet,
232 SmallInstructionSet &PossibleRedLastSet) {
233 PossibleRedIdx.clear();
234 PossibleRedIter.clear();
235 Reds.clear();
236
237 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
238 if (PossibleReds[i].size() % Scale == 0) {
239 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
240 PossibleRedPHISet.insert(PossibleReds[i].getPHI());
241
242 PossibleRedSet.insert(PossibleReds[i].getPHI());
243 PossibleRedIdx[PossibleReds[i].getPHI()] = i;
244 for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
245 JE = PossibleReds[i].end(); J != JE; ++J) {
246 PossibleRedSet.insert(*J);
247 PossibleRedIdx[*J] = i;
248 }
249 }
250 }
251
252 // The functions below are used while processing the loop instructions.
253
254 // Are the two instructions both from reductions, and furthermore, from
255 // the same reduction?
256 bool isPairInSame(Instruction *J1, Instruction *J2) {
257 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
258 if (J1I != PossibleRedIdx.end()) {
259 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
260 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
261 return true;
262 }
263
264 return false;
265 }
266
267 // The two provided instructions, the first from the base iteration, and
268 // the second from iteration i, form a matched pair. If these are part of
269 // a reduction, record that fact.
270 void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
271 if (PossibleRedIdx.count(J1)) {
272 assert(PossibleRedIdx.count(J2) &&
273 "Recording reduction vs. non-reduction instruction?");
274
275 PossibleRedIter[J1] = 0;
276 PossibleRedIter[J2] = i;
277
278 int Idx = PossibleRedIdx[J1];
279 assert(Idx == PossibleRedIdx[J2] &&
280 "Recording pair from different reductions?");
Hal Finkel67107ea2013-11-17 01:21:54 +0000281 Reds.insert(Idx);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000282 }
283 }
284
285 // The functions below can be called after we've finished processing all
286 // instructions in the loop, and we know which reductions were selected.
287
288 // Is the provided instruction the PHI of a reduction selected for
289 // rerolling?
290 bool isSelectedPHI(Instruction *J) {
291 if (!isa<PHINode>(J))
292 return false;
293
294 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
295 RI != RIE; ++RI) {
296 int i = *RI;
297 if (cast<Instruction>(J) == PossibleReds[i].getPHI())
298 return true;
299 }
300
301 return false;
302 }
303
304 bool validateSelected();
305 void replaceSelected();
306
307 protected:
308 // The vector of all possible reductions (for any scale).
309 SmallReductionVector PossibleReds;
310
311 DenseMap<Instruction *, int> PossibleRedIdx;
312 DenseMap<Instruction *, int> PossibleRedIter;
313 DenseSet<int> Reds;
314 };
315
316 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
317 void collectPossibleReductions(Loop *L,
318 ReductionTracker &Reductions);
319 void collectInLoopUserSet(Loop *L,
320 const SmallInstructionVector &Roots,
321 const SmallInstructionSet &Exclude,
322 const SmallInstructionSet &Final,
323 DenseSet<Instruction *> &Users);
324 void collectInLoopUserSet(Loop *L,
325 Instruction * Root,
326 const SmallInstructionSet &Exclude,
327 const SmallInstructionSet &Final,
328 DenseSet<Instruction *> &Users);
329 bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
330 Instruction *&IV,
331 SmallInstructionVector &LoopIncs);
332 bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
333 SmallVector<SmallInstructionVector, 32> &Roots,
334 SmallInstructionSet &AllRoots,
335 SmallInstructionVector &LoopIncs);
336 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
337 ReductionTracker &Reductions);
338 };
339}
340
341char LoopReroll::ID = 0;
342INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
343INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
344INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000345INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Hal Finkelbf45efd2013-11-16 23:59:05 +0000346INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
347INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
348INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
349
350Pass *llvm::createLoopRerollPass() {
351 return new LoopReroll;
352}
353
354// Returns true if the provided instruction is used outside the given loop.
355// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
356// non-loop blocks to be outside the loop.
357static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000358 for (User *U : I->users())
359 if (!L->contains(cast<Instruction>(U)))
Hal Finkelbf45efd2013-11-16 23:59:05 +0000360 return true;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000361
362 return false;
363}
364
365// Collect the list of loop induction variables with respect to which it might
366// be possible to reroll the loop.
367void LoopReroll::collectPossibleIVs(Loop *L,
368 SmallInstructionVector &PossibleIVs) {
369 BasicBlock *Header = L->getHeader();
370 for (BasicBlock::iterator I = Header->begin(),
371 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
372 if (!isa<PHINode>(I))
373 continue;
374 if (!I->getType()->isIntegerTy())
375 continue;
376
377 if (const SCEVAddRecExpr *PHISCEV =
378 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
379 if (PHISCEV->getLoop() != L)
380 continue;
381 if (!PHISCEV->isAffine())
382 continue;
383 if (const SCEVConstant *IncSCEV =
384 dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
385 if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
386 continue;
387 if (IncSCEV->getValue()->uge(MaxInc))
388 continue;
389
390 DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
391 *PHISCEV << "\n");
392 PossibleIVs.push_back(I);
393 }
394 }
395 }
396}
397
398// Add the remainder of the reduction-variable chain to the instruction vector
399// (the initial PHINode has already been added). If successful, the object is
400// marked as valid.
401void LoopReroll::SimpleLoopReduction::add(Loop *L) {
402 assert(!Valid && "Cannot add to an already-valid chain");
403
404 // The reduction variable must be a chain of single-use instructions
405 // (including the PHI), except for the last value (which is used by the PHI
406 // and also outside the loop).
407 Instruction *C = Instructions.front();
408
409 do {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000410 C = cast<Instruction>(*C->user_begin());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000411 if (C->hasOneUse()) {
412 if (!C->isBinaryOp())
413 return;
414
415 if (!(isa<PHINode>(Instructions.back()) ||
416 C->isSameOperationAs(Instructions.back())))
417 return;
418
419 Instructions.push_back(C);
420 }
421 } while (C->hasOneUse());
422
423 if (Instructions.size() < 2 ||
424 !C->isSameOperationAs(Instructions.back()) ||
Chandler Carruthcdf47882014-03-09 03:16:01 +0000425 C->use_empty())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000426 return;
427
428 // C is now the (potential) last instruction in the reduction chain.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000429 for (User *U : C->users())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000430 // The only in-loop user can be the initial PHI.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000431 if (L->contains(cast<Instruction>(U)))
432 if (cast<Instruction>(U) != Instructions.front())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000433 return;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000434
435 Instructions.push_back(C);
436 Valid = true;
437}
438
439// Collect the vector of possible reduction variables.
440void LoopReroll::collectPossibleReductions(Loop *L,
441 ReductionTracker &Reductions) {
442 BasicBlock *Header = L->getHeader();
443 for (BasicBlock::iterator I = Header->begin(),
444 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
445 if (!isa<PHINode>(I))
446 continue;
447 if (!I->getType()->isSingleValueType())
448 continue;
449
450 SimpleLoopReduction SLR(I, L);
451 if (!SLR.valid())
452 continue;
453
454 DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
455 SLR.size() << " chained instructions)\n");
456 Reductions.addSLR(SLR);
457 }
458}
459
460// Collect the set of all users of the provided root instruction. This set of
461// users contains not only the direct users of the root instruction, but also
462// all users of those users, and so on. There are two exceptions:
463//
464// 1. Instructions in the set of excluded instructions are never added to the
465// use set (even if they are users). This is used, for example, to exclude
466// including root increments in the use set of the primary IV.
467//
468// 2. Instructions in the set of final instructions are added to the use set
469// if they are users, but their users are not added. This is used, for
470// example, to prevent a reduction update from forcing all later reduction
471// updates into the use set.
472void LoopReroll::collectInLoopUserSet(Loop *L,
473 Instruction *Root, const SmallInstructionSet &Exclude,
474 const SmallInstructionSet &Final,
475 DenseSet<Instruction *> &Users) {
476 SmallInstructionVector Queue(1, Root);
477 while (!Queue.empty()) {
478 Instruction *I = Queue.pop_back_val();
479 if (!Users.insert(I).second)
480 continue;
481
482 if (!Final.count(I))
Chandler Carruthcdf47882014-03-09 03:16:01 +0000483 for (Use &U : I->uses()) {
484 Instruction *User = cast<Instruction>(U.getUser());
Hal Finkelbf45efd2013-11-16 23:59:05 +0000485 if (PHINode *PN = dyn_cast<PHINode>(User)) {
486 // Ignore "wrap-around" uses to PHIs of this loop's header.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000487 if (PN->getIncomingBlock(U) == L->getHeader())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000488 continue;
489 }
490
491 if (L->contains(User) && !Exclude.count(User)) {
492 Queue.push_back(User);
493 }
494 }
495
496 // We also want to collect single-user "feeder" values.
497 for (User::op_iterator OI = I->op_begin(),
498 OIE = I->op_end(); OI != OIE; ++OI) {
499 if (Instruction *Op = dyn_cast<Instruction>(*OI))
500 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
501 !Final.count(Op))
502 Queue.push_back(Op);
503 }
504 }
505}
506
507// Collect all of the users of all of the provided root instructions (combined
508// into a single set).
509void LoopReroll::collectInLoopUserSet(Loop *L,
510 const SmallInstructionVector &Roots,
511 const SmallInstructionSet &Exclude,
512 const SmallInstructionSet &Final,
513 DenseSet<Instruction *> &Users) {
514 for (SmallInstructionVector::const_iterator I = Roots.begin(),
515 IE = Roots.end(); I != IE; ++I)
516 collectInLoopUserSet(L, *I, Exclude, Final, Users);
517}
518
519static bool isSimpleLoadStore(Instruction *I) {
520 if (LoadInst *LI = dyn_cast<LoadInst>(I))
521 return LI->isSimple();
522 if (StoreInst *SI = dyn_cast<StoreInst>(I))
523 return SI->isSimple();
524 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
525 return !MI->isVolatile();
526 return false;
527}
528
529// Recognize loops that are setup like this:
530//
531// %iv = phi [ (preheader, ...), (body, %iv.next) ]
532// %scaled.iv = mul %iv, scale
533// f(%scaled.iv)
534// %scaled.iv.1 = add %scaled.iv, 1
535// f(%scaled.iv.1)
536// %scaled.iv.2 = add %scaled.iv, 2
537// f(%scaled.iv.2)
538// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
539// f(%scaled.iv.scale_m_1)
540// ...
541// %iv.next = add %iv, 1
542// %cmp = icmp(%iv, ...)
543// br %cmp, header, exit
544//
545// and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
546bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
547 Instruction *&IV,
548 SmallInstructionVector &LoopIncs) {
549 // This is a special case: here we're looking for all uses (except for
550 // the increment) to be multiplied by a common factor. The increment must
551 // be by one. This is to capture loops like:
552 // for (int i = 0; i < 500; ++i) {
553 // foo(3*i); foo(3*i+1); foo(3*i+2);
554 // }
555 if (RealIV->getNumUses() != 2)
556 return false;
557 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
Chandler Carruthcdf47882014-03-09 03:16:01 +0000558 Instruction *User1 = cast<Instruction>(*RealIV->user_begin()),
559 *User2 = cast<Instruction>(*std::next(RealIV->user_begin()));
Hal Finkelbf45efd2013-11-16 23:59:05 +0000560 if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
561 return false;
562 const SCEVAddRecExpr *User1SCEV =
563 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
564 *User2SCEV =
565 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
566 if (!User1SCEV || !User1SCEV->isAffine() ||
567 !User2SCEV || !User2SCEV->isAffine())
568 return false;
569
570 // We assume below that User1 is the scale multiply and User2 is the
571 // increment. If this can't be true, then swap them.
572 if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
573 std::swap(User1, User2);
574 std::swap(User1SCEV, User2SCEV);
575 }
576
577 if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
578 return false;
579 assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
580 "Invalid non-unit step for multiplicative scaling");
581 LoopIncs.push_back(User2);
582
583 if (const SCEVConstant *MulScale =
584 dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
585 // Make sure that both the start and step have the same multiplier.
586 if (RealIVSCEV->getStart()->getType() != MulScale->getType())
587 return false;
588 if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
589 User1SCEV->getStart())
590 return false;
591
592 ConstantInt *MulScaleCI = MulScale->getValue();
593 if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
594 return false;
595 Scale = MulScaleCI->getZExtValue();
596 IV = User1;
597 } else
598 return false;
599
600 DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
601 return true;
602}
603
604// Collect all root increments with respect to the provided induction variable
605// (normally the PHI, but sometimes a multiply). A root increment is an
606// instruction, normally an add, with a positive constant less than Scale. In a
607// rerollable loop, each of these increments is the root of an instruction
608// graph isomorphic to the others. Also, we collect the final induction
609// increment (the increment equal to the Scale), and its users in LoopIncs.
610bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
611 Instruction *IV,
612 SmallVector<SmallInstructionVector, 32> &Roots,
613 SmallInstructionSet &AllRoots,
614 SmallInstructionVector &LoopIncs) {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000615 for (User *U : IV->users()) {
616 Instruction *UI = cast<Instruction>(U);
617 if (!SE->isSCEVable(UI->getType()))
Hal Finkelbf45efd2013-11-16 23:59:05 +0000618 continue;
Chandler Carruthcdf47882014-03-09 03:16:01 +0000619 if (UI->getType() != IV->getType())
Hal Finkelbf45efd2013-11-16 23:59:05 +0000620 continue;
Chandler Carruthcdf47882014-03-09 03:16:01 +0000621 if (!L->contains(UI))
Hal Finkelbf45efd2013-11-16 23:59:05 +0000622 continue;
Chandler Carruthcdf47882014-03-09 03:16:01 +0000623 if (hasUsesOutsideLoop(UI, L))
Hal Finkelbf45efd2013-11-16 23:59:05 +0000624 continue;
625
626 if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
Chandler Carruthcdf47882014-03-09 03:16:01 +0000627 SE->getSCEV(UI), SE->getSCEV(IV)))) {
Hal Finkelbf45efd2013-11-16 23:59:05 +0000628 uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
629 if (Idx > 0 && Idx < Scale) {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000630 Roots[Idx-1].push_back(UI);
631 AllRoots.insert(UI);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000632 } else if (Idx == Scale && Inc > 1) {
Chandler Carruthcdf47882014-03-09 03:16:01 +0000633 LoopIncs.push_back(UI);
Hal Finkelbf45efd2013-11-16 23:59:05 +0000634 }
635 }
636 }
637
638 if (Roots[0].empty())
639 return false;
640 bool AllSame = true;
641 for (unsigned i = 1; i < Scale-1; ++i)
642 if (Roots[i].size() != Roots[0].size()) {
643 AllSame = false;
644 break;
645 }
646
647 if (!AllSame)
648 return false;
649
650 return true;
651}
652
653// Validate the selected reductions. All iterations must have an isomorphic
654// part of the reduction chain and, for non-associative reductions, the chain
655// entries must appear in order.
656bool LoopReroll::ReductionTracker::validateSelected() {
657 // For a non-associative reduction, the chain entries must appear in order.
658 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
659 RI != RIE; ++RI) {
660 int i = *RI;
661 int PrevIter = 0, BaseCount = 0, Count = 0;
662 for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
663 JE = PossibleReds[i].end(); J != JE; ++J) {
664 // Note that all instructions in the chain must have been found because
665 // all instructions in the function must have been assigned to some
666 // iteration.
667 int Iter = PossibleRedIter[*J];
668 if (Iter != PrevIter && Iter != PrevIter + 1 &&
669 !PossibleReds[i].getReducedValue()->isAssociative()) {
670 DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
671 *J << "\n");
672 return false;
673 }
674
675 if (Iter != PrevIter) {
676 if (Count != BaseCount) {
677 DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
678 " reduction use count " << Count <<
679 " is not equal to the base use count " <<
680 BaseCount << "\n");
681 return false;
682 }
683
684 Count = 0;
685 }
686
687 ++Count;
688 if (Iter == 0)
689 ++BaseCount;
690
691 PrevIter = Iter;
692 }
693 }
694
695 return true;
696}
697
698// For all selected reductions, remove all parts except those in the first
699// iteration (and the PHI). Replace outside uses of the reduced value with uses
700// of the first-iteration reduced value (in other words, reroll the selected
701// reductions).
702void LoopReroll::ReductionTracker::replaceSelected() {
703 // Fixup reductions to refer to the last instruction associated with the
704 // first iteration (not the last).
705 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
706 RI != RIE; ++RI) {
707 int i = *RI;
708 int j = 0;
709 for (int e = PossibleReds[i].size(); j != e; ++j)
710 if (PossibleRedIter[PossibleReds[i][j]] != 0) {
711 --j;
712 break;
713 }
714
715 // Replace users with the new end-of-chain value.
716 SmallInstructionVector Users;
Chandler Carruthcdf47882014-03-09 03:16:01 +0000717 for (User *U : PossibleReds[i].getReducedValue()->users())
718 Users.push_back(cast<Instruction>(U));
Hal Finkelbf45efd2013-11-16 23:59:05 +0000719
720 for (SmallInstructionVector::iterator J = Users.begin(),
721 JE = Users.end(); J != JE; ++J)
722 (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
723 PossibleReds[i][j]);
724 }
725}
726
727// Reroll the provided loop with respect to the provided induction variable.
728// Generally, we're looking for a loop like this:
729//
730// %iv = phi [ (preheader, ...), (body, %iv.next) ]
731// f(%iv)
732// %iv.1 = add %iv, 1 <-- a root increment
733// f(%iv.1)
734// %iv.2 = add %iv, 2 <-- a root increment
735// f(%iv.2)
736// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
737// f(%iv.scale_m_1)
738// ...
739// %iv.next = add %iv, scale
740// %cmp = icmp(%iv, ...)
741// br %cmp, header, exit
742//
743// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
744// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
745// be intermixed with eachother. The restriction imposed by this algorithm is
746// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
747// etc. be the same.
748//
749// First, we collect the use set of %iv, excluding the other increment roots.
750// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
751// times, having collected the use set of f(%iv.(i+1)), during which we:
752// - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
753// the next unmatched instruction in f(%iv.(i+1)).
754// - Ensure that both matched instructions don't have any external users
755// (with the exception of last-in-chain reduction instructions).
756// - Track the (aliasing) write set, and other side effects, of all
757// instructions that belong to future iterations that come before the matched
758// instructions. If the matched instructions read from that write set, then
759// f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
760// f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
761// if any of these future instructions had side effects (could not be
762// speculatively executed), and so do the matched instructions, when we
763// cannot reorder those side-effect-producing instructions, and rerolling
764// fails.
765//
766// Finally, we make sure that all loop instructions are either loop increment
767// roots, belong to simple latch code, parts of validated reductions, part of
768// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
769// have been validated), then we reroll the loop.
770bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
771 const SCEV *IterCount,
772 ReductionTracker &Reductions) {
773 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
774 uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
775 getValue()->getZExtValue();
776 // The collection of loop increment instructions.
777 SmallInstructionVector LoopIncs;
778 uint64_t Scale = Inc;
779
780 // The effective induction variable, IV, is normally also the real induction
781 // variable. When we're dealing with a loop like:
782 // for (int i = 0; i < 500; ++i)
783 // x[3*i] = ...;
784 // x[3*i+1] = ...;
785 // x[3*i+2] = ...;
786 // then the real IV is still i, but the effective IV is (3*i).
787 Instruction *RealIV = IV;
788 if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
789 return false;
790
791 assert(Scale <= MaxInc && "Scale is too large");
792 assert(Scale > 1 && "Scale must be at least 2");
793
794 // The set of increment instructions for each increment value.
795 SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
796 SmallInstructionSet AllRoots;
797 if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
798 return false;
799
800 DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
801 *RealIV << "\n");
802
803 // An array of just the possible reductions for this scale factor. When we
804 // collect the set of all users of some root instructions, these reduction
805 // instructions are treated as 'final' (their uses are not considered).
806 // This is important because we don't want the root use set to search down
807 // the reduction chain.
808 SmallInstructionSet PossibleRedSet;
809 SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
810 Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
811 PossibleRedLastSet);
812
813 // We now need to check for equivalence of the use graph of each root with
814 // that of the primary induction variable (excluding the roots). Our goal
815 // here is not to solve the full graph isomorphism problem, but rather to
816 // catch common cases without a lot of work. As a result, we will assume
817 // that the relative order of the instructions in each unrolled iteration
818 // is the same (although we will not make an assumption about how the
819 // different iterations are intermixed). Note that while the order must be
820 // the same, the instructions may not be in the same basic block.
821 SmallInstructionSet Exclude(AllRoots);
822 Exclude.insert(LoopIncs.begin(), LoopIncs.end());
823
824 DenseSet<Instruction *> BaseUseSet;
825 collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
826
827 DenseSet<Instruction *> AllRootUses;
828 std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
829
830 bool MatchFailed = false;
831 for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
832 DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
833 collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
834 PossibleRedSet, RootUseSet);
835
836 DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
837 " vs. iteration increment " << (i+1) <<
838 " use set size: " << RootUseSet.size() << "\n");
839
840 if (BaseUseSet.size() != RootUseSet.size()) {
841 MatchFailed = true;
842 break;
843 }
844
845 // In addition to regular aliasing information, we need to look for
846 // instructions from later (future) iterations that have side effects
847 // preventing us from reordering them past other instructions with side
848 // effects.
849 bool FutureSideEffects = false;
850 AliasSetTracker AST(*AA);
851
852 // The map between instructions in f(%iv.(i+1)) and f(%iv).
853 DenseMap<Value *, Value *> BaseMap;
854
855 assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
856 for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
857 JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
858 if (cast<Instruction>(J1) == RealIV)
859 continue;
860 if (cast<Instruction>(J1) == IV)
861 continue;
862 if (!BaseUseSet.count(J1))
863 continue;
864 if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
865 continue;
866
867 while (J2 != JE && (!RootUseSet.count(J2) ||
868 std::find(Roots[i].begin(), Roots[i].end(), J2) !=
869 Roots[i].end())) {
870 // As we iterate through the instructions, instructions that don't
871 // belong to previous iterations (or the base case), must belong to
872 // future iterations. We want to track the alias set of writes from
873 // previous iterations.
874 if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
875 !AllRootUses.count(J2)) {
876 if (J2->mayWriteToMemory())
877 AST.add(J2);
878
879 // Note: This is specifically guarded by a check on isa<PHINode>,
880 // which while a valid (somewhat arbitrary) micro-optimization, is
881 // needed because otherwise isSafeToSpeculativelyExecute returns
882 // false on PHI nodes.
883 if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
884 FutureSideEffects = true;
885 }
886
887 ++J2;
888 }
889
890 if (!J1->isSameOperationAs(J2)) {
891 DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
892 " vs. " << *J2 << "\n");
893 MatchFailed = true;
894 break;
895 }
896
897 // Make sure that this instruction, which is in the use set of this
898 // root instruction, does not also belong to the base set or the set of
899 // some previous root instruction.
900 if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
901 DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
902 " vs. " << *J2 << " (prev. case overlap)\n");
903 MatchFailed = true;
904 break;
905 }
906
907 // Make sure that we don't alias with any instruction in the alias set
908 // tracker. If we do, then we depend on a future iteration, and we
909 // can't reroll.
910 if (J2->mayReadFromMemory()) {
911 for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
912 K != KE && !MatchFailed; ++K) {
913 if (K->aliasesUnknownInst(J2, *AA)) {
914 DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
915 " vs. " << *J2 << " (depends on future store)\n");
916 MatchFailed = true;
917 break;
918 }
919 }
920 }
921
922 // If we've past an instruction from a future iteration that may have
923 // side effects, and this instruction might also, then we can't reorder
924 // them, and this matching fails. As an exception, we allow the alias
925 // set tracker to handle regular (simple) load/store dependencies.
926 if (FutureSideEffects &&
927 ((!isSimpleLoadStore(J1) && !isSafeToSpeculativelyExecute(J1)) ||
928 (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2)))) {
929 DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
930 " vs. " << *J2 <<
931 " (side effects prevent reordering)\n");
932 MatchFailed = true;
933 break;
934 }
935
936 // For instructions that are part of a reduction, if the operation is
937 // associative, then don't bother matching the operands (because we
938 // already know that the instructions are isomorphic, and the order
939 // within the iteration does not matter). For non-associative reductions,
940 // we do need to match the operands, because we need to reject
941 // out-of-order instructions within an iteration!
942 // For example (assume floating-point addition), we need to reject this:
943 // x += a[i]; x += b[i];
944 // x += a[i+1]; x += b[i+1];
945 // x += b[i+2]; x += a[i+2];
946 bool InReduction = Reductions.isPairInSame(J1, J2);
947
948 if (!(InReduction && J1->isAssociative())) {
Alp Toker98444342014-04-19 23:56:35 +0000949 bool Swapped = false, SomeOpMatched = false;
Hal Finkelbf45efd2013-11-16 23:59:05 +0000950 for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
951 Value *Op2 = J2->getOperand(j);
952
953 // If this is part of a reduction (and the operation is not
954 // associatve), then we match all operands, but not those that are
955 // part of the reduction.
956 if (InReduction)
957 if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
958 if (Reductions.isPairInSame(J2, Op2I))
959 continue;
960
961 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
962 if (BMI != BaseMap.end())
963 Op2 = BMI->second;
964 else if (std::find(Roots[i].begin(), Roots[i].end(),
965 (Instruction*) Op2) != Roots[i].end())
966 Op2 = IV;
967
968 if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
969 // If we've not already decided to swap the matched operands, and
970 // we've not already matched our first operand (note that we could
971 // have skipped matching the first operand because it is part of a
972 // reduction above), and the instruction is commutative, then try
973 // the swapped match.
974 if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
975 J1->getOperand(!j) == Op2) {
976 Swapped = true;
977 } else {
978 DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
979 " vs. " << *J2 << " (operand " << j << ")\n");
980 MatchFailed = true;
981 break;
982 }
983 }
984
985 SomeOpMatched = true;
986 }
987 }
988
989 if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
990 (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
991 DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
992 " vs. " << *J2 << " (uses outside loop)\n");
993 MatchFailed = true;
994 break;
995 }
996
997 if (!MatchFailed)
998 BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
999
1000 AllRootUses.insert(J2);
1001 Reductions.recordPair(J1, J2, i+1);
1002
1003 ++J2;
1004 }
1005 }
1006
1007 if (MatchFailed)
1008 return false;
1009
1010 DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
1011 *RealIV << "\n");
1012
1013 DenseSet<Instruction *> LoopIncUseSet;
1014 collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
1015 SmallInstructionSet(), LoopIncUseSet);
1016 DEBUG(dbgs() << "LRR: Loop increment set size: " <<
1017 LoopIncUseSet.size() << "\n");
1018
1019 // Make sure that all instructions in the loop have been included in some
1020 // use set.
1021 for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
1022 J != JE; ++J) {
1023 if (isa<DbgInfoIntrinsic>(J))
1024 continue;
1025 if (cast<Instruction>(J) == RealIV)
1026 continue;
1027 if (cast<Instruction>(J) == IV)
1028 continue;
1029 if (BaseUseSet.count(J) || AllRootUses.count(J) ||
1030 (LoopIncUseSet.count(J) && (J->isTerminator() ||
1031 isSafeToSpeculativelyExecute(J, DL))))
1032 continue;
1033
1034 if (AllRoots.count(J))
1035 continue;
1036
1037 if (Reductions.isSelectedPHI(J))
1038 continue;
1039
1040 DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
1041 " unprocessed instruction found: " << *J << "\n");
1042 MatchFailed = true;
1043 break;
1044 }
1045
1046 if (MatchFailed)
1047 return false;
1048
1049 DEBUG(dbgs() << "LRR: all instructions processed from " <<
1050 *RealIV << "\n");
1051
1052 if (!Reductions.validateSelected())
1053 return false;
1054
1055 // At this point, we've validated the rerolling, and we're committed to
1056 // making changes!
1057
1058 Reductions.replaceSelected();
1059
1060 // Remove instructions associated with non-base iterations.
1061 for (BasicBlock::reverse_iterator J = Header->rbegin();
1062 J != Header->rend();) {
1063 if (AllRootUses.count(&*J)) {
1064 Instruction *D = &*J;
1065 DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1066 D->eraseFromParent();
1067 continue;
1068 }
1069
1070 ++J;
1071 }
1072
1073 // Insert the new induction variable.
1074 const SCEV *Start = RealIVSCEV->getStart();
1075 if (Inc == 1)
1076 Start = SE->getMulExpr(Start,
1077 SE->getConstant(Start->getType(), Scale));
1078 const SCEVAddRecExpr *H =
1079 cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
1080 SE->getConstant(RealIVSCEV->getType(), 1),
1081 L, SCEV::FlagAnyWrap));
1082 { // Limit the lifetime of SCEVExpander.
1083 SCEVExpander Expander(*SE, "reroll");
David Peixottoea9ba442014-01-03 17:20:01 +00001084 Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
1085
Hal Finkelbf45efd2013-11-16 23:59:05 +00001086 for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
1087 JE = BaseUseSet.end(); J != JE; ++J)
1088 (*J)->replaceUsesOfWith(IV, NewIV);
1089
1090 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1091 if (LoopIncUseSet.count(BI)) {
1092 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1093 if (Inc == 1)
1094 ICSCEV =
1095 SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
David Peixottoea9ba442014-01-03 17:20:01 +00001096 // Iteration count SCEV minus 1
1097 const SCEV *ICMinus1SCEV =
1098 SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
1099
1100 Value *ICMinus1; // Iteration count minus 1
1101 if (isa<SCEVConstant>(ICMinus1SCEV)) {
1102 ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
Hal Finkelbf45efd2013-11-16 23:59:05 +00001103 } else {
1104 BasicBlock *Preheader = L->getLoopPreheader();
1105 if (!Preheader)
1106 Preheader = InsertPreheaderForLoop(L, this);
1107
David Peixottoea9ba442014-01-03 17:20:01 +00001108 ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
1109 Preheader->getTerminator());
Hal Finkelbf45efd2013-11-16 23:59:05 +00001110 }
1111
David Peixottoea9ba442014-01-03 17:20:01 +00001112 Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
Hal Finkelbf45efd2013-11-16 23:59:05 +00001113 "exitcond");
1114 BI->setCondition(Cond);
1115
1116 if (BI->getSuccessor(1) != Header)
1117 BI->swapSuccessors();
1118 }
1119 }
1120 }
1121
1122 SimplifyInstructionsInBlock(Header, DL, TLI);
1123 DeleteDeadPHIs(Header, TLI);
1124 ++NumRerolledLoops;
1125 return true;
1126}
1127
1128bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00001129 if (skipOptnoneFunction(L))
1130 return false;
1131
Hal Finkelbf45efd2013-11-16 23:59:05 +00001132 AA = &getAnalysis<AliasAnalysis>();
1133 LI = &getAnalysis<LoopInfo>();
1134 SE = &getAnalysis<ScalarEvolution>();
1135 TLI = &getAnalysis<TargetLibraryInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00001136 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1137 DL = DLP ? &DLP->getDataLayout() : 0;
Chandler Carruth73523022014-01-13 13:07:17 +00001138 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Hal Finkelbf45efd2013-11-16 23:59:05 +00001139
1140 BasicBlock *Header = L->getHeader();
1141 DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1142 "] Loop %" << Header->getName() << " (" <<
1143 L->getNumBlocks() << " block(s))\n");
1144
1145 bool Changed = false;
1146
1147 // For now, we'll handle only single BB loops.
1148 if (L->getNumBlocks() > 1)
1149 return Changed;
1150
1151 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1152 return Changed;
1153
1154 const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
1155 const SCEV *IterCount =
1156 SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
1157 DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1158
1159 // First, we need to find the induction variable with respect to which we can
1160 // reroll (there may be several possible options).
1161 SmallInstructionVector PossibleIVs;
1162 collectPossibleIVs(L, PossibleIVs);
1163
1164 if (PossibleIVs.empty()) {
1165 DEBUG(dbgs() << "LRR: No possible IVs found\n");
1166 return Changed;
1167 }
1168
1169 ReductionTracker Reductions;
1170 collectPossibleReductions(L, Reductions);
1171
1172 // For each possible IV, collect the associated possible set of 'root' nodes
1173 // (i+1, i+2, etc.).
1174 for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
1175 IE = PossibleIVs.end(); I != IE; ++I)
1176 if (reroll(*I, L, Header, IterCount, Reductions)) {
1177 Changed = true;
1178 break;
1179 }
1180
1181 return Changed;
1182}
1183