blob: 8b8d6590aa6a08dcd9d6ca671aa5f606c39e277d [file] [log] [blame]
Jingyue Wud7966ff2015-02-03 19:37:06 +00001//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements straight-line strength reduction (SLSR). Unlike loop
11// strength reduction, this algorithm is designed to reduce arithmetic
12// redundancy in straight-line code instead of loops. It has proven to be
13// effective in simplifying arithmetic statements derived from an unrolled loop.
14// It can also simplify the logic of SeparateConstOffsetFromGEP.
15//
16// There are many optimizations we can perform in the domain of SLSR. This file
17// for now contains only an initial step. Specifically, we look for strength
Jingyue Wu43885eb2015-04-15 16:46:13 +000018// reduction candidates in the following forms:
Jingyue Wud7966ff2015-02-03 19:37:06 +000019//
Jingyue Wu43885eb2015-04-15 16:46:13 +000020// Form 1: B + i * S
21// Form 2: (B + i) * S
22// Form 3: &B[i * S]
Jingyue Wud7966ff2015-02-03 19:37:06 +000023//
Jingyue Wu177a8152015-03-26 16:49:24 +000024// where S is an integer variable, and i is a constant integer. If we found two
Jingyue Wu43885eb2015-04-15 16:46:13 +000025// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26// in a simpler way with respect to S1. For example,
27//
28// S1: X = B + i * S
29// S2: Y = B + i' * S => X + (i' - i) * S
Jingyue Wud7966ff2015-02-03 19:37:06 +000030//
Jingyue Wu177a8152015-03-26 16:49:24 +000031// S1: X = (B + i) * S
Jingyue Wu43885eb2015-04-15 16:46:13 +000032// S2: Y = (B + i') * S => X + (i' - i) * S
Jingyue Wu177a8152015-03-26 16:49:24 +000033//
34// S1: X = &B[i * S]
Jingyue Wu43885eb2015-04-15 16:46:13 +000035// S2: Y = &B[i' * S] => &X[(i' - i) * S]
Jingyue Wud7966ff2015-02-03 19:37:06 +000036//
Jingyue Wu43885eb2015-04-15 16:46:13 +000037// Note: (i' - i) * S is folded to the extent possible.
Jingyue Wud7966ff2015-02-03 19:37:06 +000038//
Jingyue Wu43885eb2015-04-15 16:46:13 +000039// This rewriting is in general a good idea. The code patterns we focus on
40// usually come from loop unrolling, so (i' - i) * S is likely the same
41// across iterations and can be reused. When that happens, the optimized form
42// takes only one add starting from the second iteration.
Jingyue Wud7966ff2015-02-03 19:37:06 +000043//
Jingyue Wu43885eb2015-04-15 16:46:13 +000044// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45// multiple bases, we choose to rewrite S2 with respect to its "immediate"
46// basis, the basis that is the closest ancestor in the dominator tree.
Jingyue Wud7966ff2015-02-03 19:37:06 +000047//
48// TODO:
49//
Jingyue Wud7966ff2015-02-03 19:37:06 +000050// - Floating point arithmetics when fast math is enabled.
51//
52// - SLSR may decrease ILP at the architecture level. Targets that are very
53// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54// left as future work.
Jingyue Wu43885eb2015-04-15 16:46:13 +000055//
56// - When (i' - i) is constant but i and i' are not, we could still perform
57// SLSR.
Jingyue Wu177a8152015-03-26 16:49:24 +000058#include "llvm/Analysis/ScalarEvolution.h"
59#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu80a96d292015-05-15 17:07:48 +000060#include "llvm/Analysis/ValueTracking.h"
Jingyue Wu177a8152015-03-26 16:49:24 +000061#include "llvm/IR/DataLayout.h"
Jingyue Wud7966ff2015-02-03 19:37:06 +000062#include "llvm/IR/Dominators.h"
63#include "llvm/IR/IRBuilder.h"
64#include "llvm/IR/Module.h"
65#include "llvm/IR/PatternMatch.h"
66#include "llvm/Support/raw_ostream.h"
67#include "llvm/Transforms/Scalar.h"
Jingyue Wuf1edf3e2015-04-21 19:56:18 +000068#include "llvm/Transforms/Utils/Local.h"
Duncan P. N. Exon Smith8b4e4af2016-09-11 21:29:34 +000069#include <list>
Duncan P. N. Exon Smith077f5b42016-09-11 21:04:36 +000070#include <vector>
Jingyue Wud7966ff2015-02-03 19:37:06 +000071
72using namespace llvm;
73using namespace PatternMatch;
74
75namespace {
76
Matt Arsenaultba437c62016-04-27 00:32:09 +000077static const unsigned UnknownAddressSpace = ~0u;
78
Jingyue Wud7966ff2015-02-03 19:37:06 +000079class StraightLineStrengthReduce : public FunctionPass {
Jingyue Wu177a8152015-03-26 16:49:24 +000080public:
Jingyue Wu43885eb2015-04-15 16:46:13 +000081 // SLSR candidate. Such a candidate must be in one of the forms described in
82 // the header comments.
Duncan P. N. Exon Smith8b4e4af2016-09-11 21:29:34 +000083 struct Candidate {
Jingyue Wu177a8152015-03-26 16:49:24 +000084 enum Kind {
85 Invalid, // reserved for the default constructor
Jingyue Wu43885eb2015-04-15 16:46:13 +000086 Add, // B + i * S
Jingyue Wu177a8152015-03-26 16:49:24 +000087 Mul, // (B + i) * S
88 GEP, // &B[..][i * S][..]
89 };
90
91 Candidate()
92 : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
93 Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
94 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
95 Instruction *I)
96 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
97 Basis(nullptr) {}
98 Kind CandidateKind;
99 const SCEV *Base;
Jingyue Wu43885eb2015-04-15 16:46:13 +0000100 // Note that Index and Stride of a GEP candidate do not necessarily have the
101 // same integer type. In that case, during rewriting, Stride will be
Jingyue Wu177a8152015-03-26 16:49:24 +0000102 // sign-extended or truncated to Index's type.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000103 ConstantInt *Index;
104 Value *Stride;
105 // The instruction this candidate corresponds to. It helps us to rewrite a
106 // candidate with respect to its immediate basis. Note that one instruction
Jingyue Wu43885eb2015-04-15 16:46:13 +0000107 // can correspond to multiple candidates depending on how you associate the
Jingyue Wud7966ff2015-02-03 19:37:06 +0000108 // expression. For instance,
109 //
110 // (a + 1) * (b + 2)
111 //
112 // can be treated as
113 //
114 // <Base: a, Index: 1, Stride: b + 2>
115 //
116 // or
117 //
118 // <Base: b, Index: 2, Stride: a + 1>
119 Instruction *Ins;
120 // Points to the immediate basis of this candidate, or nullptr if we cannot
121 // find any basis for this candidate.
122 Candidate *Basis;
123 };
124
125 static char ID;
126
Jingyue Wu177a8152015-03-26 16:49:24 +0000127 StraightLineStrengthReduce()
128 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
Jingyue Wud7966ff2015-02-03 19:37:06 +0000129 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
130 }
131
132 void getAnalysisUsage(AnalysisUsage &AU) const override {
133 AU.addRequired<DominatorTreeWrapperPass>();
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000134 AU.addRequired<ScalarEvolutionWrapperPass>();
Jingyue Wu177a8152015-03-26 16:49:24 +0000135 AU.addRequired<TargetTransformInfoWrapperPass>();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000136 // We do not modify the shape of the CFG.
137 AU.setPreservesCFG();
138 }
139
Jingyue Wu177a8152015-03-26 16:49:24 +0000140 bool doInitialization(Module &M) override {
141 DL = &M.getDataLayout();
142 return false;
143 }
144
Jingyue Wud7966ff2015-02-03 19:37:06 +0000145 bool runOnFunction(Function &F) override;
146
Jingyue Wu177a8152015-03-26 16:49:24 +0000147private:
Jingyue Wud7966ff2015-02-03 19:37:06 +0000148 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
149 // share the same base and stride.
150 bool isBasisFor(const Candidate &Basis, const Candidate &C);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000151 // Returns whether the candidate can be folded into an addressing mode.
152 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
153 const DataLayout *DL);
154 // Returns true if C is already in a simplest form and not worth being
155 // rewritten.
156 bool isSimplestForm(const Candidate &C);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000157 // Checks whether I is in a candidate form. If so, adds all the matching forms
158 // to Candidates, and tries to find the immediate basis for each of them.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000159 void allocateCandidatesAndFindBasis(Instruction *I);
160 // Allocate candidates and find bases for Add instructions.
161 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
162 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
163 // candidate.
164 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
165 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000166 // Allocate candidates and find bases for Mul instructions.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000167 void allocateCandidatesAndFindBasisForMul(Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000168 // Splits LHS into Base + Index and, if succeeds, calls
Jingyue Wu43885eb2015-04-15 16:46:13 +0000169 // allocateCandidatesAndFindBasis.
170 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
171 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000172 // Allocate candidates and find bases for GetElementPtr instructions.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000173 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000174 // A helper function that scales Idx with ElementSize before invoking
Jingyue Wu43885eb2015-04-15 16:46:13 +0000175 // allocateCandidatesAndFindBasis.
176 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
177 Value *S, uint64_t ElementSize,
178 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000179 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
180 // basis.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000181 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
182 ConstantInt *Idx, Value *S,
183 Instruction *I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000184 // Rewrites candidate C with respect to Basis.
185 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
Jingyue Wu177a8152015-03-26 16:49:24 +0000186 // A helper function that factors ArrayIdx to a product of a stride and a
Jingyue Wu43885eb2015-04-15 16:46:13 +0000187 // constant index, and invokes allocateCandidatesAndFindBasis with the
Jingyue Wu177a8152015-03-26 16:49:24 +0000188 // factorings.
189 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
190 GetElementPtrInst *GEP);
191 // Emit code that computes the "bump" from Basis to C. If the candidate is a
192 // GEP and the bump is not divisible by the element size of the GEP, this
193 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
194 // basis using an ugly GEP.
195 static Value *emitBump(const Candidate &Basis, const Candidate &C,
196 IRBuilder<> &Builder, const DataLayout *DL,
197 bool &BumpWithUglyGEP);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000198
Jingyue Wu177a8152015-03-26 16:49:24 +0000199 const DataLayout *DL;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000200 DominatorTree *DT;
Jingyue Wu177a8152015-03-26 16:49:24 +0000201 ScalarEvolution *SE;
202 TargetTransformInfo *TTI;
Duncan P. N. Exon Smith8b4e4af2016-09-11 21:29:34 +0000203 std::list<Candidate> Candidates;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000204 // Temporarily holds all instructions that are unlinked (but not deleted) by
205 // rewriteCandidateWithBasis. These instructions will be actually removed
206 // after all rewriting finishes.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000207 std::vector<Instruction *> UnlinkedInstructions;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000208};
209} // anonymous namespace
210
211char StraightLineStrengthReduce::ID = 0;
212INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
213 "Straight line strength reduction", false, false)
214INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000215INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Jingyue Wu177a8152015-03-26 16:49:24 +0000216INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Jingyue Wud7966ff2015-02-03 19:37:06 +0000217INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
218 "Straight line strength reduction", false, false)
219
220FunctionPass *llvm::createStraightLineStrengthReducePass() {
221 return new StraightLineStrengthReduce();
222}
223
224bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
225 const Candidate &C) {
226 return (Basis.Ins != C.Ins && // skip the same instruction
Jingyue Wu3abde7b2015-06-28 17:45:05 +0000227 // They must have the same type too. Basis.Base == C.Base doesn't
228 // guarantee their types are the same (PR23975).
229 Basis.Ins->getType() == C.Ins->getType() &&
Jingyue Wud7966ff2015-02-03 19:37:06 +0000230 // Basis must dominate C in order to rewrite C with respect to Basis.
231 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
Jingyue Wu177a8152015-03-26 16:49:24 +0000232 // They share the same base, stride, and candidate kind.
Jingyue Wu3abde7b2015-06-28 17:45:05 +0000233 Basis.Base == C.Base && Basis.Stride == C.Stride &&
Jingyue Wu177a8152015-03-26 16:49:24 +0000234 Basis.CandidateKind == C.CandidateKind);
235}
236
Jingyue Wu43885eb2015-04-15 16:46:13 +0000237static bool isGEPFoldable(GetElementPtrInst *GEP,
Jingyue Wu15f3e822016-07-08 21:48:05 +0000238 const TargetTransformInfo *TTI) {
239 SmallVector<const Value*, 4> Indices;
240 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
241 Indices.push_back(*I);
242 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
243 Indices) == TargetTransformInfo::TCC_Free;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000244}
245
Jingyue Wu43885eb2015-04-15 16:46:13 +0000246// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
247static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
248 TargetTransformInfo *TTI) {
Jingyue Wudebce552016-07-09 19:13:18 +0000249 // Index->getSExtValue() may crash if Index is wider than 64-bit.
250 return Index->getBitWidth() <= 64 &&
251 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
Matt Arsenaultba437c62016-04-27 00:32:09 +0000252 Index->getSExtValue(), UnknownAddressSpace);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000253}
254
255bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
256 TargetTransformInfo *TTI,
257 const DataLayout *DL) {
258 if (C.CandidateKind == Candidate::Add)
259 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
260 if (C.CandidateKind == Candidate::GEP)
Jingyue Wu15f3e822016-07-08 21:48:05 +0000261 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000262 return false;
263}
264
265// Returns true if GEP has zero or one non-zero index.
266static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
267 unsigned NumNonZeroIndices = 0;
268 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
269 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
270 if (ConstIdx == nullptr || !ConstIdx->isZero())
271 ++NumNonZeroIndices;
272 }
273 return NumNonZeroIndices <= 1;
274}
275
276bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
277 if (C.CandidateKind == Candidate::Add) {
278 // B + 1 * S or B + (-1) * S
279 return C.Index->isOne() || C.Index->isMinusOne();
280 }
281 if (C.CandidateKind == Candidate::Mul) {
282 // (B + 0) * S
283 return C.Index->isZero();
284 }
285 if (C.CandidateKind == Candidate::GEP) {
286 // (char*)B + S or (char*)B - S
287 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
288 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
289 }
290 return false;
291}
292
293// TODO: We currently implement an algorithm whose time complexity is linear in
294// the number of existing candidates. However, we could do better by using
295// ScopedHashTable. Specifically, while traversing the dominator tree, we could
296// maintain all the candidates that dominate the basic block being traversed in
297// a ScopedHashTable. This hash table is indexed by the base and the stride of
298// a candidate. Therefore, finding the immediate basis of a candidate boils down
299// to one hash-table look up.
300void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Jingyue Wu177a8152015-03-26 16:49:24 +0000301 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
302 Instruction *I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000303 Candidate C(CT, B, Idx, S, I);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000304 // SLSR can complicate an instruction in two cases:
305 //
306 // 1. If we can fold I into an addressing mode, computing I is likely free or
307 // takes only one instruction.
308 //
309 // 2. I is already in a simplest form. For example, when
310 // X = B + 8 * S
311 // Y = B + S,
312 // rewriting Y to X - 7 * S is probably a bad idea.
313 //
314 // In the above cases, we still add I to the candidate list so that I can be
315 // the basis of other candidates, but we leave I's basis blank so that I
316 // won't be rewritten.
317 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
318 // Try to compute the immediate basis of C.
319 unsigned NumIterations = 0;
320 // Limit the scan radius to avoid running in quadratice time.
321 static const unsigned MaxNumIterations = 50;
322 for (auto Basis = Candidates.rbegin();
323 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
324 ++Basis, ++NumIterations) {
325 if (isBasisFor(*Basis, C)) {
326 C.Basis = &(*Basis);
327 break;
328 }
Jingyue Wud7966ff2015-02-03 19:37:06 +0000329 }
330 }
331 // Regardless of whether we find a basis for C, we need to push C to the
Jingyue Wu43885eb2015-04-15 16:46:13 +0000332 // candidate list so that it can be the basis of other candidates.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000333 Candidates.push_back(C);
334}
335
Jingyue Wu43885eb2015-04-15 16:46:13 +0000336void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
337 Instruction *I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000338 switch (I->getOpcode()) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000339 case Instruction::Add:
340 allocateCandidatesAndFindBasisForAdd(I);
341 break;
Jingyue Wu177a8152015-03-26 16:49:24 +0000342 case Instruction::Mul:
Jingyue Wu43885eb2015-04-15 16:46:13 +0000343 allocateCandidatesAndFindBasisForMul(I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000344 break;
345 case Instruction::GetElementPtr:
Jingyue Wu43885eb2015-04-15 16:46:13 +0000346 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
Jingyue Wu177a8152015-03-26 16:49:24 +0000347 break;
348 }
349}
350
Jingyue Wu43885eb2015-04-15 16:46:13 +0000351void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
352 Instruction *I) {
353 // Try matching B + i * S.
354 if (!isa<IntegerType>(I->getType()))
355 return;
356
357 assert(I->getNumOperands() == 2 && "isn't I an add?");
358 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
359 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
360 if (LHS != RHS)
361 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
362}
363
364void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
365 Value *LHS, Value *RHS, Instruction *I) {
366 Value *S = nullptr;
367 ConstantInt *Idx = nullptr;
368 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
369 // I = LHS + RHS = LHS + Idx * S
370 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
371 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
372 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
373 APInt One(Idx->getBitWidth(), 1);
374 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
375 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
376 } else {
377 // At least, I = LHS + 1 * RHS
378 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
379 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
380 I);
381 }
382}
383
Jingyue Wu80a96d292015-05-15 17:07:48 +0000384// Returns true if A matches B + C where C is constant.
385static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
386 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
387 match(A, m_Add(m_ConstantInt(C), m_Value(B))));
388}
389
390// Returns true if A matches B | C where C is constant.
391static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
392 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
393 match(A, m_Or(m_ConstantInt(C), m_Value(B))));
394}
395
Jingyue Wu43885eb2015-04-15 16:46:13 +0000396void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Jingyue Wu177a8152015-03-26 16:49:24 +0000397 Value *LHS, Value *RHS, Instruction *I) {
Jingyue Wud7966ff2015-02-03 19:37:06 +0000398 Value *B = nullptr;
399 ConstantInt *Idx = nullptr;
Jingyue Wu80a96d292015-05-15 17:07:48 +0000400 if (matchesAdd(LHS, B, Idx)) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000401 // If LHS is in the form of "Base + Index", then I is in the form of
402 // "(Base + Index) * RHS".
Jingyue Wu43885eb2015-04-15 16:46:13 +0000403 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
Jingyue Wu80a96d292015-05-15 17:07:48 +0000404 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
405 // If LHS is in the form of "Base | Index" and Base and Index have no common
406 // bits set, then
407 // Base | Index = Base + Index
408 // and I is thus in the form of "(Base + Index) * RHS".
409 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000410 } else {
411 // Otherwise, at least try the form (LHS + 0) * RHS.
412 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000413 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
Jingyue Wu80a96d292015-05-15 17:07:48 +0000414 I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000415 }
416}
417
Jingyue Wu43885eb2015-04-15 16:46:13 +0000418void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Jingyue Wu177a8152015-03-26 16:49:24 +0000419 Instruction *I) {
420 // Try matching (B + i) * S.
421 // TODO: we could extend SLSR to float and vector types.
422 if (!isa<IntegerType>(I->getType()))
423 return;
424
Jingyue Wu43885eb2015-04-15 16:46:13 +0000425 assert(I->getNumOperands() == 2 && "isn't I a mul?");
Jingyue Wu177a8152015-03-26 16:49:24 +0000426 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000427 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000428 if (LHS != RHS) {
429 // Symmetrically, try to split RHS to Base + Index.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000430 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000431 }
432}
433
Jingyue Wu43885eb2015-04-15 16:46:13 +0000434void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000435 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
436 Instruction *I) {
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000437 // I = B + sext(Idx *nsw S) * ElementSize
438 // = B + (sext(Idx) * sext(S)) * ElementSize
Jingyue Wu177a8152015-03-26 16:49:24 +0000439 // = B + (sext(Idx) * ElementSize) * sext(S)
440 // Casting to IntegerType is safe because we skipped vector GEPs.
441 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
442 ConstantInt *ScaledIdx = ConstantInt::get(
443 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000444 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000445}
446
447void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
448 const SCEV *Base,
449 uint64_t ElementSize,
450 GetElementPtrInst *GEP) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000451 // At least, ArrayIdx = ArrayIdx *nsw 1.
452 allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000453 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
454 ArrayIdx, ElementSize, GEP);
455 Value *LHS = nullptr;
456 ConstantInt *RHS = nullptr;
Jingyue Wu177a8152015-03-26 16:49:24 +0000457 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
458 // itself. This would allow us to handle the shl case for free. However,
459 // matching SCEVs has two issues:
460 //
461 // 1. this would complicate rewriting because the rewriting procedure
462 // would have to translate SCEVs back to IR instructions. This translation
463 // is difficult when LHS is further evaluated to a composite SCEV.
464 //
465 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
466 // to strip nsw/nuw flags which are critical for SLSR to trace into
467 // sext'ed multiplication.
468 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
469 // SLSR is currently unsafe if i * S may overflow.
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000470 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
Jingyue Wu43885eb2015-04-15 16:46:13 +0000471 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
Jingyue Wu96d74002015-04-06 17:15:48 +0000472 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
473 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
474 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
475 APInt One(RHS->getBitWidth(), 1);
476 ConstantInt *PowerOf2 =
477 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
Jingyue Wu43885eb2015-04-15 16:46:13 +0000478 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000479 }
480}
481
Jingyue Wu43885eb2015-04-15 16:46:13 +0000482void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000483 GetElementPtrInst *GEP) {
484 // TODO: handle vector GEPs
485 if (GEP->getType()->isVectorTy())
486 return;
487
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000488 SmallVector<const SCEV *, 4> IndexExprs;
489 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
490 IndexExprs.push_back(SE->getSCEV(*I));
Jingyue Wu177a8152015-03-26 16:49:24 +0000491
492 gep_type_iterator GTI = gep_type_begin(GEP);
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000493 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
494 if (GTI.isStruct())
Jingyue Wu177a8152015-03-26 16:49:24 +0000495 continue;
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000496
497 const SCEV *OrigIndexExpr = IndexExprs[I - 1];
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000498 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000499
500 // The base of this candidate is GEP's base plus the offsets of all
501 // indices except this current one.
Peter Collingbourne8dff0392016-11-13 06:59:50 +0000502 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000503 Value *ArrayIdx = GEP->getOperand(I);
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000504 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
Jingyue Wudebce552016-07-09 19:13:18 +0000505 if (ArrayIdx->getType()->getIntegerBitWidth() <=
Jingyue Wu641cfee2016-07-11 18:13:28 +0000506 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
Jingyue Wudebce552016-07-09 19:13:18 +0000507 // Skip factoring if ArrayIdx is wider than the pointer size, because
508 // ArrayIdx is implicitly truncated to the pointer size.
509 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
510 }
Jingyue Wu177a8152015-03-26 16:49:24 +0000511 // When ArrayIdx is the sext of a value, we try to factor that value as
512 // well. Handling this case is important because array indices are
513 // typically sign-extended to the pointer size.
514 Value *TruncatedArrayIdx = nullptr;
Jingyue Wudebce552016-07-09 19:13:18 +0000515 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
516 TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
Jingyue Wu641cfee2016-07-11 18:13:28 +0000517 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
Jingyue Wudebce552016-07-09 19:13:18 +0000518 // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
519 // because TruncatedArrayIdx is implicitly truncated to the pointer size.
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000520 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
Jingyue Wudebce552016-07-09 19:13:18 +0000521 }
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000522
523 IndexExprs[I - 1] = OrigIndexExpr;
Jingyue Wu177a8152015-03-26 16:49:24 +0000524 }
525}
526
527// A helper function that unifies the bitwidth of A and B.
528static void unifyBitWidth(APInt &A, APInt &B) {
529 if (A.getBitWidth() < B.getBitWidth())
530 A = A.sext(B.getBitWidth());
531 else if (A.getBitWidth() > B.getBitWidth())
532 B = B.sext(A.getBitWidth());
533}
534
535Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
536 const Candidate &C,
537 IRBuilder<> &Builder,
538 const DataLayout *DL,
539 bool &BumpWithUglyGEP) {
540 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
541 unifyBitWidth(Idx, BasisIdx);
542 APInt IndexOffset = Idx - BasisIdx;
543
544 BumpWithUglyGEP = false;
545 if (Basis.CandidateKind == Candidate::GEP) {
546 APInt ElementSize(
547 IndexOffset.getBitWidth(),
Jingyue Wudebce552016-07-09 19:13:18 +0000548 DL->getTypeAllocSize(
549 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
Jingyue Wu177a8152015-03-26 16:49:24 +0000550 APInt Q, R;
551 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
Jingyue Wudebce552016-07-09 19:13:18 +0000552 if (R == 0)
Jingyue Wu177a8152015-03-26 16:49:24 +0000553 IndexOffset = Q;
554 else
555 BumpWithUglyGEP = true;
556 }
Jingyue Wu43885eb2015-04-15 16:46:13 +0000557
Jingyue Wu177a8152015-03-26 16:49:24 +0000558 // Compute Bump = C - Basis = (i' - i) * S.
559 // Common case 1: if (i' - i) is 1, Bump = S.
Jingyue Wudebce552016-07-09 19:13:18 +0000560 if (IndexOffset == 1)
Jingyue Wu177a8152015-03-26 16:49:24 +0000561 return C.Stride;
562 // Common case 2: if (i' - i) is -1, Bump = -S.
Jingyue Wudebce552016-07-09 19:13:18 +0000563 if (IndexOffset.isAllOnesValue())
Jingyue Wu177a8152015-03-26 16:49:24 +0000564 return Builder.CreateNeg(C.Stride);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000565
566 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
567 // have different bit widths.
568 IntegerType *DeltaType =
569 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
570 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
571 if (IndexOffset.isPowerOf2()) {
572 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
573 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
574 return Builder.CreateShl(ExtendedStride, Exponent);
575 }
576 if ((-IndexOffset).isPowerOf2()) {
577 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
578 ConstantInt *Exponent =
579 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
580 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
581 }
582 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
Jingyue Wu177a8152015-03-26 16:49:24 +0000583 return Builder.CreateMul(ExtendedStride, Delta);
584}
585
Jingyue Wud7966ff2015-02-03 19:37:06 +0000586void StraightLineStrengthReduce::rewriteCandidateWithBasis(
587 const Candidate &C, const Candidate &Basis) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000588 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
589 C.Stride == Basis.Stride);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000590 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
591 // basis of a candidate cannot be unlinked before the candidate.
592 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
Jingyue Wu177a8152015-03-26 16:49:24 +0000593
Jingyue Wud7966ff2015-02-03 19:37:06 +0000594 // An instruction can correspond to multiple candidates. Therefore, instead of
595 // simply deleting an instruction when we rewrite it, we mark its parent as
596 // nullptr (i.e. unlink it) so that we can skip the candidates whose
597 // instruction is already rewritten.
598 if (!C.Ins->getParent())
599 return;
Jingyue Wu177a8152015-03-26 16:49:24 +0000600
Jingyue Wud7966ff2015-02-03 19:37:06 +0000601 IRBuilder<> Builder(C.Ins);
Jingyue Wu177a8152015-03-26 16:49:24 +0000602 bool BumpWithUglyGEP;
603 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
604 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
605 switch (C.CandidateKind) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000606 case Candidate::Add:
Jingyue Wu177a8152015-03-26 16:49:24 +0000607 case Candidate::Mul:
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000608 // C = Basis + Bump
Jingyue Wu43885eb2015-04-15 16:46:13 +0000609 if (BinaryOperator::isNeg(Bump)) {
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000610 // If Bump is a neg instruction, emit C = Basis - (-Bump).
Jingyue Wu43885eb2015-04-15 16:46:13 +0000611 Reduced =
612 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000613 // We only use the negative argument of Bump, and Bump itself may be
614 // trivially dead.
615 RecursivelyDeleteTriviallyDeadInstructions(Bump);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000616 } else {
Jingyue Wua9411292015-06-18 03:35:57 +0000617 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
618 // usually unsound, e.g.,
619 //
620 // X = (-2 +nsw 1) *nsw INT_MAX
621 // Y = (-2 +nsw 3) *nsw INT_MAX
622 // =>
623 // Y = X + 2 * INT_MAX
624 //
625 // Neither + and * in the resultant expression are nsw.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000626 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
627 }
Jingyue Wu177a8152015-03-26 16:49:24 +0000628 break;
629 case Candidate::GEP:
630 {
631 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000632 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
Jingyue Wu177a8152015-03-26 16:49:24 +0000633 if (BumpWithUglyGEP) {
634 // C = (char *)Basis + Bump
635 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
636 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
637 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000638 if (InBounds)
David Blaikieaa41cd52015-04-03 21:33:42 +0000639 Reduced =
640 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000641 else
David Blaikie93c54442015-04-03 19:41:44 +0000642 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
Jingyue Wu177a8152015-03-26 16:49:24 +0000643 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
644 } else {
645 // C = gep Basis, Bump
646 // Canonicalize bump to pointer size.
647 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000648 if (InBounds)
David Blaikieaa41cd52015-04-03 21:33:42 +0000649 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000650 else
David Blaikie93c54442015-04-03 19:41:44 +0000651 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
Jingyue Wu177a8152015-03-26 16:49:24 +0000652 }
653 }
654 break;
655 default:
656 llvm_unreachable("C.CandidateKind is invalid");
657 };
Jingyue Wud7966ff2015-02-03 19:37:06 +0000658 Reduced->takeName(C.Ins);
659 C.Ins->replaceAllUsesWith(Reduced);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000660 // Unlink C.Ins so that we can skip other candidates also corresponding to
661 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
662 C.Ins->removeFromParent();
Jingyue Wu43885eb2015-04-15 16:46:13 +0000663 UnlinkedInstructions.push_back(C.Ins);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000664}
665
666bool StraightLineStrengthReduce::runOnFunction(Function &F) {
Andrew Kayloraa641a52016-04-22 22:06:11 +0000667 if (skipFunction(F))
Jingyue Wud7966ff2015-02-03 19:37:06 +0000668 return false;
669
Jingyue Wu177a8152015-03-26 16:49:24 +0000670 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000671 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000672 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000673 // Traverse the dominator tree in the depth-first order. This order makes sure
674 // all bases of a candidate are in Candidates when we process it.
Daniel Berlina36f4632016-08-19 22:06:23 +0000675 for (const auto Node : depth_first(DT))
676 for (auto &I : *(Node->getBlock()))
Jingyue Wu43885eb2015-04-15 16:46:13 +0000677 allocateCandidatesAndFindBasis(&I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000678
679 // Rewrite candidates in the reverse depth-first order. This order makes sure
680 // a candidate being rewritten is not a basis for any other candidate.
681 while (!Candidates.empty()) {
682 const Candidate &C = Candidates.back();
683 if (C.Basis != nullptr) {
684 rewriteCandidateWithBasis(C, *C.Basis);
685 }
686 Candidates.pop_back();
687 }
688
689 // Delete all unlink instructions.
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000690 for (auto *UnlinkedInst : UnlinkedInstructions) {
691 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
692 Value *Op = UnlinkedInst->getOperand(I);
693 UnlinkedInst->setOperand(I, nullptr);
694 RecursivelyDeleteTriviallyDeadInstructions(Op);
695 }
Reid Kleckner96ab8722017-05-18 17:24:10 +0000696 UnlinkedInst->deleteValue();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000697 }
698 bool Ret = !UnlinkedInstructions.empty();
699 UnlinkedInstructions.clear();
700 return Ret;
701}