blob: b71a79ae412c9c6bd0ea86fb0d1168d5b577e1cc [file] [log] [blame]
Evan Cheng7e763d82011-07-25 18:43:53 +00001//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
Benjamin Kramera7c40ef2014-08-13 16:26:38 +000017#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
Evan Cheng7e763d82011-07-25 18:43:53 +000019
20#include "X86MCTargetDesc.h"
Craig Topperc6d4efa2014-03-19 06:53:25 +000021#include "llvm/MC/MCInstrDesc.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000022#include "llvm/Support/DataTypes.h"
Craig Topper4ed72782012-02-05 05:38:58 +000023#include "llvm/Support/ErrorHandling.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000024
25namespace llvm {
26
27namespace X86 {
28 // Enums for memory operand decoding. Each memory operand is represented with
29 // a 5 operand sequence in the form:
30 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31 // These enums help decode this.
32 enum {
33 AddrBaseReg = 0,
34 AddrScaleAmt = 1,
35 AddrIndexReg = 2,
36 AddrDisp = 3,
37
38 /// AddrSegmentReg - The operand # of the segment in the memory operand.
39 AddrSegmentReg = 4,
40
41 /// AddrNumOperands - Total number of operands in a memory reference.
42 AddrNumOperands = 5
43 };
Craig Topperc7277d92015-12-25 22:09:49 +000044
45 /// AVX512 static rounding constants. These need to match the values in
46 /// avx512fintrin.h.
47 enum STATIC_ROUNDING {
48 TO_NEAREST_INT = 0,
49 TO_NEG_INF = 1,
50 TO_POS_INF = 2,
51 TO_ZERO = 3,
52 CUR_DIRECTION = 4
53 };
Andrew V. Tischenkobfc90612017-10-16 11:14:29 +000054
55 /// The constants to describe instr prefixes if there are
56 enum IPREFIXES {
57 IP_NO_PREFIX = 0,
58 IP_HAS_OP_SIZE = 1,
59 IP_HAS_AD_SIZE = 2,
60 IP_HAS_REPEAT_NE = 4,
61 IP_HAS_REPEAT = 8,
Andrew V. Tischenko22f07422017-12-15 18:13:05 +000062 IP_HAS_LOCK = 16,
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +000063 NO_SCHED_INFO = 32, // Don't add sched comment to the current instr because
64 // it was already added
65 IP_HAS_NOTRACK = 64
Andrew V. Tischenkobfc90612017-10-16 11:14:29 +000066 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +000067} // end namespace X86;
Evan Cheng7e763d82011-07-25 18:43:53 +000068
69/// X86II - This namespace holds all of the target specific flags that
70/// instruction info tracks.
71///
72namespace X86II {
73 /// Target Operand Flag enum.
74 enum TOF {
75 //===------------------------------------------------------------------===//
76 // X86 Specific MachineOperand flags.
77
78 MO_NO_FLAG,
79
80 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
81 /// relocation of:
82 /// SYMBOL_LABEL + [. - PICBASELABEL]
83 MO_GOT_ABSOLUTE_ADDRESS,
84
85 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
86 /// immediate should get the value of the symbol minus the PIC base label:
87 /// SYMBOL_LABEL - PICBASELABEL
88 MO_PIC_BASE_OFFSET,
89
90 /// MO_GOT - On a symbol operand this indicates that the immediate is the
91 /// offset to the GOT entry for the symbol name from the base of the GOT.
92 ///
93 /// See the X86-64 ELF ABI supplement for more details.
94 /// SYMBOL_LABEL @GOT
95 MO_GOT,
96
97 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
98 /// the offset to the location of the symbol name from the base of the GOT.
99 ///
100 /// See the X86-64 ELF ABI supplement for more details.
101 /// SYMBOL_LABEL @GOTOFF
102 MO_GOTOFF,
103
104 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
105 /// offset to the GOT entry for the symbol name from the current code
106 /// location.
107 ///
108 /// See the X86-64 ELF ABI supplement for more details.
109 /// SYMBOL_LABEL @GOTPCREL
110 MO_GOTPCREL,
111
112 /// MO_PLT - On a symbol operand this indicates that the immediate is
113 /// offset to the PLT entry of symbol name from the current code location.
114 ///
115 /// See the X86-64 ELF ABI supplement for more details.
116 /// SYMBOL_LABEL @PLT
117 MO_PLT,
118
119 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000120 /// the offset of the GOT entry with the TLS index structure that contains
121 /// the module number and variable offset for the symbol. Used in the
122 /// general dynamic TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000123 ///
124 /// See 'ELF Handling for Thread-Local Storage' for more details.
125 /// SYMBOL_LABEL @TLSGD
126 MO_TLSGD,
127
Hans Wennborg789acfb2012-06-01 16:27:21 +0000128 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
129 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000130 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000131 /// __tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000132 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000133 ///
134 /// See 'ELF Handling for Thread-Local Storage' for more details.
135 /// SYMBOL_LABEL @TLSLD
136 MO_TLSLD,
137
138 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
139 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000140 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000141 /// ___tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000142 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000143 ///
144 /// See 'ELF Handling for Thread-Local Storage' for more details.
145 /// SYMBOL_LABEL @TLSLDM
146 MO_TLSLDM,
147
Evan Cheng7e763d82011-07-25 18:43:53 +0000148 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000149 /// the offset of the GOT entry with the thread-pointer offset for the
150 /// symbol. Used in the x86-64 initial exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000151 ///
152 /// See 'ELF Handling for Thread-Local Storage' for more details.
153 /// SYMBOL_LABEL @GOTTPOFF
154 MO_GOTTPOFF,
155
156 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000157 /// the absolute address of the GOT entry with the negative thread-pointer
158 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
159 /// model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000160 ///
161 /// See 'ELF Handling for Thread-Local Storage' for more details.
162 /// SYMBOL_LABEL @INDNTPOFF
163 MO_INDNTPOFF,
164
165 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000166 /// the thread-pointer offset for the symbol. Used in the x86-64 local
167 /// exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000168 ///
169 /// See 'ELF Handling for Thread-Local Storage' for more details.
170 /// SYMBOL_LABEL @TPOFF
171 MO_TPOFF,
172
Hans Wennborg789acfb2012-06-01 16:27:21 +0000173 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000174 /// the offset of the GOT entry with the TLS offset of the symbol. Used
175 /// in the local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000176 ///
177 /// See 'ELF Handling for Thread-Local Storage' for more details.
178 /// SYMBOL_LABEL @DTPOFF
179 MO_DTPOFF,
180
Evan Cheng7e763d82011-07-25 18:43:53 +0000181 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000182 /// the negative thread-pointer offset for the symbol. Used in the IA32
183 /// local exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000184 ///
185 /// See 'ELF Handling for Thread-Local Storage' for more details.
186 /// SYMBOL_LABEL @NTPOFF
187 MO_NTPOFF,
188
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000189 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000190 /// the offset of the GOT entry with the negative thread-pointer offset for
191 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000192 ///
193 /// See 'ELF Handling for Thread-Local Storage' for more details.
194 /// SYMBOL_LABEL @GOTNTPOFF
195 MO_GOTNTPOFF,
196
Evan Cheng7e763d82011-07-25 18:43:53 +0000197 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
198 /// reference is actually to the "__imp_FOO" symbol. This is used for
199 /// dllimport linkage on windows.
200 MO_DLLIMPORT,
201
Evan Cheng7e763d82011-07-25 18:43:53 +0000202 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
203 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
204 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
205 MO_DARWIN_NONLAZY,
206
207 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
208 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
209 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
210 MO_DARWIN_NONLAZY_PIC_BASE,
211
Evan Cheng7e763d82011-07-25 18:43:53 +0000212 /// MO_TLVP - On a symbol operand this indicates that the immediate is
213 /// some TLS offset.
214 ///
215 /// This is the TLS offset for the Darwin TLS mechanism.
216 MO_TLVP,
217
218 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
219 /// is some TLS offset from the picbase.
220 ///
221 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
Anton Korobeynikovc6b40172012-02-11 17:26:53 +0000222 MO_TLVP_PIC_BASE,
223
224 /// MO_SECREL - On a symbol operand this indicates that the immediate is
225 /// the offset from beginning of section.
226 ///
227 /// This is the TLS offset for the COFF/Windows TLS mechanism.
Peter Collingbournedc5e5832017-02-02 00:32:03 +0000228 MO_SECREL,
229
230 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
231 /// to be an absolute symbol in range [0,128), so we can use the @ABS8
232 /// symbol modifier.
233 MO_ABS8,
Evan Cheng7e763d82011-07-25 18:43:53 +0000234 };
235
Craig Topperf655cdd2014-11-11 07:32:32 +0000236 enum : uint64_t {
Evan Cheng7e763d82011-07-25 18:43:53 +0000237 //===------------------------------------------------------------------===//
238 // Instruction encodings. These are the standard/most common forms for X86
239 // instructions.
240 //
241
242 // PseudoFrm - This represents an instruction that is a pseudo instruction
243 // or one that has not been implemented yet. It is illegal to code generate
244 // it, but tolerated for intermediate implementation stages.
245 Pseudo = 0,
246
247 /// Raw - This form is for instructions that don't have any operands, so
248 /// they are just a fixed opcode value, like 'leave'.
249 RawFrm = 1,
250
251 /// AddRegFrm - This form is used for instructions like 'push r32' that have
252 /// their one register operand added to their opcode.
253 AddRegFrm = 2,
254
Craig Topper35da3d12014-01-16 07:36:58 +0000255 /// RawFrmMemOffs - This form is for instructions that store an absolute
256 /// memory offset as an immediate with a possible segment override.
Craig Topper61b62e52016-08-22 07:38:41 +0000257 RawFrmMemOffs = 3,
Craig Topper35da3d12014-01-16 07:36:58 +0000258
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000259 /// RawFrmSrc - This form is for instructions that use the source index
260 /// register SI/ESI/RSI with a possible segment override.
Craig Topper61b62e52016-08-22 07:38:41 +0000261 RawFrmSrc = 4,
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000262
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000263 /// RawFrmDst - This form is for instructions that use the destination index
264 /// register DI/EDI/ESI.
Craig Topper61b62e52016-08-22 07:38:41 +0000265 RawFrmDst = 5,
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000266
Eric Christopher572e03a2015-06-19 01:53:21 +0000267 /// RawFrmSrc - This form is for instructions that use the source index
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000268 /// register SI/ESI/ERI with a possible segment override, and also the
269 /// destination index register DI/ESI/RDI.
Craig Topper61b62e52016-08-22 07:38:41 +0000270 RawFrmDstSrc = 6,
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000271
Craig Topper2fb696b2014-02-19 06:59:13 +0000272 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
273 /// immediates, the first of which is a 16-bit immediate (specified by
274 /// the imm encoding) and the second is a 8-bit fixed value.
Craig Topper61b62e52016-08-22 07:38:41 +0000275 RawFrmImm8 = 7,
Craig Topper2fb696b2014-02-19 06:59:13 +0000276
277 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
278 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
279 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
280 /// manual, this operand is described as pntr16:32 and pntr16:16
Craig Topper61b62e52016-08-22 07:38:41 +0000281 RawFrmImm16 = 8,
Craig Toppera0869dc2014-02-10 06:55:41 +0000282
Evan Cheng7e763d82011-07-25 18:43:53 +0000283 /// MRM[0-7][rm] - These forms are used to represent instructions that use
284 /// a Mod/RM byte, and use the middle field to hold extended opcode
285 /// information. In the intel manual these are represented as /0, /1, ...
286 ///
287
Craig Topper61b62e52016-08-22 07:38:41 +0000288 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
289 /// to specify a destination, which in this case is memory.
290 ///
291 MRMDestMem = 32,
292
293 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
294 /// to specify a source, which in this case is memory.
295 ///
296 MRMSrcMem = 33,
297
Craig Topper5f8419d2016-08-22 07:38:50 +0000298 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
299 /// operand 3 with VEX.VVVV and load from memory.
300 ///
301 MRMSrcMem4VOp3 = 34,
302
Craig Topper9b20fec2016-08-22 07:38:45 +0000303 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
304 /// byte to specify the fourth source, which in this case is memory.
305 ///
Craig Topper5f8419d2016-08-22 07:38:50 +0000306 MRMSrcMemOp4 = 35,
Craig Topper9b20fec2016-08-22 07:38:45 +0000307
Craig Topper61b62e52016-08-22 07:38:41 +0000308 /// MRMXm - This form is used for instructions that use the Mod/RM byte
309 /// to specify a memory source, but doesn't use the middle field.
310 ///
311 MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
Evan Cheng7e763d82011-07-25 18:43:53 +0000312
313 // Next, instructions that operate on a memory r/m operand...
Craig Topper61b62e52016-08-22 07:38:41 +0000314 MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3
315 MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7
Evan Cheng7e763d82011-07-25 18:43:53 +0000316
Craig Topper61b62e52016-08-22 07:38:41 +0000317 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
318 /// to specify a destination, which in this case is a register.
319 ///
320 MRMDestReg = 48,
321
322 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
323 /// to specify a source, which in this case is a register.
324 ///
325 MRMSrcReg = 49,
326
Craig Topper5f8419d2016-08-22 07:38:50 +0000327 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
328 /// operand 3 with VEX.VVVV and do not load from memory.
329 ///
330 MRMSrcReg4VOp3 = 50,
331
Craig Topper9b20fec2016-08-22 07:38:45 +0000332 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
333 /// byte to specify the fourth source, which in this case is a register.
334 ///
Craig Topper5f8419d2016-08-22 07:38:50 +0000335 MRMSrcRegOp4 = 51,
Craig Topper9b20fec2016-08-22 07:38:45 +0000336
Craig Topper61b62e52016-08-22 07:38:41 +0000337 /// MRMXr - This form is used for instructions that use the Mod/RM byte
338 /// to specify a register source, but doesn't use the middle field.
339 ///
340 MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
341
342 // Instructions that operate on a register r/m operand...
343 MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3
344 MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7
345
346 /// MRM_XX - A mod/rm byte of exactly 0xXX.
347 MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
348 MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
349 MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
350 MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
351 MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
352 MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
353 MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
354 MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
355 MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
356 MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
357 MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
358 MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
359 MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
360 MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
361 MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
362 MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000363
Craig Topper56f0ed812014-02-19 08:25:02 +0000364 FormMask = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000365
366 //===------------------------------------------------------------------===//
367 // Actual flags...
368
Craig Topperfa6298a2014-02-02 09:25:09 +0000369 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
370 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
371 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
Nirav Dave61ffc9c2017-11-21 19:28:13 +0000372 // prefix in 16-bit mode. OpSizeIgnore means that the instruction may
373 // take a optional 0x66 byte but should not emit with one.
Craig Topper56f0ed812014-02-19 08:25:02 +0000374 OpSizeShift = 7,
Craig Topperfa6298a2014-02-02 09:25:09 +0000375 OpSizeMask = 0x3 << OpSizeShift,
376
Nirav Dave61ffc9c2017-11-21 19:28:13 +0000377 OpSizeFixed = 0 << OpSizeShift,
378 OpSize16 = 1 << OpSizeShift,
379 OpSize32 = 2 << OpSizeShift,
380 OpSizeIgnore = 3 << OpSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000381
Craig Topperb86338f2014-12-24 06:05:22 +0000382 // AsSize - AdSizeX implies this instruction determines its need of 0x67
383 // prefix from a normal ModRM memory operand. The other types indicate that
384 // an operand is encoded with a specific width and a prefix is needed if
385 // it differs from the current mode.
Craig Topper56f0ed812014-02-19 08:25:02 +0000386 AdSizeShift = OpSizeShift + 2,
Craig Topperb86338f2014-12-24 06:05:22 +0000387 AdSizeMask = 0x3 << AdSizeShift,
388
Craig Topperbc6d2ec2018-03-24 00:02:46 +0000389 AdSizeX = 0 << AdSizeShift,
Craig Topperb86338f2014-12-24 06:05:22 +0000390 AdSize16 = 1 << AdSizeShift,
391 AdSize32 = 2 << AdSizeShift,
392 AdSize64 = 3 << AdSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000393
394 //===------------------------------------------------------------------===//
Craig Topper10243c82014-01-31 08:47:06 +0000395 // OpPrefix - There are several prefix bytes that are used as opcode
396 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
397 // no prefix.
Evan Cheng7e763d82011-07-25 18:43:53 +0000398 //
Craig Topperb86338f2014-12-24 06:05:22 +0000399 OpPrefixShift = AdSizeShift + 2,
Craig Topper9b6a65b92018-04-03 06:37:04 +0000400 OpPrefixMask = 0x3 << OpPrefixShift,
Yunzhong Gaob8bbcbf2013-09-27 18:38:42 +0000401
Craig Topper9b6a65b92018-04-03 06:37:04 +0000402 // PD - Prefix code for packed double precision vector floating point
403 // operations performed in the SSE registers.
404 PD = 1 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000405
Craig Topper10243c82014-01-31 08:47:06 +0000406 // XS, XD - These prefix codes are for single and double precision scalar
407 // floating point operations performed in the SSE registers.
Craig Topper9b6a65b92018-04-03 06:37:04 +0000408 XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000409
Craig Topper10243c82014-01-31 08:47:06 +0000410 //===------------------------------------------------------------------===//
411 // OpMap - This field determines which opcode map this instruction
412 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
413 //
Craig Topper9b6a65b92018-04-03 06:37:04 +0000414 OpMapShift = OpPrefixShift + 2,
Craig Topper56f0ed812014-02-19 08:25:02 +0000415 OpMapMask = 0x7 << OpMapShift,
Craig Topper10243c82014-01-31 08:47:06 +0000416
417 // OB - OneByte - Set if this instruction has a one byte opcode.
418 OB = 0 << OpMapShift,
419
420 // TB - TwoByte - Set if this instruction has a two byte opcode, which
421 // starts with a 0x0F byte before the real opcode.
422 TB = 1 << OpMapShift,
423
424 // T8, TA - Prefix after the 0x0F prefix.
425 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
426
427 // XOP8 - Prefix to include use of imm byte.
428 XOP8 = 4 << OpMapShift,
429
430 // XOP9 - Prefix to exclude use of imm byte.
431 XOP9 = 5 << OpMapShift,
432
433 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
434 XOPA = 6 << OpMapShift,
435
Craig Toppere8656412018-03-24 06:04:12 +0000436 /// ThreeDNow - This indicates that the instruction uses the
437 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
438 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
439 /// storing a classifier in the imm8 field. To simplify our implementation,
440 /// we handle this by storeing the classifier in the opcode field and using
441 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
442 ThreeDNow = 7 << OpMapShift,
443
Evan Cheng7e763d82011-07-25 18:43:53 +0000444 //===------------------------------------------------------------------===//
445 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
446 // They are used to specify GPRs and SSE registers, 64-bit operand size,
447 // etc. We only cares about REX.W and REX.R bits and only the former is
448 // statically determined.
449 //
Craig Topper56f0ed812014-02-19 08:25:02 +0000450 REXShift = OpMapShift + 3,
Evan Cheng7e763d82011-07-25 18:43:53 +0000451 REX_W = 1 << REXShift,
452
453 //===------------------------------------------------------------------===//
454 // This three-bit field describes the size of an immediate operand. Zero is
455 // unused so that we can tell if we forgot to set a value.
456 ImmShift = REXShift + 1,
David Woodhouse0b6c9492014-01-30 22:20:41 +0000457 ImmMask = 15 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000458 Imm8 = 1 << ImmShift,
459 Imm8PCRel = 2 << ImmShift,
Craig Topperca0eda32016-08-22 01:37:19 +0000460 Imm8Reg = 3 << ImmShift,
461 Imm16 = 4 << ImmShift,
462 Imm16PCRel = 5 << ImmShift,
463 Imm32 = 6 << ImmShift,
464 Imm32PCRel = 7 << ImmShift,
465 Imm32S = 8 << ImmShift,
466 Imm64 = 9 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000467
468 //===------------------------------------------------------------------===//
469 // FP Instruction Classification... Zero is non-fp instruction.
470
471 // FPTypeMask - Mask for all of the FP types...
David Woodhouse0b6c9492014-01-30 22:20:41 +0000472 FPTypeShift = ImmShift + 4,
Evan Cheng7e763d82011-07-25 18:43:53 +0000473 FPTypeMask = 7 << FPTypeShift,
474
475 // NotFP - The default, set for instructions that do not use FP registers.
476 NotFP = 0 << FPTypeShift,
477
478 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
479 ZeroArgFP = 1 << FPTypeShift,
480
481 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
482 OneArgFP = 2 << FPTypeShift,
483
484 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
485 // result back to ST(0). For example, fcos, fsqrt, etc.
486 //
487 OneArgFPRW = 3 << FPTypeShift,
488
489 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
490 // explicit argument, storing the result to either ST(0) or the implicit
491 // argument. For example: fadd, fsub, fmul, etc...
492 TwoArgFP = 4 << FPTypeShift,
493
494 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
495 // explicit argument, but have no destination. Example: fucom, fucomi, ...
496 CompareFP = 5 << FPTypeShift,
497
498 // CondMovFP - "2 operand" floating point conditional move instructions.
499 CondMovFP = 6 << FPTypeShift,
500
501 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
502 SpecialFP = 7 << FPTypeShift,
503
504 // Lock prefix
505 LOCKShift = FPTypeShift + 3,
506 LOCK = 1 << LOCKShift,
507
Craig Topperec688662014-01-31 07:00:55 +0000508 // REP prefix
509 REPShift = LOCKShift + 1,
510 REP = 1 << REPShift,
511
512 // Execution domain for SSE instructions.
513 // 0 means normal, non-SSE instruction.
514 SSEDomainShift = REPShift + 1,
Evan Cheng7e763d82011-07-25 18:43:53 +0000515
Craig Topperd402df32014-02-02 07:08:01 +0000516 // Encoding
517 EncodingShift = SSEDomainShift + 2,
518 EncodingMask = 0x3 << EncodingShift,
519
520 // VEX - encoding using 0xC4/0xC5
Craig Topperf655cdd2014-11-11 07:32:32 +0000521 VEX = 1 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000522
523 /// XOP - Opcode prefix used by XOP instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000524 XOP = 2 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000525
526 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
527 // syntax support up to 32 512-bit register operands and up to 7 16-bit
528 // mask operands as well as source operand data swizzling/memory operand
529 // conversion, eviction hint, and rounding mode.
Craig Topperf655cdd2014-11-11 07:32:32 +0000530 EVEX = 3 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000531
532 // Opcode
533 OpcodeShift = EncodingShift + 2,
Evan Cheng7e763d82011-07-25 18:43:53 +0000534
Evan Cheng7e763d82011-07-25 18:43:53 +0000535 /// VEX_W - Has a opcode specific functionality, but is used in the same
536 /// way as REX_W is for regular SSE instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000537 VEX_WShift = OpcodeShift + 8,
538 VEX_W = 1ULL << VEX_WShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000539
540 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
541 /// address instructions in SSE are represented as 3 address ones in AVX
542 /// and the additional register is encoded in VEX_VVVV prefix.
Craig Topperf655cdd2014-11-11 07:32:32 +0000543 VEX_4VShift = VEX_WShift + 1,
544 VEX_4V = 1ULL << VEX_4VShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000545
Evan Cheng7e763d82011-07-25 18:43:53 +0000546 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
547 /// instruction uses 256-bit wide registers. This is usually auto detected
548 /// if a VR256 register is used, but some AVX instructions also have this
549 /// field marked when using a f256 memory references.
Craig Topper5f8419d2016-08-22 07:38:50 +0000550 VEX_LShift = VEX_4VShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000551 VEX_L = 1ULL << VEX_LShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000552
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000553 // EVEX_K - Set if this instruction requires masking
Craig Topper52254122016-08-22 01:37:16 +0000554 EVEX_KShift = VEX_LShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000555 EVEX_K = 1ULL << EVEX_KShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000556
557 // EVEX_Z - Set if this instruction has EVEX.Z field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000558 EVEX_ZShift = EVEX_KShift + 1,
559 EVEX_Z = 1ULL << EVEX_ZShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000560
561 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000562 EVEX_L2Shift = EVEX_ZShift + 1,
563 EVEX_L2 = 1ULL << EVEX_L2Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000564
565 // EVEX_B - Set if this instruction has EVEX.B field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000566 EVEX_BShift = EVEX_L2Shift + 1,
567 EVEX_B = 1ULL << EVEX_BShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000568
Adam Nemet54adb0f2014-07-17 17:04:50 +0000569 // The scaling factor for the AVX512's 8-bit compressed displacement.
Craig Topperf655cdd2014-11-11 07:32:32 +0000570 CD8_Scale_Shift = EVEX_BShift + 1,
571 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000572
Elena Demikhovskyb19c9dc2014-01-13 12:55:03 +0000573 /// Explicitly specified rounding control
Craig Toppere8656412018-03-24 06:04:12 +0000574 EVEX_RCShift = CD8_Scale_Shift + 7,
Oren Ben Simhonfdd72fd2018-03-17 13:29:46 +0000575 EVEX_RC = 1ULL << EVEX_RCShift,
576
577 // NOTRACK prefix
578 NoTrackShift = EVEX_RCShift + 1,
579 NOTRACK = 1ULL << NoTrackShift
Evan Cheng7e763d82011-07-25 18:43:53 +0000580 };
581
582 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
583 // specified machine instruction.
584 //
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000585 inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000586 return TSFlags >> X86II::OpcodeShift;
587 }
588
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000589 inline bool hasImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000590 return (TSFlags & X86II::ImmMask) != 0;
591 }
592
593 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
594 /// of the specified instruction.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000595 inline unsigned getSizeOfImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000596 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000597 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000598 case X86II::Imm8:
Craig Topperca0eda32016-08-22 01:37:19 +0000599 case X86II::Imm8PCRel:
600 case X86II::Imm8Reg: return 1;
Evan Cheng7e763d82011-07-25 18:43:53 +0000601 case X86II::Imm16:
602 case X86II::Imm16PCRel: return 2;
603 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000604 case X86II::Imm32S:
Evan Cheng7e763d82011-07-25 18:43:53 +0000605 case X86II::Imm32PCRel: return 4;
606 case X86II::Imm64: return 8;
607 }
608 }
609
610 /// isImmPCRel - Return true if the immediate of the specified instruction's
611 /// TSFlags indicates that it is pc relative.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000612 inline unsigned isImmPCRel(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000613 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000614 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000615 case X86II::Imm8PCRel:
616 case X86II::Imm16PCRel:
617 case X86II::Imm32PCRel:
618 return true;
619 case X86II::Imm8:
Craig Topperca0eda32016-08-22 01:37:19 +0000620 case X86II::Imm8Reg:
Evan Cheng7e763d82011-07-25 18:43:53 +0000621 case X86II::Imm16:
622 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000623 case X86II::Imm32S:
624 case X86II::Imm64:
625 return false;
626 }
627 }
628
629 /// isImmSigned - Return true if the immediate of the specified instruction's
630 /// TSFlags indicates that it is signed.
631 inline unsigned isImmSigned(uint64_t TSFlags) {
632 switch (TSFlags & X86II::ImmMask) {
633 default: llvm_unreachable("Unknown immediate signedness");
634 case X86II::Imm32S:
635 return true;
636 case X86II::Imm8:
637 case X86II::Imm8PCRel:
Craig Topperca0eda32016-08-22 01:37:19 +0000638 case X86II::Imm8Reg:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000639 case X86II::Imm16:
640 case X86II::Imm16PCRel:
641 case X86II::Imm32:
642 case X86II::Imm32PCRel:
Evan Cheng7e763d82011-07-25 18:43:53 +0000643 case X86II::Imm64:
644 return false;
645 }
646 }
647
Craig Topper2854dc92018-03-21 19:30:28 +0000648 /// getOperandBias - compute whether all of the def operands are repeated
649 /// in the uses and therefore should be skipped.
650 /// This determines the start of the unique operand list. We need to determine
651 /// if all of the defs have a corresponding tied operand in the uses.
652 /// Unfortunately, the tied operand information is encoded in the uses not
653 /// the defs so we have to use some heuristics to find which operands to
654 /// query.
655 inline unsigned getOperandBias(const MCInstrDesc& Desc) {
656 unsigned NumDefs = Desc.getNumDefs();
Preston Gurdddf96b52013-04-10 20:11:59 +0000657 unsigned NumOps = Desc.getNumOperands();
Craig Topper2854dc92018-03-21 19:30:28 +0000658 switch (NumDefs) {
659 default: llvm_unreachable("Unexpected number of defs");
660 case 0:
661 return 0;
662 case 1:
663 // Common two addr case.
664 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
665 return 1;
666 // Check for AVX-512 scatter which has a TIED_TO in the second to last
667 // operand.
668 if (NumOps == 8 &&
669 Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
670 return 1;
671 return 0;
672 case 2:
673 // Check for gather. AVX-512 has the second tied operand early. AVX2
674 // has it as the last op.
675 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
676 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
677 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1) &&
678 "Instruction with 2 defs isn't gather?")
679 return 2;
680 return 0;
681 }
Preston Gurdddf96b52013-04-10 20:11:59 +0000682 }
683
Evan Cheng7e763d82011-07-25 18:43:53 +0000684 /// getMemoryOperandNo - The function returns the MCInst operand # for the
685 /// first field of the memory operand. If the instruction doesn't have a
686 /// memory operand, this returns -1.
687 ///
688 /// Note that this ignores tied operands. If there is a tied register which
689 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
690 /// counted as one operand.
691 ///
Craig Topper477649a2016-04-28 05:58:46 +0000692 inline int getMemoryOperandNo(uint64_t TSFlags) {
Craig Topperf655cdd2014-11-11 07:32:32 +0000693 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
Craig Topperf655cdd2014-11-11 07:32:32 +0000694 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
695
Evan Cheng7e763d82011-07-25 18:43:53 +0000696 switch (TSFlags & X86II::FormMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000697 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
Evan Cheng7e763d82011-07-25 18:43:53 +0000698 case X86II::Pseudo:
699 case X86II::RawFrm:
700 case X86II::AddRegFrm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000701 case X86II::RawFrmImm8:
702 case X86II::RawFrmImm16:
Craig Topper35da3d12014-01-16 07:36:58 +0000703 case X86II::RawFrmMemOffs:
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000704 case X86II::RawFrmSrc:
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000705 case X86II::RawFrmDst:
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000706 case X86II::RawFrmDstSrc:
Craig Topper3fb423e2015-12-25 17:07:24 +0000707 return -1;
Evan Cheng7e763d82011-07-25 18:43:53 +0000708 case X86II::MRMDestMem:
709 return 0;
Craig Topper3dcdde22015-01-05 08:19:10 +0000710 case X86II::MRMSrcMem:
711 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
712 // mask register.
Craig Topper9b20fec2016-08-22 07:38:45 +0000713 return 1 + HasVEX_4V + HasEVEX_K;
Craig Topper5f8419d2016-08-22 07:38:50 +0000714 case X86II::MRMSrcMem4VOp3:
715 // Skip registers encoded in reg.
716 return 1 + HasEVEX_K;
Craig Topper9b20fec2016-08-22 07:38:45 +0000717 case X86II::MRMSrcMemOp4:
718 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
719 return 3;
Craig Topper61b62e52016-08-22 07:38:41 +0000720 case X86II::MRMDestReg:
721 case X86II::MRMSrcReg:
Craig Topper5f8419d2016-08-22 07:38:50 +0000722 case X86II::MRMSrcReg4VOp3:
Craig Topper9b20fec2016-08-22 07:38:45 +0000723 case X86II::MRMSrcRegOp4:
Craig Toppera0869dc2014-02-10 06:55:41 +0000724 case X86II::MRMXr:
Evan Cheng7e763d82011-07-25 18:43:53 +0000725 case X86II::MRM0r: case X86II::MRM1r:
726 case X86II::MRM2r: case X86II::MRM3r:
727 case X86II::MRM4r: case X86II::MRM5r:
728 case X86II::MRM6r: case X86II::MRM7r:
729 return -1;
Craig Toppera0869dc2014-02-10 06:55:41 +0000730 case X86II::MRMXm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000731 case X86II::MRM0m: case X86II::MRM1m:
732 case X86II::MRM2m: case X86II::MRM3m:
733 case X86II::MRM4m: case X86II::MRM5m:
Craig Topper3dcdde22015-01-05 08:19:10 +0000734 case X86II::MRM6m: case X86II::MRM7m:
735 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
736 return 0 + HasVEX_4V + HasEVEX_K;
Craig Topper0d1fd552014-02-19 05:34:21 +0000737 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
Craig Topper3453a432015-12-25 17:07:30 +0000738 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
739 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
Craig Topper0d1fd552014-02-19 05:34:21 +0000740 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
Craig Topper3453a432015-12-25 17:07:30 +0000741 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
Kevin Enderby0d928a12014-07-31 23:57:38 +0000742 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
Craig Topper3453a432015-12-25 17:07:30 +0000743 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
744 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
745 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
746 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
747 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
748 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
749 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
750 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
751 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
752 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
753 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
754 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
755 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
756 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
757 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
758 case X86II::MRM_FF:
Evan Cheng7e763d82011-07-25 18:43:53 +0000759 return -1;
760 }
761 }
762
763 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
764 /// higher) register? e.g. r8, xmm8, xmm13, etc.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000765 inline bool isX86_64ExtendedReg(unsigned RegNo) {
Craig Topper6acca802016-08-27 17:13:37 +0000766 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
767 (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
768 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000769 return true;
770
Evan Cheng7e763d82011-07-25 18:43:53 +0000771 switch (RegNo) {
772 default: break;
773 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
774 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
775 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
776 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
777 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
778 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
779 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
780 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
Evan Cheng7e763d82011-07-25 18:43:53 +0000781 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
782 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
Craig Topper06c60c02016-08-27 17:13:34 +0000783 case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
784 case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
Craig Topper3fb423e2015-12-25 17:07:24 +0000785 return true;
Evan Cheng7e763d82011-07-25 18:43:53 +0000786 }
787 return false;
788 }
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000789
790 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
791 /// registers? e.g. zmm21, etc.
792 static inline bool is32ExtendedReg(unsigned RegNo) {
Craig Toppera11be0b2016-02-26 05:29:35 +0000793 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
794 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
795 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000796 }
797
Michael Liao5bf95782014-12-04 05:20:33 +0000798
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000799 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000800 return (reg == X86::SPL || reg == X86::BPL ||
801 reg == X86::SIL || reg == X86::DIL);
802 }
Craig Topper202b4532016-09-22 03:00:50 +0000803
804 /// isKMasked - Is this a masked instruction.
805 inline bool isKMasked(uint64_t TSFlags) {
806 return (TSFlags & X86II::EVEX_K) != 0;
807 }
808
809 /// isKMergedMasked - Is this a merge masked instruction.
810 inline bool isKMergeMasked(uint64_t TSFlags) {
811 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
812 }
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000813}
Evan Cheng7e763d82011-07-25 18:43:53 +0000814
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000815} // end namespace llvm;
Evan Cheng7e763d82011-07-25 18:43:53 +0000816
817#endif