blob: d9380be4c67435b086df11da8a0ee3735a3244de [file] [log] [blame]
Chris Lattner0a8191e2010-01-05 07:50:36 +00001//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Intrinsics.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Support/PatternMatch.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21
22/// AddOne - Add one to a ConstantInt.
23static Constant *AddOne(Constant *C) {
24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25}
26/// SubOne - Subtract one from a ConstantInt.
27static Constant *SubOne(ConstantInt *C) {
28 return ConstantInt::get(C->getContext(), C->getValue()-1);
29}
30
31/// isFreeToInvert - Return true if the specified value is free to invert (apply
32/// ~ to). This happens in cases where the ~ can be eliminated.
33static inline bool isFreeToInvert(Value *V) {
34 // ~(~(X)) -> X.
35 if (BinaryOperator::isNot(V))
36 return true;
37
38 // Constants can be considered to be not'ed values.
39 if (isa<ConstantInt>(V))
40 return true;
41
42 // Compares can be inverted if they have a single use.
43 if (CmpInst *CI = dyn_cast<CmpInst>(V))
44 return CI->hasOneUse();
45
46 return false;
47}
48
49static inline Value *dyn_castNotVal(Value *V) {
50 // If this is not(not(x)) don't return that this is a not: we want the two
51 // not's to be folded first.
52 if (BinaryOperator::isNot(V)) {
53 Value *Operand = BinaryOperator::getNotArgument(V);
54 if (!isFreeToInvert(Operand))
55 return Operand;
56 }
57
58 // Constants can be considered to be not'ed values...
59 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
60 return ConstantInt::get(C->getType(), ~C->getValue());
61 return 0;
62}
63
64
65/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
66/// are carefully arranged to allow folding of expressions such as:
67///
68/// (A < B) | (A > B) --> (A != B)
69///
70/// Note that this is only valid if the first and second predicates have the
71/// same sign. Is illegal to do: (A u< B) | (A s> B)
72///
73/// Three bits are used to represent the condition, as follows:
74/// 0 A > B
75/// 1 A == B
76/// 2 A < B
77///
78/// <=> Value Definition
79/// 000 0 Always false
80/// 001 1 A > B
81/// 010 2 A == B
82/// 011 3 A >= B
83/// 100 4 A < B
84/// 101 5 A != B
85/// 110 6 A <= B
86/// 111 7 Always true
87///
88static unsigned getICmpCode(const ICmpInst *ICI) {
89 switch (ICI->getPredicate()) {
90 // False -> 0
91 case ICmpInst::ICMP_UGT: return 1; // 001
92 case ICmpInst::ICMP_SGT: return 1; // 001
93 case ICmpInst::ICMP_EQ: return 2; // 010
94 case ICmpInst::ICMP_UGE: return 3; // 011
95 case ICmpInst::ICMP_SGE: return 3; // 011
96 case ICmpInst::ICMP_ULT: return 4; // 100
97 case ICmpInst::ICMP_SLT: return 4; // 100
98 case ICmpInst::ICMP_NE: return 5; // 101
99 case ICmpInst::ICMP_ULE: return 6; // 110
100 case ICmpInst::ICMP_SLE: return 6; // 110
101 // True -> 7
102 default:
103 llvm_unreachable("Invalid ICmp predicate!");
104 return 0;
105 }
106}
107
108/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
109/// predicate into a three bit mask. It also returns whether it is an ordered
110/// predicate by reference.
111static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
112 isOrdered = false;
113 switch (CC) {
114 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
115 case FCmpInst::FCMP_UNO: return 0; // 000
116 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
117 case FCmpInst::FCMP_UGT: return 1; // 001
118 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
119 case FCmpInst::FCMP_UEQ: return 2; // 010
120 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
121 case FCmpInst::FCMP_UGE: return 3; // 011
122 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
123 case FCmpInst::FCMP_ULT: return 4; // 100
124 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
125 case FCmpInst::FCMP_UNE: return 5; // 101
126 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
127 case FCmpInst::FCMP_ULE: return 6; // 110
128 // True -> 7
129 default:
130 // Not expecting FCMP_FALSE and FCMP_TRUE;
131 llvm_unreachable("Unexpected FCmp predicate!");
132 return 0;
133 }
134}
135
136/// getICmpValue - This is the complement of getICmpCode, which turns an
137/// opcode and two operands into either a constant true or false, or a brand
138/// new ICmp instruction. The sign is passed in to determine which kind
139/// of predicate to use in the new icmp instruction.
Chris Lattner067459c2010-03-05 08:46:26 +0000140static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
141 InstCombiner::BuilderTy *Builder) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000142 CmpInst::Predicate Pred;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000143 switch (Code) {
144 default: assert(0 && "Illegal ICmp code!");
Chris Lattner343d2e42010-03-05 07:47:57 +0000145 case 0: // False.
146 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
147 case 1: Pred = Sign ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
148 case 2: Pred = ICmpInst::ICMP_EQ; break;
149 case 3: Pred = Sign ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
150 case 4: Pred = Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
151 case 5: Pred = ICmpInst::ICMP_NE; break;
152 case 6: Pred = Sign ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
153 case 7: // True.
154 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000155 }
Chris Lattner067459c2010-03-05 08:46:26 +0000156 return Builder->CreateICmp(Pred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000157}
158
159/// getFCmpValue - This is the complement of getFCmpCode, which turns an
160/// opcode and two operands into either a FCmp instruction. isordered is passed
161/// in to determine which kind of predicate to use in the new fcmp instruction.
162static Value *getFCmpValue(bool isordered, unsigned code,
Chris Lattner067459c2010-03-05 08:46:26 +0000163 Value *LHS, Value *RHS,
164 InstCombiner::BuilderTy *Builder) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000165 CmpInst::Predicate Pred;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000166 switch (code) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000167 default: assert(0 && "Illegal FCmp code!");
168 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
169 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
170 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
171 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
172 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
173 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
174 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
Owen Andersona8342002011-01-21 19:39:42 +0000175 case 7:
176 if (!isordered) return ConstantInt::getTrue(LHS->getContext());
177 Pred = FCmpInst::FCMP_ORD; break;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000178 }
Chris Lattner067459c2010-03-05 08:46:26 +0000179 return Builder->CreateFCmp(Pred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000180}
181
182/// PredicatesFoldable - Return true if both predicates match sign or if at
183/// least one of them is an equality comparison (which is signless).
184static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
185 return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
186 (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
187 (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
188}
189
190// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
191// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
192// guaranteed to be a binary operator.
193Instruction *InstCombiner::OptAndOp(Instruction *Op,
194 ConstantInt *OpRHS,
195 ConstantInt *AndRHS,
196 BinaryOperator &TheAnd) {
197 Value *X = Op->getOperand(0);
198 Constant *Together = 0;
199 if (!Op->isShift())
200 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
201
202 switch (Op->getOpcode()) {
203 case Instruction::Xor:
204 if (Op->hasOneUse()) {
205 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
206 Value *And = Builder->CreateAnd(X, AndRHS);
207 And->takeName(Op);
208 return BinaryOperator::CreateXor(And, Together);
209 }
210 break;
211 case Instruction::Or:
Owen Andersonc237a842010-09-13 17:59:27 +0000212 if (Op->hasOneUse()){
213 if (Together != OpRHS) {
214 // (X | C1) & C2 --> (X | (C1&C2)) & C2
215 Value *Or = Builder->CreateOr(X, Together);
216 Or->takeName(Op);
217 return BinaryOperator::CreateAnd(Or, AndRHS);
218 }
219
220 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
221 if (TogetherCI && !TogetherCI->isZero()){
222 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
223 // NOTE: This reduces the number of bits set in the & mask, which
224 // can expose opportunities for store narrowing.
225 Together = ConstantExpr::getXor(AndRHS, Together);
226 Value *And = Builder->CreateAnd(X, Together);
227 And->takeName(Op);
228 return BinaryOperator::CreateOr(And, OpRHS);
229 }
Chris Lattner0a8191e2010-01-05 07:50:36 +0000230 }
Owen Andersonc237a842010-09-13 17:59:27 +0000231
Chris Lattner0a8191e2010-01-05 07:50:36 +0000232 break;
233 case Instruction::Add:
234 if (Op->hasOneUse()) {
235 // Adding a one to a single bit bit-field should be turned into an XOR
236 // of the bit. First thing to check is to see if this AND is with a
237 // single bit constant.
238 const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
239
240 // If there is only one bit set.
241 if (AndRHSV.isPowerOf2()) {
242 // Ok, at this point, we know that we are masking the result of the
243 // ADD down to exactly one bit. If the constant we are adding has
244 // no bits set below this bit, then we can eliminate the ADD.
245 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
246
247 // Check to see if any bits below the one bit set in AndRHSV are set.
248 if ((AddRHS & (AndRHSV-1)) == 0) {
249 // If not, the only thing that can effect the output of the AND is
250 // the bit specified by AndRHSV. If that bit is set, the effect of
251 // the XOR is to toggle the bit. If it is clear, then the ADD has
252 // no effect.
253 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
254 TheAnd.setOperand(0, X);
255 return &TheAnd;
256 } else {
257 // Pull the XOR out of the AND.
258 Value *NewAnd = Builder->CreateAnd(X, AndRHS);
259 NewAnd->takeName(Op);
260 return BinaryOperator::CreateXor(NewAnd, AndRHS);
261 }
262 }
263 }
264 }
265 break;
266
267 case Instruction::Shl: {
268 // We know that the AND will not produce any of the bits shifted in, so if
269 // the anded constant includes them, clear them now!
270 //
271 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
272 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
273 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
274 ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
275 AndRHS->getValue() & ShlMask);
276
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000277 if (CI->getValue() == ShlMask)
278 // Masking out bits that the shift already masks.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000279 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000280
281 if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000282 TheAnd.setOperand(1, CI);
283 return &TheAnd;
284 }
285 break;
286 }
287 case Instruction::LShr: {
288 // We know that the AND will not produce any of the bits shifted in, so if
289 // the anded constant includes them, clear them now! This only applies to
290 // unsigned shifts, because a signed shr may bring in set bits!
291 //
292 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
293 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
294 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
295 ConstantInt *CI = ConstantInt::get(Op->getContext(),
296 AndRHS->getValue() & ShrMask);
297
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000298 if (CI->getValue() == ShrMask)
299 // Masking out bits that the shift already masks.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000300 return ReplaceInstUsesWith(TheAnd, Op);
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000301
302 if (CI != AndRHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000303 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
304 return &TheAnd;
305 }
306 break;
307 }
308 case Instruction::AShr:
309 // Signed shr.
310 // See if this is shifting in some sign extension, then masking it out
311 // with an and.
312 if (Op->hasOneUse()) {
313 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
314 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
315 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
316 Constant *C = ConstantInt::get(Op->getContext(),
317 AndRHS->getValue() & ShrMask);
318 if (C == AndRHS) { // Masking out bits shifted in.
319 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
320 // Make the argument unsigned.
321 Value *ShVal = Op->getOperand(0);
322 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
323 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
324 }
325 }
326 break;
327 }
328 return 0;
329}
330
331
332/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
333/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
334/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
335/// whether to treat the V, Lo and HI as signed or not. IB is the location to
336/// insert new instructions.
Chris Lattner067459c2010-03-05 08:46:26 +0000337Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
338 bool isSigned, bool Inside) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000339 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
340 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
341 "Lo is not <= Hi in range emission code!");
342
343 if (Inside) {
344 if (Lo == Hi) // Trivially false.
Chris Lattner067459c2010-03-05 08:46:26 +0000345 return ConstantInt::getFalse(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000346
347 // V >= Min && V < Hi --> V < Hi
348 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
349 ICmpInst::Predicate pred = (isSigned ?
350 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
Chris Lattner067459c2010-03-05 08:46:26 +0000351 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000352 }
353
354 // Emit V-Lo <u Hi-Lo
355 Constant *NegLo = ConstantExpr::getNeg(Lo);
356 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
357 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000358 return Builder->CreateICmpULT(Add, UpperBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000359 }
360
361 if (Lo == Hi) // Trivially true.
Chris Lattner067459c2010-03-05 08:46:26 +0000362 return ConstantInt::getTrue(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000363
364 // V < Min || V >= Hi -> V > Hi-1
365 Hi = SubOne(cast<ConstantInt>(Hi));
366 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
367 ICmpInst::Predicate pred = (isSigned ?
368 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
Chris Lattner067459c2010-03-05 08:46:26 +0000369 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000370 }
371
372 // Emit V-Lo >u Hi-1-Lo
373 // Note that Hi has already had one subtracted from it, above.
374 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
375 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
376 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000377 return Builder->CreateICmpUGT(Add, LowerBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000378}
379
380// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
381// any number of 0s on either side. The 1s are allowed to wrap from LSB to
382// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
383// not, since all 1s are not contiguous.
384static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
385 const APInt& V = Val->getValue();
386 uint32_t BitWidth = Val->getType()->getBitWidth();
387 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
388
389 // look for the first zero bit after the run of ones
390 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
391 // look for the first non-zero bit
392 ME = V.getActiveBits();
393 return true;
394}
395
396/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
397/// where isSub determines whether the operator is a sub. If we can fold one of
398/// the following xforms:
399///
400/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
401/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
402/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
403///
404/// return (A +/- B).
405///
406Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
407 ConstantInt *Mask, bool isSub,
408 Instruction &I) {
409 Instruction *LHSI = dyn_cast<Instruction>(LHS);
410 if (!LHSI || LHSI->getNumOperands() != 2 ||
411 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
412
413 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
414
415 switch (LHSI->getOpcode()) {
416 default: return 0;
417 case Instruction::And:
418 if (ConstantExpr::getAnd(N, Mask) == Mask) {
419 // If the AndRHS is a power of two minus one (0+1+), this is simple.
420 if ((Mask->getValue().countLeadingZeros() +
421 Mask->getValue().countPopulation()) ==
422 Mask->getValue().getBitWidth())
423 break;
424
425 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
426 // part, we don't need any explicit masks to take them out of A. If that
427 // is all N is, ignore it.
428 uint32_t MB = 0, ME = 0;
429 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
430 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
431 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
432 if (MaskedValueIsZero(RHS, Mask))
433 break;
434 }
435 }
436 return 0;
437 case Instruction::Or:
438 case Instruction::Xor:
439 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
440 if ((Mask->getValue().countLeadingZeros() +
441 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
442 && ConstantExpr::getAnd(N, Mask)->isNullValue())
443 break;
444 return 0;
445 }
446
447 if (isSub)
448 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
449 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
450}
451
Owen Anderson3fe002d2010-09-08 22:16:17 +0000452/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
453/// One of A and B is considered the mask, the other the value. This is
454/// described as the "AMask" or "BMask" part of the enum. If the enum
455/// contains only "Mask", then both A and B can be considered masks.
456/// If A is the mask, then it was proven, that (A & C) == C. This
457/// is trivial if C == A, or C == 0. If both A and C are constants, this
458/// proof is also easy.
459/// For the following explanations we assume that A is the mask.
460/// The part "AllOnes" declares, that the comparison is true only
461/// if (A & B) == A, or all bits of A are set in B.
462/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
463/// The part "AllZeroes" declares, that the comparison is true only
464/// if (A & B) == 0, or all bits of A are cleared in B.
465/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
466/// The part "Mixed" declares, that (A & B) == C and C might or might not
467/// contain any number of one bits and zero bits.
468/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
469/// The Part "Not" means, that in above descriptions "==" should be replaced
470/// by "!=".
471/// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
472/// If the mask A contains a single bit, then the following is equivalent:
473/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
474/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
475enum MaskedICmpType {
476 FoldMskICmp_AMask_AllOnes = 1,
477 FoldMskICmp_AMask_NotAllOnes = 2,
478 FoldMskICmp_BMask_AllOnes = 4,
479 FoldMskICmp_BMask_NotAllOnes = 8,
480 FoldMskICmp_Mask_AllZeroes = 16,
481 FoldMskICmp_Mask_NotAllZeroes = 32,
482 FoldMskICmp_AMask_Mixed = 64,
483 FoldMskICmp_AMask_NotMixed = 128,
484 FoldMskICmp_BMask_Mixed = 256,
485 FoldMskICmp_BMask_NotMixed = 512
486};
487
488/// return the set of pattern classes (from MaskedICmpType)
489/// that (icmp SCC (A & B), C) satisfies
490static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
491 ICmpInst::Predicate SCC)
492{
493 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
494 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
495 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
496 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
497 bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
498 ACst->getValue().isPowerOf2());
499 bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
500 BCst->getValue().isPowerOf2());
501 unsigned result = 0;
502 if (CCst != 0 && CCst->isZero()) {
503 // if C is zero, then both A and B qualify as mask
504 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
505 FoldMskICmp_Mask_AllZeroes |
506 FoldMskICmp_AMask_Mixed |
507 FoldMskICmp_BMask_Mixed)
508 : (FoldMskICmp_Mask_NotAllZeroes |
509 FoldMskICmp_Mask_NotAllZeroes |
510 FoldMskICmp_AMask_NotMixed |
511 FoldMskICmp_BMask_NotMixed));
512 if (icmp_abit)
513 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
514 FoldMskICmp_AMask_NotMixed)
515 : (FoldMskICmp_AMask_AllOnes |
516 FoldMskICmp_AMask_Mixed));
517 if (icmp_bbit)
518 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
519 FoldMskICmp_BMask_NotMixed)
520 : (FoldMskICmp_BMask_AllOnes |
521 FoldMskICmp_BMask_Mixed));
522 return result;
523 }
524 if (A == C) {
525 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
526 FoldMskICmp_AMask_Mixed)
527 : (FoldMskICmp_AMask_NotAllOnes |
528 FoldMskICmp_AMask_NotMixed));
529 if (icmp_abit)
530 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
531 FoldMskICmp_AMask_NotMixed)
532 : (FoldMskICmp_Mask_AllZeroes |
533 FoldMskICmp_AMask_Mixed));
534 }
535 else if (ACst != 0 && CCst != 0 &&
536 ConstantExpr::getAnd(ACst, CCst) == CCst) {
537 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
538 : FoldMskICmp_AMask_NotMixed);
539 }
540 if (B == C)
541 {
542 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
543 FoldMskICmp_BMask_Mixed)
544 : (FoldMskICmp_BMask_NotAllOnes |
545 FoldMskICmp_BMask_NotMixed));
546 if (icmp_bbit)
547 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
548 FoldMskICmp_BMask_NotMixed)
549 : (FoldMskICmp_Mask_AllZeroes |
550 FoldMskICmp_BMask_Mixed));
551 }
552 else if (BCst != 0 && CCst != 0 &&
553 ConstantExpr::getAnd(BCst, CCst) == CCst) {
554 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
555 : FoldMskICmp_BMask_NotMixed);
556 }
557 return result;
558}
559
560/// foldLogOpOfMaskedICmpsHelper:
561/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
562/// return the set of pattern classes (from MaskedICmpType)
563/// that both LHS and RHS satisfy
564static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
565 Value*& B, Value*& C,
566 Value*& D, Value*& E,
567 ICmpInst *LHS, ICmpInst *RHS) {
568 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
569 if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
570 if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
571 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
572 // vectors are not (yet?) supported
573 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
574
575 // Here comes the tricky part:
576 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
577 // and L11 & L12 == L21 & L22. The same goes for RHS.
578 // Now we must find those components L** and R**, that are equal, so
579 // that we can extract the parameters A, B, C, D, and E for the canonical
580 // above.
581 Value *L1 = LHS->getOperand(0);
582 Value *L2 = LHS->getOperand(1);
583 Value *L11,*L12,*L21,*L22;
584 if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
585 if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
586 L21 = L22 = 0;
587 }
588 else {
589 if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
590 return 0;
591 std::swap(L1, L2);
592 L21 = L22 = 0;
593 }
594
595 Value *R1 = RHS->getOperand(0);
596 Value *R2 = RHS->getOperand(1);
597 Value *R11,*R12;
598 bool ok = false;
599 if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
600 if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
601 A = R11; D = R12; E = R2; ok = true;
602 }
603 else
604 if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
605 A = R12; D = R11; E = R2; ok = true;
606 }
607 }
608 if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
609 if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
610 A = R11; D = R12; E = R1; ok = true;
611 }
612 else
613 if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
614 A = R12; D = R11; E = R1; ok = true;
615 }
616 else
617 return 0;
618 }
619 if (!ok)
620 return 0;
621
622 if (L11 == A) {
623 B = L12; C = L2;
624 }
625 else if (L12 == A) {
626 B = L11; C = L2;
627 }
628 else if (L21 == A) {
629 B = L22; C = L1;
630 }
631 else if (L22 == A) {
632 B = L21; C = L1;
633 }
634
635 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
636 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
637 return left_type & right_type;
638}
639/// foldLogOpOfMaskedICmps:
640/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
641/// into a single (icmp(A & X) ==/!= Y)
642static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
643 ICmpInst::Predicate NEWCC,
644 llvm::InstCombiner::BuilderTy* Builder) {
645 Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
646 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
647 if (mask == 0) return 0;
648
649 if (NEWCC == ICmpInst::ICMP_NE)
650 mask >>= 1; // treat "Not"-states as normal states
651
652 if (mask & FoldMskICmp_Mask_AllZeroes) {
653 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
654 // -> (icmp eq (A & (B|D)), 0)
655 Value* newOr = Builder->CreateOr(B, D);
656 Value* newAnd = Builder->CreateAnd(A, newOr);
657 // we can't use C as zero, because we might actually handle
658 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
659 // with B and D, having a single bit set
660 Value* zero = Constant::getNullValue(A->getType());
661 return Builder->CreateICmp(NEWCC, newAnd, zero);
662 }
663 else if (mask & FoldMskICmp_BMask_AllOnes) {
664 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
665 // -> (icmp eq (A & (B|D)), (B|D))
666 Value* newOr = Builder->CreateOr(B, D);
667 Value* newAnd = Builder->CreateAnd(A, newOr);
668 return Builder->CreateICmp(NEWCC, newAnd, newOr);
669 }
670 else if (mask & FoldMskICmp_AMask_AllOnes) {
671 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
672 // -> (icmp eq (A & (B&D)), A)
673 Value* newAnd1 = Builder->CreateAnd(B, D);
674 Value* newAnd = Builder->CreateAnd(A, newAnd1);
675 return Builder->CreateICmp(NEWCC, newAnd, A);
676 }
677 else if (mask & FoldMskICmp_BMask_Mixed) {
678 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
679 // We already know that B & C == C && D & E == E.
680 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
681 // C and E, which are shared by both the mask B and the mask D, don't
682 // contradict, then we can transform to
683 // -> (icmp eq (A & (B|D)), (C|E))
684 // Currently, we only handle the case of B, C, D, and E being constant.
685 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
686 if (BCst == 0) return 0;
687 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
688 if (DCst == 0) return 0;
689 // we can't simply use C and E, because we might actually handle
690 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
691 // with B and D, having a single bit set
692
693 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
694 if (CCst == 0) return 0;
695 if (LHS->getPredicate() != NEWCC)
696 CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
697 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
698 if (ECst == 0) return 0;
699 if (RHS->getPredicate() != NEWCC)
700 ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
701 ConstantInt* MCst = dyn_cast<ConstantInt>(
702 ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
703 ConstantExpr::getXor(CCst, ECst)) );
704 // if there is a conflict we should actually return a false for the
705 // whole construct
706 if (!MCst->isZero())
707 return 0;
Chris Lattnerdcef03f2011-02-10 05:17:27 +0000708 Value *newOr1 = Builder->CreateOr(B, D);
709 Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
710 Value *newAnd = Builder->CreateAnd(A, newOr1);
Owen Anderson3fe002d2010-09-08 22:16:17 +0000711 return Builder->CreateICmp(NEWCC, newAnd, newOr2);
712 }
713 return 0;
714}
715
Chris Lattner0a8191e2010-01-05 07:50:36 +0000716/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Chris Lattner067459c2010-03-05 08:46:26 +0000717Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000718 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
719
720 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
721 if (PredicatesFoldable(LHSCC, RHSCC)) {
722 if (LHS->getOperand(0) == RHS->getOperand(1) &&
723 LHS->getOperand(1) == RHS->getOperand(0))
724 LHS->swapOperands();
725 if (LHS->getOperand(0) == RHS->getOperand(0) &&
726 LHS->getOperand(1) == RHS->getOperand(1)) {
727 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
728 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
729 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +0000730 return getICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000731 }
732 }
Owen Anderson3fe002d2010-09-08 22:16:17 +0000733
Chris Lattnerdcef03f2011-02-10 05:17:27 +0000734 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
735 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
736 return V;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000737
738 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
739 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
740 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
741 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
742 if (LHSCst == 0 || RHSCst == 0) return 0;
743
744 if (LHSCst == RHSCst && LHSCC == RHSCC) {
745 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
746 // where C is a power of 2
747 if (LHSCC == ICmpInst::ICMP_ULT &&
748 LHSCst->getValue().isPowerOf2()) {
749 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000750 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000751 }
752
753 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
754 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
755 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000756 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000757 }
758 }
759
760 // From here on, we only handle:
761 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
762 if (Val != Val2) return 0;
763
764 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
765 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
766 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
767 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
768 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
769 return 0;
770
771 // We can't fold (ugt x, C) & (sgt x, C2).
772 if (!PredicatesFoldable(LHSCC, RHSCC))
773 return 0;
774
775 // Ensure that the larger constant is on the RHS.
776 bool ShouldSwap;
777 if (CmpInst::isSigned(LHSCC) ||
778 (ICmpInst::isEquality(LHSCC) &&
779 CmpInst::isSigned(RHSCC)))
780 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
781 else
782 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
783
784 if (ShouldSwap) {
785 std::swap(LHS, RHS);
786 std::swap(LHSCst, RHSCst);
787 std::swap(LHSCC, RHSCC);
788 }
789
Dan Gohman4a618822010-02-10 16:03:48 +0000790 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +0000791 // comparing a value against two constants and and'ing the result
792 // together. Because of the above check, we know that we only have
793 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
794 // (from the icmp folding check above), that the two constants
795 // are not equal and that the larger constant is on the RHS
796 assert(LHSCst != RHSCst && "Compares not folded above?");
797
798 switch (LHSCC) {
799 default: llvm_unreachable("Unknown integer condition code!");
800 case ICmpInst::ICMP_EQ:
801 switch (RHSCC) {
802 default: llvm_unreachable("Unknown integer condition code!");
803 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
804 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
805 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000806 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000807 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
808 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
809 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner067459c2010-03-05 08:46:26 +0000810 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000811 }
812 case ICmpInst::ICMP_NE:
813 switch (RHSCC) {
814 default: llvm_unreachable("Unknown integer condition code!");
815 case ICmpInst::ICMP_ULT:
816 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000817 return Builder->CreateICmpULT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000818 break; // (X != 13 & X u< 15) -> no change
819 case ICmpInst::ICMP_SLT:
820 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000821 return Builder->CreateICmpSLT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000822 break; // (X != 13 & X s< 15) -> no change
823 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
824 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
825 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000826 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000827 case ICmpInst::ICMP_NE:
828 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
829 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
830 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
Chris Lattner067459c2010-03-05 08:46:26 +0000831 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000832 }
833 break; // (X != 13 & X != 15) -> no change
834 }
835 break;
836 case ICmpInst::ICMP_ULT:
837 switch (RHSCC) {
838 default: llvm_unreachable("Unknown integer condition code!");
839 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
840 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000841 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000842 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
843 break;
844 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
845 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner067459c2010-03-05 08:46:26 +0000846 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000847 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
848 break;
849 }
850 break;
851 case ICmpInst::ICMP_SLT:
852 switch (RHSCC) {
853 default: llvm_unreachable("Unknown integer condition code!");
854 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
855 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000856 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000857 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
858 break;
859 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
860 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000861 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000862 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
863 break;
864 }
865 break;
866 case ICmpInst::ICMP_UGT:
867 switch (RHSCC) {
868 default: llvm_unreachable("Unknown integer condition code!");
869 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
870 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000871 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000872 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
873 break;
874 case ICmpInst::ICMP_NE:
875 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000876 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000877 break; // (X u> 13 & X != 15) -> no change
878 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner067459c2010-03-05 08:46:26 +0000879 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000880 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
881 break;
882 }
883 break;
884 case ICmpInst::ICMP_SGT:
885 switch (RHSCC) {
886 default: llvm_unreachable("Unknown integer condition code!");
887 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
888 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000889 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000890 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
891 break;
892 case ICmpInst::ICMP_NE:
893 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000894 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000895 break; // (X s> 13 & X != 15) -> no change
896 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner067459c2010-03-05 08:46:26 +0000897 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000898 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
899 break;
900 }
901 break;
902 }
903
904 return 0;
905}
906
Chris Lattner067459c2010-03-05 08:46:26 +0000907/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
908/// instcombine, this returns a Value which should already be inserted into the
909/// function.
910Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000911 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
912 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
913 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
914 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
915 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
916 // If either of the constants are nans, then the whole thing returns
917 // false.
918 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +0000919 return ConstantInt::getFalse(LHS->getContext());
920 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000921 }
922
923 // Handle vector zeros. This occurs because the canonical form of
924 // "fcmp ord x,x" is "fcmp ord x, 0".
925 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
926 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +0000927 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000928 return 0;
929 }
930
931 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
932 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
933 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
934
935
936 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
937 // Swap RHS operands to match LHS.
938 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
939 std::swap(Op1LHS, Op1RHS);
940 }
941
942 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
943 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
944 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +0000945 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000946 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +0000947 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000948 if (Op0CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000949 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000950 if (Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000951 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000952
953 bool Op0Ordered;
954 bool Op1Ordered;
955 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
956 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
957 if (Op1Pred == 0) {
958 std::swap(LHS, RHS);
959 std::swap(Op0Pred, Op1Pred);
960 std::swap(Op0Ordered, Op1Ordered);
961 }
962 if (Op0Pred == 0) {
963 // uno && ueq -> uno && (uno || eq) -> ueq
964 // ord && olt -> ord && (ord && lt) -> olt
965 if (Op0Ordered == Op1Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000966 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000967
968 // uno && oeq -> uno && (ord && eq) -> false
969 // uno && ord -> false
970 if (!Op0Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000971 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000972 // ord && ueq -> ord && (uno || eq) -> oeq
Chris Lattner067459c2010-03-05 08:46:26 +0000973 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000974 }
975 }
976
977 return 0;
978}
979
980
981Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +0000982 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000983 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
984
985 if (Value *V = SimplifyAndInst(Op0, Op1, TD))
986 return ReplaceInstUsesWith(I, V);
987
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000988 // (A|B)&(A|C) -> A|(B&C) etc
989 if (Value *V = SimplifyUsingDistributiveLaws(I))
990 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000991
Chris Lattner0a8191e2010-01-05 07:50:36 +0000992 // See if we can simplify any instructions used by the instruction whose sole
993 // purpose is to compute bits we don't care about.
994 if (SimplifyDemandedInstructionBits(I))
995 return &I;
996
997 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
998 const APInt &AndRHSMask = AndRHS->getValue();
Chris Lattner0a8191e2010-01-05 07:50:36 +0000999
1000 // Optimize a variety of ((val OP C1) & C2) combinations...
1001 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1002 Value *Op0LHS = Op0I->getOperand(0);
1003 Value *Op0RHS = Op0I->getOperand(1);
1004 switch (Op0I->getOpcode()) {
1005 default: break;
1006 case Instruction::Xor:
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001007 case Instruction::Or: {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001008 // If the mask is only needed on one incoming arm, push it up.
1009 if (!Op0I->hasOneUse()) break;
1010
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001011 APInt NotAndRHS(~AndRHSMask);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001012 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1013 // Not masking anything out for the LHS, move to RHS.
1014 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1015 Op0RHS->getName()+".masked");
1016 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1017 }
1018 if (!isa<Constant>(Op0RHS) &&
1019 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1020 // Not masking anything out for the RHS, move to LHS.
1021 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1022 Op0LHS->getName()+".masked");
1023 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1024 }
1025
1026 break;
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001027 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001028 case Instruction::Add:
1029 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1030 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1031 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1032 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1033 return BinaryOperator::CreateAnd(V, AndRHS);
1034 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1035 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
1036 break;
1037
1038 case Instruction::Sub:
1039 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1040 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1041 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1042 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1043 return BinaryOperator::CreateAnd(V, AndRHS);
1044
1045 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1046 // has 1's for all bits that the subtraction with A might affect.
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001047 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001048 uint32_t BitWidth = AndRHSMask.getBitWidth();
1049 uint32_t Zeros = AndRHSMask.countLeadingZeros();
1050 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1051
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001052 if (MaskedValueIsZero(Op0LHS, Mask)) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001053 Value *NewNeg = Builder->CreateNeg(Op0RHS);
1054 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1055 }
1056 }
1057 break;
1058
1059 case Instruction::Shl:
1060 case Instruction::LShr:
1061 // (1 << x) & 1 --> zext(x == 0)
1062 // (1 >> x) & 1 --> zext(x == 0)
1063 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1064 Value *NewICmp =
1065 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1066 return new ZExtInst(NewICmp, I.getType());
1067 }
1068 break;
1069 }
Chris Lattner9f0ac0d2011-02-15 01:56:08 +00001070
Chris Lattner0a8191e2010-01-05 07:50:36 +00001071 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1072 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1073 return Res;
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001074 }
1075
1076 // If this is an integer truncation, and if the source is an 'and' with
1077 // immediate, transform it. This frequently occurs for bitfield accesses.
1078 {
1079 Value *X = 0; ConstantInt *YC = 0;
1080 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1081 // Change: and (trunc (and X, YC) to T), C2
1082 // into : and (trunc X to T), trunc(YC) & C2
1083 // This will fold the two constants together, which may allow
1084 // other simplifications.
1085 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1086 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1087 C3 = ConstantExpr::getAnd(C3, AndRHS);
1088 return BinaryOperator::CreateAnd(NewCast, C3);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001089 }
1090 }
1091
1092 // Try to fold constant and into select arguments.
1093 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1094 if (Instruction *R = FoldOpIntoSelect(I, SI))
1095 return R;
1096 if (isa<PHINode>(Op0))
1097 if (Instruction *NV = FoldOpIntoPhi(I))
1098 return NV;
1099 }
1100
1101
1102 // (~A & ~B) == (~(A | B)) - De Morgan's Law
1103 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1104 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1105 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1106 Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1107 I.getName()+".demorgan");
1108 return BinaryOperator::CreateNot(Or);
1109 }
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001110
Chris Lattner0a8191e2010-01-05 07:50:36 +00001111 {
1112 Value *A = 0, *B = 0, *C = 0, *D = 0;
1113 // (A|B) & ~(A&B) -> A^B
1114 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1115 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1116 ((A == C && B == D) || (A == D && B == C)))
1117 return BinaryOperator::CreateXor(A, B);
1118
1119 // ~(A&B) & (A|B) -> A^B
1120 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1121 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1122 ((A == C && B == D) || (A == D && B == C)))
1123 return BinaryOperator::CreateXor(A, B);
1124
1125 if (Op0->hasOneUse() &&
1126 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1127 if (A == Op1) { // (A^B)&A -> A&(A^B)
1128 I.swapOperands(); // Simplify below
1129 std::swap(Op0, Op1);
1130 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
1131 cast<BinaryOperator>(Op0)->swapOperands();
1132 I.swapOperands(); // Simplify below
1133 std::swap(Op0, Op1);
1134 }
1135 }
1136
1137 if (Op1->hasOneUse() &&
1138 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
1139 if (B == Op0) { // B&(A^B) -> B&(B^A)
1140 cast<BinaryOperator>(Op1)->swapOperands();
1141 std::swap(A, B);
1142 }
1143 if (A == Op0) // A&(A^B) -> A & ~B
1144 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
1145 }
1146
1147 // (A&((~A)|B)) -> A&B
1148 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1149 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1150 return BinaryOperator::CreateAnd(A, Op1);
1151 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1152 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1153 return BinaryOperator::CreateAnd(A, Op0);
1154 }
1155
1156 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1157 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
Chris Lattner067459c2010-03-05 08:46:26 +00001158 if (Value *Res = FoldAndOfICmps(LHS, RHS))
1159 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001160
1161 // If and'ing two fcmp, try combine them into one.
1162 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1163 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001164 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1165 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001166
1167
Chris Lattner0a8191e2010-01-05 07:50:36 +00001168 // fold (and (cast A), (cast B)) -> (cast (and A, B))
1169 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001170 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1171 const Type *SrcTy = Op0C->getOperand(0)->getType();
1172 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1173 SrcTy == Op1C->getOperand(0)->getType() &&
Duncan Sands9dff9be2010-02-15 16:12:20 +00001174 SrcTy->isIntOrIntVectorTy()) {
Chris Lattner4e8137d2010-02-11 06:26:33 +00001175 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1176
1177 // Only do this if the casts both really cause code to be generated.
1178 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1179 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1180 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001181 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1182 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001183
1184 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1185 // cast is otherwise not optimizable. This happens for vector sexts.
1186 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1187 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001188 if (Value *Res = FoldAndOfICmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001189 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner4e8137d2010-02-11 06:26:33 +00001190
1191 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1192 // cast is otherwise not optimizable. This happens for vector sexts.
1193 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1194 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001195 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001196 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001197 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001198 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001199
1200 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
1201 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1202 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1203 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1204 SI0->getOperand(1) == SI1->getOperand(1) &&
1205 (SI0->hasOneUse() || SI1->hasOneUse())) {
1206 Value *NewOp =
1207 Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1208 SI0->getName());
1209 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1210 SI1->getOperand(1));
1211 }
1212 }
1213
Chris Lattner0a8191e2010-01-05 07:50:36 +00001214 return Changed ? &I : 0;
1215}
1216
1217/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1218/// capable of providing pieces of a bswap. The subexpression provides pieces
1219/// of a bswap if it is proven that each of the non-zero bytes in the output of
1220/// the expression came from the corresponding "byte swapped" byte in some other
1221/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
1222/// we know that the expression deposits the low byte of %X into the high byte
1223/// of the bswap result and that all other bytes are zero. This expression is
1224/// accepted, the high byte of ByteValues is set to X to indicate a correct
1225/// match.
1226///
1227/// This function returns true if the match was unsuccessful and false if so.
1228/// On entry to the function the "OverallLeftShift" is a signed integer value
1229/// indicating the number of bytes that the subexpression is later shifted. For
1230/// example, if the expression is later right shifted by 16 bits, the
1231/// OverallLeftShift value would be -2 on entry. This is used to specify which
1232/// byte of ByteValues is actually being set.
1233///
1234/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1235/// byte is masked to zero by a user. For example, in (X & 255), X will be
1236/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
1237/// this function to working on up to 32-byte (256 bit) values. ByteMask is
1238/// always in the local (OverallLeftShift) coordinate space.
1239///
1240static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1241 SmallVector<Value*, 8> &ByteValues) {
1242 if (Instruction *I = dyn_cast<Instruction>(V)) {
1243 // If this is an or instruction, it may be an inner node of the bswap.
1244 if (I->getOpcode() == Instruction::Or) {
1245 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1246 ByteValues) ||
1247 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1248 ByteValues);
1249 }
1250
1251 // If this is a logical shift by a constant multiple of 8, recurse with
1252 // OverallLeftShift and ByteMask adjusted.
1253 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1254 unsigned ShAmt =
1255 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1256 // Ensure the shift amount is defined and of a byte value.
1257 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1258 return true;
1259
1260 unsigned ByteShift = ShAmt >> 3;
1261 if (I->getOpcode() == Instruction::Shl) {
1262 // X << 2 -> collect(X, +2)
1263 OverallLeftShift += ByteShift;
1264 ByteMask >>= ByteShift;
1265 } else {
1266 // X >>u 2 -> collect(X, -2)
1267 OverallLeftShift -= ByteShift;
1268 ByteMask <<= ByteShift;
1269 ByteMask &= (~0U >> (32-ByteValues.size()));
1270 }
1271
1272 if (OverallLeftShift >= (int)ByteValues.size()) return true;
1273 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1274
1275 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1276 ByteValues);
1277 }
1278
1279 // If this is a logical 'and' with a mask that clears bytes, clear the
1280 // corresponding bytes in ByteMask.
1281 if (I->getOpcode() == Instruction::And &&
1282 isa<ConstantInt>(I->getOperand(1))) {
1283 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1284 unsigned NumBytes = ByteValues.size();
1285 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1286 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1287
1288 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1289 // If this byte is masked out by a later operation, we don't care what
1290 // the and mask is.
1291 if ((ByteMask & (1 << i)) == 0)
1292 continue;
1293
1294 // If the AndMask is all zeros for this byte, clear the bit.
1295 APInt MaskB = AndMask & Byte;
1296 if (MaskB == 0) {
1297 ByteMask &= ~(1U << i);
1298 continue;
1299 }
1300
1301 // If the AndMask is not all ones for this byte, it's not a bytezap.
1302 if (MaskB != Byte)
1303 return true;
1304
1305 // Otherwise, this byte is kept.
1306 }
1307
1308 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1309 ByteValues);
1310 }
1311 }
1312
1313 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
1314 // the input value to the bswap. Some observations: 1) if more than one byte
1315 // is demanded from this input, then it could not be successfully assembled
1316 // into a byteswap. At least one of the two bytes would not be aligned with
1317 // their ultimate destination.
1318 if (!isPowerOf2_32(ByteMask)) return true;
1319 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
1320
1321 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1322 // is demanded, it needs to go into byte 0 of the result. This means that the
1323 // byte needs to be shifted until it lands in the right byte bucket. The
1324 // shift amount depends on the position: if the byte is coming from the high
1325 // part of the value (e.g. byte 3) then it must be shifted right. If from the
1326 // low part, it must be shifted left.
1327 unsigned DestByteNo = InputByteNo + OverallLeftShift;
1328 if (InputByteNo < ByteValues.size()/2) {
1329 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1330 return true;
1331 } else {
1332 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1333 return true;
1334 }
1335
1336 // If the destination byte value is already defined, the values are or'd
1337 // together, which isn't a bswap (unless it's an or of the same bits).
1338 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1339 return true;
1340 ByteValues[DestByteNo] = V;
1341 return false;
1342}
1343
1344/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1345/// If so, insert the new bswap intrinsic and return it.
1346Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1347 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1348 if (!ITy || ITy->getBitWidth() % 16 ||
1349 // ByteMask only allows up to 32-byte values.
1350 ITy->getBitWidth() > 32*8)
1351 return 0; // Can only bswap pairs of bytes. Can't do vectors.
1352
1353 /// ByteValues - For each byte of the result, we keep track of which value
1354 /// defines each byte.
1355 SmallVector<Value*, 8> ByteValues;
1356 ByteValues.resize(ITy->getBitWidth()/8);
1357
1358 // Try to find all the pieces corresponding to the bswap.
1359 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1360 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1361 return 0;
1362
1363 // Check to see if all of the bytes come from the same value.
1364 Value *V = ByteValues[0];
1365 if (V == 0) return 0; // Didn't find a byte? Must be zero.
1366
1367 // Check to make sure that all of the bytes come from the same value.
1368 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1369 if (ByteValues[i] != V)
1370 return 0;
1371 const Type *Tys[] = { ITy };
1372 Module *M = I.getParent()->getParent()->getParent();
1373 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
1374 return CallInst::Create(F, V);
1375}
1376
1377/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
1378/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1379/// we can simplify this expression to "cond ? C : D or B".
1380static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1381 Value *C, Value *D) {
1382 // If A is not a select of -1/0, this cannot match.
1383 Value *Cond = 0;
Chris Lattner9b6a1782010-02-09 01:12:41 +00001384 if (!match(A, m_SExt(m_Value(Cond))) ||
Duncan Sands9dff9be2010-02-15 16:12:20 +00001385 !Cond->getType()->isIntegerTy(1))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001386 return 0;
1387
1388 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001389 if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001390 return SelectInst::Create(Cond, C, B);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001391 if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001392 return SelectInst::Create(Cond, C, B);
1393
Chris Lattner0a8191e2010-01-05 07:50:36 +00001394 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001395 if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001396 return SelectInst::Create(Cond, C, D);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001397 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001398 return SelectInst::Create(Cond, C, D);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001399 return 0;
1400}
1401
Chris Lattner067459c2010-03-05 08:46:26 +00001402/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1403Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001404 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1405
1406 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1407 if (PredicatesFoldable(LHSCC, RHSCC)) {
1408 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1409 LHS->getOperand(1) == RHS->getOperand(0))
1410 LHS->swapOperands();
1411 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1412 LHS->getOperand(1) == RHS->getOperand(1)) {
1413 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1414 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1415 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +00001416 return getICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001417 }
1418 }
Benjamin Kramer2bca3a62010-12-20 16:21:59 +00001419
1420 // handle (roughly):
1421 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1422 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
1423 return V;
Owen Anderson3fe002d2010-09-08 22:16:17 +00001424
Chris Lattner0a8191e2010-01-05 07:50:36 +00001425 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1426 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1427 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1428 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1429 if (LHSCst == 0 || RHSCst == 0) return 0;
1430
Owen Anderson8f306a72010-08-02 09:32:13 +00001431 if (LHSCst == RHSCst && LHSCC == RHSCC) {
1432 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1433 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1434 Value *NewOr = Builder->CreateOr(Val, Val2);
1435 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1436 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001437 }
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001438
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001439 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001440 // iff C2 + CA == C1.
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001441 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001442 ConstantInt *AddCst;
1443 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1444 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001445 return Builder->CreateICmpULE(Val, LHSCst);
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001446 }
1447
Chris Lattner0a8191e2010-01-05 07:50:36 +00001448 // From here on, we only handle:
1449 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1450 if (Val != Val2) return 0;
1451
1452 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1453 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1454 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1455 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1456 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1457 return 0;
1458
1459 // We can't fold (ugt x, C) | (sgt x, C2).
1460 if (!PredicatesFoldable(LHSCC, RHSCC))
1461 return 0;
1462
1463 // Ensure that the larger constant is on the RHS.
1464 bool ShouldSwap;
1465 if (CmpInst::isSigned(LHSCC) ||
1466 (ICmpInst::isEquality(LHSCC) &&
1467 CmpInst::isSigned(RHSCC)))
1468 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1469 else
1470 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1471
1472 if (ShouldSwap) {
1473 std::swap(LHS, RHS);
1474 std::swap(LHSCst, RHSCst);
1475 std::swap(LHSCC, RHSCC);
1476 }
1477
Dan Gohman4a618822010-02-10 16:03:48 +00001478 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +00001479 // comparing a value against two constants and or'ing the result
1480 // together. Because of the above check, we know that we only have
1481 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1482 // icmp folding check above), that the two constants are not
1483 // equal.
1484 assert(LHSCst != RHSCst && "Compares not folded above?");
1485
1486 switch (LHSCC) {
1487 default: llvm_unreachable("Unknown integer condition code!");
1488 case ICmpInst::ICMP_EQ:
1489 switch (RHSCC) {
1490 default: llvm_unreachable("Unknown integer condition code!");
1491 case ICmpInst::ICMP_EQ:
1492 if (LHSCst == SubOne(RHSCst)) {
1493 // (X == 13 | X == 14) -> X-13 <u 2
1494 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1495 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1496 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
Chris Lattner067459c2010-03-05 08:46:26 +00001497 return Builder->CreateICmpULT(Add, AddCST);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001498 }
1499 break; // (X == 13 | X == 15) -> no change
1500 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
1501 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
1502 break;
1503 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
1504 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
1505 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001506 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001507 }
1508 break;
1509 case ICmpInst::ICMP_NE:
1510 switch (RHSCC) {
1511 default: llvm_unreachable("Unknown integer condition code!");
1512 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
1513 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
1514 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattner067459c2010-03-05 08:46:26 +00001515 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001516 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
1517 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
1518 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001519 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001520 }
1521 break;
1522 case ICmpInst::ICMP_ULT:
1523 switch (RHSCC) {
1524 default: llvm_unreachable("Unknown integer condition code!");
1525 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
1526 break;
1527 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
1528 // If RHSCst is [us]MAXINT, it is always false. Not handling
1529 // this can cause overflow.
1530 if (RHSCst->isMaxValue(false))
Chris Lattner067459c2010-03-05 08:46:26 +00001531 return LHS;
1532 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001533 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
1534 break;
1535 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
1536 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001537 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001538 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
1539 break;
1540 }
1541 break;
1542 case ICmpInst::ICMP_SLT:
1543 switch (RHSCC) {
1544 default: llvm_unreachable("Unknown integer condition code!");
1545 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
1546 break;
1547 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
1548 // If RHSCst is [us]MAXINT, it is always false. Not handling
1549 // this can cause overflow.
1550 if (RHSCst->isMaxValue(true))
Chris Lattner067459c2010-03-05 08:46:26 +00001551 return LHS;
1552 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001553 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
1554 break;
1555 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
1556 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001557 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001558 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
1559 break;
1560 }
1561 break;
1562 case ICmpInst::ICMP_UGT:
1563 switch (RHSCC) {
1564 default: llvm_unreachable("Unknown integer condition code!");
1565 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
1566 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
Chris Lattner067459c2010-03-05 08:46:26 +00001567 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001568 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
1569 break;
1570 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
1571 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001572 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001573 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
1574 break;
1575 }
1576 break;
1577 case ICmpInst::ICMP_SGT:
1578 switch (RHSCC) {
1579 default: llvm_unreachable("Unknown integer condition code!");
1580 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
1581 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
Chris Lattner067459c2010-03-05 08:46:26 +00001582 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001583 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
1584 break;
1585 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
1586 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001587 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001588 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
1589 break;
1590 }
1591 break;
1592 }
1593 return 0;
1594}
1595
Chris Lattner067459c2010-03-05 08:46:26 +00001596/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
1597/// instcombine, this returns a Value which should already be inserted into the
1598/// function.
1599Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001600 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1601 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1602 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1603 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1604 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1605 // If either of the constants are nans, then the whole thing returns
1606 // true.
1607 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +00001608 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001609
1610 // Otherwise, no need to compare the two constants, compare the
1611 // rest.
Chris Lattner067459c2010-03-05 08:46:26 +00001612 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001613 }
1614
1615 // Handle vector zeros. This occurs because the canonical form of
1616 // "fcmp uno x,x" is "fcmp uno x, 0".
1617 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1618 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001619 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001620
1621 return 0;
1622 }
1623
1624 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1625 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1626 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1627
1628 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1629 // Swap RHS operands to match LHS.
1630 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1631 std::swap(Op1LHS, Op1RHS);
1632 }
1633 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1634 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1635 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +00001636 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001637 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +00001638 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001639 if (Op0CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001640 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001641 if (Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001642 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001643 bool Op0Ordered;
1644 bool Op1Ordered;
1645 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1646 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1647 if (Op0Ordered == Op1Ordered) {
1648 // If both are ordered or unordered, return a new fcmp with
1649 // or'ed predicates.
Chris Lattner067459c2010-03-05 08:46:26 +00001650 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001651 }
1652 }
1653 return 0;
1654}
1655
1656/// FoldOrWithConstants - This helper function folds:
1657///
1658/// ((A | B) & C1) | (B & C2)
1659///
1660/// into:
1661///
1662/// (A & C1) | B
1663///
1664/// when the XOR of the two constants is "all ones" (-1).
1665Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1666 Value *A, Value *B, Value *C) {
1667 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1668 if (!CI1) return 0;
1669
1670 Value *V1 = 0;
1671 ConstantInt *CI2 = 0;
1672 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1673
1674 APInt Xor = CI1->getValue() ^ CI2->getValue();
1675 if (!Xor.isAllOnesValue()) return 0;
1676
1677 if (V1 == A || V1 == B) {
1678 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1679 return BinaryOperator::CreateOr(NewOp, V1);
1680 }
1681
1682 return 0;
1683}
1684
1685Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00001686 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001687 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1688
1689 if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1690 return ReplaceInstUsesWith(I, V);
Bill Wendlingaf13d822010-03-03 00:35:56 +00001691
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00001692 // (A&B)|(A&C) -> A&(B|C) etc
1693 if (Value *V = SimplifyUsingDistributiveLaws(I))
1694 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001695
Chris Lattner0a8191e2010-01-05 07:50:36 +00001696 // See if we can simplify any instructions used by the instruction whose sole
1697 // purpose is to compute bits we don't care about.
1698 if (SimplifyDemandedInstructionBits(I))
1699 return &I;
1700
1701 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1702 ConstantInt *C1 = 0; Value *X = 0;
1703 // (X & C1) | C2 --> (X | C2) & (C1|C2)
Bill Wendlingaf13d822010-03-03 00:35:56 +00001704 // iff (C1 & C2) == 0.
Chris Lattner0a8191e2010-01-05 07:50:36 +00001705 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
Bill Wendlingaf13d822010-03-03 00:35:56 +00001706 (RHS->getValue() & C1->getValue()) != 0 &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00001707 Op0->hasOneUse()) {
1708 Value *Or = Builder->CreateOr(X, RHS);
1709 Or->takeName(Op0);
1710 return BinaryOperator::CreateAnd(Or,
1711 ConstantInt::get(I.getContext(),
1712 RHS->getValue() | C1->getValue()));
1713 }
1714
1715 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1716 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1717 Op0->hasOneUse()) {
1718 Value *Or = Builder->CreateOr(X, RHS);
1719 Or->takeName(Op0);
1720 return BinaryOperator::CreateXor(Or,
1721 ConstantInt::get(I.getContext(),
1722 C1->getValue() & ~RHS->getValue()));
1723 }
1724
1725 // Try to fold constant and into select arguments.
1726 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1727 if (Instruction *R = FoldOpIntoSelect(I, SI))
1728 return R;
Bill Wendlingaf13d822010-03-03 00:35:56 +00001729
Chris Lattner0a8191e2010-01-05 07:50:36 +00001730 if (isa<PHINode>(Op0))
1731 if (Instruction *NV = FoldOpIntoPhi(I))
1732 return NV;
1733 }
1734
1735 Value *A = 0, *B = 0;
1736 ConstantInt *C1 = 0, *C2 = 0;
1737
1738 // (A | B) | C and A | (B | C) -> bswap if possible.
1739 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1740 if (match(Op0, m_Or(m_Value(), m_Value())) ||
1741 match(Op1, m_Or(m_Value(), m_Value())) ||
Chris Lattnerb9400912011-02-09 17:00:45 +00001742 (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1743 match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001744 if (Instruction *BSwap = MatchBSwap(I))
1745 return BSwap;
1746 }
1747
1748 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1749 if (Op0->hasOneUse() &&
1750 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1751 MaskedValueIsZero(Op1, C1->getValue())) {
1752 Value *NOr = Builder->CreateOr(A, Op1);
1753 NOr->takeName(Op0);
1754 return BinaryOperator::CreateXor(NOr, C1);
1755 }
1756
1757 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1758 if (Op1->hasOneUse() &&
1759 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1760 MaskedValueIsZero(Op0, C1->getValue())) {
1761 Value *NOr = Builder->CreateOr(A, Op0);
1762 NOr->takeName(Op0);
1763 return BinaryOperator::CreateXor(NOr, C1);
1764 }
1765
1766 // (A & C)|(B & D)
1767 Value *C = 0, *D = 0;
1768 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1769 match(Op1, m_And(m_Value(B), m_Value(D)))) {
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001770 Value *V1 = 0, *V2 = 0;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001771 C1 = dyn_cast<ConstantInt>(C);
1772 C2 = dyn_cast<ConstantInt>(D);
1773 if (C1 && C2) { // (A & C1)|(B & C2)
1774 // If we have: ((V + N) & C1) | (V & C2)
1775 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1776 // replace with V+N.
1777 if (C1->getValue() == ~C2->getValue()) {
1778 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1779 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1780 // Add commutes, try both ways.
1781 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1782 return ReplaceInstUsesWith(I, A);
1783 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
1784 return ReplaceInstUsesWith(I, A);
1785 }
1786 // Or commutes, try both ways.
1787 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
1788 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1789 // Add commutes, try both ways.
1790 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
1791 return ReplaceInstUsesWith(I, B);
1792 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
1793 return ReplaceInstUsesWith(I, B);
1794 }
1795 }
1796
Chris Lattner0a8191e2010-01-05 07:50:36 +00001797 if ((C1->getValue() & C2->getValue()) == 0) {
Chris Lattner95188692010-01-11 06:55:24 +00001798 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1799 // iff (C1&C2) == 0 and (N&~C1) == 0
Chris Lattner0a8191e2010-01-05 07:50:36 +00001800 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
1801 ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
1802 (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
1803 return BinaryOperator::CreateAnd(A,
1804 ConstantInt::get(A->getContext(),
1805 C1->getValue()|C2->getValue()));
1806 // Or commutes, try both ways.
1807 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
1808 ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
1809 (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
1810 return BinaryOperator::CreateAnd(B,
1811 ConstantInt::get(B->getContext(),
1812 C1->getValue()|C2->getValue()));
Chris Lattner95188692010-01-11 06:55:24 +00001813
1814 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1815 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1816 ConstantInt *C3 = 0, *C4 = 0;
1817 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
1818 (C3->getValue() & ~C1->getValue()) == 0 &&
1819 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
1820 (C4->getValue() & ~C2->getValue()) == 0) {
1821 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
1822 return BinaryOperator::CreateAnd(V2,
1823 ConstantInt::get(B->getContext(),
1824 C1->getValue()|C2->getValue()));
1825 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001826 }
1827 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001828
Chris Lattner8e2c4712010-02-02 02:43:51 +00001829 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
1830 // Don't do this for vector select idioms, the code generator doesn't handle
1831 // them well yet.
Duncan Sands19d0b472010-02-16 11:11:14 +00001832 if (!I.getType()->isVectorTy()) {
Chris Lattner8e2c4712010-02-02 02:43:51 +00001833 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
1834 return Match;
1835 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
1836 return Match;
1837 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
1838 return Match;
1839 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
1840 return Match;
1841 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001842
1843 // ((A&~B)|(~A&B)) -> A^B
1844 if ((match(C, m_Not(m_Specific(D))) &&
1845 match(B, m_Not(m_Specific(A)))))
1846 return BinaryOperator::CreateXor(A, D);
1847 // ((~B&A)|(~A&B)) -> A^B
1848 if ((match(A, m_Not(m_Specific(D))) &&
1849 match(B, m_Not(m_Specific(C)))))
1850 return BinaryOperator::CreateXor(C, D);
1851 // ((A&~B)|(B&~A)) -> A^B
1852 if ((match(C, m_Not(m_Specific(B))) &&
1853 match(D, m_Not(m_Specific(A)))))
1854 return BinaryOperator::CreateXor(A, B);
1855 // ((~B&A)|(B&~A)) -> A^B
1856 if ((match(A, m_Not(m_Specific(B))) &&
1857 match(D, m_Not(m_Specific(C)))))
1858 return BinaryOperator::CreateXor(C, B);
Benjamin Kramer11743242010-07-12 13:34:22 +00001859
1860 // ((A|B)&1)|(B&-2) -> (A&1) | B
1861 if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
1862 match(A, m_Or(m_Specific(B), m_Value(V1)))) {
1863 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
1864 if (Ret) return Ret;
1865 }
1866 // (B&-2)|((A|B)&1) -> (A&1) | B
1867 if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
1868 match(B, m_Or(m_Value(V1), m_Specific(A)))) {
1869 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
1870 if (Ret) return Ret;
1871 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001872 }
1873
1874 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
1875 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1876 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1877 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1878 SI0->getOperand(1) == SI1->getOperand(1) &&
1879 (SI0->hasOneUse() || SI1->hasOneUse())) {
1880 Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
1881 SI0->getName());
1882 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1883 SI1->getOperand(1));
1884 }
1885 }
1886
Chris Lattner0a8191e2010-01-05 07:50:36 +00001887 // (~A | ~B) == (~(A & B)) - De Morgan's Law
1888 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1889 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1890 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1891 Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
1892 I.getName()+".demorgan");
1893 return BinaryOperator::CreateNot(And);
1894 }
1895
1896 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
1897 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
Chris Lattner067459c2010-03-05 08:46:26 +00001898 if (Value *Res = FoldOrOfICmps(LHS, RHS))
1899 return ReplaceInstUsesWith(I, Res);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001900
Chris Lattner4e8137d2010-02-11 06:26:33 +00001901 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
1902 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1903 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001904 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
1905 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001906
Chris Lattner0a8191e2010-01-05 07:50:36 +00001907 // fold (or (cast A), (cast B)) -> (cast (or A, B))
1908 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner311aa632011-01-15 05:40:29 +00001909 CastInst *Op1C = dyn_cast<CastInst>(Op1);
1910 if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
1911 const Type *SrcTy = Op0C->getOperand(0)->getType();
1912 if (SrcTy == Op1C->getOperand(0)->getType() &&
1913 SrcTy->isIntOrIntVectorTy()) {
1914 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001915
Chris Lattner311aa632011-01-15 05:40:29 +00001916 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
1917 // Only do this if the casts both really cause code to be
1918 // generated.
1919 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1920 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1921 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
1922 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001923 }
Chris Lattner311aa632011-01-15 05:40:29 +00001924
1925 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
1926 // cast is otherwise not optimizable. This happens for vector sexts.
1927 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1928 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1929 if (Value *Res = FoldOrOfICmps(LHS, RHS))
1930 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1931
1932 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
1933 // cast is otherwise not optimizable. This happens for vector sexts.
1934 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1935 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1936 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
1937 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001938 }
Chris Lattner311aa632011-01-15 05:40:29 +00001939 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001940 }
1941
Owen Andersonc237a842010-09-13 17:59:27 +00001942 // Note: If we've gotten to the point of visiting the outer OR, then the
1943 // inner one couldn't be simplified. If it was a constant, then it won't
1944 // be simplified by a later pass either, so we try swapping the inner/outer
1945 // ORs in the hopes that we'll be able to simplify it this way.
1946 // (X|C) | V --> (X|V) | C
1947 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
1948 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
1949 Value *Inner = Builder->CreateOr(A, Op1);
1950 Inner->takeName(Op0);
1951 return BinaryOperator::CreateOr(Inner, C1);
1952 }
1953
Chris Lattner0a8191e2010-01-05 07:50:36 +00001954 return Changed ? &I : 0;
1955}
1956
1957Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00001958 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001959 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1960
Duncan Sandsc89ac072010-11-17 18:52:15 +00001961 if (Value *V = SimplifyXorInst(Op0, Op1, TD))
1962 return ReplaceInstUsesWith(I, V);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001963
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00001964 // (A&B)^(A&C) -> A&(B^C) etc
1965 if (Value *V = SimplifyUsingDistributiveLaws(I))
1966 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001967
Chris Lattner0a8191e2010-01-05 07:50:36 +00001968 // See if we can simplify any instructions used by the instruction whose sole
1969 // purpose is to compute bits we don't care about.
1970 if (SimplifyDemandedInstructionBits(I))
1971 return &I;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001972
1973 // Is this a ~ operation?
1974 if (Value *NotOp = dyn_castNotVal(&I)) {
1975 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
1976 if (Op0I->getOpcode() == Instruction::And ||
1977 Op0I->getOpcode() == Instruction::Or) {
1978 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
1979 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
1980 if (dyn_castNotVal(Op0I->getOperand(1)))
1981 Op0I->swapOperands();
1982 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
1983 Value *NotY =
1984 Builder->CreateNot(Op0I->getOperand(1),
1985 Op0I->getOperand(1)->getName()+".not");
1986 if (Op0I->getOpcode() == Instruction::And)
1987 return BinaryOperator::CreateOr(Op0NotVal, NotY);
1988 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
1989 }
1990
1991 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
1992 // ~(X | Y) === (~X & ~Y) - De Morgan's Law
1993 if (isFreeToInvert(Op0I->getOperand(0)) &&
1994 isFreeToInvert(Op0I->getOperand(1))) {
1995 Value *NotX =
1996 Builder->CreateNot(Op0I->getOperand(0), "notlhs");
1997 Value *NotY =
1998 Builder->CreateNot(Op0I->getOperand(1), "notrhs");
1999 if (Op0I->getOpcode() == Instruction::And)
2000 return BinaryOperator::CreateOr(NotX, NotY);
2001 return BinaryOperator::CreateAnd(NotX, NotY);
2002 }
Chris Lattner18f49ce2010-01-19 18:16:19 +00002003
2004 } else if (Op0I->getOpcode() == Instruction::AShr) {
2005 // ~(~X >>s Y) --> (X >>s Y)
2006 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2007 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002008 }
2009 }
2010 }
2011
2012
2013 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Dan Gohman0a8175d2010-04-09 14:53:59 +00002014 if (RHS->isOne() && Op0->hasOneUse())
Chris Lattner0a8191e2010-01-05 07:50:36 +00002015 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
Dan Gohman0a8175d2010-04-09 14:53:59 +00002016 if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2017 return CmpInst::Create(CI->getOpcode(),
2018 CI->getInversePredicate(),
2019 CI->getOperand(0), CI->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002020
2021 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2022 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2023 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2024 if (CI->hasOneUse() && Op0C->hasOneUse()) {
2025 Instruction::CastOps Opcode = Op0C->getOpcode();
2026 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2027 (RHS == ConstantExpr::getCast(Opcode,
2028 ConstantInt::getTrue(I.getContext()),
2029 Op0C->getDestTy()))) {
2030 CI->setPredicate(CI->getInversePredicate());
2031 return CastInst::Create(Opcode, CI, Op0C->getType());
2032 }
2033 }
2034 }
2035 }
2036
2037 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2038 // ~(c-X) == X-c-1 == X+(-c-1)
2039 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2040 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2041 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2042 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2043 ConstantInt::get(I.getType(), 1));
2044 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2045 }
2046
2047 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2048 if (Op0I->getOpcode() == Instruction::Add) {
2049 // ~(X-c) --> (-c-1)-X
2050 if (RHS->isAllOnesValue()) {
2051 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2052 return BinaryOperator::CreateSub(
2053 ConstantExpr::getSub(NegOp0CI,
2054 ConstantInt::get(I.getType(), 1)),
2055 Op0I->getOperand(0));
2056 } else if (RHS->getValue().isSignBit()) {
2057 // (X + C) ^ signbit -> (X + C + signbit)
2058 Constant *C = ConstantInt::get(I.getContext(),
2059 RHS->getValue() + Op0CI->getValue());
2060 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2061
2062 }
2063 } else if (Op0I->getOpcode() == Instruction::Or) {
2064 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2065 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2066 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2067 // Anything in both C1 and C2 is known to be zero, remove it from
2068 // NewRHS.
2069 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2070 NewRHS = ConstantExpr::getAnd(NewRHS,
2071 ConstantExpr::getNot(CommonBits));
2072 Worklist.Add(Op0I);
2073 I.setOperand(0, Op0I->getOperand(0));
2074 I.setOperand(1, NewRHS);
2075 return &I;
2076 }
2077 }
2078 }
2079 }
2080
2081 // Try to fold constant and into select arguments.
2082 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2083 if (Instruction *R = FoldOpIntoSelect(I, SI))
2084 return R;
2085 if (isa<PHINode>(Op0))
2086 if (Instruction *NV = FoldOpIntoPhi(I))
2087 return NV;
2088 }
2089
Chris Lattner0a8191e2010-01-05 07:50:36 +00002090 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2091 if (Op1I) {
2092 Value *A, *B;
2093 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2094 if (A == Op0) { // B^(B|A) == (A|B)^B
2095 Op1I->swapOperands();
2096 I.swapOperands();
2097 std::swap(Op0, Op1);
2098 } else if (B == Op0) { // B^(A|B) == (A|B)^B
2099 I.swapOperands(); // Simplified below.
2100 std::swap(Op0, Op1);
2101 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002102 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2103 Op1I->hasOneUse()){
2104 if (A == Op0) { // A^(A&B) -> A^(B&A)
2105 Op1I->swapOperands();
2106 std::swap(A, B);
2107 }
2108 if (B == Op0) { // A^(B&A) -> (B&A)^A
2109 I.swapOperands(); // Simplified below.
2110 std::swap(Op0, Op1);
2111 }
2112 }
2113 }
2114
2115 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2116 if (Op0I) {
2117 Value *A, *B;
2118 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2119 Op0I->hasOneUse()) {
2120 if (A == Op1) // (B|A)^B == (A|B)^B
2121 std::swap(A, B);
2122 if (B == Op1) // (A|B)^B == A & ~B
2123 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002124 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2125 Op0I->hasOneUse()){
2126 if (A == Op1) // (A&B)^A -> (B&A)^A
2127 std::swap(A, B);
2128 if (B == Op1 && // (B&A)^A == ~B & A
2129 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
2130 return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
2131 }
2132 }
2133 }
2134
2135 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
2136 if (Op0I && Op1I && Op0I->isShift() &&
2137 Op0I->getOpcode() == Op1I->getOpcode() &&
2138 Op0I->getOperand(1) == Op1I->getOperand(1) &&
2139 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
2140 Value *NewOp =
2141 Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2142 Op0I->getName());
2143 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2144 Op1I->getOperand(1));
2145 }
2146
2147 if (Op0I && Op1I) {
2148 Value *A, *B, *C, *D;
2149 // (A & B)^(A | B) -> A ^ B
2150 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2151 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2152 if ((A == C && B == D) || (A == D && B == C))
2153 return BinaryOperator::CreateXor(A, B);
2154 }
2155 // (A | B)^(A & B) -> A ^ B
2156 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2157 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2158 if ((A == C && B == D) || (A == D && B == C))
2159 return BinaryOperator::CreateXor(A, B);
2160 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002161 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +00002162
Chris Lattner0a8191e2010-01-05 07:50:36 +00002163 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2164 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2165 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2166 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2167 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2168 LHS->getOperand(1) == RHS->getOperand(0))
2169 LHS->swapOperands();
2170 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2171 LHS->getOperand(1) == RHS->getOperand(1)) {
2172 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2173 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2174 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +00002175 return ReplaceInstUsesWith(I,
2176 getICmpValue(isSigned, Code, Op0, Op1, Builder));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002177 }
2178 }
2179
2180 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2181 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2182 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2183 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2184 const Type *SrcTy = Op0C->getOperand(0)->getType();
Duncan Sands9dff9be2010-02-15 16:12:20 +00002185 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00002186 // Only do this if the casts both really cause code to be generated.
Chris Lattner4e8137d2010-02-11 06:26:33 +00002187 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2188 I.getType()) &&
2189 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2190 I.getType())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00002191 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2192 Op1C->getOperand(0), I.getName());
2193 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2194 }
2195 }
2196 }
2197
2198 return Changed ? &I : 0;
2199}