blob: 188d0d353922909d21c671f5cdaec167f59bb41c [file] [log] [blame]
Chris Lattnerc0f58002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner36663782003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattnercea57992005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000026#include "llvm/Function.h"
Misha Brukman2b3387a2004-07-29 17:05:13 +000027#include "llvm/Instructions.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000028#include "llvm/Pass.h"
Chris Lattnercea57992005-05-07 04:24:13 +000029#include "llvm/Type.h"
Chris Lattner9187f392005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattner1e506502005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000036using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000037
Chris Lattnerc0f58002002-05-08 22:19:27 +000038namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000039 Statistic<> NumLinear ("reassociate","Number of insts linearized");
40 Statistic<> NumChanged("reassociate","Number of insts reassociated");
41 Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Chris Lattner5847e5e2005-05-08 18:59:37 +000042 Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000043
Chris Lattner1e506502005-05-07 21:59:39 +000044 struct ValueEntry {
45 unsigned Rank;
46 Value *Op;
47 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
48 };
49 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
50 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
51 }
52
Chris Lattnerc0f58002002-05-08 22:19:27 +000053 class Reassociate : public FunctionPass {
Chris Lattner10073a92002-07-25 06:17:51 +000054 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner8ac196d2003-08-13 16:16:26 +000055 std::map<Value*, unsigned> ValueRankMap;
Chris Lattner1e506502005-05-07 21:59:39 +000056 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +000057 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000058 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000059
60 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +000061 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +000062 }
63 private:
Chris Lattner113f4f42002-06-25 16:13:24 +000064 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000065 unsigned getRank(Value *V);
Chris Lattner1e506502005-05-07 21:59:39 +000066 void RewriteExprTree(BinaryOperator *I, unsigned Idx,
67 std::vector<ValueEntry> &Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +000068 void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
Chris Lattner1e506502005-05-07 21:59:39 +000069 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
70 void LinearizeExpr(BinaryOperator *I);
71 void ReassociateBB(BasicBlock *BB);
Chris Lattnerc0f58002002-05-08 22:19:27 +000072 };
Chris Lattnerb28b6802002-07-23 18:06:35 +000073
Chris Lattnerc8b70922002-07-26 21:12:46 +000074 RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattnerc0f58002002-05-08 22:19:27 +000075}
76
Brian Gaeke960707c2003-11-11 22:41:34 +000077// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +000078FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +000079
Chris Lattner9f284e02005-05-08 20:57:04 +000080
81static bool isUnmovableInstruction(Instruction *I) {
82 if (I->getOpcode() == Instruction::PHI ||
83 I->getOpcode() == Instruction::Alloca ||
84 I->getOpcode() == Instruction::Load ||
85 I->getOpcode() == Instruction::Malloc ||
86 I->getOpcode() == Instruction::Invoke ||
87 I->getOpcode() == Instruction::Call ||
88 I->getOpcode() == Instruction::Div ||
89 I->getOpcode() == Instruction::Rem)
90 return true;
91 return false;
92}
93
Chris Lattner113f4f42002-06-25 16:13:24 +000094void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +000095 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +000096
97 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +000098 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner8ac196d2003-08-13 16:16:26 +000099 ValueRankMap[I] = ++i;
100
Chris Lattner113f4f42002-06-25 16:13:24 +0000101 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000102 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000103 E = RPOT.end(); I != E; ++I) {
104 BasicBlock *BB = *I;
105 unsigned BBRank = RankMap[BB] = ++i << 16;
106
107 // Walk the basic block, adding precomputed ranks for any instructions that
108 // we cannot move. This ensures that the ranks for these instructions are
109 // all different in the block.
110 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
111 if (isUnmovableInstruction(I))
112 ValueRankMap[I] = ++BBRank;
113 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000114}
115
116unsigned Reassociate::getRank(Value *V) {
Chris Lattner8ac196d2003-08-13 16:16:26 +0000117 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
118
Chris Lattnerf43e9742005-05-07 04:08:02 +0000119 Instruction *I = dyn_cast<Instruction>(V);
120 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattnerc0f58002002-05-08 22:19:27 +0000121
Chris Lattnerf43e9742005-05-07 04:08:02 +0000122 unsigned &CachedRank = ValueRankMap[I];
123 if (CachedRank) return CachedRank; // Rank already known?
124
125 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
126 // we can reassociate expressions for code motion! Since we do not recurse
127 // for PHI nodes, we cannot have infinite recursion here, because there
128 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000129 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
130 for (unsigned i = 0, e = I->getNumOperands();
131 i != e && Rank != MaxRank; ++i)
132 Rank = std::max(Rank, getRank(I->getOperand(i)));
133
Chris Lattner6e2086d2005-05-08 00:08:33 +0000134 // If this is a not or neg instruction, do not count it for rank. This
135 // assures us that X and ~X will have the same rank.
136 if (!I->getType()->isIntegral() ||
137 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
138 ++Rank;
139
Chris Lattner9f284e02005-05-08 20:57:04 +0000140 //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
141 //<< Rank << "\n");
Chris Lattnerf43e9742005-05-07 04:08:02 +0000142
Chris Lattner6e2086d2005-05-08 00:08:33 +0000143 return CachedRank = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000144}
145
Chris Lattner1e506502005-05-07 21:59:39 +0000146/// isReassociableOp - Return true if V is an instruction of the specified
147/// opcode and if it only has one use.
148static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
149 if (V->hasOneUse() && isa<Instruction>(V) &&
150 cast<Instruction>(V)->getOpcode() == Opcode)
151 return cast<BinaryOperator>(V);
152 return 0;
153}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000154
Chris Lattner1e506502005-05-07 21:59:39 +0000155// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
156// Note that if D is also part of the expression tree that we recurse to
157// linearize it as well. Besides that case, this does not recurse into A,B, or
158// C.
159void Reassociate::LinearizeExpr(BinaryOperator *I) {
160 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
161 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
162 assert(isReassociableOp(LHS, I->getOpcode()) &&
163 isReassociableOp(RHS, I->getOpcode()) &&
164 "Not an expression that needs linearization?");
Misha Brukmanb1c93172005-04-21 23:48:37 +0000165
Chris Lattner1e506502005-05-07 21:59:39 +0000166 DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000167
Chris Lattner1e506502005-05-07 21:59:39 +0000168 // Move the RHS instruction to live immediately before I, avoiding breaking
169 // dominator properties.
170 I->getParent()->getInstList().splice(I, RHS->getParent()->getInstList(), RHS);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000171
Chris Lattner1e506502005-05-07 21:59:39 +0000172 // Move operands around to do the linearization.
173 I->setOperand(1, RHS->getOperand(0));
174 RHS->setOperand(0, LHS);
175 I->setOperand(0, RHS);
176
177 ++NumLinear;
178 MadeChange = true;
179 DEBUG(std::cerr << "Linearized: " << *I);
180
181 // If D is part of this expression tree, tail recurse.
182 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
183 LinearizeExpr(I);
184}
185
186
187/// LinearizeExprTree - Given an associative binary expression tree, traverse
188/// all of the uses putting it into canonical form. This forces a left-linear
189/// form of the the expression (((a+b)+c)+d), and collects information about the
190/// rank of the non-tree operands.
191///
192/// This returns the rank of the RHS operand, which is known to be the highest
193/// rank value in the expression tree.
194///
195void Reassociate::LinearizeExprTree(BinaryOperator *I,
196 std::vector<ValueEntry> &Ops) {
197 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
198 unsigned Opcode = I->getOpcode();
199
200 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
201 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
202 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
203
204 if (!LHSBO) {
205 if (!RHSBO) {
206 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
207 // such, just remember these operands and their rank.
208 Ops.push_back(ValueEntry(getRank(LHS), LHS));
209 Ops.push_back(ValueEntry(getRank(RHS), RHS));
210 return;
211 } else {
212 // Turn X+(Y+Z) -> (Y+Z)+X
213 std::swap(LHSBO, RHSBO);
214 std::swap(LHS, RHS);
215 bool Success = !I->swapOperands();
216 assert(Success && "swapOperands failed");
217 MadeChange = true;
218 }
219 } else if (RHSBO) {
220 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
221 // part of the expression tree.
222 LinearizeExpr(I);
223 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
224 RHS = I->getOperand(1);
225 RHSBO = 0;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000226 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000227
Chris Lattner1e506502005-05-07 21:59:39 +0000228 // Okay, now we know that the LHS is a nested expression and that the RHS is
229 // not. Perform reassociation.
230 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattnerc0f58002002-05-08 22:19:27 +0000231
Chris Lattner1e506502005-05-07 21:59:39 +0000232 // Move LHS right before I to make sure that the tree expression dominates all
233 // values.
234 I->getParent()->getInstList().splice(I,
235 LHSBO->getParent()->getInstList(), LHSBO);
Chris Lattner98b3ecd2003-08-12 21:45:24 +0000236
Chris Lattner1e506502005-05-07 21:59:39 +0000237 // Linearize the expression tree on the LHS.
238 LinearizeExprTree(LHSBO, Ops);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000239
Chris Lattner1e506502005-05-07 21:59:39 +0000240 // Remember the RHS operand and its rank.
241 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000242}
243
Chris Lattner1e506502005-05-07 21:59:39 +0000244// RewriteExprTree - Now that the operands for this expression tree are
245// linearized and optimized, emit them in-order. This function is written to be
246// tail recursive.
247void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
248 std::vector<ValueEntry> &Ops) {
249 if (i+2 == Ops.size()) {
250 if (I->getOperand(0) != Ops[i].Op ||
251 I->getOperand(1) != Ops[i+1].Op) {
252 DEBUG(std::cerr << "RA: " << *I);
253 I->setOperand(0, Ops[i].Op);
254 I->setOperand(1, Ops[i+1].Op);
255 DEBUG(std::cerr << "TO: " << *I);
256 MadeChange = true;
257 ++NumChanged;
258 }
259 return;
260 }
261 assert(i+2 < Ops.size() && "Ops index out of range!");
262
263 if (I->getOperand(1) != Ops[i].Op) {
264 DEBUG(std::cerr << "RA: " << *I);
265 I->setOperand(1, Ops[i].Op);
266 DEBUG(std::cerr << "TO: " << *I);
267 MadeChange = true;
268 ++NumChanged;
269 }
270 RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
271}
272
273
Chris Lattnerc0f58002002-05-08 22:19:27 +0000274
Chris Lattner7bc532d2002-05-16 04:37:07 +0000275// NegateValue - Insert instructions before the instruction pointed to by BI,
276// that computes the negative version of the value specified. The negative
277// version of the value is returned, and BI is left pointing at the instruction
278// that should be processed next by the reassociation pass.
279//
Chris Lattnerf43e9742005-05-07 04:08:02 +0000280static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner7bc532d2002-05-16 04:37:07 +0000281 // We are trying to expose opportunity for reassociation. One of the things
282 // that we want to do to achieve this is to push a negation as deep into an
283 // expression chain as possible, to expose the add instructions. In practice,
284 // this means that we turn this:
285 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
286 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
287 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman7eb05a12003-08-18 14:43:39 +0000288 // we introduce tons of unnecessary negation instructions...
Chris Lattner7bc532d2002-05-16 04:37:07 +0000289 //
290 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000291 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000292 Value *RHS = NegateValue(I->getOperand(1), BI);
293 Value *LHS = NegateValue(I->getOperand(0), BI);
Chris Lattner7bc532d2002-05-16 04:37:07 +0000294
295 // We must actually insert a new add instruction here, because the neg
296 // instructions do not dominate the old add instruction in general. By
297 // adding it now, we are assured that the neg instructions we just
298 // inserted dominate the instruction we are about to insert after them.
299 //
Chris Lattner28a8d242002-09-10 17:04:02 +0000300 return BinaryOperator::create(Instruction::Add, LHS, RHS,
Chris Lattnerf43e9742005-05-07 04:08:02 +0000301 I->getName()+".neg", BI);
Chris Lattner7bc532d2002-05-16 04:37:07 +0000302 }
303
304 // Insert a 'neg' instruction that subtracts the value from zero to get the
305 // negation.
306 //
Chris Lattnerf43e9742005-05-07 04:08:02 +0000307 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
308}
309
Chris Lattnerf43e9742005-05-07 04:08:02 +0000310/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
311/// only used by an add, transform this into (X+(0-Y)) to promote better
312/// reassociation.
313static Instruction *BreakUpSubtract(Instruction *Sub) {
314 // Reject cases where it is pointless to do this.
315 if (Sub->getType()->isFloatingPoint())
316 return 0; // Floating point adds are not associative.
317
318 // Don't bother to break this up unless either the LHS is an associable add or
319 // if this is only used by one.
320 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
321 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
322 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
323 return 0;
324
325 // Convert a subtract into an add and a neg instruction... so that sub
326 // instructions can be commuted with other add instructions...
327 //
328 // Calculate the negative value of Operand 1 of the sub instruction...
329 // and set it as the RHS of the add instruction we just made...
330 //
331 std::string Name = Sub->getName();
332 Sub->setName("");
333 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
334 Instruction *New =
335 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
336
337 // Everyone now refers to the add instruction.
338 Sub->replaceAllUsesWith(New);
339 Sub->eraseFromParent();
340
341 DEBUG(std::cerr << "Negated: " << *New);
342 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000343}
344
Chris Lattnercea57992005-05-07 04:24:13 +0000345/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
346/// by one, change this into a multiply by a constant to assist with further
347/// reassociation.
348static Instruction *ConvertShiftToMul(Instruction *Shl) {
349 if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
350 !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
351 return 0;
352
353 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
354 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
355
356 std::string Name = Shl->getName(); Shl->setName("");
357 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
358 Name, Shl);
359 Shl->replaceAllUsesWith(Mul);
360 Shl->eraseFromParent();
361 return Mul;
362}
363
Chris Lattner5847e5e2005-05-08 18:59:37 +0000364// Scan backwards and forwards among values with the same rank as element i to
365// see if X exists. If X does not exist, return i.
366static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
367 Value *X) {
368 unsigned XRank = Ops[i].Rank;
369 unsigned e = Ops.size();
370 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
371 if (Ops[j].Op == X)
372 return j;
373 // Scan backwards
374 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
375 if (Ops[j].Op == X)
376 return j;
377 return i;
378}
379
Chris Lattnere1850b82005-05-08 00:19:31 +0000380void Reassociate::OptimizeExpression(unsigned Opcode,
381 std::vector<ValueEntry> &Ops) {
382 // Now that we have the linearized expression tree, try to optimize it.
383 // Start by folding any constants that we found.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000384 bool IterateOptimization = false;
Chris Lattnere1850b82005-05-08 00:19:31 +0000385 if (Ops.size() == 1) return;
386
387 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
388 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
389 Ops.pop_back();
390 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattner08582be2005-05-08 19:48:43 +0000391 OptimizeExpression(Opcode, Ops);
392 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000393 }
394
395 // Check for destructive annihilation due to a constant being used.
396 if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
397 switch (Opcode) {
398 default: break;
399 case Instruction::And:
400 if (CstVal->isNullValue()) { // ... & 0 -> 0
401 Ops[0].Op = CstVal;
402 Ops.erase(Ops.begin()+1, Ops.end());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000403 ++NumAnnihil;
404 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000405 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
406 Ops.pop_back();
407 }
408 break;
409 case Instruction::Mul:
410 if (CstVal->isNullValue()) { // ... * 0 -> 0
411 Ops[0].Op = CstVal;
412 Ops.erase(Ops.begin()+1, Ops.end());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000413 ++NumAnnihil;
414 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000415 } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
416 Ops.pop_back(); // ... * 1 -> ...
417 }
418 break;
419 case Instruction::Or:
420 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
421 Ops[0].Op = CstVal;
422 Ops.erase(Ops.begin()+1, Ops.end());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000423 ++NumAnnihil;
424 return;
Chris Lattnere1850b82005-05-08 00:19:31 +0000425 }
426 // FALLTHROUGH!
427 case Instruction::Add:
428 case Instruction::Xor:
429 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
430 Ops.pop_back();
431 break;
432 }
433
434 // Handle destructive annihilation do to identities between elements in the
435 // argument list here.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000436 switch (Opcode) {
437 default: break;
438 case Instruction::And:
439 case Instruction::Or:
440 case Instruction::Xor:
441 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
442 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
443 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
444 // First, check for X and ~X in the operand list.
445 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
446 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
447 unsigned FoundX = FindInOperandList(Ops, i, X);
448 if (FoundX != i) {
449 if (Opcode == Instruction::And) { // ...&X&~X = 0
450 Ops[0].Op = Constant::getNullValue(X->getType());
451 Ops.erase(Ops.begin()+1, Ops.end());
452 ++NumAnnihil;
453 return;
454 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
455 Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType());
456 Ops.erase(Ops.begin()+1, Ops.end());
457 ++NumAnnihil;
458 return;
459 }
460 }
461 }
462
463 // Next, check for duplicate pairs of values, which we assume are next to
464 // each other, due to our sorting criteria.
465 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
466 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
467 // Drop duplicate values.
468 Ops.erase(Ops.begin()+i);
469 --i; --e;
470 IterateOptimization = true;
471 ++NumAnnihil;
472 } else {
473 assert(Opcode == Instruction::Xor);
474 // ... X^X -> ...
475 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
476 i -= 2; e -= 2;
477 IterateOptimization = true;
478 ++NumAnnihil;
479 }
480 }
481 }
482 break;
483
484 case Instruction::Add:
485 // Scan the operand lists looking for X and -X pairs. If we find any, we
486 // can simplify the expression. X+-X == 0
487 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
488 // Check for X and -X in the operand list.
489 if (BinaryOperator::isNeg(Ops[i].Op)) {
490 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
491 unsigned FoundX = FindInOperandList(Ops, i, X);
492 if (FoundX != i) {
493 // Remove X and -X from the operand list.
494 if (Ops.size() == 2) {
495 Ops[0].Op = Constant::getNullValue(X->getType());
496 Ops.erase(Ops.begin()+1);
497 ++NumAnnihil;
498 return;
499 } else {
500 Ops.erase(Ops.begin()+i);
501 if (i < FoundX) --FoundX;
502 Ops.erase(Ops.begin()+FoundX);
503 IterateOptimization = true;
504 ++NumAnnihil;
505 }
506 }
507 }
508 }
509 break;
510 //case Instruction::Mul:
511 }
512
Chris Lattner08582be2005-05-08 19:48:43 +0000513 if (IterateOptimization)
514 OptimizeExpression(Opcode, Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +0000515}
516
Chris Lattner9187f392005-05-08 20:09:57 +0000517/// PrintOps - Print out the expression identified in the Ops list.
518///
519static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops,
520 BasicBlock *BB) {
521 Module *M = BB->getParent()->getParent();
522 std::cerr << Instruction::getOpcodeName(Opcode) << " "
523 << *Ops[0].Op->getType();
524 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
525 WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
526 << "," << Ops[i].Rank;
527}
Chris Lattner7bc532d2002-05-16 04:37:07 +0000528
Chris Lattnerf43e9742005-05-07 04:08:02 +0000529/// ReassociateBB - Inspect all of the instructions in this basic block,
530/// reassociating them as we go.
Chris Lattner1e506502005-05-07 21:59:39 +0000531void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000532 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000533 // If this is a subtract instruction which is not already in negate form,
534 // see if we can convert it to X+-Y.
535 if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI))
536 if (Instruction *NI = BreakUpSubtract(BI)) {
Chris Lattner1e506502005-05-07 21:59:39 +0000537 MadeChange = true;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000538 BI = NI;
539 }
Chris Lattnercea57992005-05-07 04:24:13 +0000540 if (BI->getOpcode() == Instruction::Shl &&
541 isa<ConstantInt>(BI->getOperand(1)))
542 if (Instruction *NI = ConvertShiftToMul(BI)) {
Chris Lattner1e506502005-05-07 21:59:39 +0000543 MadeChange = true;
Chris Lattnercea57992005-05-07 04:24:13 +0000544 BI = NI;
545 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000546
Chris Lattner1e506502005-05-07 21:59:39 +0000547 // If this instruction is a commutative binary operator, process it.
548 if (!BI->isAssociative()) continue;
549 BinaryOperator *I = cast<BinaryOperator>(BI);
550
551 // If this is an interior node of a reassociable tree, ignore it until we
552 // get to the root of the tree, to avoid N^2 analysis.
553 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
554 continue;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000555
Chris Lattner1e506502005-05-07 21:59:39 +0000556 // First, walk the expression tree, linearizing the tree, collecting
557 std::vector<ValueEntry> Ops;
558 LinearizeExprTree(I, Ops);
559
Chris Lattner9187f392005-05-08 20:09:57 +0000560 DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB);
561 std::cerr << "\n");
562
Chris Lattner1e506502005-05-07 21:59:39 +0000563 // Now that we have linearized the tree to a list and have gathered all of
564 // the operands and their ranks, sort the operands by their rank. Use a
565 // stable_sort so that values with equal ranks will have their relative
566 // positions maintained (and so the compiler is deterministic). Note that
567 // this sorts so that the highest ranking values end up at the beginning of
568 // the vector.
569 std::stable_sort(Ops.begin(), Ops.end());
570
Chris Lattnere1850b82005-05-08 00:19:31 +0000571 // OptimizeExpression - Now that we have the expression tree in a convenient
572 // sorted form, optimize it globally if possible.
573 OptimizeExpression(I->getOpcode(), Ops);
Chris Lattner1e506502005-05-07 21:59:39 +0000574
Chris Lattner9187f392005-05-08 20:09:57 +0000575 DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB);
576 std::cerr << "\n");
577
Chris Lattner1e506502005-05-07 21:59:39 +0000578 if (Ops.size() == 1) {
579 // This expression tree simplified to something that isn't a tree,
580 // eliminate it.
581 I->replaceAllUsesWith(Ops[0].Op);
582 } else {
583 // Now that we ordered and optimized the expressions, splat them back into
584 // the expression tree, removing any unneeded nodes.
585 RewriteExprTree(I, 0, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000586 }
587 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000588}
589
590
Chris Lattner113f4f42002-06-25 16:13:24 +0000591bool Reassociate::runOnFunction(Function &F) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000592 // Recalculate the rank map for F
593 BuildRankMap(F);
594
Chris Lattner1e506502005-05-07 21:59:39 +0000595 MadeChange = false;
Chris Lattner113f4f42002-06-25 16:13:24 +0000596 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattner1e506502005-05-07 21:59:39 +0000597 ReassociateBB(FI);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000598
599 // We are done with the rank map...
600 RankMap.clear();
Chris Lattner8ac196d2003-08-13 16:16:26 +0000601 ValueRankMap.clear();
Chris Lattner1e506502005-05-07 21:59:39 +0000602 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000603}
Brian Gaeke960707c2003-11-11 22:41:34 +0000604