Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 1 | //===--- RDFLiveness.cpp --------------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Computation of the liveness information from the data-flow graph. |
| 11 | // |
| 12 | // The main functionality of this code is to compute block live-in |
| 13 | // information. With the live-in information in place, the placement |
| 14 | // of kill flags can also be recalculated. |
| 15 | // |
| 16 | // The block live-in calculation is based on the ideas from the following |
| 17 | // publication: |
| 18 | // |
| 19 | // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. |
| 20 | // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." |
| 21 | // ACM Transactions on Architecture and Code Optimization, Association for |
| 22 | // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance |
| 23 | // and Embedded Architectures and Compilers", 8 (4), |
| 24 | // <10.1145/2086696.2086706>. <hal-00647369> |
| 25 | // |
| 26 | #include "RDFGraph.h" |
| 27 | #include "RDFLiveness.h" |
| 28 | #include "llvm/ADT/SetVector.h" |
| 29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 30 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
| 31 | #include "llvm/CodeGen/MachineDominators.h" |
| 32 | #include "llvm/CodeGen/MachineFunction.h" |
| 33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 34 | #include "llvm/Target/TargetRegisterInfo.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | using namespace rdf; |
| 38 | |
Benjamin Kramer | 922efd7 | 2016-05-27 10:06:40 +0000 | [diff] [blame] | 39 | namespace llvm { |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 40 | namespace rdf { |
| 41 | template<> |
| 42 | raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { |
| 43 | OS << '{'; |
| 44 | for (auto I : P.Obj) { |
| 45 | OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{'; |
| 46 | for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { |
| 47 | OS << Print<NodeId>(*J, P.G); |
| 48 | if (++J != E) |
| 49 | OS << ','; |
| 50 | } |
| 51 | OS << '}'; |
| 52 | } |
| 53 | OS << " }"; |
| 54 | return OS; |
| 55 | } |
Benjamin Kramer | 922efd7 | 2016-05-27 10:06:40 +0000 | [diff] [blame] | 56 | } // namespace rdf |
| 57 | } // namespace llvm |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 58 | |
| 59 | // The order in the returned sequence is the order of reaching defs in the |
| 60 | // upward traversal: the first def is the closest to the given reference RefA, |
| 61 | // the next one is further up, and so on. |
| 62 | // The list ends at a reaching phi def, or when the reference from RefA is |
| 63 | // covered by the defs in the list (see FullChain). |
| 64 | // This function provides two modes of operation: |
| 65 | // (1) Returning the sequence of reaching defs for a particular reference |
| 66 | // node. This sequence will terminate at the first phi node [1]. |
| 67 | // (2) Returning a partial sequence of reaching defs, where the final goal |
| 68 | // is to traverse past phi nodes to the actual defs arising from the code |
| 69 | // itself. |
| 70 | // In mode (2), the register reference for which the search was started |
| 71 | // may be different from the reference node RefA, for which this call was |
| 72 | // made, hence the argument RefRR, which holds the original register. |
| 73 | // Also, some definitions may have already been encountered in a previous |
| 74 | // call that will influence register covering. The register references |
| 75 | // already defined are passed in through DefRRs. |
| 76 | // In mode (1), the "continuation" considerations do not apply, and the |
| 77 | // RefRR is the same as the register in RefA, and the set DefRRs is empty. |
| 78 | // |
| 79 | // [1] It is possible for multiple phi nodes to be included in the returned |
| 80 | // sequence: |
| 81 | // SubA = phi ... |
| 82 | // SubB = phi ... |
| 83 | // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) |
| 84 | // However, these phi nodes are independent from one another in terms of |
| 85 | // the data-flow. |
| 86 | |
| 87 | NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, |
| 88 | NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) { |
| 89 | SetVector<NodeId> DefQ; |
| 90 | SetVector<NodeId> Owners; |
| 91 | |
| 92 | // The initial queue should not have reaching defs for shadows. The |
| 93 | // whole point of a shadow is that it will have a reaching def that |
| 94 | // is not aliased to the reaching defs of the related shadows. |
| 95 | NodeId Start = RefA.Id; |
| 96 | auto SNA = DFG.addr<RefNode*>(Start); |
| 97 | if (NodeId RD = SNA.Addr->getReachingDef()) |
| 98 | DefQ.insert(RD); |
| 99 | |
| 100 | // Collect all the reaching defs, going up until a phi node is encountered, |
| 101 | // or there are no more reaching defs. From this set, the actual set of |
| 102 | // reaching defs will be selected. |
| 103 | // The traversal upwards must go on until a covering def is encountered. |
| 104 | // It is possible that a collection of non-covering (individually) defs |
| 105 | // will be sufficient, but keep going until a covering one is found. |
| 106 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
| 107 | auto TA = DFG.addr<DefNode*>(DefQ[i]); |
| 108 | if (TA.Addr->getFlags() & NodeAttrs::PhiRef) |
| 109 | continue; |
| 110 | // Stop at the covering/overwriting def of the initial register reference. |
| 111 | RegisterRef RR = TA.Addr->getRegRef(); |
Krzysztof Parzyszek | a121872 | 2016-09-08 20:48:42 +0000 | [diff] [blame^] | 112 | if (!DFG.IsPreservingDef(TA) && RAI.covers(RR, RefRR)) |
| 113 | continue; |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 114 | // Get the next level of reaching defs. This will include multiple |
| 115 | // reaching defs for shadows. |
| 116 | for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) |
| 117 | if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) |
| 118 | DefQ.insert(RD); |
| 119 | } |
| 120 | |
| 121 | // Remove all non-phi defs that are not aliased to RefRR, and collect |
| 122 | // the owners of the remaining defs. |
| 123 | SetVector<NodeId> Defs; |
| 124 | for (auto N : DefQ) { |
| 125 | auto TA = DFG.addr<DefNode*>(N); |
| 126 | bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; |
| 127 | if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef())) |
| 128 | continue; |
| 129 | Defs.insert(TA.Id); |
| 130 | Owners.insert(TA.Addr->getOwner(DFG).Id); |
| 131 | } |
| 132 | |
| 133 | // Return the MachineBasicBlock containing a given instruction. |
| 134 | auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { |
| 135 | if (IA.Addr->getKind() == NodeAttrs::Stmt) |
| 136 | return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); |
| 137 | assert(IA.Addr->getKind() == NodeAttrs::Phi); |
| 138 | NodeAddr<PhiNode*> PA = IA; |
| 139 | NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); |
| 140 | return BA.Addr->getCode(); |
| 141 | }; |
| 142 | // Less(A,B) iff instruction A is further down in the dominator tree than B. |
| 143 | auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { |
| 144 | if (A == B) |
| 145 | return false; |
| 146 | auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B); |
| 147 | MachineBasicBlock *BA = Block(OA), *BB = Block(OB); |
| 148 | if (BA != BB) |
| 149 | return MDT.dominates(BB, BA); |
| 150 | // They are in the same block. |
| 151 | bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; |
| 152 | bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; |
| 153 | if (StmtA) { |
| 154 | if (!StmtB) // OB is a phi and phis dominate statements. |
| 155 | return true; |
| 156 | auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode(); |
| 157 | auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode(); |
| 158 | // The order must be linear, so tie-break such equalities. |
| 159 | if (CA == CB) |
| 160 | return A < B; |
| 161 | return MDT.dominates(CB, CA); |
| 162 | } else { |
| 163 | // OA is a phi. |
| 164 | if (StmtB) |
| 165 | return false; |
| 166 | // Both are phis. There is no ordering between phis (in terms of |
| 167 | // the data-flow), so tie-break this via node id comparison. |
| 168 | return A < B; |
| 169 | } |
| 170 | }; |
| 171 | |
| 172 | std::vector<NodeId> Tmp(Owners.begin(), Owners.end()); |
| 173 | std::sort(Tmp.begin(), Tmp.end(), Less); |
| 174 | |
| 175 | // The vector is a list of instructions, so that defs coming from |
| 176 | // the same instruction don't need to be artificially ordered. |
| 177 | // Then, when computing the initial segment, and iterating over an |
| 178 | // instruction, pick the defs that contribute to the covering (i.e. is |
| 179 | // not covered by previously added defs). Check the defs individually, |
| 180 | // i.e. first check each def if is covered or not (without adding them |
| 181 | // to the tracking set), and then add all the selected ones. |
| 182 | |
| 183 | // The reason for this is this example: |
| 184 | // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). |
| 185 | // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be |
| 186 | // covered if we added A first, and A would be covered |
| 187 | // if we added B first. |
| 188 | |
| 189 | NodeList RDefs; |
| 190 | RegisterSet RRs = DefRRs; |
| 191 | |
| 192 | auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { |
| 193 | return TA.Addr->getKind() == NodeAttrs::Def && |
| 194 | Defs.count(TA.Id); |
| 195 | }; |
| 196 | for (auto T : Tmp) { |
| 197 | if (!FullChain && RAI.covers(RRs, RefRR)) |
| 198 | break; |
| 199 | auto TA = DFG.addr<InstrNode*>(T); |
| 200 | bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); |
| 201 | NodeList Ds; |
| 202 | for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { |
| 203 | auto QR = DA.Addr->getRegRef(); |
| 204 | // Add phi defs even if they are covered by subsequent defs. This is |
| 205 | // for cases where the reached use is not covered by any of the defs |
| 206 | // encountered so far: the phi def is needed to expose the liveness |
| 207 | // of that use to the entry of the block. |
| 208 | // Example: |
| 209 | // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. |
| 210 | // d2<R3>(d1,,u3), ... |
| 211 | // ..., u3<D1>(d2) This use needs to be live on entry. |
| 212 | if (FullChain || IsPhi || !RAI.covers(RRs, QR)) |
| 213 | Ds.push_back(DA); |
| 214 | } |
| 215 | RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); |
| 216 | for (NodeAddr<DefNode*> DA : Ds) { |
| 217 | // When collecting a full chain of definitions, do not consider phi |
| 218 | // defs to actually define a register. |
| 219 | uint16_t Flags = DA.Addr->getFlags(); |
| 220 | if (!FullChain || !(Flags & NodeAttrs::PhiRef)) |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 221 | if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 222 | RRs.insert(DA.Addr->getRegRef()); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | return RDefs; |
| 227 | } |
| 228 | |
| 229 | |
| 230 | static const RegisterSet NoRegs; |
| 231 | |
| 232 | NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) { |
| 233 | return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs); |
| 234 | } |
| 235 | |
| 236 | |
Krzysztof Parzyszek | f5cbac9 | 2016-04-29 15:49:13 +0000 | [diff] [blame] | 237 | NodeSet Liveness::getAllReachingDefsRec(RegisterRef RefRR, |
| 238 | NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs) { |
| 239 | // Collect all defined registers. Do not consider phis to be defining |
| 240 | // anything, only collect "real" definitions. |
| 241 | RegisterSet DefRRs; |
| 242 | for (const auto D : Defs) { |
| 243 | const auto DA = DFG.addr<const DefNode*>(D); |
| 244 | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
| 245 | DefRRs.insert(DA.Addr->getRegRef()); |
| 246 | } |
| 247 | |
| 248 | auto RDs = getAllReachingDefs(RefRR, RefA, true, DefRRs); |
| 249 | if (RDs.empty()) |
| 250 | return Defs; |
| 251 | |
| 252 | // Make a copy of the preexisting definitions and add the newly found ones. |
| 253 | NodeSet TmpDefs = Defs; |
| 254 | for (auto R : RDs) |
| 255 | TmpDefs.insert(R.Id); |
| 256 | |
| 257 | NodeSet Result = Defs; |
| 258 | |
| 259 | for (NodeAddr<DefNode*> DA : RDs) { |
| 260 | Result.insert(DA.Id); |
| 261 | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
| 262 | continue; |
| 263 | NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG); |
| 264 | if (Visited.count(PA.Id)) |
| 265 | continue; |
| 266 | Visited.insert(PA.Id); |
| 267 | // Go over all phi uses and get the reaching defs for each use. |
| 268 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 269 | const auto &T = getAllReachingDefsRec(RefRR, U, Visited, TmpDefs); |
| 270 | Result.insert(T.begin(), T.end()); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | return Result; |
| 275 | } |
| 276 | |
| 277 | |
| 278 | NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, |
| 279 | NodeAddr<DefNode*> DefA, const RegisterSet &DefRRs) { |
| 280 | NodeSet Uses; |
| 281 | |
| 282 | // If the original register is already covered by all the intervening |
| 283 | // defs, no more uses can be reached. |
| 284 | if (RAI.covers(DefRRs, RefRR)) |
| 285 | return Uses; |
| 286 | |
| 287 | // Add all directly reached uses. |
| 288 | NodeId U = DefA.Addr->getReachedUse(); |
| 289 | while (U != 0) { |
| 290 | auto UA = DFG.addr<UseNode*>(U); |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 291 | if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { |
| 292 | auto UR = UA.Addr->getRegRef(); |
| 293 | if (RAI.alias(RefRR, UR) && !RAI.covers(DefRRs, UR)) |
| 294 | Uses.insert(U); |
| 295 | } |
Krzysztof Parzyszek | f5cbac9 | 2016-04-29 15:49:13 +0000 | [diff] [blame] | 296 | U = UA.Addr->getSibling(); |
| 297 | } |
| 298 | |
| 299 | // Traverse all reached defs. |
| 300 | for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { |
| 301 | auto DA = DFG.addr<DefNode*>(D); |
| 302 | NextD = DA.Addr->getSibling(); |
| 303 | auto DR = DA.Addr->getRegRef(); |
| 304 | // If this def is already covered, it cannot reach anything new. |
| 305 | // Similarly, skip it if it is not aliased to the interesting register. |
| 306 | if (RAI.covers(DefRRs, DR) || !RAI.alias(RefRR, DR)) |
| 307 | continue; |
| 308 | NodeSet T; |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 309 | if (DFG.IsPreservingDef(DA)) { |
Krzysztof Parzyszek | f5cbac9 | 2016-04-29 15:49:13 +0000 | [diff] [blame] | 310 | // If it is a preserving def, do not update the set of intervening defs. |
| 311 | T = getAllReachedUses(RefRR, DA, DefRRs); |
| 312 | } else { |
| 313 | RegisterSet NewDefRRs = DefRRs; |
| 314 | NewDefRRs.insert(DR); |
| 315 | T = getAllReachedUses(RefRR, DA, NewDefRRs); |
| 316 | } |
| 317 | Uses.insert(T.begin(), T.end()); |
| 318 | } |
| 319 | return Uses; |
| 320 | } |
| 321 | |
| 322 | |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 323 | void Liveness::computePhiInfo() { |
Krzysztof Parzyszek | f5cbac9 | 2016-04-29 15:49:13 +0000 | [diff] [blame] | 324 | RealUseMap.clear(); |
| 325 | |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 326 | NodeList Phis; |
| 327 | NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| 328 | auto Blocks = FA.Addr->members(DFG); |
| 329 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 330 | auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| 331 | Phis.insert(Phis.end(), Ps.begin(), Ps.end()); |
| 332 | } |
| 333 | |
| 334 | // phi use -> (map: reaching phi -> set of registers defined in between) |
| 335 | std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp; |
| 336 | std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. |
| 337 | |
| 338 | // Go over all phis. |
| 339 | for (NodeAddr<PhiNode*> PhiA : Phis) { |
| 340 | // Go over all defs and collect the reached uses that are non-phi uses |
| 341 | // (i.e. the "real uses"). |
| 342 | auto &RealUses = RealUseMap[PhiA.Id]; |
| 343 | auto PhiRefs = PhiA.Addr->members(DFG); |
| 344 | |
| 345 | // Have a work queue of defs whose reached uses need to be found. |
| 346 | // For each def, add to the queue all reached (non-phi) defs. |
| 347 | SetVector<NodeId> DefQ; |
| 348 | NodeSet PhiDefs; |
| 349 | for (auto R : PhiRefs) { |
| 350 | if (!DFG.IsRef<NodeAttrs::Def>(R)) |
| 351 | continue; |
| 352 | DefQ.insert(R.Id); |
| 353 | PhiDefs.insert(R.Id); |
| 354 | } |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 355 | |
| 356 | // Collect the super-set of all possible reached uses. This set will |
| 357 | // contain all uses reached from this phi, either directly from the |
| 358 | // phi defs, or (recursively) via non-phi defs reached by the phi defs. |
| 359 | // This set of uses will later be trimmed to only contain these uses that |
| 360 | // are actually reached by the phi defs. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 361 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
| 362 | NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 363 | // Visit all reached uses. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 364 | NodeId UN = DA.Addr->getReachedUse(); |
| 365 | while (UN != 0) { |
| 366 | NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 367 | uint16_t F = A.Addr->getFlags(); |
| 368 | if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 369 | RealUses[getRestrictedRegRef(A)].insert(A.Id); |
| 370 | UN = A.Addr->getSibling(); |
| 371 | } |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 372 | // Visit all reached defs, and add them to the queue. These defs may |
| 373 | // override some of the uses collected here, but that will be handled |
| 374 | // later. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 375 | NodeId DN = DA.Addr->getReachedDef(); |
| 376 | while (DN != 0) { |
| 377 | NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); |
| 378 | for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { |
| 379 | uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); |
| 380 | // Must traverse the reached-def chain. Consider: |
| 381 | // def(D0) -> def(R0) -> def(R0) -> use(D0) |
| 382 | // The reachable use of D0 passes through a def of R0. |
| 383 | if (!(Flags & NodeAttrs::PhiRef)) |
| 384 | DefQ.insert(T.Id); |
| 385 | } |
| 386 | DN = A.Addr->getSibling(); |
| 387 | } |
| 388 | } |
| 389 | // Filter out these uses that appear to be reachable, but really |
| 390 | // are not. For example: |
| 391 | // |
| 392 | // R1:0 = d1 |
| 393 | // = R1:0 u2 Reached by d1. |
| 394 | // R0 = d3 |
| 395 | // = R1:0 u4 Still reached by d1: indirectly through |
| 396 | // the def d3. |
| 397 | // R1 = d5 |
| 398 | // = R1:0 u6 Not reached by d1 (covered collectively |
| 399 | // by d3 and d5), but following reached |
| 400 | // defs and uses from d1 will lead here. |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 401 | auto InPhiDefs = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool { |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 402 | return PhiDefs.count(DA.Id); |
| 403 | }; |
| 404 | for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { |
| 405 | // For each reached register UI->first, there is a set UI->second, of |
| 406 | // uses of it. For each such use, check if it is reached by this phi, |
| 407 | // i.e. check if the set of its reaching uses intersects the set of |
| 408 | // this phi's defs. |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 409 | NodeSet &Uses = UI->second; |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 410 | for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { |
| 411 | auto UA = DFG.addr<UseNode*>(*I); |
| 412 | NodeList RDs = getAllReachingDefs(UI->first, UA); |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 413 | if (any_of(RDs, InPhiDefs)) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 414 | ++I; |
| 415 | else |
| 416 | I = Uses.erase(I); |
| 417 | } |
| 418 | if (Uses.empty()) |
| 419 | UI = RealUses.erase(UI); |
| 420 | else |
| 421 | ++UI; |
| 422 | } |
| 423 | |
| 424 | // If this phi reaches some "real" uses, add it to the queue for upward |
| 425 | // propagation. |
| 426 | if (!RealUses.empty()) |
| 427 | PhiUQ.push_back(PhiA.Id); |
| 428 | |
| 429 | // Go over all phi uses and check if the reaching def is another phi. |
| 430 | // Collect the phis that are among the reaching defs of these uses. |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 431 | // While traversing the list of reaching defs for each phi use, accumulate |
| 432 | // the set of registers defined between this phi (PhiA) and the owner phi |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 433 | // of the reaching def. |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 434 | NodeSet SeenUses; |
Krzysztof Parzyszek | a121872 | 2016-09-08 20:48:42 +0000 | [diff] [blame^] | 435 | |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 436 | for (auto I : PhiRefs) { |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 437 | if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id)) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 438 | continue; |
| 439 | NodeAddr<UseNode*> UA = I; |
Krzysztof Parzyszek | a121872 | 2016-09-08 20:48:42 +0000 | [diff] [blame^] | 440 | |
| 441 | // Given a phi use UA, traverse all related phi uses (including UA). |
| 442 | // The related phi uses may reach different phi nodes or may reach the |
| 443 | // same phi node. If multiple uses reach the same phi P, the intervening |
| 444 | // defs must be accumulated for all such uses. To group all such uses |
| 445 | // into one set, map their node ids to the first use id that reaches P. |
| 446 | std::map<NodeId,NodeId> FirstUse; // Phi reached up -> first phi use. |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 447 | |
| 448 | for (NodeAddr<UseNode*> VA : DFG.getRelatedRefs(PhiA, UA)) { |
| 449 | SeenUses.insert(VA.Id); |
Krzysztof Parzyszek | a121872 | 2016-09-08 20:48:42 +0000 | [diff] [blame^] | 450 | RegisterSet DefRRs; |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 451 | for (NodeAddr<DefNode*> DA : getAllReachingDefs(VA)) { |
| 452 | if (DA.Addr->getFlags() & NodeAttrs::PhiRef) { |
Krzysztof Parzyszek | a121872 | 2016-09-08 20:48:42 +0000 | [diff] [blame^] | 453 | NodeId RP = DA.Addr->getOwner(DFG).Id; |
| 454 | NodeId FU = FirstUse.insert({RP,VA.Id}).first->second; |
| 455 | PhiUp[FU][RP].insert(DefRRs.begin(), DefRRs.end()); |
| 456 | } |
| 457 | DefRRs.insert(DA.Addr->getRegRef()); |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 458 | } |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 459 | } |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | if (Trace) { |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 464 | dbgs() << "Phi-up-to-phi map with intervening defs:\n"; |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 465 | for (auto I : PhiUp) { |
| 466 | dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; |
| 467 | for (auto R : I.second) |
| 468 | dbgs() << ' ' << Print<NodeId>(R.first, DFG) |
| 469 | << Print<RegisterSet>(R.second, DFG); |
| 470 | dbgs() << " }\n"; |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | // Propagate the reached registers up in the phi chain. |
| 475 | // |
| 476 | // The following type of situation needs careful handling: |
| 477 | // |
| 478 | // phi d1<R1:0> (1) |
| 479 | // | |
| 480 | // ... d2<R1> |
| 481 | // | |
| 482 | // phi u3<R1:0> (2) |
| 483 | // | |
| 484 | // ... u4<R1> |
| 485 | // |
| 486 | // The phi node (2) defines a register pair R1:0, and reaches a "real" |
| 487 | // use u4 of just R1. The same phi node is also known to reach (upwards) |
| 488 | // the phi node (1). However, the use u4 is not reached by phi (1), |
| 489 | // because of the intervening definition d2 of R1. The data flow between |
| 490 | // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. |
| 491 | // |
| 492 | // When propagating uses up the phi chains, get the all reaching defs |
| 493 | // for a given phi use, and traverse the list until the propagated ref |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 494 | // is covered, or until reaching the final phi. Only assume that the |
| 495 | // reference reaches the phi in the latter case. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 496 | |
| 497 | for (unsigned i = 0; i < PhiUQ.size(); ++i) { |
| 498 | auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 499 | NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG); |
| 500 | RefMap &RUM = RealUseMap[PA.Id]; |
| 501 | |
| 502 | for (auto U : PUs) { |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 503 | NodeAddr<UseNode*> UA = U; |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 504 | std::map<NodeId,RegisterSet> &PUM = PhiUp[UA.Id]; |
| 505 | for (const std::pair<NodeId,RegisterSet> &P : PUM) { |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 506 | bool Changed = false; |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 507 | RegisterSet MidDefs = P.second; |
| 508 | |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 509 | // Collect the set UpReached of uses that are reached by the current |
| 510 | // phi PA, and are not covered by any intervening def between PA and |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 511 | // the upward phi P. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 512 | RegisterSet UpReached; |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 513 | for (const std::pair<RegisterRef,NodeSet> &T : RUM) { |
| 514 | RegisterRef R = T.first; |
| 515 | if (!isRestrictedToRef(PA, UA, R)) |
| 516 | R = getRestrictedRegRef(UA); |
| 517 | if (!RAI.covers(MidDefs, R)) |
| 518 | UpReached.insert(R); |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 519 | } |
| 520 | if (UpReached.empty()) |
| 521 | continue; |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 522 | // Update the set PRUs of real uses reached by the upward phi P with |
| 523 | // the actual set of uses (UpReached) that the P phi reaches. |
| 524 | RefMap &PRUs = RealUseMap[P.first]; |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 525 | for (auto R : UpReached) { |
| 526 | unsigned Z = PRUs[R].size(); |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 527 | PRUs[R].insert(RUM[R].begin(), RUM[R].end()); |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 528 | Changed |= (PRUs[R].size() != Z); |
| 529 | } |
| 530 | if (Changed) |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 531 | PhiUQ.push_back(P.first); |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 532 | } |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | if (Trace) { |
| 537 | dbgs() << "Real use map:\n"; |
| 538 | for (auto I : RealUseMap) { |
| 539 | dbgs() << "phi " << Print<NodeId>(I.first, DFG); |
| 540 | NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); |
| 541 | NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); |
| 542 | if (!Ds.empty()) { |
| 543 | RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(); |
| 544 | dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; |
| 545 | } else { |
| 546 | dbgs() << "<noreg>"; |
| 547 | } |
| 548 | dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; |
| 549 | } |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | |
| 554 | void Liveness::computeLiveIns() { |
| 555 | // Populate the node-to-block map. This speeds up the calculations |
| 556 | // significantly. |
| 557 | NBMap.clear(); |
| 558 | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { |
| 559 | MachineBasicBlock *BB = BA.Addr->getCode(); |
| 560 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { |
| 561 | for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) |
| 562 | NBMap.insert(std::make_pair(RA.Id, BB)); |
| 563 | NBMap.insert(std::make_pair(IA.Id, BB)); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | MachineFunction &MF = DFG.getMF(); |
| 568 | |
| 569 | // Compute IDF first, then the inverse. |
| 570 | decltype(IIDF) IDF; |
| 571 | for (auto &B : MF) { |
| 572 | auto F1 = MDF.find(&B); |
| 573 | if (F1 == MDF.end()) |
| 574 | continue; |
| 575 | SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); |
| 576 | for (unsigned i = 0; i < IDFB.size(); ++i) { |
| 577 | auto F2 = MDF.find(IDFB[i]); |
| 578 | if (F2 != MDF.end()) |
| 579 | IDFB.insert(F2->second.begin(), F2->second.end()); |
| 580 | } |
| 581 | // Add B to the IDF(B). This will put B in the IIDF(B). |
| 582 | IDFB.insert(&B); |
| 583 | IDF[&B].insert(IDFB.begin(), IDFB.end()); |
| 584 | } |
| 585 | |
| 586 | for (auto I : IDF) |
| 587 | for (auto S : I.second) |
| 588 | IIDF[S].insert(I.first); |
| 589 | |
| 590 | computePhiInfo(); |
| 591 | |
| 592 | NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| 593 | auto Blocks = FA.Addr->members(DFG); |
| 594 | |
| 595 | // Build the phi live-on-entry map. |
| 596 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 597 | MachineBasicBlock *MB = BA.Addr->getCode(); |
| 598 | auto &LON = PhiLON[MB]; |
| 599 | for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) |
| 600 | for (auto S : RealUseMap[P.Id]) |
| 601 | LON[S.first].insert(S.second.begin(), S.second.end()); |
| 602 | } |
| 603 | |
| 604 | if (Trace) { |
| 605 | dbgs() << "Phi live-on-entry map:\n"; |
| 606 | for (auto I : PhiLON) |
| 607 | dbgs() << "block #" << I.first->getNumber() << " -> " |
| 608 | << Print<RefMap>(I.second, DFG) << '\n'; |
| 609 | } |
| 610 | |
| 611 | // Build the phi live-on-exit map. Each phi node has some set of reached |
| 612 | // "real" uses. Propagate this set backwards into the block predecessors |
| 613 | // through the reaching defs of the corresponding phi uses. |
| 614 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 615 | auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| 616 | for (NodeAddr<PhiNode*> PA : Phis) { |
| 617 | auto &RUs = RealUseMap[PA.Id]; |
| 618 | if (RUs.empty()) |
| 619 | continue; |
| 620 | |
| 621 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 622 | NodeAddr<PhiUseNode*> UA = U; |
| 623 | if (UA.Addr->getReachingDef() == 0) |
| 624 | continue; |
| 625 | |
| 626 | // Mark all reached "real" uses of P as live on exit in the |
| 627 | // predecessor. |
| 628 | // Remap all the RUs so that they have a correct reaching def. |
| 629 | auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor()); |
| 630 | auto &LOX = PhiLOX[PrA.Addr->getCode()]; |
| 631 | for (auto R : RUs) { |
| 632 | RegisterRef RR = R.first; |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 633 | if (!isRestrictedToRef(PA, UA, RR)) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 634 | RR = getRestrictedRegRef(UA); |
| 635 | // The restricted ref may be different from the ref that was |
| 636 | // accessed in the "real use". This means that this phi use |
| 637 | // is not the one that carries this reference, so skip it. |
| 638 | if (!RAI.alias(R.first, RR)) |
| 639 | continue; |
| 640 | for (auto D : getAllReachingDefs(RR, UA)) |
| 641 | LOX[RR].insert(D.Id); |
| 642 | } |
| 643 | } // for U : phi uses |
| 644 | } // for P : Phis |
| 645 | } // for B : Blocks |
| 646 | |
| 647 | if (Trace) { |
| 648 | dbgs() << "Phi live-on-exit map:\n"; |
| 649 | for (auto I : PhiLOX) |
| 650 | dbgs() << "block #" << I.first->getNumber() << " -> " |
| 651 | << Print<RefMap>(I.second, DFG) << '\n'; |
| 652 | } |
| 653 | |
| 654 | RefMap LiveIn; |
| 655 | traverse(&MF.front(), LiveIn); |
| 656 | |
| 657 | // Add function live-ins to the live-in set of the function entry block. |
| 658 | auto &EntryIn = LiveMap[&MF.front()]; |
| 659 | for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) |
| 660 | EntryIn.insert({I->first,0}); |
| 661 | |
| 662 | if (Trace) { |
| 663 | // Dump the liveness map |
| 664 | for (auto &B : MF) { |
| 665 | BitVector LV(TRI.getNumRegs()); |
| 666 | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
| 667 | LV.set(I->PhysReg); |
| 668 | dbgs() << "BB#" << B.getNumber() << "\t rec = {"; |
| 669 | for (int x = LV.find_first(); x >= 0; x = LV.find_next(x)) |
| 670 | dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG); |
| 671 | dbgs() << " }\n"; |
| 672 | dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n'; |
| 673 | } |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | |
| 678 | void Liveness::resetLiveIns() { |
| 679 | for (auto &B : DFG.getMF()) { |
| 680 | // Remove all live-ins. |
| 681 | std::vector<unsigned> T; |
| 682 | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
| 683 | T.push_back(I->PhysReg); |
| 684 | for (auto I : T) |
| 685 | B.removeLiveIn(I); |
| 686 | // Add the newly computed live-ins. |
| 687 | auto &LiveIns = LiveMap[&B]; |
| 688 | for (auto I : LiveIns) { |
| 689 | assert(I.Sub == 0); |
| 690 | B.addLiveIn(I.Reg); |
| 691 | } |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | |
| 696 | void Liveness::resetKills() { |
| 697 | for (auto &B : DFG.getMF()) |
| 698 | resetKills(&B); |
| 699 | } |
| 700 | |
| 701 | |
| 702 | void Liveness::resetKills(MachineBasicBlock *B) { |
| 703 | auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void { |
| 704 | for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I) |
| 705 | LV.set(I->PhysReg); |
| 706 | }; |
| 707 | |
| 708 | BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); |
| 709 | CopyLiveIns(B, LiveIn); |
| 710 | for (auto SI : B->successors()) |
| 711 | CopyLiveIns(SI, Live); |
| 712 | |
| 713 | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { |
| 714 | MachineInstr *MI = &*I; |
| 715 | if (MI->isDebugValue()) |
| 716 | continue; |
| 717 | |
| 718 | MI->clearKillInfo(); |
| 719 | for (auto &Op : MI->operands()) { |
Krzysztof Parzyszek | f69ff71 | 2016-06-02 14:30:09 +0000 | [diff] [blame] | 720 | // An implicit def of a super-register may not necessarily start a |
| 721 | // live range of it, since an implicit use could be used to keep parts |
| 722 | // of it live. Instead of analyzing the implicit operands, ignore |
| 723 | // implicit defs. |
| 724 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 725 | continue; |
| 726 | unsigned R = Op.getReg(); |
| 727 | if (!TargetRegisterInfo::isPhysicalRegister(R)) |
| 728 | continue; |
| 729 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| 730 | Live.reset(*SR); |
| 731 | } |
| 732 | for (auto &Op : MI->operands()) { |
| 733 | if (!Op.isReg() || !Op.isUse()) |
| 734 | continue; |
| 735 | unsigned R = Op.getReg(); |
| 736 | if (!TargetRegisterInfo::isPhysicalRegister(R)) |
| 737 | continue; |
| 738 | bool IsLive = false; |
Krzysztof Parzyszek | 16331f0 | 2016-04-20 14:33:23 +0000 | [diff] [blame] | 739 | for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { |
| 740 | if (!Live[*AR]) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 741 | continue; |
| 742 | IsLive = true; |
| 743 | break; |
| 744 | } |
| 745 | if (IsLive) |
| 746 | continue; |
| 747 | Op.setIsKill(true); |
| 748 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| 749 | Live.set(*SR); |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | |
| 755 | // For shadows, determine if RR is aliased to a reaching def of any other |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 756 | // shadow associated with RA. The register ref on RA will be "larger" than |
| 757 | // each individual reaching def, and to determine the data-flow between defs |
| 758 | // and uses of RR it may be necessary to visit all shadows. If RR is not |
| 759 | // aliased to the reaching def of any other shadow, then visiting only RA |
| 760 | // is sufficient. In that sense, the data flow of RR would be restricted to |
| 761 | // the reference RA. |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 762 | // For non-shadows, this function returns "true". |
Krzysztof Parzyszek | 2db0c8b | 2016-09-07 20:37:05 +0000 | [diff] [blame] | 763 | bool Liveness::isRestrictedToRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 764 | RegisterRef RR) const { |
| 765 | NodeId Start = RA.Id; |
| 766 | for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA); |
| 767 | TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) { |
| 768 | NodeId RD = TA.Addr->getReachingDef(); |
| 769 | if (RD == 0) |
| 770 | continue; |
| 771 | if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef())) |
| 772 | return false; |
| 773 | } |
| 774 | return true; |
| 775 | } |
| 776 | |
| 777 | |
| 778 | RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const { |
| 779 | assert(DFG.IsRef<NodeAttrs::Use>(RA)); |
| 780 | if (RA.Addr->getFlags() & NodeAttrs::Shadow) { |
| 781 | NodeId RD = RA.Addr->getReachingDef(); |
| 782 | assert(RD); |
| 783 | RA = DFG.addr<DefNode*>(RD); |
| 784 | } |
| 785 | return RA.Addr->getRegRef(); |
| 786 | } |
| 787 | |
| 788 | |
| 789 | unsigned Liveness::getPhysReg(RegisterRef RR) const { |
| 790 | if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg)) |
| 791 | return 0; |
| 792 | return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg; |
| 793 | } |
| 794 | |
| 795 | |
| 796 | // Helper function to obtain the basic block containing the reaching def |
| 797 | // of the given use. |
| 798 | MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { |
| 799 | auto F = NBMap.find(RN); |
| 800 | if (F != NBMap.end()) |
| 801 | return F->second; |
| 802 | llvm_unreachable("Node id not in map"); |
| 803 | } |
| 804 | |
| 805 | |
| 806 | void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { |
| 807 | // The LiveIn map, for each (physical) register, contains the set of live |
| 808 | // reaching defs of that register that are live on entry to the associated |
| 809 | // block. |
| 810 | |
| 811 | // The summary of the traversal algorithm: |
| 812 | // |
| 813 | // R is live-in in B, if there exists a U(R), such that rdef(R) dom B |
| 814 | // and (U \in IDF(B) or B dom U). |
| 815 | // |
| 816 | // for (C : children) { |
| 817 | // LU = {} |
| 818 | // traverse(C, LU) |
| 819 | // LiveUses += LU |
| 820 | // } |
| 821 | // |
| 822 | // LiveUses -= Defs(B); |
| 823 | // LiveUses += UpwardExposedUses(B); |
| 824 | // for (C : IIDF[B]) |
| 825 | // for (U : LiveUses) |
| 826 | // if (Rdef(U) dom C) |
| 827 | // C.addLiveIn(U) |
| 828 | // |
| 829 | |
| 830 | // Go up the dominator tree (depth-first). |
| 831 | MachineDomTreeNode *N = MDT.getNode(B); |
| 832 | for (auto I : *N) { |
| 833 | RefMap L; |
| 834 | MachineBasicBlock *SB = I->getBlock(); |
| 835 | traverse(SB, L); |
| 836 | |
| 837 | for (auto S : L) |
| 838 | LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| 839 | } |
| 840 | |
| 841 | if (Trace) { |
| 842 | dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber() |
| 843 | << " after recursion into"; |
| 844 | for (auto I : *N) |
| 845 | dbgs() << ' ' << I->getBlock()->getNumber(); |
| 846 | dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG); |
| 847 | dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 848 | } |
| 849 | |
| 850 | // Add phi uses that are live on exit from this block. |
| 851 | RefMap &PUs = PhiLOX[B]; |
| 852 | for (auto S : PUs) |
| 853 | LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| 854 | |
| 855 | if (Trace) { |
| 856 | dbgs() << "after LOX\n"; |
| 857 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 858 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 859 | } |
| 860 | |
| 861 | // Stop tracking all uses defined in this block: erase those records |
| 862 | // where the reaching def is located in B and which cover all reached |
| 863 | // uses. |
| 864 | auto Copy = LiveIn; |
| 865 | LiveIn.clear(); |
| 866 | |
| 867 | for (auto I : Copy) { |
| 868 | auto &Defs = LiveIn[I.first]; |
| 869 | NodeSet Rest; |
| 870 | for (auto R : I.second) { |
| 871 | auto DA = DFG.addr<DefNode*>(R); |
| 872 | RegisterRef DDR = DA.Addr->getRegRef(); |
| 873 | NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); |
| 874 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| 875 | // Defs from a different block need to be preserved. Defs from this |
| 876 | // block will need to be processed further, except for phi defs, the |
| 877 | // liveness of which is handled through the PhiLON/PhiLOX maps. |
| 878 | if (B != BA.Addr->getCode()) |
| 879 | Defs.insert(R); |
| 880 | else { |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 881 | bool IsPreserving = DFG.IsPreservingDef(DA); |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 882 | if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) { |
| 883 | bool Covering = RAI.covers(DDR, I.first); |
| 884 | NodeId U = DA.Addr->getReachedUse(); |
| 885 | while (U && Covering) { |
| 886 | auto DUA = DFG.addr<UseNode*>(U); |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 887 | if (!(DUA.Addr->getFlags() & NodeAttrs::Undef)) { |
| 888 | RegisterRef Q = DUA.Addr->getRegRef(); |
| 889 | Covering = RAI.covers(DA.Addr->getRegRef(), Q); |
| 890 | } |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 891 | U = DUA.Addr->getSibling(); |
| 892 | } |
| 893 | if (!Covering) |
| 894 | Rest.insert(R); |
| 895 | } |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | // Non-covering defs from B. |
| 900 | for (auto R : Rest) { |
| 901 | auto DA = DFG.addr<DefNode*>(R); |
| 902 | RegisterRef DRR = DA.Addr->getRegRef(); |
| 903 | RegisterSet RRs; |
| 904 | for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { |
| 905 | NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); |
| 906 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| 907 | // Preserving defs do not count towards covering. |
| 908 | if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) |
| 909 | RRs.insert(TA.Addr->getRegRef()); |
| 910 | if (BA.Addr->getCode() == B) |
| 911 | continue; |
| 912 | if (RAI.covers(RRs, DRR)) |
| 913 | break; |
| 914 | Defs.insert(TA.Id); |
| 915 | } |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | emptify(LiveIn); |
| 920 | |
| 921 | if (Trace) { |
| 922 | dbgs() << "after defs in block\n"; |
| 923 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 924 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 925 | } |
| 926 | |
| 927 | // Scan the block for upward-exposed uses and add them to the tracking set. |
| 928 | for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { |
| 929 | NodeAddr<InstrNode*> IA = I; |
| 930 | if (IA.Addr->getKind() != NodeAttrs::Stmt) |
| 931 | continue; |
| 932 | for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { |
| 933 | RegisterRef RR = UA.Addr->getRegRef(); |
Krzysztof Parzyszek | 1ff9952 | 2016-09-07 20:10:56 +0000 | [diff] [blame] | 934 | if (UA.Addr->getFlags() & NodeAttrs::Undef) |
| 935 | continue; |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 936 | for (auto D : getAllReachingDefs(UA)) |
| 937 | if (getBlockWithRef(D.Id) != B) |
| 938 | LiveIn[RR].insert(D.Id); |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | if (Trace) { |
| 943 | dbgs() << "after uses in block\n"; |
| 944 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 945 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 946 | } |
| 947 | |
| 948 | // Phi uses should not be propagated up the dominator tree, since they |
| 949 | // are not dominated by their corresponding reaching defs. |
| 950 | auto &Local = LiveMap[B]; |
| 951 | auto &LON = PhiLON[B]; |
| 952 | for (auto R : LON) |
| 953 | Local.insert(R.first); |
| 954 | |
| 955 | if (Trace) { |
| 956 | dbgs() << "after phi uses in block\n"; |
| 957 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 958 | dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n'; |
| 959 | } |
| 960 | |
| 961 | for (auto C : IIDF[B]) { |
| 962 | auto &LiveC = LiveMap[C]; |
| 963 | for (auto S : LiveIn) |
| 964 | for (auto R : S.second) |
| 965 | if (MDT.properlyDominates(getBlockWithRef(R), C)) |
| 966 | LiveC.insert(S.first); |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | |
| 971 | void Liveness::emptify(RefMap &M) { |
| 972 | for (auto I = M.begin(), E = M.end(); I != E; ) |
| 973 | I = I->second.empty() ? M.erase(I) : std::next(I); |
| 974 | } |
| 975 | |