Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 1 | //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements semantic analysis for C++ constraints and concepts. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 14 | #include "clang/Sema/SemaConcept.h" |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 15 | #include "clang/Sema/Sema.h" |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 16 | #include "clang/Sema/SemaInternal.h" |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 17 | #include "clang/Sema/SemaDiagnostic.h" |
| 18 | #include "clang/Sema/TemplateDeduction.h" |
| 19 | #include "clang/Sema/Template.h" |
Saar Raz | a0f50d7 | 2020-01-18 09:11:43 +0200 | [diff] [blame] | 20 | #include "clang/Sema/Overload.h" |
| 21 | #include "clang/Sema/Initialization.h" |
| 22 | #include "clang/Sema/SemaInternal.h" |
| 23 | #include "clang/AST/ExprConcepts.h" |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 24 | #include "clang/AST/RecursiveASTVisitor.h" |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 25 | #include "clang/Basic/OperatorPrecedence.h" |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 26 | #include "llvm/ADT/DenseMap.h" |
| 27 | #include "llvm/ADT/PointerUnion.h" |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 28 | using namespace clang; |
| 29 | using namespace sema; |
| 30 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 31 | bool |
| 32 | Sema::CheckConstraintExpression(Expr *ConstraintExpression, Token NextToken, |
| 33 | bool *PossibleNonPrimary, |
| 34 | bool IsTrailingRequiresClause) { |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 35 | // C++2a [temp.constr.atomic]p1 |
| 36 | // ..E shall be a constant expression of type bool. |
| 37 | |
| 38 | ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts(); |
| 39 | |
| 40 | if (auto *BinOp = dyn_cast<BinaryOperator>(ConstraintExpression)) { |
| 41 | if (BinOp->getOpcode() == BO_LAnd || BinOp->getOpcode() == BO_LOr) |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 42 | return CheckConstraintExpression(BinOp->getLHS(), NextToken, |
| 43 | PossibleNonPrimary) && |
| 44 | CheckConstraintExpression(BinOp->getRHS(), NextToken, |
| 45 | PossibleNonPrimary); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 46 | } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression)) |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 47 | return CheckConstraintExpression(C->getSubExpr(), NextToken, |
| 48 | PossibleNonPrimary); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 49 | |
| 50 | QualType Type = ConstraintExpression->getType(); |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 51 | |
| 52 | auto CheckForNonPrimary = [&] { |
| 53 | if (PossibleNonPrimary) |
| 54 | *PossibleNonPrimary = |
| 55 | // We have the following case: |
| 56 | // template<typename> requires func(0) struct S { }; |
| 57 | // The user probably isn't aware of the parentheses required around |
| 58 | // the function call, and we're only going to parse 'func' as the |
| 59 | // primary-expression, and complain that it is of non-bool type. |
| 60 | (NextToken.is(tok::l_paren) && |
| 61 | (IsTrailingRequiresClause || |
| 62 | (Type->isDependentType() && |
| 63 | IsDependentFunctionNameExpr(ConstraintExpression)) || |
| 64 | Type->isFunctionType() || |
| 65 | Type->isSpecificBuiltinType(BuiltinType::Overload))) || |
| 66 | // We have the following case: |
| 67 | // template<typename T> requires size_<T> == 0 struct S { }; |
| 68 | // The user probably isn't aware of the parentheses required around |
| 69 | // the binary operator, and we're only going to parse 'func' as the |
| 70 | // first operand, and complain that it is of non-bool type. |
| 71 | getBinOpPrecedence(NextToken.getKind(), |
| 72 | /*GreaterThanIsOperator=*/true, |
| 73 | getLangOpts().CPlusPlus11) > prec::LogicalAnd; |
| 74 | }; |
| 75 | |
| 76 | // An atomic constraint! |
| 77 | if (ConstraintExpression->isTypeDependent()) { |
| 78 | CheckForNonPrimary(); |
| 79 | return true; |
| 80 | } |
| 81 | |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 82 | if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) { |
| 83 | Diag(ConstraintExpression->getExprLoc(), |
| 84 | diag::err_non_bool_atomic_constraint) << Type |
| 85 | << ConstraintExpression->getSourceRange(); |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 86 | CheckForNonPrimary(); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 87 | return false; |
| 88 | } |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 89 | |
| 90 | if (PossibleNonPrimary) |
| 91 | *PossibleNonPrimary = false; |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 92 | return true; |
| 93 | } |
| 94 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 95 | template <typename AtomicEvaluator> |
| 96 | static bool |
| 97 | calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr, |
| 98 | ConstraintSatisfaction &Satisfaction, |
| 99 | AtomicEvaluator &&Evaluator) { |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 100 | ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts(); |
| 101 | |
| 102 | if (auto *BO = dyn_cast<BinaryOperator>(ConstraintExpr)) { |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 103 | if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) { |
| 104 | if (calculateConstraintSatisfaction(S, BO->getLHS(), Satisfaction, |
| 105 | Evaluator)) |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 106 | return true; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 107 | |
| 108 | bool IsLHSSatisfied = Satisfaction.IsSatisfied; |
| 109 | |
| 110 | if (BO->getOpcode() == BO_LOr && IsLHSSatisfied) |
| 111 | // [temp.constr.op] p3 |
| 112 | // A disjunction is a constraint taking two operands. To determine if |
| 113 | // a disjunction is satisfied, the satisfaction of the first operand |
| 114 | // is checked. If that is satisfied, the disjunction is satisfied. |
| 115 | // Otherwise, the disjunction is satisfied if and only if the second |
| 116 | // operand is satisfied. |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 117 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 118 | |
| 119 | if (BO->getOpcode() == BO_LAnd && !IsLHSSatisfied) |
| 120 | // [temp.constr.op] p2 |
| 121 | // A conjunction is a constraint taking two operands. To determine if |
| 122 | // a conjunction is satisfied, the satisfaction of the first operand |
| 123 | // is checked. If that is not satisfied, the conjunction is not |
| 124 | // satisfied. Otherwise, the conjunction is satisfied if and only if |
| 125 | // the second operand is satisfied. |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 126 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 127 | |
| 128 | return calculateConstraintSatisfaction(S, BO->getRHS(), Satisfaction, |
| 129 | std::forward<AtomicEvaluator>(Evaluator)); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 130 | } |
| 131 | } |
| 132 | else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 133 | return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction, |
| 134 | std::forward<AtomicEvaluator>(Evaluator)); |
Saar Raz | ffa214e | 2019-10-25 00:09:37 +0300 | [diff] [blame] | 135 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 136 | // An atomic constraint expression |
| 137 | ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr); |
Vlad Tsyrklevich | 38839d0 | 2019-10-28 14:36:31 -0700 | [diff] [blame] | 138 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 139 | if (SubstitutedAtomicExpr.isInvalid()) |
Vlad Tsyrklevich | 38839d0 | 2019-10-28 14:36:31 -0700 | [diff] [blame] | 140 | return true; |
| 141 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 142 | if (!SubstitutedAtomicExpr.isUsable()) |
| 143 | // Evaluator has decided satisfaction without yielding an expression. |
| 144 | return false; |
| 145 | |
| 146 | EnterExpressionEvaluationContext ConstantEvaluated( |
| 147 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 148 | SmallVector<PartialDiagnosticAt, 2> EvaluationDiags; |
| 149 | Expr::EvalResult EvalResult; |
| 150 | EvalResult.Diag = &EvaluationDiags; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 151 | if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) { |
| 152 | // C++2a [temp.constr.atomic]p1 |
| 153 | // ...E shall be a constant expression of type bool. |
| 154 | S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(), |
| 155 | diag::err_non_constant_constraint_expression) |
| 156 | << SubstitutedAtomicExpr.get()->getSourceRange(); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 157 | for (const PartialDiagnosticAt &PDiag : EvaluationDiags) |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 158 | S.Diag(PDiag.first, PDiag.second); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 159 | return true; |
| 160 | } |
| 161 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 162 | Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue(); |
| 163 | if (!Satisfaction.IsSatisfied) |
| 164 | Satisfaction.Details.emplace_back(ConstraintExpr, |
| 165 | SubstitutedAtomicExpr.get()); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 166 | |
| 167 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 168 | } |
| 169 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 170 | static bool calculateConstraintSatisfaction( |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 171 | Sema &S, const NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs, |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 172 | SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL, |
| 173 | const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) { |
| 174 | return calculateConstraintSatisfaction( |
| 175 | S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) { |
| 176 | EnterExpressionEvaluationContext ConstantEvaluated( |
| 177 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 178 | |
| 179 | // Atomic constraint - substitute arguments and check satisfaction. |
| 180 | ExprResult SubstitutedExpression; |
| 181 | { |
| 182 | TemplateDeductionInfo Info(TemplateNameLoc); |
| 183 | Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(), |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 184 | Sema::InstantiatingTemplate::ConstraintSubstitution{}, |
| 185 | const_cast<NamedDecl *>(Template), Info, |
| 186 | AtomicExpr->getSourceRange()); |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 187 | if (Inst.isInvalid()) |
| 188 | return ExprError(); |
| 189 | // We do not want error diagnostics escaping here. |
| 190 | Sema::SFINAETrap Trap(S); |
| 191 | SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr), |
| 192 | MLTAL); |
| 193 | if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) { |
| 194 | // C++2a [temp.constr.atomic]p1 |
| 195 | // ...If substitution results in an invalid type or expression, the |
| 196 | // constraint is not satisfied. |
| 197 | if (!Trap.hasErrorOccurred()) |
| 198 | // A non-SFINAE error has occured as a result of this |
| 199 | // substitution. |
| 200 | return ExprError(); |
| 201 | |
| 202 | PartialDiagnosticAt SubstDiag{SourceLocation(), |
| 203 | PartialDiagnostic::NullDiagnostic()}; |
| 204 | Info.takeSFINAEDiagnostic(SubstDiag); |
| 205 | // FIXME: Concepts: This is an unfortunate consequence of there |
| 206 | // being no serialization code for PartialDiagnostics and the fact |
| 207 | // that serializing them would likely take a lot more storage than |
| 208 | // just storing them as strings. We would still like, in the |
| 209 | // future, to serialize the proper PartialDiagnostic as serializing |
| 210 | // it as a string defeats the purpose of the diagnostic mechanism. |
| 211 | SmallString<128> DiagString; |
| 212 | DiagString = ": "; |
| 213 | SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString); |
| 214 | unsigned MessageSize = DiagString.size(); |
| 215 | char *Mem = new (S.Context) char[MessageSize]; |
| 216 | memcpy(Mem, DiagString.c_str(), MessageSize); |
| 217 | Satisfaction.Details.emplace_back( |
| 218 | AtomicExpr, |
| 219 | new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ |
| 220 | SubstDiag.first, StringRef(Mem, MessageSize)}); |
| 221 | Satisfaction.IsSatisfied = false; |
| 222 | return ExprEmpty(); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | if (!S.CheckConstraintExpression(SubstitutedExpression.get())) |
| 227 | return ExprError(); |
| 228 | |
| 229 | return SubstitutedExpression; |
| 230 | }); |
| 231 | } |
| 232 | |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 233 | static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template, |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 234 | ArrayRef<const Expr *> ConstraintExprs, |
| 235 | ArrayRef<TemplateArgument> TemplateArgs, |
| 236 | SourceRange TemplateIDRange, |
| 237 | ConstraintSatisfaction &Satisfaction) { |
| 238 | if (ConstraintExprs.empty()) { |
| 239 | Satisfaction.IsSatisfied = true; |
| 240 | return false; |
| 241 | } |
| 242 | |
| 243 | for (auto& Arg : TemplateArgs) |
| 244 | if (Arg.isInstantiationDependent()) { |
| 245 | // No need to check satisfaction for dependent constraint expressions. |
| 246 | Satisfaction.IsSatisfied = true; |
| 247 | return false; |
| 248 | } |
| 249 | |
| 250 | Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(), |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 251 | Sema::InstantiatingTemplate::ConstraintsCheck{}, |
| 252 | const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange); |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 253 | if (Inst.isInvalid()) |
| 254 | return true; |
| 255 | |
| 256 | MultiLevelTemplateArgumentList MLTAL; |
| 257 | MLTAL.addOuterTemplateArguments(TemplateArgs); |
| 258 | |
| 259 | for (const Expr *ConstraintExpr : ConstraintExprs) { |
| 260 | if (calculateConstraintSatisfaction(S, Template, TemplateArgs, |
| 261 | TemplateIDRange.getBegin(), MLTAL, |
| 262 | ConstraintExpr, Satisfaction)) |
| 263 | return true; |
| 264 | if (!Satisfaction.IsSatisfied) |
| 265 | // [temp.constr.op] p2 |
| 266 | // [...] To determine if a conjunction is satisfied, the satisfaction |
| 267 | // of the first operand is checked. If that is not satisfied, the |
| 268 | // conjunction is not satisfied. [...] |
| 269 | return false; |
| 270 | } |
| 271 | return false; |
| 272 | } |
| 273 | |
Saar Raz | b933d37 | 2020-01-22 02:50:12 +0200 | [diff] [blame] | 274 | bool Sema::CheckConstraintSatisfaction( |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 275 | const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs, |
Saar Raz | b933d37 | 2020-01-22 02:50:12 +0200 | [diff] [blame] | 276 | ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange, |
| 277 | ConstraintSatisfaction &OutSatisfaction) { |
| 278 | if (ConstraintExprs.empty()) { |
| 279 | OutSatisfaction.IsSatisfied = true; |
| 280 | return false; |
| 281 | } |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 282 | |
Saar Raz | b933d37 | 2020-01-22 02:50:12 +0200 | [diff] [blame] | 283 | llvm::FoldingSetNodeID ID; |
| 284 | void *InsertPos; |
| 285 | ConstraintSatisfaction *Satisfaction = nullptr; |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 286 | bool ShouldCache = LangOpts.ConceptSatisfactionCaching && Template; |
| 287 | if (ShouldCache) { |
Saar Raz | b933d37 | 2020-01-22 02:50:12 +0200 | [diff] [blame] | 288 | ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs); |
| 289 | Satisfaction = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos); |
| 290 | if (Satisfaction) { |
| 291 | OutSatisfaction = *Satisfaction; |
| 292 | return false; |
| 293 | } |
| 294 | Satisfaction = new ConstraintSatisfaction(Template, TemplateArgs); |
| 295 | } else { |
| 296 | Satisfaction = &OutSatisfaction; |
| 297 | } |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 298 | if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs, |
| 299 | TemplateArgs, TemplateIDRange, |
| 300 | *Satisfaction)) { |
| 301 | if (ShouldCache) |
Saar Raz | b933d37 | 2020-01-22 02:50:12 +0200 | [diff] [blame] | 302 | delete Satisfaction; |
| 303 | return true; |
| 304 | } |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 305 | |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 306 | if (ShouldCache) { |
Saar Raz | b933d37 | 2020-01-22 02:50:12 +0200 | [diff] [blame] | 307 | // We cannot use InsertNode here because CheckConstraintSatisfaction might |
| 308 | // have invalidated it. |
| 309 | SatisfactionCache.InsertNode(Satisfaction); |
| 310 | OutSatisfaction = *Satisfaction; |
| 311 | } |
| 312 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 313 | } |
| 314 | |
| 315 | bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr, |
| 316 | ConstraintSatisfaction &Satisfaction) { |
| 317 | return calculateConstraintSatisfaction( |
| 318 | *this, ConstraintExpr, Satisfaction, |
| 319 | [](const Expr *AtomicExpr) -> ExprResult { |
| 320 | return ExprResult(const_cast<Expr *>(AtomicExpr)); |
| 321 | }); |
| 322 | } |
| 323 | |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 324 | bool Sema::CheckFunctionConstraints(const FunctionDecl *FD, |
| 325 | ConstraintSatisfaction &Satisfaction, |
| 326 | SourceLocation UsageLoc) { |
| 327 | const Expr *RC = FD->getTrailingRequiresClause(); |
Saar Raz | a424ef99e7 | 2020-01-30 20:46:32 +0200 | [diff] [blame] | 328 | if (RC->isInstantiationDependent()) { |
| 329 | Satisfaction.IsSatisfied = true; |
| 330 | return false; |
| 331 | } |
Saar Raz | 6c23244 | 2020-02-05 00:51:40 +0200 | [diff] [blame] | 332 | Qualifiers ThisQuals; |
| 333 | CXXRecordDecl *Record = nullptr; |
| 334 | if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) { |
| 335 | ThisQuals = Method->getMethodQualifiers(); |
| 336 | Record = const_cast<CXXRecordDecl *>(Method->getParent()); |
| 337 | } |
| 338 | CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); |
Saar Raz | 713562f | 2020-01-25 22:54:27 +0200 | [diff] [blame] | 339 | // We substitute with empty arguments in order to rebuild the atomic |
| 340 | // constraint in a constant-evaluated context. |
| 341 | // FIXME: Should this be a dedicated TreeTransform? |
| 342 | return CheckConstraintSatisfaction( |
| 343 | FD, {RC}, /*TemplateArgs=*/{}, |
| 344 | SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()), |
| 345 | Satisfaction); |
| 346 | } |
| 347 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 348 | bool Sema::EnsureTemplateArgumentListConstraints( |
| 349 | TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs, |
| 350 | SourceRange TemplateIDRange) { |
| 351 | ConstraintSatisfaction Satisfaction; |
| 352 | llvm::SmallVector<const Expr *, 3> AssociatedConstraints; |
| 353 | TD->getAssociatedConstraints(AssociatedConstraints); |
| 354 | if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs, |
| 355 | TemplateIDRange, Satisfaction)) |
| 356 | return true; |
| 357 | |
| 358 | if (!Satisfaction.IsSatisfied) { |
| 359 | SmallString<128> TemplateArgString; |
| 360 | TemplateArgString = " "; |
| 361 | TemplateArgString += getTemplateArgumentBindingsText( |
| 362 | TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size()); |
| 363 | |
| 364 | Diag(TemplateIDRange.getBegin(), |
| 365 | diag::err_template_arg_list_constraints_not_satisfied) |
| 366 | << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD |
| 367 | << TemplateArgString << TemplateIDRange; |
| 368 | DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 369 | return true; |
| 370 | } |
| 371 | return false; |
| 372 | } |
| 373 | |
Saar Raz | a0f50d7 | 2020-01-18 09:11:43 +0200 | [diff] [blame] | 374 | static void diagnoseUnsatisfiedRequirement(Sema &S, |
| 375 | concepts::ExprRequirement *Req, |
| 376 | bool First) { |
| 377 | assert(!Req->isSatisfied() |
| 378 | && "Diagnose() can only be used on an unsatisfied requirement"); |
| 379 | switch (Req->getSatisfactionStatus()) { |
| 380 | case concepts::ExprRequirement::SS_Dependent: |
| 381 | llvm_unreachable("Diagnosing a dependent requirement"); |
| 382 | break; |
| 383 | case concepts::ExprRequirement::SS_ExprSubstitutionFailure: { |
| 384 | auto *SubstDiag = Req->getExprSubstitutionDiagnostic(); |
| 385 | if (!SubstDiag->DiagMessage.empty()) |
| 386 | S.Diag(SubstDiag->DiagLoc, |
| 387 | diag::note_expr_requirement_expr_substitution_error) |
| 388 | << (int)First << SubstDiag->SubstitutedEntity |
| 389 | << SubstDiag->DiagMessage; |
| 390 | else |
| 391 | S.Diag(SubstDiag->DiagLoc, |
| 392 | diag::note_expr_requirement_expr_unknown_substitution_error) |
| 393 | << (int)First << SubstDiag->SubstitutedEntity; |
| 394 | break; |
| 395 | } |
| 396 | case concepts::ExprRequirement::SS_NoexceptNotMet: |
| 397 | S.Diag(Req->getNoexceptLoc(), |
| 398 | diag::note_expr_requirement_noexcept_not_met) |
| 399 | << (int)First << Req->getExpr(); |
| 400 | break; |
| 401 | case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: { |
| 402 | auto *SubstDiag = |
| 403 | Req->getReturnTypeRequirement().getSubstitutionDiagnostic(); |
| 404 | if (!SubstDiag->DiagMessage.empty()) |
| 405 | S.Diag(SubstDiag->DiagLoc, |
| 406 | diag::note_expr_requirement_type_requirement_substitution_error) |
| 407 | << (int)First << SubstDiag->SubstitutedEntity |
| 408 | << SubstDiag->DiagMessage; |
| 409 | else |
| 410 | S.Diag(SubstDiag->DiagLoc, |
| 411 | diag::note_expr_requirement_type_requirement_unknown_substitution_error) |
| 412 | << (int)First << SubstDiag->SubstitutedEntity; |
| 413 | break; |
| 414 | } |
| 415 | case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: { |
| 416 | ConceptSpecializationExpr *ConstraintExpr = |
| 417 | Req->getReturnTypeRequirementSubstitutedConstraintExpr(); |
| 418 | if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) |
| 419 | // A simple case - expr type is the type being constrained and the concept |
| 420 | // was not provided arguments. |
| 421 | S.Diag(ConstraintExpr->getBeginLoc(), |
| 422 | diag::note_expr_requirement_constraints_not_satisfied_simple) |
| 423 | << (int)First << S.BuildDecltypeType(Req->getExpr(), |
| 424 | Req->getExpr()->getBeginLoc()) |
| 425 | << ConstraintExpr->getNamedConcept(); |
| 426 | else |
| 427 | S.Diag(ConstraintExpr->getBeginLoc(), |
| 428 | diag::note_expr_requirement_constraints_not_satisfied) |
| 429 | << (int)First << ConstraintExpr; |
| 430 | S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction()); |
| 431 | break; |
| 432 | } |
| 433 | case concepts::ExprRequirement::SS_Satisfied: |
| 434 | llvm_unreachable("We checked this above"); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | static void diagnoseUnsatisfiedRequirement(Sema &S, |
| 439 | concepts::TypeRequirement *Req, |
| 440 | bool First) { |
| 441 | assert(!Req->isSatisfied() |
| 442 | && "Diagnose() can only be used on an unsatisfied requirement"); |
| 443 | switch (Req->getSatisfactionStatus()) { |
| 444 | case concepts::TypeRequirement::SS_Dependent: |
| 445 | llvm_unreachable("Diagnosing a dependent requirement"); |
| 446 | return; |
| 447 | case concepts::TypeRequirement::SS_SubstitutionFailure: { |
| 448 | auto *SubstDiag = Req->getSubstitutionDiagnostic(); |
| 449 | if (!SubstDiag->DiagMessage.empty()) |
| 450 | S.Diag(SubstDiag->DiagLoc, |
| 451 | diag::note_type_requirement_substitution_error) << (int)First |
| 452 | << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage; |
| 453 | else |
| 454 | S.Diag(SubstDiag->DiagLoc, |
| 455 | diag::note_type_requirement_unknown_substitution_error) |
| 456 | << (int)First << SubstDiag->SubstitutedEntity; |
| 457 | return; |
| 458 | } |
| 459 | default: |
| 460 | llvm_unreachable("Unknown satisfaction status"); |
| 461 | return; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | static void diagnoseUnsatisfiedRequirement(Sema &S, |
| 466 | concepts::NestedRequirement *Req, |
| 467 | bool First) { |
| 468 | if (Req->isSubstitutionFailure()) { |
| 469 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag = |
| 470 | Req->getSubstitutionDiagnostic(); |
| 471 | if (!SubstDiag->DiagMessage.empty()) |
| 472 | S.Diag(SubstDiag->DiagLoc, |
| 473 | diag::note_nested_requirement_substitution_error) |
| 474 | << (int)First << SubstDiag->SubstitutedEntity |
| 475 | << SubstDiag->DiagMessage; |
| 476 | else |
| 477 | S.Diag(SubstDiag->DiagLoc, |
| 478 | diag::note_nested_requirement_unknown_substitution_error) |
| 479 | << (int)First << SubstDiag->SubstitutedEntity; |
| 480 | return; |
| 481 | } |
| 482 | S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First); |
| 483 | } |
| 484 | |
| 485 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 486 | static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, |
| 487 | Expr *SubstExpr, |
| 488 | bool First = true) { |
| 489 | SubstExpr = SubstExpr->IgnoreParenImpCasts(); |
| 490 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) { |
| 491 | switch (BO->getOpcode()) { |
| 492 | // These two cases will in practice only be reached when using fold |
| 493 | // expressions with || and &&, since otherwise the || and && will have been |
| 494 | // broken down into atomic constraints during satisfaction checking. |
| 495 | case BO_LOr: |
| 496 | // Or evaluated to false - meaning both RHS and LHS evaluated to false. |
| 497 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); |
| 498 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), |
| 499 | /*First=*/false); |
| 500 | return; |
| 501 | case BO_LAnd: |
| 502 | bool LHSSatisfied; |
| 503 | BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context); |
| 504 | if (LHSSatisfied) { |
| 505 | // LHS is true, so RHS must be false. |
| 506 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First); |
| 507 | return; |
| 508 | } |
| 509 | // LHS is false |
| 510 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); |
| 511 | |
| 512 | // RHS might also be false |
| 513 | bool RHSSatisfied; |
| 514 | BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context); |
| 515 | if (!RHSSatisfied) |
| 516 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), |
| 517 | /*First=*/false); |
| 518 | return; |
| 519 | case BO_GE: |
| 520 | case BO_LE: |
| 521 | case BO_GT: |
| 522 | case BO_LT: |
| 523 | case BO_EQ: |
| 524 | case BO_NE: |
| 525 | if (BO->getLHS()->getType()->isIntegerType() && |
| 526 | BO->getRHS()->getType()->isIntegerType()) { |
| 527 | Expr::EvalResult SimplifiedLHS; |
| 528 | Expr::EvalResult SimplifiedRHS; |
| 529 | BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context); |
| 530 | BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context); |
| 531 | if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) { |
| 532 | S.Diag(SubstExpr->getBeginLoc(), |
| 533 | diag::note_atomic_constraint_evaluated_to_false_elaborated) |
| 534 | << (int)First << SubstExpr |
| 535 | << SimplifiedLHS.Val.getInt().toString(10) |
| 536 | << BinaryOperator::getOpcodeStr(BO->getOpcode()) |
| 537 | << SimplifiedRHS.Val.getInt().toString(10); |
| 538 | return; |
| 539 | } |
| 540 | } |
| 541 | break; |
| 542 | |
| 543 | default: |
| 544 | break; |
| 545 | } |
| 546 | } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) { |
| 547 | if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { |
| 548 | S.Diag( |
| 549 | CSE->getSourceRange().getBegin(), |
| 550 | diag:: |
| 551 | note_single_arg_concept_specialization_constraint_evaluated_to_false) |
| 552 | << (int)First |
| 553 | << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument() |
| 554 | << CSE->getNamedConcept(); |
| 555 | } else { |
| 556 | S.Diag(SubstExpr->getSourceRange().getBegin(), |
| 557 | diag::note_concept_specialization_constraint_evaluated_to_false) |
| 558 | << (int)First << CSE; |
| 559 | } |
| 560 | S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction()); |
| 561 | return; |
Saar Raz | a0f50d7 | 2020-01-18 09:11:43 +0200 | [diff] [blame] | 562 | } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) { |
| 563 | for (concepts::Requirement *Req : RE->getRequirements()) |
| 564 | if (!Req->isDependent() && !Req->isSatisfied()) { |
| 565 | if (auto *E = dyn_cast<concepts::ExprRequirement>(Req)) |
| 566 | diagnoseUnsatisfiedRequirement(S, E, First); |
| 567 | else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req)) |
| 568 | diagnoseUnsatisfiedRequirement(S, T, First); |
| 569 | else |
| 570 | diagnoseUnsatisfiedRequirement( |
| 571 | S, cast<concepts::NestedRequirement>(Req), First); |
| 572 | break; |
| 573 | } |
| 574 | return; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 575 | } |
| 576 | |
| 577 | S.Diag(SubstExpr->getSourceRange().getBegin(), |
| 578 | diag::note_atomic_constraint_evaluated_to_false) |
| 579 | << (int)First << SubstExpr; |
| 580 | } |
| 581 | |
| 582 | template<typename SubstitutionDiagnostic> |
| 583 | static void diagnoseUnsatisfiedConstraintExpr( |
| 584 | Sema &S, const Expr *E, |
| 585 | const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record, |
| 586 | bool First = true) { |
| 587 | if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){ |
| 588 | S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed) |
| 589 | << Diag->second; |
| 590 | return; |
| 591 | } |
| 592 | |
| 593 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, |
| 594 | Record.template get<Expr *>(), First); |
| 595 | } |
| 596 | |
Saar Raz | a0f50d7 | 2020-01-18 09:11:43 +0200 | [diff] [blame] | 597 | void |
| 598 | Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction, |
| 599 | bool First) { |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 600 | assert(!Satisfaction.IsSatisfied && |
| 601 | "Attempted to diagnose a satisfied constraint"); |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 602 | for (auto &Pair : Satisfaction.Details) { |
| 603 | diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); |
| 604 | First = false; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | void Sema::DiagnoseUnsatisfiedConstraint( |
Saar Raz | a0f50d7 | 2020-01-18 09:11:43 +0200 | [diff] [blame] | 609 | const ASTConstraintSatisfaction &Satisfaction, |
| 610 | bool First) { |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 611 | assert(!Satisfaction.IsSatisfied && |
| 612 | "Attempted to diagnose a satisfied constraint"); |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 613 | for (auto &Pair : Satisfaction) { |
| 614 | diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); |
| 615 | First = false; |
| 616 | } |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 617 | } |
| 618 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 619 | const NormalizedConstraint * |
| 620 | Sema::getNormalizedAssociatedConstraints( |
| 621 | NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) { |
| 622 | auto CacheEntry = NormalizationCache.find(ConstrainedDecl); |
| 623 | if (CacheEntry == NormalizationCache.end()) { |
| 624 | auto Normalized = |
| 625 | NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl, |
| 626 | AssociatedConstraints); |
| 627 | CacheEntry = |
| 628 | NormalizationCache |
| 629 | .try_emplace(ConstrainedDecl, |
| 630 | Normalized |
| 631 | ? new (Context) NormalizedConstraint( |
| 632 | std::move(*Normalized)) |
| 633 | : nullptr) |
| 634 | .first; |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 635 | } |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 636 | return CacheEntry->second; |
| 637 | } |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 638 | |
| 639 | static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N, |
| 640 | ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs, |
| 641 | const ASTTemplateArgumentListInfo *ArgsAsWritten) { |
| 642 | if (!N.isAtomic()) { |
| 643 | if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs, |
| 644 | ArgsAsWritten)) |
| 645 | return true; |
| 646 | return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs, |
| 647 | ArgsAsWritten); |
| 648 | } |
| 649 | TemplateParameterList *TemplateParams = Concept->getTemplateParameters(); |
| 650 | |
| 651 | AtomicConstraint &Atomic = *N.getAtomicConstraint(); |
| 652 | TemplateArgumentListInfo SubstArgs; |
| 653 | MultiLevelTemplateArgumentList MLTAL; |
| 654 | MLTAL.addOuterTemplateArguments(TemplateArgs); |
| 655 | if (!Atomic.ParameterMapping) { |
| 656 | llvm::SmallBitVector OccurringIndices(TemplateParams->size()); |
| 657 | S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false, |
| 658 | /*Depth=*/0, OccurringIndices); |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 659 | Atomic.ParameterMapping.emplace( |
| 660 | MutableArrayRef<TemplateArgumentLoc>( |
| 661 | new (S.Context) TemplateArgumentLoc[OccurringIndices.count()], |
| 662 | OccurringIndices.count())); |
| 663 | for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I) |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 664 | if (OccurringIndices[I]) |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 665 | new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc( |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 666 | S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I], |
| 667 | // Here we assume we do not support things like |
| 668 | // template<typename A, typename B> |
| 669 | // concept C = ...; |
| 670 | // |
| 671 | // template<typename... Ts> requires C<Ts...> |
| 672 | // struct S { }; |
| 673 | // The above currently yields a diagnostic. |
| 674 | // We still might have default arguments for concept parameters. |
| 675 | ArgsAsWritten->NumTemplateArgs > I ? |
| 676 | ArgsAsWritten->arguments()[I].getLocation() : |
| 677 | SourceLocation())); |
| 678 | } |
| 679 | Sema::InstantiatingTemplate Inst( |
| 680 | S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(), |
| 681 | Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept, |
| 682 | SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(), |
| 683 | ArgsAsWritten->arguments().back().getSourceRange().getEnd())); |
| 684 | if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs)) |
| 685 | return true; |
Saar Raz | ba1f3db | 2020-01-31 15:55:06 +0200 | [diff] [blame] | 686 | Atomic.ParameterMapping.emplace( |
| 687 | MutableArrayRef<TemplateArgumentLoc>( |
| 688 | new (S.Context) TemplateArgumentLoc[SubstArgs.size()], |
| 689 | SubstArgs.size())); |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 690 | std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(), |
| 691 | N.getAtomicConstraint()->ParameterMapping->begin()); |
| 692 | return false; |
| 693 | } |
| 694 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 695 | Optional<NormalizedConstraint> |
| 696 | NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D, |
| 697 | ArrayRef<const Expr *> E) { |
| 698 | assert(E.size() != 0); |
| 699 | auto First = fromConstraintExpr(S, D, E[0]); |
| 700 | if (E.size() == 1) |
| 701 | return First; |
| 702 | auto Second = fromConstraintExpr(S, D, E[1]); |
| 703 | if (!Second) |
| 704 | return None; |
| 705 | llvm::Optional<NormalizedConstraint> Conjunction; |
| 706 | Conjunction.emplace(S.Context, std::move(*First), std::move(*Second), |
| 707 | CCK_Conjunction); |
| 708 | for (unsigned I = 2; I < E.size(); ++I) { |
| 709 | auto Next = fromConstraintExpr(S, D, E[I]); |
| 710 | if (!Next) |
| 711 | return llvm::Optional<NormalizedConstraint>{}; |
| 712 | NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction), |
| 713 | std::move(*Next), CCK_Conjunction); |
| 714 | *Conjunction = std::move(NewConjunction); |
| 715 | } |
| 716 | return Conjunction; |
| 717 | } |
| 718 | |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 719 | llvm::Optional<NormalizedConstraint> |
| 720 | NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) { |
| 721 | assert(E != nullptr); |
| 722 | |
| 723 | // C++ [temp.constr.normal]p1.1 |
| 724 | // [...] |
| 725 | // - The normal form of an expression (E) is the normal form of E. |
| 726 | // [...] |
| 727 | E = E->IgnoreParenImpCasts(); |
| 728 | if (auto *BO = dyn_cast<const BinaryOperator>(E)) { |
| 729 | if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) { |
| 730 | auto LHS = fromConstraintExpr(S, D, BO->getLHS()); |
| 731 | if (!LHS) |
| 732 | return None; |
| 733 | auto RHS = fromConstraintExpr(S, D, BO->getRHS()); |
| 734 | if (!RHS) |
| 735 | return None; |
| 736 | |
| 737 | return NormalizedConstraint( |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 738 | S.Context, std::move(*LHS), std::move(*RHS), |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 739 | BO->getOpcode() == BO_LAnd ? CCK_Conjunction : CCK_Disjunction); |
| 740 | } |
| 741 | } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) { |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 742 | const NormalizedConstraint *SubNF; |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 743 | { |
| 744 | Sema::InstantiatingTemplate Inst( |
| 745 | S, CSE->getExprLoc(), |
| 746 | Sema::InstantiatingTemplate::ConstraintNormalization{}, D, |
| 747 | CSE->getSourceRange()); |
| 748 | // C++ [temp.constr.normal]p1.1 |
| 749 | // [...] |
| 750 | // The normal form of an id-expression of the form C<A1, A2, ..., AN>, |
| 751 | // where C names a concept, is the normal form of the |
| 752 | // constraint-expression of C, after substituting A1, A2, ..., AN for C’s |
| 753 | // respective template parameters in the parameter mappings in each atomic |
| 754 | // constraint. If any such substitution results in an invalid type or |
| 755 | // expression, the program is ill-formed; no diagnostic is required. |
| 756 | // [...] |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 757 | ConceptDecl *CD = CSE->getNamedConcept(); |
| 758 | SubNF = S.getNormalizedAssociatedConstraints(CD, |
| 759 | {CD->getConstraintExpr()}); |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 760 | if (!SubNF) |
| 761 | return None; |
| 762 | } |
| 763 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 764 | Optional<NormalizedConstraint> New; |
| 765 | New.emplace(S.Context, *SubNF); |
| 766 | |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 767 | if (substituteParameterMappings( |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 768 | S, *New, CSE->getNamedConcept(), |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 769 | CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten())) |
| 770 | return None; |
| 771 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 772 | return New; |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 773 | } |
| 774 | return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)}; |
| 775 | } |
| 776 | |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 777 | using NormalForm = |
| 778 | llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>; |
| 779 | |
| 780 | static NormalForm makeCNF(const NormalizedConstraint &Normalized) { |
| 781 | if (Normalized.isAtomic()) |
| 782 | return {{Normalized.getAtomicConstraint()}}; |
| 783 | |
| 784 | NormalForm LCNF = makeCNF(Normalized.getLHS()); |
| 785 | NormalForm RCNF = makeCNF(Normalized.getRHS()); |
| 786 | if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) { |
| 787 | LCNF.reserve(LCNF.size() + RCNF.size()); |
| 788 | while (!RCNF.empty()) |
| 789 | LCNF.push_back(RCNF.pop_back_val()); |
| 790 | return LCNF; |
| 791 | } |
| 792 | |
| 793 | // Disjunction |
| 794 | NormalForm Res; |
| 795 | Res.reserve(LCNF.size() * RCNF.size()); |
| 796 | for (auto &LDisjunction : LCNF) |
| 797 | for (auto &RDisjunction : RCNF) { |
| 798 | NormalForm::value_type Combined; |
| 799 | Combined.reserve(LDisjunction.size() + RDisjunction.size()); |
| 800 | std::copy(LDisjunction.begin(), LDisjunction.end(), |
| 801 | std::back_inserter(Combined)); |
| 802 | std::copy(RDisjunction.begin(), RDisjunction.end(), |
| 803 | std::back_inserter(Combined)); |
| 804 | Res.emplace_back(Combined); |
| 805 | } |
| 806 | return Res; |
| 807 | } |
| 808 | |
| 809 | static NormalForm makeDNF(const NormalizedConstraint &Normalized) { |
| 810 | if (Normalized.isAtomic()) |
| 811 | return {{Normalized.getAtomicConstraint()}}; |
| 812 | |
| 813 | NormalForm LDNF = makeDNF(Normalized.getLHS()); |
| 814 | NormalForm RDNF = makeDNF(Normalized.getRHS()); |
| 815 | if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) { |
| 816 | LDNF.reserve(LDNF.size() + RDNF.size()); |
| 817 | while (!RDNF.empty()) |
| 818 | LDNF.push_back(RDNF.pop_back_val()); |
| 819 | return LDNF; |
| 820 | } |
| 821 | |
| 822 | // Conjunction |
| 823 | NormalForm Res; |
| 824 | Res.reserve(LDNF.size() * RDNF.size()); |
| 825 | for (auto &LConjunction : LDNF) { |
| 826 | for (auto &RConjunction : RDNF) { |
| 827 | NormalForm::value_type Combined; |
| 828 | Combined.reserve(LConjunction.size() + RConjunction.size()); |
| 829 | std::copy(LConjunction.begin(), LConjunction.end(), |
| 830 | std::back_inserter(Combined)); |
| 831 | std::copy(RConjunction.begin(), RConjunction.end(), |
| 832 | std::back_inserter(Combined)); |
| 833 | Res.emplace_back(Combined); |
| 834 | } |
| 835 | } |
| 836 | return Res; |
| 837 | } |
| 838 | |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 839 | template<typename AtomicSubsumptionEvaluator> |
| 840 | static bool subsumes(NormalForm PDNF, NormalForm QCNF, |
| 841 | AtomicSubsumptionEvaluator E) { |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 842 | // C++ [temp.constr.order] p2 |
| 843 | // Then, P subsumes Q if and only if, for every disjunctive clause Pi in the |
| 844 | // disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in |
| 845 | // the conjuctive normal form of Q, where [...] |
| 846 | for (const auto &Pi : PDNF) { |
| 847 | for (const auto &Qj : QCNF) { |
| 848 | // C++ [temp.constr.order] p2 |
| 849 | // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if |
| 850 | // and only if there exists an atomic constraint Pia in Pi for which |
| 851 | // there exists an atomic constraint, Qjb, in Qj such that Pia |
| 852 | // subsumes Qjb. |
| 853 | bool Found = false; |
| 854 | for (const AtomicConstraint *Pia : Pi) { |
| 855 | for (const AtomicConstraint *Qjb : Qj) { |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 856 | if (E(*Pia, *Qjb)) { |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 857 | Found = true; |
| 858 | break; |
| 859 | } |
| 860 | } |
| 861 | if (Found) |
| 862 | break; |
| 863 | } |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 864 | if (!Found) |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 865 | return false; |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 866 | } |
| 867 | } |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 868 | return true; |
| 869 | } |
| 870 | |
| 871 | template<typename AtomicSubsumptionEvaluator> |
| 872 | static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P, |
| 873 | NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes, |
| 874 | AtomicSubsumptionEvaluator E) { |
| 875 | // C++ [temp.constr.order] p2 |
| 876 | // In order to determine if a constraint P subsumes a constraint Q, P is |
| 877 | // transformed into disjunctive normal form, and Q is transformed into |
| 878 | // conjunctive normal form. [...] |
| 879 | auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P); |
| 880 | if (!PNormalized) |
| 881 | return true; |
| 882 | const NormalForm PDNF = makeDNF(*PNormalized); |
| 883 | |
| 884 | auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q); |
| 885 | if (!QNormalized) |
| 886 | return true; |
| 887 | const NormalForm QCNF = makeCNF(*QNormalized); |
| 888 | |
| 889 | Subsumes = subsumes(PDNF, QCNF, E); |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 890 | return false; |
| 891 | } |
| 892 | |
| 893 | bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1, |
| 894 | NamedDecl *D2, ArrayRef<const Expr *> AC2, |
| 895 | bool &Result) { |
| 896 | if (AC1.empty()) { |
| 897 | Result = AC2.empty(); |
| 898 | return false; |
| 899 | } |
| 900 | if (AC2.empty()) { |
| 901 | // TD1 has associated constraints and TD2 does not. |
| 902 | Result = true; |
| 903 | return false; |
| 904 | } |
| 905 | |
| 906 | std::pair<NamedDecl *, NamedDecl *> Key{D1, D2}; |
| 907 | auto CacheEntry = SubsumptionCache.find(Key); |
| 908 | if (CacheEntry != SubsumptionCache.end()) { |
| 909 | Result = CacheEntry->second; |
| 910 | return false; |
| 911 | } |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 912 | |
| 913 | if (subsumes(*this, D1, AC1, D2, AC2, Result, |
| 914 | [this] (const AtomicConstraint &A, const AtomicConstraint &B) { |
| 915 | return A.subsumes(Context, B); |
| 916 | })) |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame] | 917 | return true; |
| 918 | SubsumptionCache.try_emplace(Key, Result); |
| 919 | return false; |
Saar Raz | b65b1f3 | 2020-01-09 15:07:51 +0200 | [diff] [blame] | 920 | } |
| 921 | |
| 922 | bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, |
| 923 | ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) { |
| 924 | if (isSFINAEContext()) |
| 925 | // No need to work here because our notes would be discarded. |
| 926 | return false; |
| 927 | |
| 928 | if (AC1.empty() || AC2.empty()) |
| 929 | return false; |
| 930 | |
| 931 | auto NormalExprEvaluator = |
| 932 | [this] (const AtomicConstraint &A, const AtomicConstraint &B) { |
| 933 | return A.subsumes(Context, B); |
| 934 | }; |
| 935 | |
| 936 | const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr; |
| 937 | auto IdenticalExprEvaluator = |
| 938 | [&] (const AtomicConstraint &A, const AtomicConstraint &B) { |
| 939 | if (!A.hasMatchingParameterMapping(Context, B)) |
| 940 | return false; |
| 941 | const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr; |
| 942 | if (EA == EB) |
| 943 | return true; |
| 944 | |
| 945 | // Not the same source level expression - are the expressions |
| 946 | // identical? |
| 947 | llvm::FoldingSetNodeID IDA, IDB; |
| 948 | EA->Profile(IDA, Context, /*Cannonical=*/true); |
| 949 | EB->Profile(IDB, Context, /*Cannonical=*/true); |
| 950 | if (IDA != IDB) |
| 951 | return false; |
| 952 | |
| 953 | AmbiguousAtomic1 = EA; |
| 954 | AmbiguousAtomic2 = EB; |
| 955 | return true; |
| 956 | }; |
| 957 | |
| 958 | { |
| 959 | // The subsumption checks might cause diagnostics |
| 960 | SFINAETrap Trap(*this); |
| 961 | auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1); |
| 962 | if (!Normalized1) |
| 963 | return false; |
| 964 | const NormalForm DNF1 = makeDNF(*Normalized1); |
| 965 | const NormalForm CNF1 = makeCNF(*Normalized1); |
| 966 | |
| 967 | auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2); |
| 968 | if (!Normalized2) |
| 969 | return false; |
| 970 | const NormalForm DNF2 = makeDNF(*Normalized2); |
| 971 | const NormalForm CNF2 = makeCNF(*Normalized2); |
| 972 | |
| 973 | bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator); |
| 974 | bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator); |
| 975 | bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator); |
| 976 | bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator); |
| 977 | if (Is1AtLeastAs2 == Is1AtLeastAs2Normally && |
| 978 | Is2AtLeastAs1 == Is2AtLeastAs1Normally) |
| 979 | // Same result - no ambiguity was caused by identical atomic expressions. |
| 980 | return false; |
| 981 | } |
| 982 | |
| 983 | // A different result! Some ambiguous atomic constraint(s) caused a difference |
| 984 | assert(AmbiguousAtomic1 && AmbiguousAtomic2); |
| 985 | |
| 986 | Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints) |
| 987 | << AmbiguousAtomic1->getSourceRange(); |
| 988 | Diag(AmbiguousAtomic2->getBeginLoc(), |
| 989 | diag::note_ambiguous_atomic_constraints_similar_expression) |
| 990 | << AmbiguousAtomic2->getSourceRange(); |
| 991 | return true; |
| 992 | } |
Saar Raz | a0f50d7 | 2020-01-18 09:11:43 +0200 | [diff] [blame] | 993 | |
| 994 | concepts::ExprRequirement::ExprRequirement( |
| 995 | Expr *E, bool IsSimple, SourceLocation NoexceptLoc, |
| 996 | ReturnTypeRequirement Req, SatisfactionStatus Status, |
| 997 | ConceptSpecializationExpr *SubstitutedConstraintExpr) : |
| 998 | Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent, |
| 999 | Status == SS_Dependent && |
| 1000 | (E->containsUnexpandedParameterPack() || |
| 1001 | Req.containsUnexpandedParameterPack()), |
| 1002 | Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc), |
| 1003 | TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr), |
| 1004 | Status(Status) { |
| 1005 | assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) && |
| 1006 | "Simple requirement must not have a return type requirement or a " |
| 1007 | "noexcept specification"); |
| 1008 | assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) == |
| 1009 | (SubstitutedConstraintExpr != nullptr)); |
| 1010 | } |
| 1011 | |
| 1012 | concepts::ExprRequirement::ExprRequirement( |
| 1013 | SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple, |
| 1014 | SourceLocation NoexceptLoc, ReturnTypeRequirement Req) : |
| 1015 | Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(), |
| 1016 | Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false), |
| 1017 | Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req), |
| 1018 | Status(SS_ExprSubstitutionFailure) { |
| 1019 | assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) && |
| 1020 | "Simple requirement must not have a return type requirement or a " |
| 1021 | "noexcept specification"); |
| 1022 | } |
| 1023 | |
| 1024 | concepts::ExprRequirement::ReturnTypeRequirement:: |
| 1025 | ReturnTypeRequirement(TemplateParameterList *TPL) : |
| 1026 | TypeConstraintInfo(TPL, 0) { |
| 1027 | assert(TPL->size() == 1); |
| 1028 | const TypeConstraint *TC = |
| 1029 | cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint(); |
| 1030 | assert(TC && |
| 1031 | "TPL must have a template type parameter with a type constraint"); |
| 1032 | auto *Constraint = |
| 1033 | cast_or_null<ConceptSpecializationExpr>( |
| 1034 | TC->getImmediatelyDeclaredConstraint()); |
| 1035 | bool Dependent = false; |
| 1036 | if (Constraint->getTemplateArgsAsWritten()) { |
| 1037 | for (auto &ArgLoc : |
| 1038 | Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1)) { |
| 1039 | if (ArgLoc.getArgument().isDependent()) { |
| 1040 | Dependent = true; |
| 1041 | break; |
| 1042 | } |
| 1043 | } |
| 1044 | } |
| 1045 | TypeConstraintInfo.setInt(Dependent ? 1 : 0); |
| 1046 | } |
| 1047 | |
| 1048 | concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) : |
| 1049 | Requirement(RK_Type, T->getType()->isDependentType(), |
| 1050 | T->getType()->containsUnexpandedParameterPack(), |
| 1051 | // We reach this ctor with either dependent types (in which |
| 1052 | // IsSatisfied doesn't matter) or with non-dependent type in |
| 1053 | // which the existence of the type indicates satisfaction. |
| 1054 | /*IsSatisfied=*/true |
| 1055 | ), Value(T), |
| 1056 | Status(T->getType()->isDependentType() ? SS_Dependent : SS_Satisfied) {} |