blob: 3d5f6c9c1e2ee532359b4c92fe4ee79d15ed9303 [file] [log] [blame]
Eli Benderskya108a652014-05-01 18:38:36 +00001//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loop unrolling may create many similar GEPs for array accesses.
11// e.g., a 2-level loop
12//
13// float a[32][32]; // global variable
14//
15// for (int i = 0; i < 2; ++i) {
16// for (int j = 0; j < 2; ++j) {
17// ...
18// ... = a[x + i][y + j];
19// ...
20// }
21// }
22//
23// will probably be unrolled to:
24//
25// gep %a, 0, %x, %y; load
26// gep %a, 0, %x, %y + 1; load
27// gep %a, 0, %x + 1, %y; load
28// gep %a, 0, %x + 1, %y + 1; load
29//
30// LLVM's GVN does not use partial redundancy elimination yet, and is thus
31// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32// significant slowdown in targets with limited addressing modes. For instance,
33// because the PTX target does not support the reg+reg addressing mode, the
34// NVPTX backend emits PTX code that literally computes the pointer address of
35// each GEP, wasting tons of registers. It emits the following PTX for the
36// first load and similar PTX for other loads.
37//
38// mov.u32 %r1, %x;
39// mov.u32 %r2, %y;
40// mul.wide.u32 %rl2, %r1, 128;
41// mov.u64 %rl3, a;
42// add.s64 %rl4, %rl3, %rl2;
43// mul.wide.u32 %rl5, %r2, 4;
44// add.s64 %rl6, %rl4, %rl5;
45// ld.global.f32 %f1, [%rl6];
46//
47// To reduce the register pressure, the optimization implemented in this file
48// merges the common part of a group of GEPs, so we can compute each pointer
49// address by adding a simple offset to the common part, saving many registers.
50//
51// It works by splitting each GEP into a variadic base and a constant offset.
52// The variadic base can be computed once and reused by multiple GEPs, and the
53// constant offsets can be nicely folded into the reg+immediate addressing mode
54// (supported by most targets) without using any extra register.
55//
56// For instance, we transform the four GEPs and four loads in the above example
57// into:
58//
59// base = gep a, 0, x, y
60// load base
61// laod base + 1 * sizeof(float)
62// load base + 32 * sizeof(float)
63// load base + 33 * sizeof(float)
64//
65// Given the transformed IR, a backend that supports the reg+immediate
66// addressing mode can easily fold the pointer arithmetics into the loads. For
67// example, the NVPTX backend can easily fold the pointer arithmetics into the
68// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69//
70// mov.u32 %r1, %tid.x;
71// mov.u32 %r2, %tid.y;
72// mul.wide.u32 %rl2, %r1, 128;
73// mov.u64 %rl3, a;
74// add.s64 %rl4, %rl3, %rl2;
75// mul.wide.u32 %rl5, %r2, 4;
76// add.s64 %rl6, %rl4, %rl5;
77// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
78// ld.global.f32 %f2, [%rl6+4]; // much better
79// ld.global.f32 %f3, [%rl6+128]; // much better
80// ld.global.f32 %f4, [%rl6+132]; // much better
81//
Hao Liu1d2a0612014-11-19 06:24:44 +000082// Another improvement enabled by the LowerGEP flag is to lower a GEP with
83// multiple indices to either multiple GEPs with a single index or arithmetic
84// operations (depending on whether the target uses alias analysis in codegen).
85// Such transformation can have following benefits:
86// (1) It can always extract constants in the indices of structure type.
87// (2) After such Lowering, there are more optimization opportunities such as
88// CSE, LICM and CGP.
89//
90// E.g. The following GEPs have multiple indices:
91// BB1:
92// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93// load %p
94// ...
95// BB2:
96// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97// load %p2
98// ...
99//
100// We can not do CSE for to the common part related to index "i64 %i". Lowering
101// GEPs can achieve such goals.
102// If the target does not use alias analysis in codegen, this pass will
103// lower a GEP with multiple indices into arithmetic operations:
104// BB1:
105// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
106// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
107// %3 = add i64 %1, %2 ; CSE opportunity
108// %4 = mul i64 %j1, length_of_struct
109// %5 = add i64 %3, %4
110// %6 = add i64 %3, struct_field_3 ; Constant offset
111// %p = inttoptr i64 %6 to i32*
112// load %p
113// ...
114// BB2:
115// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
116// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
117// %9 = add i64 %7, %8 ; CSE opportunity
118// %10 = mul i64 %j2, length_of_struct
119// %11 = add i64 %9, %10
120// %12 = add i64 %11, struct_field_2 ; Constant offset
121// %p = inttoptr i64 %12 to i32*
122// load %p2
123// ...
124//
125// If the target uses alias analysis in codegen, this pass will lower a GEP
126// with multiple indices into multiple GEPs with a single index:
127// BB1:
128// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
129// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
130// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
131// %4 = mul i64 %j1, length_of_struct
132// %5 = getelementptr i8* %3, i64 %4
133// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
134// %p = bitcast i8* %6 to i32*
135// load %p
136// ...
137// BB2:
138// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
139// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
140// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
141// %10 = mul i64 %j2, length_of_struct
142// %11 = getelementptr i8* %9, i64 %10
143// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
144// %p2 = bitcast i8* %12 to i32*
145// load %p2
146// ...
147//
148// Lowering GEPs can also benefit other passes such as LICM and CGP.
149// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150// indices if one of the index is variant. If we lower such GEP into invariant
151// parts and variant parts, LICM can hoist/sink those invariant parts.
152// CGP (CodeGen Prepare) tries to sink address calculations that match the
153// target's addressing modes. A GEP with multiple indices may not match and will
154// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155// them. So we end up with a better addressing mode.
156//
Eli Benderskya108a652014-05-01 18:38:36 +0000157//===----------------------------------------------------------------------===//
158
159#include "llvm/Analysis/TargetTransformInfo.h"
160#include "llvm/Analysis/ValueTracking.h"
161#include "llvm/IR/Constants.h"
162#include "llvm/IR/DataLayout.h"
163#include "llvm/IR/Instructions.h"
164#include "llvm/IR/LLVMContext.h"
165#include "llvm/IR/Module.h"
166#include "llvm/IR/Operator.h"
167#include "llvm/Support/CommandLine.h"
168#include "llvm/Support/raw_ostream.h"
169#include "llvm/Transforms/Scalar.h"
Hao Liu1d2a0612014-11-19 06:24:44 +0000170#include "llvm/Target/TargetMachine.h"
171#include "llvm/Target/TargetSubtargetInfo.h"
172#include "llvm/IR/IRBuilder.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000173
174using namespace llvm;
175
176static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
177 "disable-separate-const-offset-from-gep", cl::init(false),
178 cl::desc("Do not separate the constant offset from a GEP instruction"),
179 cl::Hidden);
180
181namespace {
182
183/// \brief A helper class for separating a constant offset from a GEP index.
184///
185/// In real programs, a GEP index may be more complicated than a simple addition
186/// of something and a constant integer which can be trivially splitted. For
187/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
Alp Tokerbeaca192014-05-15 01:52:21 +0000188/// constant offset, so that we can separate the index to (a << 3) + b and 5.
Eli Benderskya108a652014-05-01 18:38:36 +0000189///
190/// Therefore, this class looks into the expression that computes a given GEP
191/// index, and tries to find a constant integer that can be hoisted to the
192/// outermost level of the expression as an addition. Not every constant in an
193/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
194/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
195/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
196class ConstantOffsetExtractor {
197 public:
Hao Liu1d2a0612014-11-19 06:24:44 +0000198 /// Extracts a constant offset from the given GEP index. It returns the
Eli Benderskya108a652014-05-01 18:38:36 +0000199 /// new index representing the remainder (equal to the original index minus
Hao Liu1d2a0612014-11-19 06:24:44 +0000200 /// the constant offset), or nullptr if we cannot extract a constant offset.
Jingyue Wu84465472014-06-05 22:07:33 +0000201 /// \p Idx The given GEP index
Jingyue Wu84465472014-06-05 22:07:33 +0000202 /// \p GEP The given GEP
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000203 static Value *Extract(Value *Idx, GetElementPtrInst *GEP);
Hao Liu1d2a0612014-11-19 06:24:44 +0000204 /// Looks for a constant offset from the given GEP index without extracting
205 /// it. It returns the numeric value of the extracted constant offset (0 if
206 /// failed). The meaning of the arguments are the same as Extract.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000207 static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000208
209 private:
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000210 ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
Jingyue Wu84465472014-06-05 22:07:33 +0000211 /// Searches the expression that computes V for a non-zero constant C s.t.
212 /// V can be reassociated into the form V' + C. If the searching is
213 /// successful, returns C and update UserChain as a def-use chain from C to V;
214 /// otherwise, UserChain is empty.
Eli Benderskya108a652014-05-01 18:38:36 +0000215 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000216 /// \p V The given expression
217 /// \p SignExtended Whether V will be sign-extended in the computation of the
218 /// GEP index
219 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
220 /// GEP index
221 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
222 /// an index of an inbounds GEP is guaranteed to be
223 /// non-negative. Levaraging this, we can better split
224 /// inbounds GEPs.
225 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
226 /// A helper function to look into both operands of a binary operator.
227 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
228 bool ZeroExtended);
229 /// After finding the constant offset C from the GEP index I, we build a new
230 /// index I' s.t. I' + C = I. This function builds and returns the new
231 /// index I' according to UserChain produced by function "find".
232 ///
233 /// The building conceptually takes two steps:
234 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
235 /// that computes I
236 /// 2) reassociate the expression tree to the form I' + C.
237 ///
238 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
239 /// sext to a, b and 5 so that we have
240 /// sext(a) + (sext(b) + 5).
241 /// Then, we reassociate it to
242 /// (sext(a) + sext(b)) + 5.
243 /// Given this form, we know I' is sext(a) + sext(b).
244 Value *rebuildWithoutConstOffset();
245 /// After the first step of rebuilding the GEP index without the constant
246 /// offset, distribute s/zext to the operands of all operators in UserChain.
247 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
248 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
249 ///
250 /// The function also updates UserChain to point to new subexpressions after
251 /// distributing s/zext. e.g., the old UserChain of the above example is
252 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
253 /// and the new UserChain is
254 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
255 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
256 ///
257 /// \p ChainIndex The index to UserChain. ChainIndex is initially
258 /// UserChain.size() - 1, and is decremented during
259 /// the recursion.
260 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
261 /// Reassociates the GEP index to the form I' + C and returns I'.
262 Value *removeConstOffset(unsigned ChainIndex);
263 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
264 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
265 /// returns "sext i32 (zext i16 V to i32) to i64".
266 Value *applyExts(Value *V);
Eli Benderskya108a652014-05-01 18:38:36 +0000267
268 /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
269 bool NoCommonBits(Value *LHS, Value *RHS) const;
270 /// Computes which bits are known to be one or zero.
271 /// \p KnownOne Mask of all bits that are known to be one.
272 /// \p KnownZero Mask of all bits that are known to be zero.
273 void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
Jingyue Wu84465472014-06-05 22:07:33 +0000274 /// A helper function that returns whether we can trace into the operands
275 /// of binary operator BO for a constant offset.
276 ///
277 /// \p SignExtended Whether BO is surrounded by sext
278 /// \p ZeroExtended Whether BO is surrounded by zext
279 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
280 /// array index.
281 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
282 bool NonNegative);
Eli Benderskya108a652014-05-01 18:38:36 +0000283
284 /// The path from the constant offset to the old GEP index. e.g., if the GEP
285 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
286 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
287 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
288 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000289 /// This path helps to rebuild the new GEP index.
Eli Benderskya108a652014-05-01 18:38:36 +0000290 SmallVector<User *, 8> UserChain;
Jingyue Wu84465472014-06-05 22:07:33 +0000291 /// A data structure used in rebuildWithoutConstOffset. Contains all
292 /// sext/zext instructions along UserChain.
293 SmallVector<CastInst *, 16> ExtInsts;
Eli Benderskya108a652014-05-01 18:38:36 +0000294 Instruction *IP; /// Insertion position of cloned instructions.
295};
296
297/// \brief A pass that tries to split every GEP in the function into a variadic
Alp Tokerbeaca192014-05-15 01:52:21 +0000298/// base and a constant offset. It is a FunctionPass because searching for the
Eli Benderskya108a652014-05-01 18:38:36 +0000299/// constant offset may inspect other basic blocks.
300class SeparateConstOffsetFromGEP : public FunctionPass {
301 public:
302 static char ID;
Hao Liu1d2a0612014-11-19 06:24:44 +0000303 SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
304 bool LowerGEP = false)
305 : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
Eli Benderskya108a652014-05-01 18:38:36 +0000306 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
307 }
308
309 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruth705b1852015-01-31 03:43:40 +0000310 AU.addRequired<TargetTransformInfoWrapperPass>();
Jingyue Wu6e091c82015-02-01 02:33:02 +0000311 AU.setPreservesCFG();
Eli Benderskya108a652014-05-01 18:38:36 +0000312 }
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000313
Eli Benderskya108a652014-05-01 18:38:36 +0000314 bool runOnFunction(Function &F) override;
315
316 private:
317 /// Tries to split the given GEP into a variadic base and a constant offset,
318 /// and returns true if the splitting succeeds.
319 bool splitGEP(GetElementPtrInst *GEP);
Hao Liu1d2a0612014-11-19 06:24:44 +0000320 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
321 /// Function splitGEP already split the original GEP into a variadic part and
322 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
323 /// variadic part into a set of GEPs with a single index and applies
324 /// AccumulativeByteOffset to it.
325 /// \p Variadic The variadic part of the original GEP.
326 /// \p AccumulativeByteOffset The constant offset.
327 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
328 int64_t AccumulativeByteOffset);
329 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
330 /// Function splitGEP already split the original GEP into a variadic part and
331 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
332 /// variadic part into a set of arithmetic operations and applies
333 /// AccumulativeByteOffset to it.
334 /// \p Variadic The variadic part of the original GEP.
335 /// \p AccumulativeByteOffset The constant offset.
336 void lowerToArithmetics(GetElementPtrInst *Variadic,
337 int64_t AccumulativeByteOffset);
338 /// Finds the constant offset within each index and accumulates them. If
339 /// LowerGEP is true, it finds in indices of both sequential and structure
340 /// types, otherwise it only finds in sequential indices. The output
341 /// NeedsExtraction indicates whether we successfully find a non-zero constant
342 /// offset.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000343 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
344 /// Canonicalize array indices to pointer-size integers. This helps to
345 /// simplify the logic of splitting a GEP. For example, if a + b is a
346 /// pointer-size integer, we have
347 /// gep base, a + b = gep (gep base, a), b
348 /// However, this equality may not hold if the size of a + b is smaller than
349 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
350 /// pointer size before computing the address
351 /// (http://llvm.org/docs/LangRef.html#id181).
352 ///
353 /// This canonicalization is very likely already done in clang and
354 /// instcombine. Therefore, the program will probably remain the same.
355 ///
Jingyue Wu5c7b1ae2014-06-08 23:49:34 +0000356 /// Returns true if the module changes.
357 ///
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000358 /// Verified in @i32_add in split-gep.ll
359 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
360
Hao Liu1d2a0612014-11-19 06:24:44 +0000361 const TargetMachine *TM;
362 /// Whether to lower a GEP with multiple indices into arithmetic operations or
363 /// multiple GEPs with a single index.
364 bool LowerGEP;
Eli Benderskya108a652014-05-01 18:38:36 +0000365};
366} // anonymous namespace
367
368char SeparateConstOffsetFromGEP::ID = 0;
369INITIALIZE_PASS_BEGIN(
370 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
371 "Split GEPs to a variadic base and a constant offset for better CSE", false,
372 false)
Chandler Carruth705b1852015-01-31 03:43:40 +0000373INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Eli Benderskya108a652014-05-01 18:38:36 +0000374INITIALIZE_PASS_END(
375 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
376 "Split GEPs to a variadic base and a constant offset for better CSE", false,
377 false)
378
Hao Liu1d2a0612014-11-19 06:24:44 +0000379FunctionPass *
380llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
381 bool LowerGEP) {
382 return new SeparateConstOffsetFromGEP(TM, LowerGEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000383}
384
Jingyue Wu84465472014-06-05 22:07:33 +0000385bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
386 bool ZeroExtended,
387 BinaryOperator *BO,
388 bool NonNegative) {
389 // We only consider ADD, SUB and OR, because a non-zero constant found in
390 // expressions composed of these operations can be easily hoisted as a
391 // constant offset by reassociation.
392 if (BO->getOpcode() != Instruction::Add &&
393 BO->getOpcode() != Instruction::Sub &&
394 BO->getOpcode() != Instruction::Or) {
395 return false;
396 }
397
398 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
399 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
400 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
401 if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
402 return false;
403
404 // In addition, tracing into BO requires that its surrounding s/zext (if
405 // any) is distributable to both operands.
406 //
407 // Suppose BO = A op B.
408 // SignExtended | ZeroExtended | Distributable?
409 // --------------+--------------+----------------------------------
410 // 0 | 0 | true because no s/zext exists
411 // 0 | 1 | zext(BO) == zext(A) op zext(B)
412 // 1 | 0 | sext(BO) == sext(A) op sext(B)
413 // 1 | 1 | zext(sext(BO)) ==
414 // | | zext(sext(A)) op zext(sext(B))
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000415 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
Jingyue Wu84465472014-06-05 22:07:33 +0000416 // If a + b >= 0 and (a >= 0 or b >= 0), then
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000417 // sext(a + b) = sext(a) + sext(b)
Jingyue Wu84465472014-06-05 22:07:33 +0000418 // even if the addition is not marked nsw.
419 //
420 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
421 // index if the constant offset is non-negative.
422 //
423 // Verified in @sext_add in split-gep.ll.
424 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
425 if (!ConstLHS->isNegative())
426 return true;
427 }
428 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
429 if (!ConstRHS->isNegative())
430 return true;
431 }
432 }
Jingyue Wu80a738d2014-05-27 18:00:00 +0000433
434 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
435 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
436 if (BO->getOpcode() == Instruction::Add ||
437 BO->getOpcode() == Instruction::Sub) {
Jingyue Wu84465472014-06-05 22:07:33 +0000438 if (SignExtended && !BO->hasNoSignedWrap())
439 return false;
440 if (ZeroExtended && !BO->hasNoUnsignedWrap())
441 return false;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000442 }
443
Jingyue Wu84465472014-06-05 22:07:33 +0000444 return true;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000445}
446
Jingyue Wu84465472014-06-05 22:07:33 +0000447APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
448 bool SignExtended,
449 bool ZeroExtended) {
450 // BO being non-negative does not shed light on whether its operands are
451 // non-negative. Clear the NonNegative flag here.
452 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
453 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000454 // If we found a constant offset in the left operand, stop and return that.
455 // This shortcut might cause us to miss opportunities of combining the
456 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
457 // However, such cases are probably already handled by -instcombine,
458 // given this pass runs after the standard optimizations.
459 if (ConstantOffset != 0) return ConstantOffset;
Jingyue Wu84465472014-06-05 22:07:33 +0000460 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
461 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000462 // If U is a sub operator, negate the constant offset found in the right
463 // operand.
Jingyue Wu84465472014-06-05 22:07:33 +0000464 if (BO->getOpcode() == Instruction::Sub)
465 ConstantOffset = -ConstantOffset;
466 return ConstantOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000467}
468
Jingyue Wu84465472014-06-05 22:07:33 +0000469APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
470 bool ZeroExtended, bool NonNegative) {
471 // TODO(jingyue): We could trace into integer/pointer casts, such as
Eli Benderskya108a652014-05-01 18:38:36 +0000472 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
473 // integers because it gives good enough results for our benchmarks.
Jingyue Wu84465472014-06-05 22:07:33 +0000474 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Eli Benderskya108a652014-05-01 18:38:36 +0000475
Jingyue Wu84465472014-06-05 22:07:33 +0000476 // We cannot do much with Values that are not a User, such as an Argument.
Eli Benderskya108a652014-05-01 18:38:36 +0000477 User *U = dyn_cast<User>(V);
Jingyue Wu84465472014-06-05 22:07:33 +0000478 if (U == nullptr) return APInt(BitWidth, 0);
Eli Benderskya108a652014-05-01 18:38:36 +0000479
Jingyue Wu84465472014-06-05 22:07:33 +0000480 APInt ConstantOffset(BitWidth, 0);
481 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Eli Benderskya108a652014-05-01 18:38:36 +0000482 // Hooray, we found it!
Jingyue Wu84465472014-06-05 22:07:33 +0000483 ConstantOffset = CI->getValue();
484 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
485 // Trace into subexpressions for more hoisting opportunities.
486 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
487 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
Eli Benderskya108a652014-05-01 18:38:36 +0000488 }
Jingyue Wu84465472014-06-05 22:07:33 +0000489 } else if (isa<SExtInst>(V)) {
490 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
491 ZeroExtended, NonNegative).sext(BitWidth);
492 } else if (isa<ZExtInst>(V)) {
493 // As an optimization, we can clear the SignExtended flag because
494 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
495 //
496 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
Jingyue Wu84465472014-06-05 22:07:33 +0000497 ConstantOffset =
498 find(U->getOperand(0), /* SignExtended */ false,
499 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
Eli Benderskya108a652014-05-01 18:38:36 +0000500 }
Jingyue Wu84465472014-06-05 22:07:33 +0000501
502 // If we found a non-zero constant offset, add it to the path for
503 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
504 // help this optimization.
Eli Benderskya108a652014-05-01 18:38:36 +0000505 if (ConstantOffset != 0)
506 UserChain.push_back(U);
507 return ConstantOffset;
508}
509
Jingyue Wu84465472014-06-05 22:07:33 +0000510Value *ConstantOffsetExtractor::applyExts(Value *V) {
511 Value *Current = V;
512 // ExtInsts is built in the use-def order. Therefore, we apply them to V
513 // in the reversed order.
514 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
515 if (Constant *C = dyn_cast<Constant>(Current)) {
516 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
517 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
518 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
519 } else {
520 Instruction *Ext = (*I)->clone();
521 Ext->setOperand(0, Current);
522 Ext->insertBefore(IP);
523 Current = Ext;
524 }
Eli Benderskya108a652014-05-01 18:38:36 +0000525 }
Jingyue Wu84465472014-06-05 22:07:33 +0000526 return Current;
Eli Benderskya108a652014-05-01 18:38:36 +0000527}
528
Jingyue Wu84465472014-06-05 22:07:33 +0000529Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
530 distributeExtsAndCloneChain(UserChain.size() - 1);
531 // Remove all nullptrs (used to be s/zext) from UserChain.
532 unsigned NewSize = 0;
533 for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
534 if (*I != nullptr) {
535 UserChain[NewSize] = *I;
536 NewSize++;
537 }
Eli Benderskya108a652014-05-01 18:38:36 +0000538 }
Jingyue Wu84465472014-06-05 22:07:33 +0000539 UserChain.resize(NewSize);
540 return removeConstOffset(UserChain.size() - 1);
Eli Benderskya108a652014-05-01 18:38:36 +0000541}
542
Jingyue Wu84465472014-06-05 22:07:33 +0000543Value *
544ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
545 User *U = UserChain[ChainIndex];
546 if (ChainIndex == 0) {
547 assert(isa<ConstantInt>(U));
548 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
549 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
550 }
Eli Benderskya108a652014-05-01 18:38:36 +0000551
Jingyue Wu84465472014-06-05 22:07:33 +0000552 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
553 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
554 "We only traced into two types of CastInst: sext and zext");
555 ExtInsts.push_back(Cast);
556 UserChain[ChainIndex] = nullptr;
557 return distributeExtsAndCloneChain(ChainIndex - 1);
558 }
559
560 // Function find only trace into BinaryOperator and CastInst.
561 BinaryOperator *BO = cast<BinaryOperator>(U);
562 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
563 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
564 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
565 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
566
567 BinaryOperator *NewBO = nullptr;
568 if (OpNo == 0) {
569 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
570 BO->getName(), IP);
571 } else {
572 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
573 BO->getName(), IP);
574 }
575 return UserChain[ChainIndex] = NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000576}
577
Jingyue Wu84465472014-06-05 22:07:33 +0000578Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
579 if (ChainIndex == 0) {
580 assert(isa<ConstantInt>(UserChain[ChainIndex]));
581 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
582 }
Eli Benderskya108a652014-05-01 18:38:36 +0000583
Jingyue Wu84465472014-06-05 22:07:33 +0000584 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
585 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
586 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
587 Value *NextInChain = removeConstOffset(ChainIndex - 1);
588 Value *TheOther = BO->getOperand(1 - OpNo);
589
590 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
591 // sub-expression to be just TheOther.
592 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
593 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
594 return TheOther;
595 }
596
597 if (BO->getOpcode() == Instruction::Or) {
598 // Rebuild "or" as "add", because "or" may be invalid for the new
599 // epxression.
600 //
601 // For instance, given
602 // a | (b + 5) where a and b + 5 have no common bits,
603 // we can extract 5 as the constant offset.
604 //
605 // However, reusing the "or" in the new index would give us
606 // (a | b) + 5
607 // which does not equal a | (b + 5).
608 //
609 // Replacing the "or" with "add" is fine, because
610 // a | (b + 5) = a + (b + 5) = (a + b) + 5
Jingyue Wub7231522014-10-25 17:36:21 +0000611 if (OpNo == 0) {
612 return BinaryOperator::CreateAdd(NextInChain, TheOther, BO->getName(),
613 IP);
614 } else {
615 return BinaryOperator::CreateAdd(TheOther, NextInChain, BO->getName(),
616 IP);
617 }
Jingyue Wu84465472014-06-05 22:07:33 +0000618 }
619
620 // We can reuse BO in this case, because the new expression shares the same
621 // instruction type and BO is used at most once.
622 assert(BO->getNumUses() <= 1 &&
623 "distributeExtsAndCloneChain clones each BinaryOperator in "
624 "UserChain, so no one should be used more than "
625 "once");
626 BO->setOperand(OpNo, NextInChain);
627 BO->setHasNoSignedWrap(false);
628 BO->setHasNoUnsignedWrap(false);
629 // Make sure it appears after all instructions we've inserted so far.
630 BO->moveBefore(IP);
631 return BO;
Eli Benderskya108a652014-05-01 18:38:36 +0000632}
633
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000634Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP) {
635 ConstantOffsetExtractor Extractor(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000636 // Find a non-zero constant offset first.
Jingyue Wu84465472014-06-05 22:07:33 +0000637 APInt ConstantOffset =
638 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
639 GEP->isInBounds());
Hao Liu1d2a0612014-11-19 06:24:44 +0000640 if (ConstantOffset == 0)
641 return nullptr;
642 // Separates the constant offset from the GEP index.
643 return Extractor.rebuildWithoutConstOffset();
Eli Benderskya108a652014-05-01 18:38:36 +0000644}
645
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000646int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
Jingyue Wu84465472014-06-05 22:07:33 +0000647 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000648 return ConstantOffsetExtractor(GEP)
Jingyue Wu84465472014-06-05 22:07:33 +0000649 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
650 GEP->isInBounds())
651 .getSExtValue();
Eli Benderskya108a652014-05-01 18:38:36 +0000652}
653
654void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
655 APInt &KnownZero) const {
656 IntegerType *IT = cast<IntegerType>(V->getType());
657 KnownOne = APInt(IT->getBitWidth(), 0);
658 KnownZero = APInt(IT->getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000659 const DataLayout &DL = IP->getModule()->getDataLayout();
Jay Foada0653a32014-05-14 21:14:37 +0000660 llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
Eli Benderskya108a652014-05-01 18:38:36 +0000661}
662
663bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
664 assert(LHS->getType() == RHS->getType() &&
665 "LHS and RHS should have the same type");
666 APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
667 ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
668 ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
669 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
670}
671
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000672bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
673 GetElementPtrInst *GEP) {
674 bool Changed = false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000675 const DataLayout &DL = GEP->getModule()->getDataLayout();
676 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000677 gep_type_iterator GTI = gep_type_begin(*GEP);
678 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
679 I != E; ++I, ++GTI) {
680 // Skip struct member indices which must be i32.
681 if (isa<SequentialType>(*GTI)) {
682 if ((*I)->getType() != IntPtrTy) {
683 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
684 Changed = true;
685 }
686 }
687 }
688 return Changed;
689}
690
691int64_t
692SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
693 bool &NeedsExtraction) {
Eli Benderskya108a652014-05-01 18:38:36 +0000694 NeedsExtraction = false;
695 int64_t AccumulativeByteOffset = 0;
696 gep_type_iterator GTI = gep_type_begin(*GEP);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000697 const DataLayout &DL = GEP->getModule()->getDataLayout();
Eli Benderskya108a652014-05-01 18:38:36 +0000698 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
699 if (isa<SequentialType>(*GTI)) {
700 // Tries to extract a constant offset from this GEP index.
701 int64_t ConstantOffset =
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000702 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000703 if (ConstantOffset != 0) {
704 NeedsExtraction = true;
705 // A GEP may have multiple indices. We accumulate the extracted
706 // constant offset to a byte offset, and later offset the remainder of
707 // the original GEP with this byte offset.
708 AccumulativeByteOffset +=
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000709 ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
Eli Benderskya108a652014-05-01 18:38:36 +0000710 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000711 } else if (LowerGEP) {
712 StructType *StTy = cast<StructType>(*GTI);
713 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
714 // Skip field 0 as the offset is always 0.
715 if (Field != 0) {
716 NeedsExtraction = true;
717 AccumulativeByteOffset +=
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000718 DL.getStructLayout(StTy)->getElementOffset(Field);
Hao Liu1d2a0612014-11-19 06:24:44 +0000719 }
Eli Benderskya108a652014-05-01 18:38:36 +0000720 }
721 }
722 return AccumulativeByteOffset;
723}
724
Hao Liu1d2a0612014-11-19 06:24:44 +0000725void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
726 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
727 IRBuilder<> Builder(Variadic);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000728 const DataLayout &DL = Variadic->getModule()->getDataLayout();
729 Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000730
731 Type *I8PtrTy =
732 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
733 Value *ResultPtr = Variadic->getOperand(0);
734 if (ResultPtr->getType() != I8PtrTy)
735 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
736
737 gep_type_iterator GTI = gep_type_begin(*Variadic);
738 // Create an ugly GEP for each sequential index. We don't create GEPs for
739 // structure indices, as they are accumulated in the constant offset index.
740 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
741 if (isa<SequentialType>(*GTI)) {
742 Value *Idx = Variadic->getOperand(I);
743 // Skip zero indices.
744 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
745 if (CI->isZero())
746 continue;
747
748 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000749 DL.getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000750 // Scale the index by element size.
751 if (ElementSize != 1) {
752 if (ElementSize.isPowerOf2()) {
753 Idx = Builder.CreateShl(
754 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
755 } else {
756 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
757 }
758 }
759 // Create an ugly GEP with a single index for each index.
760 ResultPtr = Builder.CreateGEP(ResultPtr, Idx, "uglygep");
761 }
762 }
763
764 // Create a GEP with the constant offset index.
765 if (AccumulativeByteOffset != 0) {
766 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
767 ResultPtr = Builder.CreateGEP(ResultPtr, Offset, "uglygep");
768 }
769 if (ResultPtr->getType() != Variadic->getType())
770 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
771
772 Variadic->replaceAllUsesWith(ResultPtr);
773 Variadic->eraseFromParent();
774}
775
776void
777SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
778 int64_t AccumulativeByteOffset) {
779 IRBuilder<> Builder(Variadic);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000780 const DataLayout &DL = Variadic->getModule()->getDataLayout();
781 Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000782
783 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
784 gep_type_iterator GTI = gep_type_begin(*Variadic);
785 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
786 // don't create arithmetics for structure indices, as they are accumulated
787 // in the constant offset index.
788 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
789 if (isa<SequentialType>(*GTI)) {
790 Value *Idx = Variadic->getOperand(I);
791 // Skip zero indices.
792 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
793 if (CI->isZero())
794 continue;
795
796 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000797 DL.getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000798 // Scale the index by element size.
799 if (ElementSize != 1) {
800 if (ElementSize.isPowerOf2()) {
801 Idx = Builder.CreateShl(
802 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
803 } else {
804 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
805 }
806 }
807 // Create an ADD for each index.
808 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
809 }
810 }
811
812 // Create an ADD for the constant offset index.
813 if (AccumulativeByteOffset != 0) {
814 ResultPtr = Builder.CreateAdd(
815 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
816 }
817
818 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
819 Variadic->replaceAllUsesWith(ResultPtr);
820 Variadic->eraseFromParent();
821}
822
Eli Benderskya108a652014-05-01 18:38:36 +0000823bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
824 // Skip vector GEPs.
825 if (GEP->getType()->isVectorTy())
826 return false;
827
828 // The backend can already nicely handle the case where all indices are
829 // constant.
830 if (GEP->hasAllConstantIndices())
831 return false;
832
Jingyue Wu0bdc0272014-07-16 23:25:00 +0000833 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000834
Eli Benderskya108a652014-05-01 18:38:36 +0000835 bool NeedsExtraction;
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000836 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
Eli Benderskya108a652014-05-01 18:38:36 +0000837
838 if (!NeedsExtraction)
839 return Changed;
Hao Liu1d2a0612014-11-19 06:24:44 +0000840 // If LowerGEP is disabled, before really splitting the GEP, check whether the
841 // backend supports the addressing mode we are about to produce. If no, this
842 // splitting probably won't be beneficial.
843 // If LowerGEP is enabled, even the extracted constant offset can not match
844 // the addressing mode, we can still do optimizations to other lowered parts
845 // of variable indices. Therefore, we don't check for addressing modes in that
846 // case.
847 if (!LowerGEP) {
Chandler Carruth705b1852015-01-31 03:43:40 +0000848 TargetTransformInfo &TTI =
Chandler Carruthfdb9c572015-02-01 12:01:35 +0000849 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
850 *GEP->getParent()->getParent());
Hao Liu1d2a0612014-11-19 06:24:44 +0000851 if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
852 /*BaseGV=*/nullptr, AccumulativeByteOffset,
853 /*HasBaseReg=*/true, /*Scale=*/0)) {
854 return Changed;
855 }
Eli Benderskya108a652014-05-01 18:38:36 +0000856 }
857
Hao Liu1d2a0612014-11-19 06:24:44 +0000858 // Remove the constant offset in each sequential index. The resultant GEP
859 // computes the variadic base.
860 // Notice that we don't remove struct field indices here. If LowerGEP is
861 // disabled, a structure index is not accumulated and we still use the old
862 // one. If LowerGEP is enabled, a structure index is accumulated in the
863 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
864 // handle the constant offset and won't need a new structure index.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000865 gep_type_iterator GTI = gep_type_begin(*GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000866 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
867 if (isa<SequentialType>(*GTI)) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000868 // Splits this GEP index into a variadic part and a constant offset, and
869 // uses the variadic part as the new index.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000870 Value *NewIdx = ConstantOffsetExtractor::Extract(GEP->getOperand(I), GEP);
Hao Liu1d2a0612014-11-19 06:24:44 +0000871 if (NewIdx != nullptr) {
Eli Benderskya108a652014-05-01 18:38:36 +0000872 GEP->setOperand(I, NewIdx);
Eli Benderskya108a652014-05-01 18:38:36 +0000873 }
874 }
875 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000876
Jingyue Wu84465472014-06-05 22:07:33 +0000877 // Clear the inbounds attribute because the new index may be off-bound.
878 // e.g.,
879 //
880 // b = add i64 a, 5
881 // addr = gep inbounds float* p, i64 b
882 //
883 // is transformed to:
884 //
885 // addr2 = gep float* p, i64 a
886 // addr = gep float* addr2, i64 5
887 //
888 // If a is -4, although the old index b is in bounds, the new index a is
889 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
890 // inbounds keyword is not present, the offsets are added to the base
891 // address with silently-wrapping two's complement arithmetic".
892 // Therefore, the final code will be a semantically equivalent.
893 //
894 // TODO(jingyue): do some range analysis to keep as many inbounds as
895 // possible. GEPs with inbounds are more friendly to alias analysis.
896 GEP->setIsInBounds(false);
Eli Benderskya108a652014-05-01 18:38:36 +0000897
Hao Liu1d2a0612014-11-19 06:24:44 +0000898 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
899 if (LowerGEP) {
900 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
901 // arithmetic operations if the target uses alias analysis in codegen.
Eric Christophere38c8d42015-01-27 07:16:37 +0000902 if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
Hao Liu1d2a0612014-11-19 06:24:44 +0000903 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
904 else
905 lowerToArithmetics(GEP, AccumulativeByteOffset);
906 return true;
907 }
908
909 // No need to create another GEP if the accumulative byte offset is 0.
910 if (AccumulativeByteOffset == 0)
911 return true;
912
Eli Benderskya108a652014-05-01 18:38:36 +0000913 // Offsets the base with the accumulative byte offset.
914 //
915 // %gep ; the base
916 // ... %gep ...
917 //
918 // => add the offset
919 //
920 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000921 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +0000922 // %gep ; will be removed
923 // ... %gep ...
924 //
925 // => replace all uses of %gep with %new.gep and remove %gep
926 //
927 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000928 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +0000929 // ... %new.gep ...
930 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000931 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
932 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
933 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
934 // type of %gep.
Eli Benderskya108a652014-05-01 18:38:36 +0000935 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000936 // %gep2 ; clone of %gep
937 // %0 = bitcast %gep2 to i8*
938 // %uglygep = gep %0, <offset>
939 // %new.gep = bitcast %uglygep to <type of %gep>
940 // ... %new.gep ...
Eli Benderskya108a652014-05-01 18:38:36 +0000941 Instruction *NewGEP = GEP->clone();
942 NewGEP->insertBefore(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000943
Jingyue Wufe72fce2014-10-25 18:34:03 +0000944 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
945 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
946 // used with unsigned integers later.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000947 const DataLayout &DL = GEP->getModule()->getDataLayout();
Jingyue Wufe72fce2014-10-25 18:34:03 +0000948 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000949 DL.getTypeAllocSize(GEP->getType()->getElementType()));
950 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000951 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
952 // Very likely. As long as %gep is natually aligned, the byte offset we
953 // extracted should be a multiple of sizeof(*%gep).
Jingyue Wufe72fce2014-10-25 18:34:03 +0000954 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000955 NewGEP = GetElementPtrInst::Create(
956 NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
957 } else {
958 // Unlikely but possible. For example,
959 // #pragma pack(1)
960 // struct S {
961 // int a[3];
962 // int64 b[8];
963 // };
964 // #pragma pack()
965 //
966 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
967 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
968 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
969 // sizeof(int64).
970 //
971 // Emit an uglygep in this case.
972 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
973 GEP->getPointerAddressSpace());
974 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
975 NewGEP = GetElementPtrInst::Create(
976 NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
977 "uglygep", GEP);
978 if (GEP->getType() != I8PtrTy)
979 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
980 }
981
982 GEP->replaceAllUsesWith(NewGEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000983 GEP->eraseFromParent();
984
985 return true;
986}
987
988bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
Jingyue Wu6c26bb62015-02-01 02:34:41 +0000989 if (skipOptnoneFunction(F))
990 return false;
991
Eli Benderskya108a652014-05-01 18:38:36 +0000992 if (DisableSeparateConstOffsetFromGEP)
993 return false;
994
995 bool Changed = false;
996 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
997 for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
998 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
999 Changed |= splitGEP(GEP);
1000 }
1001 // No need to split GEP ConstantExprs because all its indices are constant
1002 // already.
1003 }
1004 }
1005 return Changed;
1006}