blob: 23c988e7154b87c162462bb69afcbaddbec162fa [file] [log] [blame]
Reed Kotler5bf80202013-02-27 04:20:14 +00001//===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
Reed Kotlerbb3094a2013-02-27 03:33:58 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//
11// This pass is used to make Pc relative loads of constants.
Reed Kotler4d0313d2013-11-05 12:04:37 +000012// For now, only Mips16 will use this.
Reed Kotlerbb3094a2013-02-27 03:33:58 +000013//
14// Loading constants inline is expensive on Mips16 and it's in general better
15// to place the constant nearby in code space and then it can be loaded with a
16// simple 16 bit load instruction.
17//
18// The constants can be not just numbers but addresses of functions and labels.
19// This can be particularly helpful in static relocation mode for embedded
20// non linux targets.
21//
22//
23
24#define DEBUG_TYPE "mips-constant-islands"
25
26#include "Mips.h"
27#include "MCTargetDesc/MipsBaseInfo.h"
Reed Kotler0f007fc2013-11-05 08:14:14 +000028#include "MipsMachineFunction.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000029#include "MipsTargetMachine.h"
30#include "llvm/ADT/Statistic.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000031#include "llvm/CodeGen/MachineBasicBlock.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000032#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000034#include "llvm/CodeGen/MachineRegisterInfo.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000035#include "llvm/IR/Function.h"
36#include "llvm/Support/CommandLine.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000037#include "llvm/Support/Debug.h"
38#include "llvm/Support/InstIterator.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000039#include "llvm/Support/MathExtras.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000040#include "llvm/Support/raw_ostream.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000041#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetRegisterInfo.h"
Reed Kotler0f007fc2013-11-05 08:14:14 +000044#include "llvm/Support/Format.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000045#include <algorithm>
Reed Kotlerbb3094a2013-02-27 03:33:58 +000046
47using namespace llvm;
48
Reed Kotler91ae9822013-10-27 21:57:36 +000049STATISTIC(NumCPEs, "Number of constpool entries");
Reed Kotler0f007fc2013-11-05 08:14:14 +000050STATISTIC(NumSplit, "Number of uncond branches inserted");
51STATISTIC(NumCBrFixed, "Number of cond branches fixed");
52STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
Reed Kotler91ae9822013-10-27 21:57:36 +000053
54// FIXME: This option should be removed once it has received sufficient testing.
55static cl::opt<bool>
56AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
57 cl::desc("Align constant islands in code"));
58
Reed Kotler0f007fc2013-11-05 08:14:14 +000059
60// Rather than do make check tests with huge amounts of code, we force
61// the test to use this amount.
62//
63static cl::opt<int> ConstantIslandsSmallOffset(
64 "mips-constant-islands-small-offset",
65 cl::init(0),
66 cl::desc("Make small offsets be this amount for testing purposes"),
67 cl::Hidden);
68
Reed Kotler45c59272013-11-10 00:09:26 +000069//
70// For testing purposes we tell it to not use relaxed load forms so that it
71// will split blocks.
72//
73static cl::opt<bool> NoLoadRelaxation(
74 "mips-constant-islands-no-load-relaxation",
75 cl::init(false),
76 cl::desc("Don't relax loads to long loads - for testing purposes"),
77 cl::Hidden);
78
Reed Kotler0f007fc2013-11-05 08:14:14 +000079
Reed Kotlerbb3094a2013-02-27 03:33:58 +000080namespace {
Reed Kotler0f007fc2013-11-05 08:14:14 +000081
82
Reed Kotlerbb3094a2013-02-27 03:33:58 +000083 typedef MachineBasicBlock::iterator Iter;
84 typedef MachineBasicBlock::reverse_iterator ReverseIter;
85
Reed Kotler0f007fc2013-11-05 08:14:14 +000086 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
87 /// requires constant pool entries to be scattered among the instructions
88 /// inside a function. To do this, it completely ignores the normal LLVM
89 /// constant pool; instead, it places constants wherever it feels like with
90 /// special instructions.
91 ///
92 /// The terminology used in this pass includes:
93 /// Islands - Clumps of constants placed in the function.
94 /// Water - Potential places where an island could be formed.
95 /// CPE - A constant pool entry that has been placed somewhere, which
96 /// tracks a list of users.
97
Reed Kotlerbb3094a2013-02-27 03:33:58 +000098 class MipsConstantIslands : public MachineFunctionPass {
99
Reed Kotler0f007fc2013-11-05 08:14:14 +0000100 /// BasicBlockInfo - Information about the offset and size of a single
101 /// basic block.
102 struct BasicBlockInfo {
103 /// Offset - Distance from the beginning of the function to the beginning
104 /// of this basic block.
105 ///
106 /// Offsets are computed assuming worst case padding before an aligned
107 /// block. This means that subtracting basic block offsets always gives a
108 /// conservative estimate of the real distance which may be smaller.
109 ///
110 /// Because worst case padding is used, the computed offset of an aligned
111 /// block may not actually be aligned.
112 unsigned Offset;
113
114 /// Size - Size of the basic block in bytes. If the block contains
115 /// inline assembly, this is a worst case estimate.
116 ///
117 /// The size does not include any alignment padding whether from the
118 /// beginning of the block, or from an aligned jump table at the end.
119 unsigned Size;
120
Reed Kotler7ded5b62013-11-05 23:36:58 +0000121 // FIXME: ignore LogAlign for this patch
122 //
Reed Kotler0f007fc2013-11-05 08:14:14 +0000123 unsigned postOffset(unsigned LogAlign = 0) const {
124 unsigned PO = Offset + Size;
125 return PO;
126 }
127
Reed Kotler7ded5b62013-11-05 23:36:58 +0000128 BasicBlockInfo() : Offset(0), Size(0) {}
129
Reed Kotler0f007fc2013-11-05 08:14:14 +0000130 };
131
132 std::vector<BasicBlockInfo> BBInfo;
133
134 /// WaterList - A sorted list of basic blocks where islands could be placed
135 /// (i.e. blocks that don't fall through to the following block, due
136 /// to a return, unreachable, or unconditional branch).
137 std::vector<MachineBasicBlock*> WaterList;
138
139 /// NewWaterList - The subset of WaterList that was created since the
140 /// previous iteration by inserting unconditional branches.
141 SmallSet<MachineBasicBlock*, 4> NewWaterList;
142
143 typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
144
145 /// CPUser - One user of a constant pool, keeping the machine instruction
146 /// pointer, the constant pool being referenced, and the max displacement
147 /// allowed from the instruction to the CP. The HighWaterMark records the
148 /// highest basic block where a new CPEntry can be placed. To ensure this
149 /// pass terminates, the CP entries are initially placed at the end of the
150 /// function and then move monotonically to lower addresses. The
151 /// exception to this rule is when the current CP entry for a particular
152 /// CPUser is out of range, but there is another CP entry for the same
153 /// constant value in range. We want to use the existing in-range CP
154 /// entry, but if it later moves out of range, the search for new water
155 /// should resume where it left off. The HighWaterMark is used to record
156 /// that point.
157 struct CPUser {
158 MachineInstr *MI;
159 MachineInstr *CPEMI;
160 MachineBasicBlock *HighWaterMark;
161 private:
162 unsigned MaxDisp;
163 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
164 // with different displacements
165 unsigned LongFormOpcode;
166 public:
167 bool NegOk;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000168 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
Reed Kotlerb09ebe92013-11-05 22:34:29 +0000169 bool neg,
Reed Kotler0f007fc2013-11-05 08:14:14 +0000170 unsigned longformmaxdisp, unsigned longformopcode)
171 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
172 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
Reed Kotler7ded5b62013-11-05 23:36:58 +0000173 NegOk(neg){
Reed Kotler0f007fc2013-11-05 08:14:14 +0000174 HighWaterMark = CPEMI->getParent();
175 }
176 /// getMaxDisp - Returns the maximum displacement supported by MI.
Reed Kotler0f007fc2013-11-05 08:14:14 +0000177 unsigned getMaxDisp() const {
178 unsigned xMaxDisp = ConstantIslandsSmallOffset?
179 ConstantIslandsSmallOffset: MaxDisp;
Reed Kotler7ded5b62013-11-05 23:36:58 +0000180 return xMaxDisp;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000181 }
Reed Kotler45c59272013-11-10 00:09:26 +0000182 void setMaxDisp(unsigned val) {
183 MaxDisp = val;
184 }
Reed Kotler0f007fc2013-11-05 08:14:14 +0000185 unsigned getLongFormMaxDisp() const {
Reed Kotler7ded5b62013-11-05 23:36:58 +0000186 return LongFormMaxDisp;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000187 }
188 unsigned getLongFormOpcode() const {
189 return LongFormOpcode;
190 }
191 };
192
193 /// CPUsers - Keep track of all of the machine instructions that use various
194 /// constant pools and their max displacement.
195 std::vector<CPUser> CPUsers;
Reed Kotler91ae9822013-10-27 21:57:36 +0000196
197 /// CPEntry - One per constant pool entry, keeping the machine instruction
198 /// pointer, the constpool index, and the number of CPUser's which
199 /// reference this entry.
200 struct CPEntry {
201 MachineInstr *CPEMI;
202 unsigned CPI;
203 unsigned RefCount;
204 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
205 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
206 };
207
208 /// CPEntries - Keep track of all of the constant pool entry machine
209 /// instructions. For each original constpool index (i.e. those that
210 /// existed upon entry to this pass), it keeps a vector of entries.
211 /// Original elements are cloned as we go along; the clones are
212 /// put in the vector of the original element, but have distinct CPIs.
213 std::vector<std::vector<CPEntry> > CPEntries;
214
Reed Kotler0f007fc2013-11-05 08:14:14 +0000215 /// ImmBranch - One per immediate branch, keeping the machine instruction
216 /// pointer, conditional or unconditional, the max displacement,
217 /// and (if isCond is true) the corresponding unconditional branch
218 /// opcode.
219 struct ImmBranch {
220 MachineInstr *MI;
221 unsigned MaxDisp : 31;
222 bool isCond : 1;
223 int UncondBr;
224 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
225 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
226 };
227
228 /// ImmBranches - Keep track of all the immediate branch instructions.
229 ///
230 std::vector<ImmBranch> ImmBranches;
231
232 /// HasFarJump - True if any far jump instruction has been emitted during
233 /// the branch fix up pass.
234 bool HasFarJump;
235
236 const TargetMachine &TM;
237 bool IsPIC;
238 unsigned ABI;
239 const MipsSubtarget *STI;
240 const MipsInstrInfo *TII;
241 MipsFunctionInfo *MFI;
242 MachineFunction *MF;
243 MachineConstantPool *MCP;
244
245 unsigned PICLabelUId;
246 bool PrescannedForConstants;
247
248 void initPICLabelUId(unsigned UId) {
249 PICLabelUId = UId;
250 }
251
252
253 unsigned createPICLabelUId() {
254 return PICLabelUId++;
255 }
256
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000257 public:
258 static char ID;
259 MipsConstantIslands(TargetMachine &tm)
260 : MachineFunctionPass(ID), TM(tm),
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000261 IsPIC(TM.getRelocationModel() == Reloc::PIC_),
Reed Kotler91ae9822013-10-27 21:57:36 +0000262 ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()),
Reed Kotler0f007fc2013-11-05 08:14:14 +0000263 STI(&TM.getSubtarget<MipsSubtarget>()), MF(0), MCP(0),
264 PrescannedForConstants(false){}
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000265
266 virtual const char *getPassName() const {
267 return "Mips Constant Islands";
268 }
269
270 bool runOnMachineFunction(MachineFunction &F);
271
Reed Kotler91ae9822013-10-27 21:57:36 +0000272 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
Reed Kotler0f007fc2013-11-05 08:14:14 +0000273 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
274 unsigned getCPELogAlign(const MachineInstr *CPEMI);
275 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
276 unsigned getOffsetOf(MachineInstr *MI) const;
277 unsigned getUserOffset(CPUser&) const;
278 void dumpBBs();
279 void verify();
280
281 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
Reed Kotlerb09ebe92013-11-05 22:34:29 +0000282 unsigned Disp, bool NegativeOK);
Reed Kotler0f007fc2013-11-05 08:14:14 +0000283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
284 const CPUser &U);
285
286 bool isLongFormOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
287 const CPUser &U);
288
289 void computeBlockSize(MachineBasicBlock *MBB);
290 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
291 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
292 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
293 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
294 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
295 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
296 bool findAvailableWater(CPUser&U, unsigned UserOffset,
297 water_iterator &WaterIter);
298 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
299 MachineBasicBlock *&NewMBB);
300 bool handleConstantPoolUser(unsigned CPUserIndex);
301 void removeDeadCPEMI(MachineInstr *CPEMI);
302 bool removeUnusedCPEntries();
303 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
304 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
305 bool DoDump = false);
306 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
307 CPUser &U, unsigned &Growth);
308 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
309 bool fixupImmediateBr(ImmBranch &Br);
310 bool fixupConditionalBr(ImmBranch &Br);
311 bool fixupUnconditionalBr(ImmBranch &Br);
Reed Kotler91ae9822013-10-27 21:57:36 +0000312
313 void prescanForConstants();
314
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000315 private:
Reed Kotler91ae9822013-10-27 21:57:36 +0000316
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000317 };
318
319 char MipsConstantIslands::ID = 0;
320} // end of anonymous namespace
321
Reed Kotler0f007fc2013-11-05 08:14:14 +0000322
323bool MipsConstantIslands::isLongFormOffsetInRange
324 (unsigned UserOffset, unsigned TrialOffset,
325 const CPUser &U) {
326 return isOffsetInRange(UserOffset, TrialOffset,
Reed Kotlerb09ebe92013-11-05 22:34:29 +0000327 U.getLongFormMaxDisp(), U.NegOk);
Reed Kotler0f007fc2013-11-05 08:14:14 +0000328}
329
330bool MipsConstantIslands::isOffsetInRange
331 (unsigned UserOffset, unsigned TrialOffset,
332 const CPUser &U) {
333 return isOffsetInRange(UserOffset, TrialOffset,
Reed Kotlerb09ebe92013-11-05 22:34:29 +0000334 U.getMaxDisp(), U.NegOk);
Reed Kotler0f007fc2013-11-05 08:14:14 +0000335}
336/// print block size and offset information - debugging
337void MipsConstantIslands::dumpBBs() {
338 DEBUG({
339 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
340 const BasicBlockInfo &BBI = BBInfo[J];
341 dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
Reed Kotler0f007fc2013-11-05 08:14:14 +0000342 << format(" size=%#x\n", BBInfo[J].Size);
343 }
344 });
345}
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000346/// createMipsLongBranchPass - Returns a pass that converts branches to long
347/// branches.
348FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
349 return new MipsConstantIslands(tm);
350}
351
Reed Kotler91ae9822013-10-27 21:57:36 +0000352bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
Reed Kotler1595f362013-04-09 19:46:01 +0000353 // The intention is for this to be a mips16 only pass for now
354 // FIXME:
Reed Kotler91ae9822013-10-27 21:57:36 +0000355 MF = &mf;
356 MCP = mf.getConstantPool();
357 DEBUG(dbgs() << "constant island machine function " << "\n");
358 if (!TM.getSubtarget<MipsSubtarget>().inMips16Mode() ||
359 !MipsSubtarget::useConstantIslands()) {
360 return false;
361 }
362 TII = (const MipsInstrInfo*)MF->getTarget().getInstrInfo();
Reed Kotler0f007fc2013-11-05 08:14:14 +0000363 MFI = MF->getInfo<MipsFunctionInfo>();
Reed Kotler91ae9822013-10-27 21:57:36 +0000364 DEBUG(dbgs() << "constant island processing " << "\n");
365 //
366 // will need to make predermination if there is any constants we need to
367 // put in constant islands. TBD.
368 //
Reed Kotler0f007fc2013-11-05 08:14:14 +0000369 if (!PrescannedForConstants) prescanForConstants();
Reed Kotler91ae9822013-10-27 21:57:36 +0000370
Reed Kotler0f007fc2013-11-05 08:14:14 +0000371 HasFarJump = false;
Reed Kotler91ae9822013-10-27 21:57:36 +0000372 // This pass invalidates liveness information when it splits basic blocks.
373 MF->getRegInfo().invalidateLiveness();
374
375 // Renumber all of the machine basic blocks in the function, guaranteeing that
376 // the numbers agree with the position of the block in the function.
377 MF->RenumberBlocks();
378
Reed Kotler0f007fc2013-11-05 08:14:14 +0000379 bool MadeChange = false;
380
Reed Kotler91ae9822013-10-27 21:57:36 +0000381 // Perform the initial placement of the constant pool entries. To start with,
382 // we put them all at the end of the function.
383 std::vector<MachineInstr*> CPEMIs;
384 if (!MCP->isEmpty())
385 doInitialPlacement(CPEMIs);
386
Reed Kotler0f007fc2013-11-05 08:14:14 +0000387 /// The next UID to take is the first unused one.
388 initPICLabelUId(CPEMIs.size());
389
390 // Do the initial scan of the function, building up information about the
391 // sizes of each block, the location of all the water, and finding all of the
392 // constant pool users.
393 initializeFunctionInfo(CPEMIs);
394 CPEMIs.clear();
395 DEBUG(dumpBBs());
396
397 /// Remove dead constant pool entries.
398 MadeChange |= removeUnusedCPEntries();
399
400 // Iteratively place constant pool entries and fix up branches until there
401 // is no change.
402 unsigned NoCPIters = 0, NoBRIters = 0;
403 (void)NoBRIters;
404 while (true) {
405 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
406 bool CPChange = false;
407 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
408 CPChange |= handleConstantPoolUser(i);
409 if (CPChange && ++NoCPIters > 30)
410 report_fatal_error("Constant Island pass failed to converge!");
411 DEBUG(dumpBBs());
412
413 // Clear NewWaterList now. If we split a block for branches, it should
414 // appear as "new water" for the next iteration of constant pool placement.
415 NewWaterList.clear();
416
417 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
418 bool BRChange = false;
419#ifdef IN_PROGRESS
420 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
421 BRChange |= fixupImmediateBr(ImmBranches[i]);
422 if (BRChange && ++NoBRIters > 30)
423 report_fatal_error("Branch Fix Up pass failed to converge!");
424 DEBUG(dumpBBs());
425#endif
426 if (!CPChange && !BRChange)
427 break;
428 MadeChange = true;
429 }
430
431 DEBUG(dbgs() << '\n'; dumpBBs());
432
433 BBInfo.clear();
434 WaterList.clear();
435 CPUsers.clear();
436 CPEntries.clear();
437 ImmBranches.clear();
438 return MadeChange;
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000439}
440
Reed Kotler91ae9822013-10-27 21:57:36 +0000441/// doInitialPlacement - Perform the initial placement of the constant pool
442/// entries. To start with, we put them all at the end of the function.
443void
444MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
445 // Create the basic block to hold the CPE's.
446 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
447 MF->push_back(BB);
448
449
450 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
451 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
452
453 // Mark the basic block as required by the const-pool.
454 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
455 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
456
457 // The function needs to be as aligned as the basic blocks. The linker may
458 // move functions around based on their alignment.
459 MF->ensureAlignment(BB->getAlignment());
460
461 // Order the entries in BB by descending alignment. That ensures correct
462 // alignment of all entries as long as BB is sufficiently aligned. Keep
463 // track of the insertion point for each alignment. We are going to bucket
464 // sort the entries as they are created.
465 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
466
467 // Add all of the constants from the constant pool to the end block, use an
468 // identity mapping of CPI's to CPE's.
469 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
470
471 const DataLayout &TD = *MF->getTarget().getDataLayout();
472 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
473 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
474 assert(Size >= 4 && "Too small constant pool entry");
475 unsigned Align = CPs[i].getAlignment();
476 assert(isPowerOf2_32(Align) && "Invalid alignment");
477 // Verify that all constant pool entries are a multiple of their alignment.
478 // If not, we would have to pad them out so that instructions stay aligned.
479 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
480
481 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
482 unsigned LogAlign = Log2_32(Align);
483 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
484
485 MachineInstr *CPEMI =
486 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
487 .addImm(i).addConstantPoolIndex(i).addImm(Size);
488
489 CPEMIs.push_back(CPEMI);
490
491 // Ensure that future entries with higher alignment get inserted before
492 // CPEMI. This is bucket sort with iterators.
493 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
494 if (InsPoint[a] == InsAt)
495 InsPoint[a] = CPEMI;
496 // Add a new CPEntry, but no corresponding CPUser yet.
497 std::vector<CPEntry> CPEs;
498 CPEs.push_back(CPEntry(CPEMI, i));
499 CPEntries.push_back(CPEs);
500 ++NumCPEs;
501 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
502 << Size << ", align = " << Align <<'\n');
503 }
504 DEBUG(BB->dump());
505}
506
Reed Kotler0f007fc2013-11-05 08:14:14 +0000507/// BBHasFallthrough - Return true if the specified basic block can fallthrough
508/// into the block immediately after it.
509static bool BBHasFallthrough(MachineBasicBlock *MBB) {
510 // Get the next machine basic block in the function.
511 MachineFunction::iterator MBBI = MBB;
512 // Can't fall off end of function.
513 if (llvm::next(MBBI) == MBB->getParent()->end())
514 return false;
515
516 MachineBasicBlock *NextBB = llvm::next(MBBI);
517 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
518 E = MBB->succ_end(); I != E; ++I)
519 if (*I == NextBB)
520 return true;
521
522 return false;
523}
524
525/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
526/// look up the corresponding CPEntry.
527MipsConstantIslands::CPEntry
528*MipsConstantIslands::findConstPoolEntry(unsigned CPI,
529 const MachineInstr *CPEMI) {
530 std::vector<CPEntry> &CPEs = CPEntries[CPI];
531 // Number of entries per constpool index should be small, just do a
532 // linear search.
533 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
534 if (CPEs[i].CPEMI == CPEMI)
535 return &CPEs[i];
536 }
537 return NULL;
538}
539
540/// getCPELogAlign - Returns the required alignment of the constant pool entry
541/// represented by CPEMI. Alignment is measured in log2(bytes) units.
542unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
543 assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
544
545 // Everything is 4-byte aligned unless AlignConstantIslands is set.
546 if (!AlignConstantIslands)
547 return 2;
548
549 unsigned CPI = CPEMI->getOperand(1).getIndex();
550 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
551 unsigned Align = MCP->getConstants()[CPI].getAlignment();
552 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
553 return Log2_32(Align);
554}
555
556/// initializeFunctionInfo - Do the initial scan of the function, building up
557/// information about the sizes of each block, the location of all the water,
558/// and finding all of the constant pool users.
559void MipsConstantIslands::
560initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
561 BBInfo.clear();
562 BBInfo.resize(MF->getNumBlockIDs());
563
564 // First thing, compute the size of all basic blocks, and see if the function
565 // has any inline assembly in it. If so, we have to be conservative about
566 // alignment assumptions, as we don't know for sure the size of any
567 // instructions in the inline assembly.
568 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
569 computeBlockSize(I);
570
Reed Kotler0f007fc2013-11-05 08:14:14 +0000571
572 // Compute block offsets.
573 adjustBBOffsetsAfter(MF->begin());
574
575 // Now go back through the instructions and build up our data structures.
576 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
577 MBBI != E; ++MBBI) {
578 MachineBasicBlock &MBB = *MBBI;
579
580 // If this block doesn't fall through into the next MBB, then this is
581 // 'water' that a constant pool island could be placed.
582 if (!BBHasFallthrough(&MBB))
583 WaterList.push_back(&MBB);
584 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
585 I != E; ++I) {
586 if (I->isDebugValue())
587 continue;
588
589 int Opc = I->getOpcode();
Reed Kotlere7af1ec2013-11-07 11:56:33 +0000590#ifdef IN_PROGRESS
Reed Kotler0f007fc2013-11-05 08:14:14 +0000591 if (I->isBranch()) {
592 bool isCond = false;
593 unsigned Bits = 0;
594 unsigned Scale = 1;
595 int UOpc = Opc;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000596 switch (Opc) {
597 default:
598 continue; // Ignore other JT branches
599 }
600 // Record this immediate branch.
601 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
602 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
Reed Kotler0f007fc2013-11-05 08:14:14 +0000603 }
Reed Kotlere7af1ec2013-11-07 11:56:33 +0000604#endif
Reed Kotler0f007fc2013-11-05 08:14:14 +0000605
606 if (Opc == Mips::CONSTPOOL_ENTRY)
607 continue;
608
609
610 // Scan the instructions for constant pool operands.
611 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
612 if (I->getOperand(op).isCPI()) {
613
614 // We found one. The addressing mode tells us the max displacement
615 // from the PC that this instruction permits.
616
617 // Basic size info comes from the TSFlags field.
618 unsigned Bits = 0;
619 unsigned Scale = 1;
620 bool NegOk = false;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000621 unsigned LongFormBits = 0;
622 unsigned LongFormScale = 0;
623 unsigned LongFormOpcode = 0;
624 switch (Opc) {
625 default:
626 llvm_unreachable("Unknown addressing mode for CP reference!");
627 case Mips::LwRxPcTcp16:
628 Bits = 8;
Reed Kotler3d7b33f2013-11-06 04:29:52 +0000629 Scale = 4;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000630 LongFormOpcode = Mips::LwRxPcTcpX16;
Reed Kotler45c59272013-11-10 00:09:26 +0000631 LongFormBits = 16;
632 LongFormScale = 1;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000633 break;
634 case Mips::LwRxPcTcpX16:
635 Bits = 16;
Reed Kotler3d7b33f2013-11-06 04:29:52 +0000636 Scale = 1;
637 NegOk = true;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000638 break;
639 }
640 // Remember that this is a user of a CP entry.
641 unsigned CPI = I->getOperand(op).getIndex();
642 MachineInstr *CPEMI = CPEMIs[CPI];
643 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
644 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
645 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
Reed Kotlerb09ebe92013-11-05 22:34:29 +0000646 LongFormMaxOffs, LongFormOpcode));
Reed Kotler0f007fc2013-11-05 08:14:14 +0000647
648 // Increment corresponding CPEntry reference count.
649 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
650 assert(CPE && "Cannot find a corresponding CPEntry!");
651 CPE->RefCount++;
652
653 // Instructions can only use one CP entry, don't bother scanning the
654 // rest of the operands.
655 break;
656
657 }
658
659 }
660 }
661
662}
663
664/// computeBlockSize - Compute the size and some alignment information for MBB.
665/// This function updates BBInfo directly.
666void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
667 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
668 BBI.Size = 0;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000669
670 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
671 ++I)
672 BBI.Size += TII->GetInstSizeInBytes(I);
673
674}
675
676/// getOffsetOf - Return the current offset of the specified machine instruction
677/// from the start of the function. This offset changes as stuff is moved
678/// around inside the function.
679unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
680 MachineBasicBlock *MBB = MI->getParent();
681
682 // The offset is composed of two things: the sum of the sizes of all MBB's
683 // before this instruction's block, and the offset from the start of the block
684 // it is in.
685 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
686
687 // Sum instructions before MI in MBB.
688 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
689 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
690 Offset += TII->GetInstSizeInBytes(I);
691 }
692 return Offset;
693}
694
695/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
696/// ID.
697static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
698 const MachineBasicBlock *RHS) {
699 return LHS->getNumber() < RHS->getNumber();
700}
701
702/// updateForInsertedWaterBlock - When a block is newly inserted into the
703/// machine function, it upsets all of the block numbers. Renumber the blocks
704/// and update the arrays that parallel this numbering.
705void MipsConstantIslands::updateForInsertedWaterBlock
706 (MachineBasicBlock *NewBB) {
707 // Renumber the MBB's to keep them consecutive.
708 NewBB->getParent()->RenumberBlocks(NewBB);
709
710 // Insert an entry into BBInfo to align it properly with the (newly
711 // renumbered) block numbers.
712 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
713
714 // Next, update WaterList. Specifically, we need to add NewMBB as having
715 // available water after it.
716 water_iterator IP =
717 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
718 CompareMBBNumbers);
719 WaterList.insert(IP, NewBB);
720}
721
Reed Kotler0f007fc2013-11-05 08:14:14 +0000722unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
Reed Kotler0eb87392013-11-05 21:39:57 +0000723 return getOffsetOf(U.MI);
Reed Kotler0f007fc2013-11-05 08:14:14 +0000724}
725
726/// Split the basic block containing MI into two blocks, which are joined by
727/// an unconditional branch. Update data structures and renumber blocks to
728/// account for this change and returns the newly created block.
729MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
730 (MachineInstr *MI) {
731 MachineBasicBlock *OrigBB = MI->getParent();
732
733 // Create a new MBB for the code after the OrigBB.
734 MachineBasicBlock *NewBB =
735 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
736 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
737 MF->insert(MBBI, NewBB);
738
739 // Splice the instructions starting with MI over to NewBB.
740 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
741
742 // Add an unconditional branch from OrigBB to NewBB.
743 // Note the new unconditional branch is not being recorded.
744 // There doesn't seem to be meaningful DebugInfo available; this doesn't
745 // correspond to anything in the source.
746 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::BimmX16)).addMBB(NewBB);
747 ++NumSplit;
748
749 // Update the CFG. All succs of OrigBB are now succs of NewBB.
750 NewBB->transferSuccessors(OrigBB);
751
752 // OrigBB branches to NewBB.
753 OrigBB->addSuccessor(NewBB);
754
755 // Update internal data structures to account for the newly inserted MBB.
756 // This is almost the same as updateForInsertedWaterBlock, except that
757 // the Water goes after OrigBB, not NewBB.
758 MF->RenumberBlocks(NewBB);
759
760 // Insert an entry into BBInfo to align it properly with the (newly
761 // renumbered) block numbers.
762 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
763
764 // Next, update WaterList. Specifically, we need to add OrigMBB as having
765 // available water after it (but not if it's already there, which happens
766 // when splitting before a conditional branch that is followed by an
767 // unconditional branch - in that case we want to insert NewBB).
768 water_iterator IP =
769 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
770 CompareMBBNumbers);
771 MachineBasicBlock* WaterBB = *IP;
772 if (WaterBB == OrigBB)
773 WaterList.insert(llvm::next(IP), NewBB);
774 else
775 WaterList.insert(IP, OrigBB);
776 NewWaterList.insert(OrigBB);
777
778 // Figure out how large the OrigBB is. As the first half of the original
779 // block, it cannot contain a tablejump. The size includes
780 // the new jump we added. (It should be possible to do this without
781 // recounting everything, but it's very confusing, and this is rarely
782 // executed.)
783 computeBlockSize(OrigBB);
784
785 // Figure out how large the NewMBB is. As the second half of the original
786 // block, it may contain a tablejump.
787 computeBlockSize(NewBB);
788
789 // All BBOffsets following these blocks must be modified.
790 adjustBBOffsetsAfter(OrigBB);
791
792 return NewBB;
793}
794
795
796
797/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
798/// reference) is within MaxDisp of TrialOffset (a proposed location of a
799/// constant pool entry).
Reed Kotler0f007fc2013-11-05 08:14:14 +0000800bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
801 unsigned TrialOffset, unsigned MaxDisp,
Reed Kotlerb09ebe92013-11-05 22:34:29 +0000802 bool NegativeOK) {
Reed Kotler0f007fc2013-11-05 08:14:14 +0000803 if (UserOffset <= TrialOffset) {
804 // User before the Trial.
805 if (TrialOffset - UserOffset <= MaxDisp)
806 return true;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000807 } else if (NegativeOK) {
808 if (UserOffset - TrialOffset <= MaxDisp)
809 return true;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000810 }
811 return false;
812}
813
814/// isWaterInRange - Returns true if a CPE placed after the specified
815/// Water (a basic block) will be in range for the specific MI.
816///
817/// Compute how much the function will grow by inserting a CPE after Water.
818bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
819 MachineBasicBlock* Water, CPUser &U,
820 unsigned &Growth) {
821 unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
822 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
823 unsigned NextBlockOffset, NextBlockAlignment;
824 MachineFunction::const_iterator NextBlock = Water;
825 if (++NextBlock == MF->end()) {
826 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
827 NextBlockAlignment = 0;
828 } else {
829 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
830 NextBlockAlignment = NextBlock->getAlignment();
831 }
832 unsigned Size = U.CPEMI->getOperand(2).getImm();
833 unsigned CPEEnd = CPEOffset + Size;
834
835 // The CPE may be able to hide in the alignment padding before the next
836 // block. It may also cause more padding to be required if it is more aligned
837 // that the next block.
838 if (CPEEnd > NextBlockOffset) {
839 Growth = CPEEnd - NextBlockOffset;
840 // Compute the padding that would go at the end of the CPE to align the next
841 // block.
842 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
843
844 // If the CPE is to be inserted before the instruction, that will raise
845 // the offset of the instruction. Also account for unknown alignment padding
846 // in blocks between CPE and the user.
847 if (CPEOffset < UserOffset)
Reed Kotler7ded5b62013-11-05 23:36:58 +0000848 UserOffset += Growth;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000849 } else
850 // CPE fits in existing padding.
851 Growth = 0;
852
853 return isOffsetInRange(UserOffset, CPEOffset, U);
854}
855
856/// isCPEntryInRange - Returns true if the distance between specific MI and
857/// specific ConstPool entry instruction can fit in MI's displacement field.
858bool MipsConstantIslands::isCPEntryInRange
859 (MachineInstr *MI, unsigned UserOffset,
860 MachineInstr *CPEMI, unsigned MaxDisp,
861 bool NegOk, bool DoDump) {
862 unsigned CPEOffset = getOffsetOf(CPEMI);
863
864 if (DoDump) {
865 DEBUG({
866 unsigned Block = MI->getParent()->getNumber();
867 const BasicBlockInfo &BBI = BBInfo[Block];
868 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
869 << " max delta=" << MaxDisp
870 << format(" insn address=%#x", UserOffset)
871 << " in BB#" << Block << ": "
872 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
873 << format("CPE address=%#x offset=%+d: ", CPEOffset,
874 int(CPEOffset-UserOffset));
875 });
876 }
877
878 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
879}
880
881#ifndef NDEBUG
882/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
883/// unconditionally branches to its only successor.
884static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
885 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
886 return false;
887 MachineBasicBlock *Succ = *MBB->succ_begin();
888 MachineBasicBlock *Pred = *MBB->pred_begin();
889 MachineInstr *PredMI = &Pred->back();
890 if (PredMI->getOpcode() == Mips::BimmX16)
891 return PredMI->getOperand(0).getMBB() == Succ;
892 return false;
893}
894#endif
895
896void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
897 unsigned BBNum = BB->getNumber();
898 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
899 // Get the offset and known bits at the end of the layout predecessor.
900 // Include the alignment of the current block.
Reed Kotler7ded5b62013-11-05 23:36:58 +0000901 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
Reed Kotler0f007fc2013-11-05 08:14:14 +0000902 BBInfo[i].Offset = Offset;
903 }
904}
905
906/// decrementCPEReferenceCount - find the constant pool entry with index CPI
907/// and instruction CPEMI, and decrement its refcount. If the refcount
908/// becomes 0 remove the entry and instruction. Returns true if we removed
909/// the entry, false if we didn't.
910
911bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
912 MachineInstr *CPEMI) {
913 // Find the old entry. Eliminate it if it is no longer used.
914 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
915 assert(CPE && "Unexpected!");
916 if (--CPE->RefCount == 0) {
917 removeDeadCPEMI(CPEMI);
918 CPE->CPEMI = NULL;
919 --NumCPEs;
920 return true;
921 }
922 return false;
923}
924
925/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
926/// if not, see if an in-range clone of the CPE is in range, and if so,
927/// change the data structures so the user references the clone. Returns:
928/// 0 = no existing entry found
929/// 1 = entry found, and there were no code insertions or deletions
930/// 2 = entry found, and there were code insertions or deletions
931int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
932{
933 MachineInstr *UserMI = U.MI;
934 MachineInstr *CPEMI = U.CPEMI;
935
936 // Check to see if the CPE is already in-range.
937 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
938 true)) {
939 DEBUG(dbgs() << "In range\n");
940 return 1;
941 }
942
943 // No. Look for previously created clones of the CPE that are in range.
944 unsigned CPI = CPEMI->getOperand(1).getIndex();
945 std::vector<CPEntry> &CPEs = CPEntries[CPI];
946 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
947 // We already tried this one
948 if (CPEs[i].CPEMI == CPEMI)
949 continue;
950 // Removing CPEs can leave empty entries, skip
951 if (CPEs[i].CPEMI == NULL)
952 continue;
953 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
954 U.NegOk)) {
955 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
956 << CPEs[i].CPI << "\n");
957 // Point the CPUser node to the replacement
958 U.CPEMI = CPEs[i].CPEMI;
959 // Change the CPI in the instruction operand to refer to the clone.
960 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
961 if (UserMI->getOperand(j).isCPI()) {
962 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
963 break;
964 }
965 // Adjust the refcount of the clone...
966 CPEs[i].RefCount++;
967 // ...and the original. If we didn't remove the old entry, none of the
968 // addresses changed, so we don't need another pass.
969 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
970 }
971 }
972 return 0;
973}
974
975/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
976/// This version checks if the longer form of the instruction can be used to
977/// to satisfy things.
978/// if not, see if an in-range clone of the CPE is in range, and if so,
979/// change the data structures so the user references the clone. Returns:
980/// 0 = no existing entry found
981/// 1 = entry found, and there were no code insertions or deletions
982/// 2 = entry found, and there were code insertions or deletions
983int MipsConstantIslands::findLongFormInRangeCPEntry
984 (CPUser& U, unsigned UserOffset)
985{
986 MachineInstr *UserMI = U.MI;
987 MachineInstr *CPEMI = U.CPEMI;
988
989 // Check to see if the CPE is already in-range.
990 if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
991 U.getLongFormMaxDisp(), U.NegOk,
992 true)) {
993 DEBUG(dbgs() << "In range\n");
994 UserMI->setDesc(TII->get(U.getLongFormOpcode()));
Reed Kotler45c59272013-11-10 00:09:26 +0000995 U.setMaxDisp(U.getLongFormMaxDisp());
Reed Kotler0f007fc2013-11-05 08:14:14 +0000996 return 2; // instruction is longer length now
997 }
998
999 // No. Look for previously created clones of the CPE that are in range.
1000 unsigned CPI = CPEMI->getOperand(1).getIndex();
1001 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1002 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1003 // We already tried this one
1004 if (CPEs[i].CPEMI == CPEMI)
1005 continue;
1006 // Removing CPEs can leave empty entries, skip
1007 if (CPEs[i].CPEMI == NULL)
1008 continue;
1009 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1010 U.getLongFormMaxDisp(), U.NegOk)) {
1011 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1012 << CPEs[i].CPI << "\n");
1013 // Point the CPUser node to the replacement
1014 U.CPEMI = CPEs[i].CPEMI;
1015 // Change the CPI in the instruction operand to refer to the clone.
1016 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1017 if (UserMI->getOperand(j).isCPI()) {
1018 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1019 break;
1020 }
1021 // Adjust the refcount of the clone...
1022 CPEs[i].RefCount++;
1023 // ...and the original. If we didn't remove the old entry, none of the
1024 // addresses changed, so we don't need another pass.
1025 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1026 }
1027 }
1028 return 0;
1029}
1030
1031/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1032/// the specific unconditional branch instruction.
1033static inline unsigned getUnconditionalBrDisp(int Opc) {
1034 switch (Opc) {
1035 case Mips::BimmX16:
1036 return ((1<<16)-1)*2;
1037 default:
1038 break;
1039 }
1040 return ((1<<16)-1)*2;
1041}
1042
1043/// findAvailableWater - Look for an existing entry in the WaterList in which
1044/// we can place the CPE referenced from U so it's within range of U's MI.
1045/// Returns true if found, false if not. If it returns true, WaterIter
Reed Kotler4d0313d2013-11-05 12:04:37 +00001046/// is set to the WaterList entry.
1047/// To ensure that this pass
Reed Kotler0f007fc2013-11-05 08:14:14 +00001048/// terminates, the CPE location for a particular CPUser is only allowed to
1049/// move to a lower address, so search backward from the end of the list and
1050/// prefer the first water that is in range.
1051bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1052 water_iterator &WaterIter) {
1053 if (WaterList.empty())
1054 return false;
1055
1056 unsigned BestGrowth = ~0u;
1057 for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
1058 --IP) {
1059 MachineBasicBlock* WaterBB = *IP;
1060 // Check if water is in range and is either at a lower address than the
1061 // current "high water mark" or a new water block that was created since
1062 // the previous iteration by inserting an unconditional branch. In the
1063 // latter case, we want to allow resetting the high water mark back to
1064 // this new water since we haven't seen it before. Inserting branches
1065 // should be relatively uncommon and when it does happen, we want to be
1066 // sure to take advantage of it for all the CPEs near that block, so that
1067 // we don't insert more branches than necessary.
1068 unsigned Growth;
1069 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1070 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1071 NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1072 // This is the least amount of required padding seen so far.
1073 BestGrowth = Growth;
1074 WaterIter = IP;
1075 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1076 << " Growth=" << Growth << '\n');
1077
1078 // Keep looking unless it is perfect.
1079 if (BestGrowth == 0)
1080 return true;
1081 }
1082 if (IP == B)
1083 break;
1084 }
1085 return BestGrowth != ~0u;
1086}
1087
1088/// createNewWater - No existing WaterList entry will work for
1089/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1090/// block is used if in range, and the conditional branch munged so control
1091/// flow is correct. Otherwise the block is split to create a hole with an
1092/// unconditional branch around it. In either case NewMBB is set to a
1093/// block following which the new island can be inserted (the WaterList
1094/// is not adjusted).
1095void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1096 unsigned UserOffset,
1097 MachineBasicBlock *&NewMBB) {
1098 CPUser &U = CPUsers[CPUserIndex];
1099 MachineInstr *UserMI = U.MI;
1100 MachineInstr *CPEMI = U.CPEMI;
1101 unsigned CPELogAlign = getCPELogAlign(CPEMI);
1102 MachineBasicBlock *UserMBB = UserMI->getParent();
1103 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1104
1105 // If the block does not end in an unconditional branch already, and if the
Reed Kotler4d0313d2013-11-05 12:04:37 +00001106 // end of the block is within range, make new water there.
Reed Kotler0f007fc2013-11-05 08:14:14 +00001107 if (BBHasFallthrough(UserMBB)) {
1108 // Size of branch to insert.
1109 unsigned Delta = 2;
1110 // Compute the offset where the CPE will begin.
1111 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1112
1113 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1114 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1115 << format(", expected CPE offset %#x\n", CPEOffset));
1116 NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1117 // Add an unconditional branch from UserMBB to fallthrough block. Record
1118 // it for branch lengthening; this new branch will not get out of range,
1119 // but if the preceding conditional branch is out of range, the targets
1120 // will be exchanged, and the altered branch may be out of range, so the
1121 // machinery has to know about it.
1122 int UncondBr = Mips::BimmX16;
1123 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1124 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1125 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1126 MaxDisp, false, UncondBr));
1127 BBInfo[UserMBB->getNumber()].Size += Delta;
1128 adjustBBOffsetsAfter(UserMBB);
1129 return;
1130 }
1131 }
1132
Reed Kotler4d0313d2013-11-05 12:04:37 +00001133 // What a big block. Find a place within the block to split it.
Reed Kotler0f007fc2013-11-05 08:14:14 +00001134
1135 // Try to split the block so it's fully aligned. Compute the latest split
1136 // point where we can add a 4-byte branch instruction, and then align to
1137 // LogAlign which is the largest possible alignment in the function.
1138 unsigned LogAlign = MF->getAlignment();
1139 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
Reed Kotler7ded5b62013-11-05 23:36:58 +00001140 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
Reed Kotler0f007fc2013-11-05 08:14:14 +00001141 DEBUG(dbgs() << format("Split in middle of big block before %#x",
1142 BaseInsertOffset));
1143
1144 // The 4 in the following is for the unconditional branch we'll be inserting
Reed Kotler4d0313d2013-11-05 12:04:37 +00001145 // Alignment of the island is handled
Reed Kotler0f007fc2013-11-05 08:14:14 +00001146 // inside isOffsetInRange.
1147 BaseInsertOffset -= 4;
1148
1149 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
Reed Kotler7ded5b62013-11-05 23:36:58 +00001150 << " la=" << LogAlign << '\n');
Reed Kotler0f007fc2013-11-05 08:14:14 +00001151
1152 // This could point off the end of the block if we've already got constant
1153 // pool entries following this block; only the last one is in the water list.
1154 // Back past any possible branches (allow for a conditional and a maximally
1155 // long unconditional).
1156 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
Reed Kotler7ded5b62013-11-05 23:36:58 +00001157 BaseInsertOffset = UserBBI.postOffset() - 8;
Reed Kotler0f007fc2013-11-05 08:14:14 +00001158 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1159 }
Reed Kotler7ded5b62013-11-05 23:36:58 +00001160 unsigned EndInsertOffset = BaseInsertOffset + 4 +
Reed Kotler0f007fc2013-11-05 08:14:14 +00001161 CPEMI->getOperand(2).getImm();
1162 MachineBasicBlock::iterator MI = UserMI;
1163 ++MI;
1164 unsigned CPUIndex = CPUserIndex+1;
1165 unsigned NumCPUsers = CPUsers.size();
1166 //MachineInstr *LastIT = 0;
1167 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1168 Offset < BaseInsertOffset;
1169 Offset += TII->GetInstSizeInBytes(MI),
1170 MI = llvm::next(MI)) {
1171 assert(MI != UserMBB->end() && "Fell off end of block");
1172 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1173 CPUser &U = CPUsers[CPUIndex];
1174 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1175 // Shift intertion point by one unit of alignment so it is within reach.
1176 BaseInsertOffset -= 1u << LogAlign;
1177 EndInsertOffset -= 1u << LogAlign;
1178 }
1179 // This is overly conservative, as we don't account for CPEMIs being
1180 // reused within the block, but it doesn't matter much. Also assume CPEs
1181 // are added in order with alignment padding. We may eventually be able
1182 // to pack the aligned CPEs better.
1183 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1184 CPUIndex++;
1185 }
1186 }
1187
1188 --MI;
1189 NewMBB = splitBlockBeforeInstr(MI);
1190}
1191
1192/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1193/// is out-of-range. If so, pick up the constant pool value and move it some
1194/// place in-range. Return true if we changed any addresses (thus must run
1195/// another pass of branch lengthening), false otherwise.
1196bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1197 CPUser &U = CPUsers[CPUserIndex];
1198 MachineInstr *UserMI = U.MI;
1199 MachineInstr *CPEMI = U.CPEMI;
1200 unsigned CPI = CPEMI->getOperand(1).getIndex();
1201 unsigned Size = CPEMI->getOperand(2).getImm();
1202 // Compute this only once, it's expensive.
1203 unsigned UserOffset = getUserOffset(U);
1204
1205 // See if the current entry is within range, or there is a clone of it
1206 // in range.
1207 int result = findInRangeCPEntry(U, UserOffset);
1208 if (result==1) return false;
1209 else if (result==2) return true;
1210
1211
1212 // Look for water where we can place this CPE.
1213 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1214 MachineBasicBlock *NewMBB;
1215 water_iterator IP;
1216 if (findAvailableWater(U, UserOffset, IP)) {
1217 DEBUG(dbgs() << "Found water in range\n");
1218 MachineBasicBlock *WaterBB = *IP;
1219
1220 // If the original WaterList entry was "new water" on this iteration,
1221 // propagate that to the new island. This is just keeping NewWaterList
1222 // updated to match the WaterList, which will be updated below.
1223 if (NewWaterList.erase(WaterBB))
1224 NewWaterList.insert(NewIsland);
1225
1226 // The new CPE goes before the following block (NewMBB).
1227 NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1228
1229 } else {
1230 // No water found.
1231 // we first see if a longer form of the instrucion could have reached
1232 // the constant. in that case we won't bother to split
Reed Kotler45c59272013-11-10 00:09:26 +00001233 if (!NoLoadRelaxation) {
1234 result = findLongFormInRangeCPEntry(U, UserOffset);
1235 if (result != 0) return true;
1236 }
Reed Kotler0f007fc2013-11-05 08:14:14 +00001237 DEBUG(dbgs() << "No water found\n");
1238 createNewWater(CPUserIndex, UserOffset, NewMBB);
1239
1240 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1241 // called while handling branches so that the water will be seen on the
1242 // next iteration for constant pools, but in this context, we don't want
1243 // it. Check for this so it will be removed from the WaterList.
1244 // Also remove any entry from NewWaterList.
1245 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1246 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1247 if (IP != WaterList.end())
1248 NewWaterList.erase(WaterBB);
1249
1250 // We are adding new water. Update NewWaterList.
1251 NewWaterList.insert(NewIsland);
1252 }
1253
1254 // Remove the original WaterList entry; we want subsequent insertions in
1255 // this vicinity to go after the one we're about to insert. This
1256 // considerably reduces the number of times we have to move the same CPE
1257 // more than once and is also important to ensure the algorithm terminates.
1258 if (IP != WaterList.end())
1259 WaterList.erase(IP);
1260
1261 // Okay, we know we can put an island before NewMBB now, do it!
1262 MF->insert(NewMBB, NewIsland);
1263
1264 // Update internal data structures to account for the newly inserted MBB.
1265 updateForInsertedWaterBlock(NewIsland);
1266
1267 // Decrement the old entry, and remove it if refcount becomes 0.
1268 decrementCPEReferenceCount(CPI, CPEMI);
1269
1270 // Now that we have an island to add the CPE to, clone the original CPE and
1271 // add it to the island.
1272 U.HighWaterMark = NewIsland;
1273 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1274 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1275 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1276 ++NumCPEs;
1277
1278 // Mark the basic block as aligned as required by the const-pool entry.
1279 NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1280
1281 // Increase the size of the island block to account for the new entry.
1282 BBInfo[NewIsland->getNumber()].Size += Size;
1283 adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
1284
1285 // No existing clone of this CPE is within range.
1286 // We will be generating a new clone. Get a UID for it.
1287 unsigned ID = createPICLabelUId();
1288
1289 // Finally, change the CPI in the instruction operand to be ID.
1290 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1291 if (UserMI->getOperand(i).isCPI()) {
1292 UserMI->getOperand(i).setIndex(ID);
1293 break;
1294 }
1295
1296 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1297 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1298
1299 return true;
1300}
1301
1302/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1303/// sizes and offsets of impacted basic blocks.
1304void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1305 MachineBasicBlock *CPEBB = CPEMI->getParent();
1306 unsigned Size = CPEMI->getOperand(2).getImm();
1307 CPEMI->eraseFromParent();
1308 BBInfo[CPEBB->getNumber()].Size -= Size;
1309 // All succeeding offsets have the current size value added in, fix this.
1310 if (CPEBB->empty()) {
1311 BBInfo[CPEBB->getNumber()].Size = 0;
1312
1313 // This block no longer needs to be aligned.
1314 CPEBB->setAlignment(0);
1315 } else
1316 // Entries are sorted by descending alignment, so realign from the front.
1317 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1318
1319 adjustBBOffsetsAfter(CPEBB);
1320 // An island has only one predecessor BB and one successor BB. Check if
1321 // this BB's predecessor jumps directly to this BB's successor. This
1322 // shouldn't happen currently.
1323 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1324 // FIXME: remove the empty blocks after all the work is done?
1325}
1326
1327/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1328/// are zero.
1329bool MipsConstantIslands::removeUnusedCPEntries() {
1330 unsigned MadeChange = false;
1331 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1332 std::vector<CPEntry> &CPEs = CPEntries[i];
1333 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1334 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1335 removeDeadCPEMI(CPEs[j].CPEMI);
1336 CPEs[j].CPEMI = NULL;
1337 MadeChange = true;
1338 }
1339 }
1340 }
1341 return MadeChange;
1342}
1343
1344/// isBBInRange - Returns true if the distance between specific MI and
1345/// specific BB can fit in MI's displacement field.
1346bool MipsConstantIslands::isBBInRange
1347 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1348
1349unsigned PCAdj = 4;
1350
1351 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1352 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1353
1354 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1355 << " from BB#" << MI->getParent()->getNumber()
1356 << " max delta=" << MaxDisp
1357 << " from " << getOffsetOf(MI) << " to " << DestOffset
1358 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1359
1360 if (BrOffset <= DestOffset) {
1361 // Branch before the Dest.
1362 if (DestOffset-BrOffset <= MaxDisp)
1363 return true;
1364 } else {
1365 if (BrOffset-DestOffset <= MaxDisp)
1366 return true;
1367 }
1368 return false;
1369}
1370
1371/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1372/// away to fit in its displacement field.
1373bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1374 MachineInstr *MI = Br.MI;
1375 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1376
1377 // Check to see if the DestBB is already in-range.
1378 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1379 return false;
1380
1381 if (!Br.isCond)
1382 return fixupUnconditionalBr(Br);
1383 return fixupConditionalBr(Br);
1384}
1385
1386/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1387/// too far away to fit in its displacement field. If the LR register has been
1388/// spilled in the epilogue, then we can use BL to implement a far jump.
1389/// Otherwise, add an intermediate branch instruction to a branch.
1390bool
1391MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1392 MachineInstr *MI = Br.MI;
1393 MachineBasicBlock *MBB = MI->getParent();
1394 // Use BL to implement far jump.
1395 Br.MaxDisp = ((1 << 16)-1) * 2;
1396 MI->setDesc(TII->get(Mips::BimmX16));
1397 BBInfo[MBB->getNumber()].Size += 2;
1398 adjustBBOffsetsAfter(MBB);
1399 HasFarJump = true;
1400 ++NumUBrFixed;
1401
1402 DEBUG(dbgs() << " Changed B to long jump " << *MI);
1403
1404 return true;
1405}
1406
1407/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1408/// far away to fit in its displacement field. It is converted to an inverse
1409/// conditional branch + an unconditional branch to the destination.
1410bool
1411MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1412 MachineInstr *MI = Br.MI;
1413 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1414
1415 // Add an unconditional branch to the destination and invert the branch
1416 // condition to jump over it:
1417 // blt L1
1418 // =>
1419 // bge L2
1420 // b L1
1421 // L2:
1422 unsigned CCReg = 0; // FIXME
1423 unsigned CC=0; //FIXME
1424
1425 // If the branch is at the end of its MBB and that has a fall-through block,
1426 // direct the updated conditional branch to the fall-through block. Otherwise,
1427 // split the MBB before the next instruction.
1428 MachineBasicBlock *MBB = MI->getParent();
1429 MachineInstr *BMI = &MBB->back();
1430 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1431
1432 ++NumCBrFixed;
1433 if (BMI != MI) {
1434 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1435 BMI->getOpcode() == Br.UncondBr) {
1436 // Last MI in the BB is an unconditional branch. Can we simply invert the
1437 // condition and swap destinations:
1438 // beq L1
1439 // b L2
1440 // =>
1441 // bne L2
1442 // b L1
1443 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1444 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1445 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
1446 << *BMI);
1447 BMI->getOperand(0).setMBB(DestBB);
1448 MI->getOperand(0).setMBB(NewDest);
1449 return true;
1450 }
1451 }
1452 }
1453
1454 if (NeedSplit) {
1455 splitBlockBeforeInstr(MI);
1456 // No need for the branch to the next block. We're adding an unconditional
1457 // branch to the destination.
1458 int delta = TII->GetInstSizeInBytes(&MBB->back());
1459 BBInfo[MBB->getNumber()].Size -= delta;
1460 MBB->back().eraseFromParent();
1461 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1462 }
1463 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1464
1465 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
1466 << " also invert condition and change dest. to BB#"
1467 << NextBB->getNumber() << "\n");
1468
1469 // Insert a new conditional branch and a new unconditional branch.
1470 // Also update the ImmBranch as well as adding a new entry for the new branch.
1471 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1472 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1473 Br.MI = &MBB->back();
1474 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1475 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1476 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1477 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1478 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1479
1480 // Remove the old conditional branch. It may or may not still be in MBB.
1481 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1482 MI->eraseFromParent();
1483 adjustBBOffsetsAfter(MBB);
1484 return true;
1485}
1486
Reed Kotler91ae9822013-10-27 21:57:36 +00001487
1488void MipsConstantIslands::prescanForConstants() {
Reed Kotler0f007fc2013-11-05 08:14:14 +00001489 unsigned J = 0;
1490 (void)J;
1491 PrescannedForConstants = true;
Reed Kotler91ae9822013-10-27 21:57:36 +00001492 for (MachineFunction::iterator B =
1493 MF->begin(), E = MF->end(); B != E; ++B) {
1494 for (MachineBasicBlock::instr_iterator I =
1495 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1496 switch(I->getDesc().getOpcode()) {
1497 case Mips::LwConstant32: {
1498 DEBUG(dbgs() << "constant island constant " << *I << "\n");
1499 J = I->getNumOperands();
1500 DEBUG(dbgs() << "num operands " << J << "\n");
1501 MachineOperand& Literal = I->getOperand(1);
1502 if (Literal.isImm()) {
1503 int64_t V = Literal.getImm();
1504 DEBUG(dbgs() << "literal " << V << "\n");
1505 Type *Int32Ty =
1506 Type::getInt32Ty(MF->getFunction()->getContext());
1507 const Constant *C = ConstantInt::get(Int32Ty, V);
1508 unsigned index = MCP->getConstantPoolIndex(C, 4);
1509 I->getOperand(2).ChangeToImmediate(index);
1510 DEBUG(dbgs() << "constant island constant " << *I << "\n");
Reed Kotler0f007fc2013-11-05 08:14:14 +00001511 I->setDesc(TII->get(Mips::LwRxPcTcp16));
Reed Kotler91ae9822013-10-27 21:57:36 +00001512 I->RemoveOperand(1);
1513 I->RemoveOperand(1);
1514 I->addOperand(MachineOperand::CreateCPI(index, 0));
Reed Kotler0f007fc2013-11-05 08:14:14 +00001515 I->addOperand(MachineOperand::CreateImm(4));
Reed Kotler91ae9822013-10-27 21:57:36 +00001516 }
1517 break;
1518 }
1519 default:
1520 break;
1521 }
1522 }
1523 }
1524}
Reed Kotler0f007fc2013-11-05 08:14:14 +00001525