blob: c2f542fd4b1eb06d8b6ddd455d2da45ce2c6d7f6 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000083 if (ST->hasAVX512())
84 return 512;
85 if (ST->hasAVX())
86 return 256;
87 if (ST->hasSSE1())
88 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000117 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
118 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
119 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000121 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000122
123 int ISD = TLI->InstructionOpcodeToISD(Opcode);
124 assert(ISD && "Invalid opcode");
125
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000126 if (ISD == ISD::SDIV &&
127 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
129 // On X86, vector signed division by constants power-of-two are
130 // normally expanded to the sequence SRA + SRL + ADD + SRA.
131 // The OperandValue properties many not be same as that of previous
132 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000133 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
134 Op2Info, TargetTransformInfo::OP_None,
135 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000136 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
137 TargetTransformInfo::OP_None,
138 TargetTransformInfo::OP_None);
139 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
140 TargetTransformInfo::OP_None,
141 TargetTransformInfo::OP_None);
142
143 return Cost;
144 }
145
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000146 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
147 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
148 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
149 };
150
151 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
152 ST->hasBWI()) {
153 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
154 LT.second))
155 return LT.first * Entry->Cost;
156 }
157
158 static const CostTblEntry AVX512UniformConstCostTable[] = {
159 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
160 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
161 };
162
163 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
164 ST->hasAVX512()) {
165 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
166 LT.second))
167 return LT.first * Entry->Cost;
168 }
169
Craig Topper4b275762015-10-28 04:02:12 +0000170 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000171 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
172
Benjamin Kramer7c372272014-04-26 14:53:05 +0000173 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
174 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
175 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
176 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
177 };
178
179 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
180 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000181 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
182 LT.second))
183 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000184 }
185
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000186 static const CostTblEntry SSE2UniformConstCostTable[] = {
187 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
188 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
189 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
190 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
191 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
192 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
193 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
194 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
195 };
196
197 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
198 ST->hasSSE2()) {
199 // pmuldq sequence.
200 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
201 return LT.first * 30;
202 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
203 return LT.first * 15;
204
205 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
206 LT.second))
207 return LT.first * Entry->Cost;
208 }
209
Simon Pilgrim820e1322016-10-27 15:27:00 +0000210 static const CostTblEntry AVX512DQCostTable[] = {
211 { ISD::MUL, MVT::v2i64, 1 },
212 { ISD::MUL, MVT::v4i64, 1 },
213 { ISD::MUL, MVT::v8i64, 1 }
214 };
215
216 // Look for AVX512DQ lowering tricks for custom cases.
217 if (ST->hasDQI()) {
218 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD,
219 LT.second))
220 return LT.first * Entry->Cost;
221 }
222
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000223 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000224 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
225 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
226 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
227
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000228 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
229 { ISD::SDIV, MVT::v64i8, 64*20 },
230 { ISD::SDIV, MVT::v32i16, 32*20 },
231 { ISD::SDIV, MVT::v16i32, 16*20 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000232 { ISD::SDIV, MVT::v8i64, 8*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000233 { ISD::UDIV, MVT::v64i8, 64*20 },
234 { ISD::UDIV, MVT::v32i16, 32*20 },
235 { ISD::UDIV, MVT::v16i32, 16*20 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000236 { ISD::UDIV, MVT::v8i64, 8*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000237 };
238
239 // Look for AVX512BW lowering tricks for custom cases.
240 if (ST->hasBWI()) {
241 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD,
242 LT.second))
243 return LT.first * Entry->Cost;
244 }
245
Craig Topper4b275762015-10-28 04:02:12 +0000246 static const CostTblEntry AVX512CostTable[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000247 { ISD::SHL, MVT::v16i32, 1 },
248 { ISD::SRL, MVT::v16i32, 1 },
249 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000250 { ISD::SHL, MVT::v8i64, 1 },
251 { ISD::SRL, MVT::v8i64, 1 },
252 { ISD::SRA, MVT::v8i64, 1 },
253
254 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
255 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
Elena Demikhovsky27012472014-09-16 07:57:37 +0000256 };
257
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000258 if (ST->hasAVX512()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000259 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
260 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000261 }
262
Craig Topper4b275762015-10-28 04:02:12 +0000263 static const CostTblEntry AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000264 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
265 // customize them to detect the cases where shift amount is a scalar one.
266 { ISD::SHL, MVT::v4i32, 1 },
267 { ISD::SRL, MVT::v4i32, 1 },
268 { ISD::SRA, MVT::v4i32, 1 },
269 { ISD::SHL, MVT::v8i32, 1 },
270 { ISD::SRL, MVT::v8i32, 1 },
271 { ISD::SRA, MVT::v8i32, 1 },
272 { ISD::SHL, MVT::v2i64, 1 },
273 { ISD::SRL, MVT::v2i64, 1 },
274 { ISD::SHL, MVT::v4i64, 1 },
275 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000276 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000277
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000278 // Look for AVX2 lowering tricks.
279 if (ST->hasAVX2()) {
280 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
281 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
282 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
283 // On AVX2, a packed v16i16 shift left by a constant build_vector
284 // is lowered into a vector multiply (vpmullw).
285 return LT.first;
286
Craig Topperee0c8592015-10-27 04:14:24 +0000287 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
288 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000289 }
290
Craig Topper4b275762015-10-28 04:02:12 +0000291 static const CostTblEntry XOPCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000292 // 128bit shifts take 1cy, but right shifts require negation beforehand.
293 { ISD::SHL, MVT::v16i8, 1 },
294 { ISD::SRL, MVT::v16i8, 2 },
295 { ISD::SRA, MVT::v16i8, 2 },
296 { ISD::SHL, MVT::v8i16, 1 },
297 { ISD::SRL, MVT::v8i16, 2 },
298 { ISD::SRA, MVT::v8i16, 2 },
299 { ISD::SHL, MVT::v4i32, 1 },
300 { ISD::SRL, MVT::v4i32, 2 },
301 { ISD::SRA, MVT::v4i32, 2 },
302 { ISD::SHL, MVT::v2i64, 1 },
303 { ISD::SRL, MVT::v2i64, 2 },
304 { ISD::SRA, MVT::v2i64, 2 },
305 // 256bit shifts require splitting if AVX2 didn't catch them above.
306 { ISD::SHL, MVT::v32i8, 2 },
307 { ISD::SRL, MVT::v32i8, 4 },
308 { ISD::SRA, MVT::v32i8, 4 },
309 { ISD::SHL, MVT::v16i16, 2 },
310 { ISD::SRL, MVT::v16i16, 4 },
311 { ISD::SRA, MVT::v16i16, 4 },
312 { ISD::SHL, MVT::v8i32, 2 },
313 { ISD::SRL, MVT::v8i32, 4 },
314 { ISD::SRA, MVT::v8i32, 4 },
315 { ISD::SHL, MVT::v4i64, 2 },
316 { ISD::SRL, MVT::v4i64, 4 },
317 { ISD::SRA, MVT::v4i64, 4 },
318 };
319
320 // Look for XOP lowering tricks.
321 if (ST->hasXOP()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000322 if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
323 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000324 }
325
Craig Topper4b275762015-10-28 04:02:12 +0000326 static const CostTblEntry AVX2CustomCostTable[] = {
Simon Pilgrim59656802015-06-11 07:46:37 +0000327 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
Simon Pilgrim0be4fa72015-05-25 17:49:13 +0000328 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000329
Simon Pilgrim59656802015-06-11 07:46:37 +0000330 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
Simon Pilgrim0be4fa72015-05-25 17:49:13 +0000331 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000332
Simon Pilgrim59656802015-06-11 07:46:37 +0000333 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
Simon Pilgrim0be4fa72015-05-25 17:49:13 +0000334 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000335 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
336 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000337
338 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
339 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
340
Alexey Bataevd07c7312016-10-31 12:10:53 +0000341 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
342 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
343 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
344 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
345 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
346 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000347 };
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000348
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000349 // Look for AVX2 lowering tricks for custom cases.
350 if (ST->hasAVX2()) {
351 if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
352 LT.second))
353 return LT.first * Entry->Cost;
354 }
355
356 static const CostTblEntry AVXCustomCostTable[] = {
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000357 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
358
Alexey Bataevd07c7312016-10-31 12:10:53 +0000359 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
360 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
361 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
362 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
363 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
364 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000365
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000366 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
367 { ISD::SDIV, MVT::v32i8, 32*20 },
368 { ISD::SDIV, MVT::v16i16, 16*20 },
369 { ISD::SDIV, MVT::v8i32, 8*20 },
370 { ISD::SDIV, MVT::v4i64, 4*20 },
371 { ISD::UDIV, MVT::v32i8, 32*20 },
372 { ISD::UDIV, MVT::v16i16, 16*20 },
373 { ISD::UDIV, MVT::v8i32, 8*20 },
374 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000375 };
376
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000377 // Look for AVX2 lowering tricks for custom cases.
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000378 if (ST->hasAVX()) {
379 if (const auto *Entry = CostTableLookup(AVXCustomCostTable, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +0000380 LT.second))
381 return LT.first * Entry->Cost;
Michael Liao70dd7f92013-03-20 22:01:10 +0000382 }
383
Alexey Bataevd07c7312016-10-31 12:10:53 +0000384 static const CostTblEntry SSE42FloatCostTable[] = {
385 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
386 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
387 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
388 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
389 };
390
391 if (ST->hasSSE42()) {
392 if (const auto *Entry = CostTableLookup(SSE42FloatCostTable, ISD,
393 LT.second))
394 return LT.first * Entry->Cost;
395 }
396
Craig Topper4b275762015-10-28 04:02:12 +0000397 static const CostTblEntry
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000398 SSE2UniformCostTable[] = {
399 // Uniform splats are cheaper for the following instructions.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000400 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000401 { ISD::SHL, MVT::v32i8, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000402 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000403 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000404 { ISD::SHL, MVT::v4i32, 1 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000405 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000406 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000407 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000408
409 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000410 { ISD::SRL, MVT::v32i8, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000411 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000412 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000413 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000414 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000415 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000416 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000417
418 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000419 { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000420 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000421 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000422 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000423 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000424 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000425 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000426 };
427
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000428 if (ST->hasSSE2() &&
429 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
430 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000431 if (const auto *Entry =
432 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000433 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000434 }
435
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000436 if (ISD == ISD::SHL &&
437 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000438 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000439 // Vector shift left by non uniform constant can be lowered
440 // into vector multiply (pmullw/pmulld).
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000441 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
442 (VT == MVT::v4i32 && ST->hasSSE41()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000443 return LT.first;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000444
445 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
446 // sequence of extract + two vector multiply + insert.
447 if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
448 (ST->hasAVX() && !ST->hasAVX2()))
449 ISD = ISD::MUL;
450
451 // A vector shift left by non uniform constant is converted
452 // into a vector multiply; the new multiply is eventually
453 // lowered into a sequence of shuffles and 2 x pmuludq.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000454 if (VT == MVT::v4i32 && ST->hasSSE2())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000455 ISD = ISD::MUL;
456 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000457
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000458 static const CostTblEntry SSE41CostTable[] = {
459 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
460 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
461 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
462 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
463
464 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
465 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
466 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
467 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
468 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
469 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
470
471 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
472 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
473 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
474 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
475 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
476 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
477 };
478
479 if (ST->hasSSE41()) {
480 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
481 return LT.first * Entry->Cost;
482 }
483
Craig Topper4b275762015-10-28 04:02:12 +0000484 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000485 // We don't correctly identify costs of casts because they are marked as
486 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000487 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000488 { ISD::SHL, MVT::v32i8, 2*26 }, // cmpgtb sequence.
Simon Pilgrim59656802015-06-11 07:46:37 +0000489 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000490 { ISD::SHL, MVT::v16i16, 2*32 }, // cmpgtb sequence.
Simon Pilgrim59656802015-06-11 07:46:37 +0000491 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000492 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000493 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000494 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000495
496 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000497 { ISD::SRL, MVT::v32i8, 2*26 }, // cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000498 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000499 { ISD::SRL, MVT::v16i16, 2*32 }, // cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000500 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000501 { ISD::SRL, MVT::v8i32, 2*16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000502 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000503 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000504
505 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000506 { ISD::SRA, MVT::v32i8, 2*54 }, // unpacked cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000507 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000508 { ISD::SRA, MVT::v16i16, 2*32 }, // cmpgtb sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000509 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000510 { ISD::SRA, MVT::v8i32, 2*16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000511 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000512 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000513
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000514 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
515
Alexey Bataevd07c7312016-10-31 12:10:53 +0000516 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
517 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
518 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
519 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
520
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000521 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000522 // in the process we will often end up having to spilling regular
523 // registers. The overhead of division is going to dominate most kernels
524 // anyways so try hard to prevent vectorization of division - it is
525 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
526 // to hide "20 cycles" for each lane.
527 { ISD::SDIV, MVT::v16i8, 16*20 },
528 { ISD::SDIV, MVT::v8i16, 8*20 },
529 { ISD::SDIV, MVT::v4i32, 4*20 },
530 { ISD::SDIV, MVT::v2i64, 2*20 },
531 { ISD::UDIV, MVT::v16i8, 16*20 },
532 { ISD::UDIV, MVT::v8i16, 8*20 },
533 { ISD::UDIV, MVT::v4i32, 4*20 },
534 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000535 };
536
537 if (ST->hasSSE2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000538 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
539 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000540 }
541
Craig Topper4b275762015-10-28 04:02:12 +0000542 static const CostTblEntry AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000543 // We don't have to scalarize unsupported ops. We can issue two half-sized
544 // operations and we only need to extract the upper YMM half.
545 // Two ops + 1 extract + 1 insert = 4.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000546 { ISD::MUL, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000547 { ISD::MUL, MVT::v8i32, 4 },
Simon Pilgrim27fed8e2016-11-14 14:45:16 +0000548 { ISD::SUB, MVT::v32i8, 4 },
549 { ISD::ADD, MVT::v32i8, 4 },
550 { ISD::SUB, MVT::v16i16, 4 },
551 { ISD::ADD, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000552 { ISD::SUB, MVT::v8i32, 4 },
553 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000554 { ISD::SUB, MVT::v4i64, 4 },
555 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000556 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
Simon Pilgrim081abbb2016-12-21 20:00:10 +0000557 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000558 // Because we believe v4i64 to be a legal type, we must also include the
Simon Pilgrim081abbb2016-12-21 20:00:10 +0000559 // split factor of two in the cost table. Therefore, the cost here is 16
560 // instead of 8.
561 { ISD::MUL, MVT::v4i64, 16 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000562 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000563
564 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000565 if (ST->hasAVX() && !ST->hasAVX2()) {
Craig Toppereda02a92015-10-25 03:15:29 +0000566 MVT VT = LT.second;
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000567
Craig Topperee0c8592015-10-27 04:14:24 +0000568 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
569 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000570 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000571
572 // Custom lowering of vectors.
Craig Topper4b275762015-10-28 04:02:12 +0000573 static const CostTblEntry CustomLowered[] = {
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000574 // A v2i64/v4i64 and multiply is custom lowered as a series of long
Simon Pilgrim081abbb2016-12-21 20:00:10 +0000575 // multiplies(3), shifts(3) and adds(2).
576 { ISD::MUL, MVT::v2i64, 8 },
577 { ISD::MUL, MVT::v4i64, 8 },
578 { ISD::MUL, MVT::v8i64, 8 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000579 };
Craig Topperee0c8592015-10-27 04:14:24 +0000580 if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
581 return LT.first * Entry->Cost;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000582
583 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
584 // 2x pmuludq, 2x shuffle.
585 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
586 !ST->hasSSE41())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000587 return LT.first * 6;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000588
Alexey Bataevd07c7312016-10-31 12:10:53 +0000589 static const CostTblEntry SSE1FloatCostTable[] = {
590 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
591 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
592 };
593
594 if (ST->hasSSE1())
595 if (const auto *Entry = CostTableLookup(SSE1FloatCostTable, ISD,
596 LT.second))
597 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000598 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000599 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000600}
601
Chandler Carruth93205eb2015-08-05 18:08:10 +0000602int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
603 Type *SubTp) {
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000604 if (Kind == TTI::SK_Reverse || Kind == TTI::SK_Alternate) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000605 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
606 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000607 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000608
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000609 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
610 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
611 { TTI::SK_Reverse, MVT::v32i8, 1 } // vpermb
612 };
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000613
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000614 if (ST->hasVBMI())
615 if (const auto *Entry =
616 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
617 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000618
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000619 static const CostTblEntry AVX512BWShuffleTbl[] = {
620 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
621 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
622 { TTI::SK_Reverse, MVT::v64i8, 6 } // vextracti64x4 + 2*vperm2i128
623 // + 2*pshufb + vinserti64x4
624 };
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000625
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000626 if (ST->hasBWI())
627 if (const auto *Entry =
628 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
629 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000630
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000631 static const CostTblEntry AVX512ShuffleTbl[] = {
632 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
633 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
634 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
635 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
636 };
637
638 if (ST->hasAVX512())
639 if (const auto *Entry =
640 CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
641 return LT.first * Entry->Cost;
642
643 static const CostTblEntry AVX2ShuffleTbl[] = {
644 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
645 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
646 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
647 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
648 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
649 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
650
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000651 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
652 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000653 };
654
655 if (ST->hasAVX2())
656 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
657 return LT.first * Entry->Cost;
658
659 static const CostTblEntry AVX1ShuffleTbl[] = {
660 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
661 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
662 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
663 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
664 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
665 // + vinsertf128
666 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
667 // + vinsertf128
668
669 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
670 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
671 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
672 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000673 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
674 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000675 };
676
Craig Topperee0c8592015-10-27 04:14:24 +0000677 if (ST->hasAVX())
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000678 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000679 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000680
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000681 static const CostTblEntry SSE41ShuffleTbl[] = {
682 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
683 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
684 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
685 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
686 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000687 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000688 };
689
Craig Topperee0c8592015-10-27 04:14:24 +0000690 if (ST->hasSSE41())
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000691 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000692 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000693
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000694 static const CostTblEntry SSSE3ShuffleTbl[] = {
695 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
696 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000697
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000698 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
699 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000700 };
Michael Liao5bf95782014-12-04 05:20:33 +0000701
Craig Topperee0c8592015-10-27 04:14:24 +0000702 if (ST->hasSSSE3())
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000703 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000704 return LT.first * Entry->Cost;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000705
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000706 static const CostTblEntry SSE2ShuffleTbl[] = {
707 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
708 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
709 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
710 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
711 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
712 // + 2*pshufd + 2*unpck + packus
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000713
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000714 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
715 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
716 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000717 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
718 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000719 };
720
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000721 if (ST->hasSSE2())
722 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
723 return LT.first * Entry->Cost;
724
725 static const CostTblEntry SSE1ShuffleTbl[] = {
Simon Pilgrimbb895f32017-01-04 14:01:33 +0000726 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
727 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
Simon Pilgrim939b8cd2017-01-04 12:08:41 +0000728 };
729
730 if (ST->hasSSE1())
731 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
732 return LT.first * Entry->Cost;
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000733
734 } else if (Kind == TTI::SK_PermuteTwoSrc) {
735 // We assume that source and destination have the same vector type.
736 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
737 int NumOfDests = LT.first;
738 int NumOfShufflesPerDest = LT.first * 2 - 1;
739 int NumOfShuffles = NumOfDests * NumOfShufflesPerDest;
740
741 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
742 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 1}, // vpermt2b
743 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 1}, // vpermt2b
744 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1} // vpermt2b
745 };
746
747 if (ST->hasVBMI())
748 if (const auto *Entry = CostTableLookup(AVX512VBMIShuffleTbl,
749 ISD::VECTOR_SHUFFLE, LT.second))
750 return NumOfShuffles * Entry->Cost;
751
752 static const CostTblEntry AVX512BWShuffleTbl[] = {
753 {ISD::VECTOR_SHUFFLE, MVT::v32i16, 1}, // vpermt2w
754 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 1}, // vpermt2w
755 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, // vpermt2w
756 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 3}, // zext + vpermt2w + trunc
757 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 19}, // 6 * v32i8 + 1
758 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // zext + vpermt2w + trunc
759 };
760
761 if (ST->hasBWI())
762 if (const auto *Entry = CostTableLookup(AVX512BWShuffleTbl,
763 ISD::VECTOR_SHUFFLE, LT.second))
764 return NumOfShuffles * Entry->Cost;
765
766 static const CostTblEntry AVX512ShuffleTbl[] = {
767 {ISD::VECTOR_SHUFFLE, MVT::v8f64, 1}, // vpermt2pd
768 {ISD::VECTOR_SHUFFLE, MVT::v16f32, 1}, // vpermt2ps
769 {ISD::VECTOR_SHUFFLE, MVT::v8i64, 1}, // vpermt2q
770 {ISD::VECTOR_SHUFFLE, MVT::v16i32, 1}, // vpermt2d
771 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vpermt2pd
772 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vpermt2ps
773 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vpermt2q
774 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vpermt2d
775 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // vpermt2pd
776 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, // vpermt2ps
777 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // vpermt2q
778 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1} // vpermt2d
779 };
780
781 if (ST->hasAVX512())
782 if (const auto *Entry =
783 CostTableLookup(AVX512ShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
784 return NumOfShuffles * Entry->Cost;
785
786 } else if (Kind == TTI::SK_PermuteSingleSrc) {
787 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
788 if (LT.first == 1) {
789
790 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
791 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 1}, // vpermb
792 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 1} // vpermb
793 };
794
795 if (ST->hasVBMI())
796 if (const auto *Entry = CostTableLookup(AVX512VBMIShuffleTbl,
797 ISD::VECTOR_SHUFFLE, LT.second))
798 return Entry->Cost;
799
800 static const CostTblEntry AVX512BWShuffleTbl[] = {
801 {ISD::VECTOR_SHUFFLE, MVT::v32i16, 1}, // vpermw
802 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 1}, // vpermw
803 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, // vpermw
804 {ISD::VECTOR_SHUFFLE, MVT::v64i8, 8}, // extend to v32i16
805 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 3} // vpermw + zext/trunc
806 };
807
808 if (ST->hasBWI())
809 if (const auto *Entry = CostTableLookup(AVX512BWShuffleTbl,
810 ISD::VECTOR_SHUFFLE, LT.second))
811 return Entry->Cost;
812
813 static const CostTblEntry AVX512ShuffleTbl[] = {
814 {ISD::VECTOR_SHUFFLE, MVT::v8f64, 1}, // vpermpd
815 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vpermpd
816 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // vpermpd
817 {ISD::VECTOR_SHUFFLE, MVT::v16f32, 1}, // vpermps
818 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vpermps
819 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, // vpermps
820 {ISD::VECTOR_SHUFFLE, MVT::v8i64, 1}, // vpermq
821 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vpermq
822 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // vpermq
823 {ISD::VECTOR_SHUFFLE, MVT::v16i32, 1}, // vpermd
824 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vpermd
825 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, // vpermd
826 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1} // pshufb
827 };
828
829 if (ST->hasAVX512())
830 if (const auto *Entry =
831 CostTableLookup(AVX512ShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
832 return Entry->Cost;
833
834 } else {
835 // We are going to permute multiple sources and the result will be in
836 // multiple destinations. Providing an accurate cost only for splits where
837 // the element type remains the same.
838
839 MVT LegalVT = LT.second;
840 if (LegalVT.getVectorElementType().getSizeInBits() ==
841 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
842 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
843
844 unsigned VecTySize = DL.getTypeStoreSize(Tp);
845 unsigned LegalVTSize = LegalVT.getStoreSize();
846 // Number of source vectors after legalization:
847 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
848 // Number of destination vectors after legalization:
849 unsigned NumOfDests = LT.first;
850
851 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
852 LegalVT.getVectorNumElements());
853
854 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
855 return NumOfShuffles *
856 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
857 }
858 }
Karthik Bhate03a25d2014-06-20 04:32:48 +0000859 }
860
Chandler Carruth705b1852015-01-31 03:43:40 +0000861 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000862}
863
Chandler Carruth93205eb2015-08-05 18:08:10 +0000864int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000865 int ISD = TLI->InstructionOpcodeToISD(Opcode);
866 assert(ISD && "Invalid opcode");
867
Cong Hou59898d82015-12-11 00:31:39 +0000868 // FIXME: Need a better design of the cost table to handle non-simple types of
869 // potential massive combinations (elem_num x src_type x dst_type).
870
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000871 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000872 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
873 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000874 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
875 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000876 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
877 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
878
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000879 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000880 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000881 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000882 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000883 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000884 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000885
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000886 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000887 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000888 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000889 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000890 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000891 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
892
893 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
894 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
895 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
896 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
897 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
898 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000899 };
900
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000901 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
902 // 256-bit wide vectors.
903
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000904 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000905 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
906 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
907 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000908
909 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
910 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
911 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
912 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000913
914 // v16i1 -> v16i32 - load + broadcast
915 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
916 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000917 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
918 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
919 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
920 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000921 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
922 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000923 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
924 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000925
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000926 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000927 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000928 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000929 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000930 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000931 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
932 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000933 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000934 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
935 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000936
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000937 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000938 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000939 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000940 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
941 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
942 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
943 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000944 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000945 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
946 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
947 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
948 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000949 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000950 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000951 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
952 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
953 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
954 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
955 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000956 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000957 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
958 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
959 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
960
961 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
962 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
963 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
964 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000965 };
966
Craig Topper4b275762015-10-28 04:02:12 +0000967 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000968 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
969 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000970 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
971 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000972 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
973 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000974 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
975 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
976 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
977 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000978 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
979 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000980 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
981 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000982 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
983 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
984
985 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
986 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
987 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
988 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
989 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
990 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000991
992 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
993 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000994
995 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000996 };
997
Craig Topper4b275762015-10-28 04:02:12 +0000998 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000999 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1000 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001001 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1002 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001003 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1004 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001005 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1006 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1007 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1008 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001009 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1010 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001011 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1012 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001013 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1014 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1015
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001016 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1017 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1018 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001019 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1020 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1021 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001022 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001023
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001024 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001025 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001026 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1027 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001028 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001029 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1030 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001031 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001032 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1033 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001034 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001035 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001036
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001037 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001038 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001039 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1040 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001041 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001042 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1043 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001044 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001045 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001046 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001047 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001048 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001049 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001050 // The generic code to compute the scalar overhead is currently broken.
1051 // Workaround this limitation by estimating the scalarization overhead
1052 // here. We have roughly 10 instructions per scalar element.
1053 // Multiply that by the vector width.
1054 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001055 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1056 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1057 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1058 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001059
Renato Goline1fb0592013-01-20 20:57:20 +00001060 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001061 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001062 // This node is expanded into scalarized operations but BasicTTI is overly
1063 // optimistic estimating its cost. It computes 3 per element (one
1064 // vector-extract, one scalar conversion and one vector-insert). The
1065 // problem is that the inserts form a read-modify-write chain so latency
1066 // should be factored in too. Inflating the cost per element by 1.
1067 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001068 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001069
1070 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1071 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001072 };
1073
Cong Hou59898d82015-12-11 00:31:39 +00001074 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001075 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1076 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001077 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1078 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1079 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1080 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001081
Cong Hou59898d82015-12-11 00:31:39 +00001082 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1083 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001084 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1085 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1086 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1087 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1088 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1089 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1090 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1091 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1092 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1093 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1094 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1095 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1096 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1097 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1098 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1099 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001100
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001101 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1102 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1103 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001104 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001105 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001106 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001107 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1108
Cong Hou59898d82015-12-11 00:31:39 +00001109 };
1110
1111 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001112 // These are somewhat magic numbers justified by looking at the output of
1113 // Intel's IACA, running some kernels and making sure when we take
1114 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001115 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001116 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1117 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1118 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001119 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001120 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1121 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1122 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001123
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001124 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1125 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1126 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1127 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1128 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1129 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1130 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1131 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001132
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001133 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1134
Cong Hou59898d82015-12-11 00:31:39 +00001135 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1136 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001137 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1138 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1139 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1140 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1141 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1142 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1143 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1144 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1145 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1146 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1147 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1148 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1149 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1150 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1151 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1152 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1153 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1154 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1155 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001156 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001157 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1158 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001159
Cong Hou59898d82015-12-11 00:31:39 +00001160 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001161 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1162 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1163 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1164 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1165 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1166 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1167 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1168 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001169 };
1170
Chandler Carruth93205eb2015-08-05 18:08:10 +00001171 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1172 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001173
1174 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001175 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001176 LTDest.second, LTSrc.second))
1177 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001178 }
1179
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001180 EVT SrcTy = TLI->getValueType(DL, Src);
1181 EVT DstTy = TLI->getValueType(DL, Dst);
1182
1183 // The function getSimpleVT only handles simple value types.
1184 if (!SrcTy.isSimple() || !DstTy.isSimple())
1185 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1186
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001187 if (ST->hasDQI())
1188 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1189 DstTy.getSimpleVT(),
1190 SrcTy.getSimpleVT()))
1191 return Entry->Cost;
1192
1193 if (ST->hasAVX512())
1194 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1195 DstTy.getSimpleVT(),
1196 SrcTy.getSimpleVT()))
1197 return Entry->Cost;
1198
Tim Northoverf0e21612014-02-06 18:18:36 +00001199 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001200 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1201 DstTy.getSimpleVT(),
1202 SrcTy.getSimpleVT()))
1203 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001204 }
1205
Chandler Carruth664e3542013-01-07 01:37:14 +00001206 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001207 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1208 DstTy.getSimpleVT(),
1209 SrcTy.getSimpleVT()))
1210 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001211 }
1212
Cong Hou59898d82015-12-11 00:31:39 +00001213 if (ST->hasSSE41()) {
1214 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1215 DstTy.getSimpleVT(),
1216 SrcTy.getSimpleVT()))
1217 return Entry->Cost;
1218 }
1219
1220 if (ST->hasSSE2()) {
1221 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1222 DstTy.getSimpleVT(),
1223 SrcTy.getSimpleVT()))
1224 return Entry->Cost;
1225 }
1226
Chandler Carruth705b1852015-01-31 03:43:40 +00001227 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001228}
1229
Chandler Carruth93205eb2015-08-05 18:08:10 +00001230int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001231 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001232 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001233
1234 MVT MTy = LT.second;
1235
1236 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1237 assert(ISD && "Invalid opcode");
1238
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001239 static const CostTblEntry SSE2CostTbl[] = {
1240 { ISD::SETCC, MVT::v2i64, 8 },
1241 { ISD::SETCC, MVT::v4i32, 1 },
1242 { ISD::SETCC, MVT::v8i16, 1 },
1243 { ISD::SETCC, MVT::v16i8, 1 },
1244 };
1245
Craig Topper4b275762015-10-28 04:02:12 +00001246 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001247 { ISD::SETCC, MVT::v2f64, 1 },
1248 { ISD::SETCC, MVT::v4f32, 1 },
1249 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001250 };
1251
Craig Topper4b275762015-10-28 04:02:12 +00001252 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001253 { ISD::SETCC, MVT::v4f64, 1 },
1254 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001255 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001256 { ISD::SETCC, MVT::v4i64, 4 },
1257 { ISD::SETCC, MVT::v8i32, 4 },
1258 { ISD::SETCC, MVT::v16i16, 4 },
1259 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001260 };
1261
Craig Topper4b275762015-10-28 04:02:12 +00001262 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001263 { ISD::SETCC, MVT::v4i64, 1 },
1264 { ISD::SETCC, MVT::v8i32, 1 },
1265 { ISD::SETCC, MVT::v16i16, 1 },
1266 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001267 };
1268
Craig Topper4b275762015-10-28 04:02:12 +00001269 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001270 { ISD::SETCC, MVT::v8i64, 1 },
1271 { ISD::SETCC, MVT::v16i32, 1 },
1272 { ISD::SETCC, MVT::v8f64, 1 },
1273 { ISD::SETCC, MVT::v16f32, 1 },
1274 };
1275
Craig Topperee0c8592015-10-27 04:14:24 +00001276 if (ST->hasAVX512())
1277 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1278 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001279
Craig Topperee0c8592015-10-27 04:14:24 +00001280 if (ST->hasAVX2())
1281 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1282 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001283
Craig Topperee0c8592015-10-27 04:14:24 +00001284 if (ST->hasAVX())
1285 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1286 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001287
Craig Topperee0c8592015-10-27 04:14:24 +00001288 if (ST->hasSSE42())
1289 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1290 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001291
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001292 if (ST->hasSSE2())
1293 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1294 return LT.first * Entry->Cost;
1295
Chandler Carruth705b1852015-01-31 03:43:40 +00001296 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001297}
1298
Simon Pilgrim14000b32016-05-24 08:17:50 +00001299int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1300 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001301 // Costs should match the codegen from:
1302 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1303 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001304 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001305 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001306 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001307 static const CostTblEntry XOPCostTbl[] = {
1308 { ISD::BITREVERSE, MVT::v4i64, 4 },
1309 { ISD::BITREVERSE, MVT::v8i32, 4 },
1310 { ISD::BITREVERSE, MVT::v16i16, 4 },
1311 { ISD::BITREVERSE, MVT::v32i8, 4 },
1312 { ISD::BITREVERSE, MVT::v2i64, 1 },
1313 { ISD::BITREVERSE, MVT::v4i32, 1 },
1314 { ISD::BITREVERSE, MVT::v8i16, 1 },
1315 { ISD::BITREVERSE, MVT::v16i8, 1 },
1316 { ISD::BITREVERSE, MVT::i64, 3 },
1317 { ISD::BITREVERSE, MVT::i32, 3 },
1318 { ISD::BITREVERSE, MVT::i16, 3 },
1319 { ISD::BITREVERSE, MVT::i8, 3 }
1320 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001321 static const CostTblEntry AVX2CostTbl[] = {
1322 { ISD::BITREVERSE, MVT::v4i64, 5 },
1323 { ISD::BITREVERSE, MVT::v8i32, 5 },
1324 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001325 { ISD::BITREVERSE, MVT::v32i8, 5 },
1326 { ISD::BSWAP, MVT::v4i64, 1 },
1327 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001328 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001329 { ISD::CTLZ, MVT::v4i64, 23 },
1330 { ISD::CTLZ, MVT::v8i32, 18 },
1331 { ISD::CTLZ, MVT::v16i16, 14 },
1332 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001333 { ISD::CTPOP, MVT::v4i64, 7 },
1334 { ISD::CTPOP, MVT::v8i32, 11 },
1335 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001336 { ISD::CTPOP, MVT::v32i8, 6 },
1337 { ISD::CTTZ, MVT::v4i64, 10 },
1338 { ISD::CTTZ, MVT::v8i32, 14 },
1339 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001340 { ISD::CTTZ, MVT::v32i8, 9 },
1341 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1342 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1343 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1344 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1345 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1346 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001347 };
1348 static const CostTblEntry AVX1CostTbl[] = {
1349 { ISD::BITREVERSE, MVT::v4i64, 10 },
1350 { ISD::BITREVERSE, MVT::v8i32, 10 },
1351 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001352 { ISD::BITREVERSE, MVT::v32i8, 10 },
1353 { ISD::BSWAP, MVT::v4i64, 4 },
1354 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001355 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001356 { ISD::CTLZ, MVT::v4i64, 46 },
1357 { ISD::CTLZ, MVT::v8i32, 36 },
1358 { ISD::CTLZ, MVT::v16i16, 28 },
1359 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001360 { ISD::CTPOP, MVT::v4i64, 14 },
1361 { ISD::CTPOP, MVT::v8i32, 22 },
1362 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001363 { ISD::CTPOP, MVT::v32i8, 12 },
1364 { ISD::CTTZ, MVT::v4i64, 20 },
1365 { ISD::CTTZ, MVT::v8i32, 28 },
1366 { ISD::CTTZ, MVT::v16i16, 24 },
1367 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001368 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1369 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1370 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1371 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1372 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1373 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1374 };
1375 static const CostTblEntry SSE42CostTbl[] = {
1376 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1377 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001378 };
1379 static const CostTblEntry SSSE3CostTbl[] = {
1380 { ISD::BITREVERSE, MVT::v2i64, 5 },
1381 { ISD::BITREVERSE, MVT::v4i32, 5 },
1382 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001383 { ISD::BITREVERSE, MVT::v16i8, 5 },
1384 { ISD::BSWAP, MVT::v2i64, 1 },
1385 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001386 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001387 { ISD::CTLZ, MVT::v2i64, 23 },
1388 { ISD::CTLZ, MVT::v4i32, 18 },
1389 { ISD::CTLZ, MVT::v8i16, 14 },
1390 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001391 { ISD::CTPOP, MVT::v2i64, 7 },
1392 { ISD::CTPOP, MVT::v4i32, 11 },
1393 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001394 { ISD::CTPOP, MVT::v16i8, 6 },
1395 { ISD::CTTZ, MVT::v2i64, 10 },
1396 { ISD::CTTZ, MVT::v4i32, 14 },
1397 { ISD::CTTZ, MVT::v8i16, 12 },
1398 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001399 };
1400 static const CostTblEntry SSE2CostTbl[] = {
1401 { ISD::BSWAP, MVT::v2i64, 7 },
1402 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001403 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001404 { ISD::CTLZ, MVT::v2i64, 25 },
1405 { ISD::CTLZ, MVT::v4i32, 26 },
1406 { ISD::CTLZ, MVT::v8i16, 20 },
1407 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001408 { ISD::CTPOP, MVT::v2i64, 12 },
1409 { ISD::CTPOP, MVT::v4i32, 15 },
1410 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001411 { ISD::CTPOP, MVT::v16i8, 10 },
1412 { ISD::CTTZ, MVT::v2i64, 14 },
1413 { ISD::CTTZ, MVT::v4i32, 18 },
1414 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001415 { ISD::CTTZ, MVT::v16i8, 13 },
1416 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1417 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1418 };
1419 static const CostTblEntry SSE1CostTbl[] = {
1420 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1421 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001422 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001423
1424 unsigned ISD = ISD::DELETED_NODE;
1425 switch (IID) {
1426 default:
1427 break;
1428 case Intrinsic::bitreverse:
1429 ISD = ISD::BITREVERSE;
1430 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001431 case Intrinsic::bswap:
1432 ISD = ISD::BSWAP;
1433 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001434 case Intrinsic::ctlz:
1435 ISD = ISD::CTLZ;
1436 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001437 case Intrinsic::ctpop:
1438 ISD = ISD::CTPOP;
1439 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001440 case Intrinsic::cttz:
1441 ISD = ISD::CTTZ;
1442 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001443 case Intrinsic::sqrt:
1444 ISD = ISD::FSQRT;
1445 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001446 }
1447
1448 // Legalize the type.
1449 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1450 MVT MTy = LT.second;
1451
1452 // Attempt to lookup cost.
1453 if (ST->hasXOP())
1454 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1455 return LT.first * Entry->Cost;
1456
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001457 if (ST->hasAVX2())
1458 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1459 return LT.first * Entry->Cost;
1460
1461 if (ST->hasAVX())
1462 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1463 return LT.first * Entry->Cost;
1464
Alexey Bataevd07c7312016-10-31 12:10:53 +00001465 if (ST->hasSSE42())
1466 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1467 return LT.first * Entry->Cost;
1468
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001469 if (ST->hasSSSE3())
1470 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1471 return LT.first * Entry->Cost;
1472
Simon Pilgrim356e8232016-06-20 23:08:21 +00001473 if (ST->hasSSE2())
1474 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1475 return LT.first * Entry->Cost;
1476
Alexey Bataevd07c7312016-10-31 12:10:53 +00001477 if (ST->hasSSE1())
1478 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1479 return LT.first * Entry->Cost;
1480
Simon Pilgrim14000b32016-05-24 08:17:50 +00001481 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1482}
1483
1484int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1485 ArrayRef<Value *> Args, FastMathFlags FMF) {
1486 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1487}
1488
Chandler Carruth93205eb2015-08-05 18:08:10 +00001489int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001490 assert(Val->isVectorTy() && "This must be a vector type");
1491
Sanjay Patelaedc3472016-05-25 17:27:54 +00001492 Type *ScalarType = Val->getScalarType();
1493
Chandler Carruth664e3542013-01-07 01:37:14 +00001494 if (Index != -1U) {
1495 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001496 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001497
1498 // This type is legalized to a scalar type.
1499 if (!LT.second.isVector())
1500 return 0;
1501
1502 // The type may be split. Normalize the index to the new type.
1503 unsigned Width = LT.second.getVectorNumElements();
1504 Index = Index % Width;
1505
1506 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001507 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001508 return 0;
1509 }
1510
Sanjay Patelaedc3472016-05-25 17:27:54 +00001511 // Add to the base cost if we know that the extracted element of a vector is
1512 // destined to be moved to and used in the integer register file.
1513 int RegisterFileMoveCost = 0;
1514 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1515 RegisterFileMoveCost = 1;
1516
1517 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001518}
1519
Chandler Carruth93205eb2015-08-05 18:08:10 +00001520int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001521 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001522 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001523
1524 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1525 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001526 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001527 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001528 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001529 }
1530
1531 return Cost;
1532}
1533
Chandler Carruth93205eb2015-08-05 18:08:10 +00001534int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1535 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001536 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001537 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1538 unsigned NumElem = VTy->getVectorNumElements();
1539
1540 // Handle a few common cases:
1541 // <3 x float>
1542 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1543 // Cost = 64 bit store + extract + 32 bit store.
1544 return 3;
1545
1546 // <3 x double>
1547 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1548 // Cost = 128 bit store + unpack + 64 bit store.
1549 return 3;
1550
Alp Tokerf907b892013-12-05 05:44:44 +00001551 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001552 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001553 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1554 AddressSpace);
1555 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1556 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001557 return NumElem * Cost + SplitCost;
1558 }
1559 }
1560
Chandler Carruth664e3542013-01-07 01:37:14 +00001561 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001562 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001563 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1564 "Invalid Opcode");
1565
1566 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001567 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001568
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001569 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1570 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1571 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1572 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001573
1574 return Cost;
1575}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001576
Chandler Carruth93205eb2015-08-05 18:08:10 +00001577int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1578 unsigned Alignment,
1579 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001580 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1581 if (!SrcVTy)
1582 // To calculate scalar take the regular cost, without mask
1583 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1584
1585 unsigned NumElem = SrcVTy->getVectorNumElements();
1586 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001587 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001588 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1589 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001590 !isPowerOf2_32(NumElem)) {
1591 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001592 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1593 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001594 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001595 int BranchCost = getCFInstrCost(Instruction::Br);
1596 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001597
Chandler Carruth93205eb2015-08-05 18:08:10 +00001598 int ValueSplitCost = getScalarizationOverhead(
1599 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1600 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001601 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1602 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001603 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1604 }
1605
1606 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001607 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001608 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001609 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001610 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001611 LT.second.getVectorNumElements() == NumElem)
1612 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001613 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1614 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001615
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001616 else if (LT.second.getVectorNumElements() > NumElem) {
1617 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1618 LT.second.getVectorNumElements());
1619 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001620 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001621 }
1622 if (!ST->hasAVX512())
1623 return Cost + LT.first*4; // Each maskmov costs 4
1624
1625 // AVX-512 masked load/store is cheapper
1626 return Cost+LT.first;
1627}
1628
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001629int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1630 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001631 // Address computations in vectorized code with non-consecutive addresses will
1632 // likely result in more instructions compared to scalar code where the
1633 // computation can more often be merged into the index mode. The resulting
1634 // extra micro-ops can significantly decrease throughput.
1635 unsigned NumVectorInstToHideOverhead = 10;
1636
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001637 // Cost modeling of Strided Access Computation is hidden by the indexing
1638 // modes of X86 regardless of the stride value. We dont believe that there
1639 // is a difference between constant strided access in gerenal and constant
1640 // strided value which is less than or equal to 64.
1641 // Even in the case of (loop invariant) stride whose value is not known at
1642 // compile time, the address computation will not incur more than one extra
1643 // ADD instruction.
1644 if (Ty->isVectorTy() && SE) {
1645 if (!BaseT::isStridedAccess(Ptr))
1646 return NumVectorInstToHideOverhead;
1647 if (!BaseT::getConstantStrideStep(SE, Ptr))
1648 return 1;
1649 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001650
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001651 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001652}
Yi Jiang5c343de2013-09-19 17:48:48 +00001653
Chandler Carruth93205eb2015-08-05 18:08:10 +00001654int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1655 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001656
Chandler Carruth93205eb2015-08-05 18:08:10 +00001657 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001658
Yi Jiang5c343de2013-09-19 17:48:48 +00001659 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001660
Yi Jiang5c343de2013-09-19 17:48:48 +00001661 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1662 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001663
1664 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1665 // and make it as the cost.
1666
Craig Topper4b275762015-10-28 04:02:12 +00001667 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001668 { ISD::FADD, MVT::v2f64, 2 },
1669 { ISD::FADD, MVT::v4f32, 4 },
1670 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1671 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1672 { ISD::ADD, MVT::v8i16, 5 },
1673 };
Michael Liao5bf95782014-12-04 05:20:33 +00001674
Craig Topper4b275762015-10-28 04:02:12 +00001675 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001676 { ISD::FADD, MVT::v4f32, 4 },
1677 { ISD::FADD, MVT::v4f64, 5 },
1678 { ISD::FADD, MVT::v8f32, 7 },
1679 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1680 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1681 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1682 { ISD::ADD, MVT::v8i16, 5 },
1683 { ISD::ADD, MVT::v8i32, 5 },
1684 };
1685
Craig Topper4b275762015-10-28 04:02:12 +00001686 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001687 { ISD::FADD, MVT::v2f64, 2 },
1688 { ISD::FADD, MVT::v4f32, 4 },
1689 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1690 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1691 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1692 };
Michael Liao5bf95782014-12-04 05:20:33 +00001693
Craig Topper4b275762015-10-28 04:02:12 +00001694 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001695 { ISD::FADD, MVT::v4f32, 3 },
1696 { ISD::FADD, MVT::v4f64, 3 },
1697 { ISD::FADD, MVT::v8f32, 4 },
1698 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1699 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1700 { ISD::ADD, MVT::v4i64, 3 },
1701 { ISD::ADD, MVT::v8i16, 4 },
1702 { ISD::ADD, MVT::v8i32, 5 },
1703 };
Michael Liao5bf95782014-12-04 05:20:33 +00001704
Yi Jiang5c343de2013-09-19 17:48:48 +00001705 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001706 if (ST->hasAVX())
1707 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1708 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001709
Craig Topperee0c8592015-10-27 04:14:24 +00001710 if (ST->hasSSE42())
1711 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1712 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001713 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001714 if (ST->hasAVX())
1715 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1716 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001717
Craig Topperee0c8592015-10-27 04:14:24 +00001718 if (ST->hasSSE42())
1719 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1720 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001721 }
1722
Chandler Carruth705b1852015-01-31 03:43:40 +00001723 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001724}
1725
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001726/// \brief Calculate the cost of materializing a 64-bit value. This helper
1727/// method might only calculate a fraction of a larger immediate. Therefore it
1728/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001729int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001730 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001731 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001732
1733 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001734 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001735
Chandler Carruth705b1852015-01-31 03:43:40 +00001736 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001737}
1738
Chandler Carruth93205eb2015-08-05 18:08:10 +00001739int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001740 assert(Ty->isIntegerTy());
1741
1742 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1743 if (BitSize == 0)
1744 return ~0U;
1745
Juergen Ributzka43176172014-05-19 21:00:53 +00001746 // Never hoist constants larger than 128bit, because this might lead to
1747 // incorrect code generation or assertions in codegen.
1748 // Fixme: Create a cost model for types larger than i128 once the codegen
1749 // issues have been fixed.
1750 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001751 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001752
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001753 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001754 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001755
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001756 // Sign-extend all constants to a multiple of 64-bit.
1757 APInt ImmVal = Imm;
1758 if (BitSize & 0x3f)
1759 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1760
1761 // Split the constant into 64-bit chunks and calculate the cost for each
1762 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001763 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001764 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1765 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1766 int64_t Val = Tmp.getSExtValue();
1767 Cost += getIntImmCost(Val);
1768 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001769 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001770 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001771}
1772
Chandler Carruth93205eb2015-08-05 18:08:10 +00001773int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1774 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001775 assert(Ty->isIntegerTy());
1776
1777 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001778 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1779 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001780 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001781 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001782
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001783 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001784 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001785 default:
1786 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001787 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001788 // Always hoist the base address of a GetElementPtr. This prevents the
1789 // creation of new constants for every base constant that gets constant
1790 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001791 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001792 return 2 * TTI::TCC_Basic;
1793 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001794 case Instruction::Store:
1795 ImmIdx = 0;
1796 break;
Craig Topper074e8452015-12-20 18:41:54 +00001797 case Instruction::ICmp:
1798 // This is an imperfect hack to prevent constant hoisting of
1799 // compares that might be trying to check if a 64-bit value fits in
1800 // 32-bits. The backend can optimize these cases using a right shift by 32.
1801 // Ideally we would check the compare predicate here. There also other
1802 // similar immediates the backend can use shifts for.
1803 if (Idx == 1 && Imm.getBitWidth() == 64) {
1804 uint64_t ImmVal = Imm.getZExtValue();
1805 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1806 return TTI::TCC_Free;
1807 }
1808 ImmIdx = 1;
1809 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001810 case Instruction::And:
1811 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1812 // by using a 32-bit operation with implicit zero extension. Detect such
1813 // immediates here as the normal path expects bit 31 to be sign extended.
1814 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1815 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001816 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001817 case Instruction::Add:
1818 case Instruction::Sub:
1819 case Instruction::Mul:
1820 case Instruction::UDiv:
1821 case Instruction::SDiv:
1822 case Instruction::URem:
1823 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001824 case Instruction::Or:
1825 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001826 ImmIdx = 1;
1827 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001828 // Always return TCC_Free for the shift value of a shift instruction.
1829 case Instruction::Shl:
1830 case Instruction::LShr:
1831 case Instruction::AShr:
1832 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001833 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001834 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001835 case Instruction::Trunc:
1836 case Instruction::ZExt:
1837 case Instruction::SExt:
1838 case Instruction::IntToPtr:
1839 case Instruction::PtrToInt:
1840 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001841 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001842 case Instruction::Call:
1843 case Instruction::Select:
1844 case Instruction::Ret:
1845 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001846 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001847 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001848
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001849 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001850 int NumConstants = (BitSize + 63) / 64;
1851 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001852 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001853 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001854 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001855 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001856
Chandler Carruth705b1852015-01-31 03:43:40 +00001857 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001858}
1859
Chandler Carruth93205eb2015-08-05 18:08:10 +00001860int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1861 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001862 assert(Ty->isIntegerTy());
1863
1864 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001865 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1866 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001867 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001868 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001869
1870 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001871 default:
1872 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001873 case Intrinsic::sadd_with_overflow:
1874 case Intrinsic::uadd_with_overflow:
1875 case Intrinsic::ssub_with_overflow:
1876 case Intrinsic::usub_with_overflow:
1877 case Intrinsic::smul_with_overflow:
1878 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001879 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001880 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001881 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001882 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001883 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001884 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001885 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001886 case Intrinsic::experimental_patchpoint_void:
1887 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001888 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001889 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001890 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001891 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001892 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001893}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001894
Elena Demikhovsky54946982015-12-28 20:10:59 +00001895// Return an average cost of Gather / Scatter instruction, maybe improved later
1896int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1897 unsigned Alignment, unsigned AddressSpace) {
1898
1899 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1900 unsigned VF = SrcVTy->getVectorNumElements();
1901
1902 // Try to reduce index size from 64 bit (default for GEP)
1903 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1904 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1905 // to split. Also check that the base pointer is the same for all lanes,
1906 // and that there's at most one variable index.
1907 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1908 unsigned IndexSize = DL.getPointerSizeInBits();
1909 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1910 if (IndexSize < 64 || !GEP)
1911 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001912
Elena Demikhovsky54946982015-12-28 20:10:59 +00001913 unsigned NumOfVarIndices = 0;
1914 Value *Ptrs = GEP->getPointerOperand();
1915 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1916 return IndexSize;
1917 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1918 if (isa<Constant>(GEP->getOperand(i)))
1919 continue;
1920 Type *IndxTy = GEP->getOperand(i)->getType();
1921 if (IndxTy->isVectorTy())
1922 IndxTy = IndxTy->getVectorElementType();
1923 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1924 !isa<SExtInst>(GEP->getOperand(i))) ||
1925 ++NumOfVarIndices > 1)
1926 return IndexSize; // 64
1927 }
1928 return (unsigned)32;
1929 };
1930
1931
1932 // Trying to reduce IndexSize to 32 bits for vector 16.
1933 // By default the IndexSize is equal to pointer size.
1934 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1935 DL.getPointerSizeInBits();
1936
Mehdi Amini867e9142016-04-14 04:36:40 +00001937 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001938 IndexSize), VF);
1939 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1940 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1941 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1942 if (SplitFactor > 1) {
1943 // Handle splitting of vector of pointers
1944 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1945 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1946 AddressSpace);
1947 }
1948
1949 // The gather / scatter cost is given by Intel architects. It is a rough
1950 // number since we are looking at one instruction in a time.
1951 const int GSOverhead = 2;
1952 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1953 Alignment, AddressSpace);
1954}
1955
1956/// Return the cost of full scalarization of gather / scatter operation.
1957///
1958/// Opcode - Load or Store instruction.
1959/// SrcVTy - The type of the data vector that should be gathered or scattered.
1960/// VariableMask - The mask is non-constant at compile time.
1961/// Alignment - Alignment for one element.
1962/// AddressSpace - pointer[s] address space.
1963///
1964int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1965 bool VariableMask, unsigned Alignment,
1966 unsigned AddressSpace) {
1967 unsigned VF = SrcVTy->getVectorNumElements();
1968
1969 int MaskUnpackCost = 0;
1970 if (VariableMask) {
1971 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001972 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001973 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1974 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00001975 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001976 nullptr);
1977 int BranchCost = getCFInstrCost(Instruction::Br);
1978 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1979 }
1980
1981 // The cost of the scalar loads/stores.
1982 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1983 Alignment, AddressSpace);
1984
1985 int InsertExtractCost = 0;
1986 if (Opcode == Instruction::Load)
1987 for (unsigned i = 0; i < VF; ++i)
1988 // Add the cost of inserting each scalar load into the vector
1989 InsertExtractCost +=
1990 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1991 else
1992 for (unsigned i = 0; i < VF; ++i)
1993 // Add the cost of extracting each element out of the data vector
1994 InsertExtractCost +=
1995 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1996
1997 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1998}
1999
2000/// Calculate the cost of Gather / Scatter operation
2001int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2002 Value *Ptr, bool VariableMask,
2003 unsigned Alignment) {
2004 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2005 unsigned VF = SrcVTy->getVectorNumElements();
2006 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2007 if (!PtrTy && Ptr->getType()->isVectorTy())
2008 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2009 assert(PtrTy && "Unexpected type for Ptr argument");
2010 unsigned AddressSpace = PtrTy->getAddressSpace();
2011
2012 bool Scalarize = false;
2013 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2014 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2015 Scalarize = true;
2016 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2017 // Vector-4 of gather/scatter instruction does not exist on KNL.
2018 // We can extend it to 8 elements, but zeroing upper bits of
2019 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002020 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2021 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002022 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2023 Scalarize = true;
2024
2025 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002026 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2027 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002028
2029 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2030}
2031
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002032bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2033 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002034 int DataWidth = isa<PointerType>(ScalarTy) ?
2035 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002036
Igor Bregerf44b79d2016-08-02 09:15:28 +00002037 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2038 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002039}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002040
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002041bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2042 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002043}
2044
Elena Demikhovsky09285852015-10-25 15:37:55 +00002045bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2046 // This function is called now in two cases: from the Loop Vectorizer
2047 // and from the Scalarizer.
2048 // When the Loop Vectorizer asks about legality of the feature,
2049 // the vectorization factor is not calculated yet. The Loop Vectorizer
2050 // sends a scalar type and the decision is based on the width of the
2051 // scalar element.
2052 // Later on, the cost model will estimate usage this intrinsic based on
2053 // the vector type.
2054 // The Scalarizer asks again about legality. It sends a vector type.
2055 // In this case we can reject non-power-of-2 vectors.
2056 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2057 return false;
2058 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002059 int DataWidth = isa<PointerType>(ScalarTy) ?
2060 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002061
2062 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002063 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002064}
2065
2066bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2067 return isLegalMaskedGather(DataType);
2068}
2069
Eric Christopherd566fb12015-07-29 22:09:48 +00002070bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2071 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002072 const TargetMachine &TM = getTLI()->getTargetMachine();
2073
2074 // Work this as a subsetting of subtarget features.
2075 const FeatureBitset &CallerBits =
2076 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2077 const FeatureBitset &CalleeBits =
2078 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2079
2080 // FIXME: This is likely too limiting as it will include subtarget features
2081 // that we might not care about for inlining, but it is conservatively
2082 // correct.
2083 return (CallerBits & CalleeBits) == CalleeBits;
2084}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002085
2086bool X86TTIImpl::enableInterleavedAccessVectorization() {
2087 // TODO: We expect this to be beneficial regardless of arch,
2088 // but there are currently some unexplained performance artifacts on Atom.
2089 // As a temporary solution, disable on Atom.
2090 return !(ST->isAtom() || ST->isSLM());
2091}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002092
2093// Get estimation for interleaved load/store operations and strided load.
2094// \p Indices contains indices for strided load.
2095// \p Factor - the factor of interleaving.
2096// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2097int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2098 unsigned Factor,
2099 ArrayRef<unsigned> Indices,
2100 unsigned Alignment,
2101 unsigned AddressSpace) {
2102
2103 // VecTy for interleave memop is <VF*Factor x Elt>.
2104 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2105 // VecTy = <12 x i32>.
2106
2107 // Calculate the number of memory operations (NumOfMemOps), required
2108 // for load/store the VecTy.
2109 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2110 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2111 unsigned LegalVTSize = LegalVT.getStoreSize();
2112 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2113
2114 // Get the cost of one memory operation.
2115 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2116 LegalVT.getVectorNumElements());
2117 unsigned MemOpCost =
2118 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2119
2120 if (Opcode == Instruction::Load) {
2121 // Kind of shuffle depends on number of loaded values.
2122 // If we load the entire data in one register, we can use a 1-src shuffle.
2123 // Otherwise, we'll merge 2 sources in each operation.
2124 TTI::ShuffleKind ShuffleKind =
2125 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2126
2127 unsigned ShuffleCost =
2128 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2129
2130 unsigned NumOfLoadsInInterleaveGrp =
2131 Indices.size() ? Indices.size() : Factor;
2132 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2133 VecTy->getVectorNumElements() / Factor);
2134 unsigned NumOfResults =
2135 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2136 NumOfLoadsInInterleaveGrp;
2137
2138 // About a half of the loads may be folded in shuffles when we have only
2139 // one result. If we have more than one result, we do not fold loads at all.
2140 unsigned NumOfUnfoldedLoads =
2141 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2142
2143 // Get a number of shuffle operations per result.
2144 unsigned NumOfShufflesPerResult =
2145 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2146
2147 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2148 // When we have more than one destination, we need additional instructions
2149 // to keep sources.
2150 unsigned NumOfMoves = 0;
2151 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2152 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2153
2154 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2155 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2156
2157 return Cost;
2158 }
2159
2160 // Store.
2161 assert(Opcode == Instruction::Store &&
2162 "Expected Store Instruction at this point");
2163
2164 // There is no strided stores meanwhile. And store can't be folded in
2165 // shuffle.
2166 unsigned NumOfSources = Factor; // The number of values to be merged.
2167 unsigned ShuffleCost =
2168 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2169 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2170
2171 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2172 // We need additional instructions to keep sources.
2173 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2174 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2175 NumOfMoves;
2176 return Cost;
2177}
2178
2179int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2180 unsigned Factor,
2181 ArrayRef<unsigned> Indices,
2182 unsigned Alignment,
2183 unsigned AddressSpace) {
2184 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2185 RequiresBW = false;
2186 Type *EltTy = VecTy->getVectorElementType();
2187 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2188 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2189 return true;
2190 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2191 RequiresBW = true;
2192 return true;
2193 }
2194 return false;
2195 };
2196 bool RequiresBW;
2197 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2198 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2199 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2200 Alignment, AddressSpace);
2201 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2202 Alignment, AddressSpace);
2203}