blob: d792f930fc474b70fedb982907e73a8409c66427 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
Chandler Carruth664e3542013-01-07 01:37:14 +000017#include "X86.h"
18#include "X86TargetMachine.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000019#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000020#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000021#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000022#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000023#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000024#include "llvm/Target/TargetLowering.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000025using namespace llvm;
26
Chandler Carruth84e68b22014-04-22 02:41:26 +000027#define DEBUG_TYPE "x86tti"
28
Chandler Carruth664e3542013-01-07 01:37:14 +000029namespace {
30
Chandler Carruth705b1852015-01-31 03:43:40 +000031class X86TTIImpl : public BasicTTIImplBase<X86TTIImpl> {
32 typedef BasicTTIImplBase<X86TTIImpl> BaseT;
33 typedef TargetTransformInfo TTI;
34
Chandler Carruth664e3542013-01-07 01:37:14 +000035 const X86Subtarget *ST;
36 const X86TargetLowering *TLI;
37
Chandler Carruth705b1852015-01-31 03:43:40 +000038 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract);
Chandler Carruth664e3542013-01-07 01:37:14 +000039
40public:
Chandler Carruth705b1852015-01-31 03:43:40 +000041 explicit X86TTIImpl(const X86TargetMachine *TM = nullptr)
42 : BaseT(TM), ST(TM ? TM->getSubtargetImpl() : nullptr),
43 TLI(ST ? ST->getTargetLowering() : nullptr) {}
44
45 // Provide value semantics. MSVC requires that we spell all of these out.
46 X86TTIImpl(const X86TTIImpl &Arg)
47 : BaseT(static_cast<const BaseT &>(Arg)), ST(Arg.ST), TLI(Arg.TLI) {}
48 X86TTIImpl(X86TTIImpl &&Arg)
49 : BaseT(std::move(static_cast<BaseT &>(Arg))), ST(std::move(Arg.ST)),
50 TLI(std::move(Arg.TLI)) {}
51 X86TTIImpl &operator=(const X86TTIImpl &RHS) {
52 BaseT::operator=(static_cast<const BaseT &>(RHS));
53 ST = RHS.ST;
54 TLI = RHS.TLI;
55 return *this;
Chandler Carruth664e3542013-01-07 01:37:14 +000056 }
Chandler Carruth705b1852015-01-31 03:43:40 +000057 X86TTIImpl &operator=(X86TTIImpl &&RHS) {
58 BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
59 ST = std::move(RHS.ST);
60 TLI = std::move(RHS.TLI);
61 return *this;
Chandler Carruth664e3542013-01-07 01:37:14 +000062 }
63
64 /// \name Scalar TTI Implementations
65 /// @{
Chandler Carruth705b1852015-01-31 03:43:40 +000066 TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
Chandler Carruth664e3542013-01-07 01:37:14 +000067
68 /// @}
69
70 /// \name Vector TTI Implementations
71 /// @{
72
Chandler Carruth705b1852015-01-31 03:43:40 +000073 unsigned getNumberOfRegisters(bool Vector);
74 unsigned getRegisterBitWidth(bool Vector);
75 unsigned getMaxInterleaveFactor();
76 unsigned getArithmeticInstrCost(
77 unsigned Opcode, Type *Ty,
78 TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
79 TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
80 TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
81 TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None);
82 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
83 Type *SubTp);
84 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src);
85 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy);
86 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index);
Craig Topper24e685f2014-03-10 05:29:18 +000087 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Chandler Carruth705b1852015-01-31 03:43:40 +000088 unsigned AddressSpace);
89 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
90 unsigned AddressSpace);
Chandler Carruth664e3542013-01-07 01:37:14 +000091
Chandler Carruth705b1852015-01-31 03:43:40 +000092 unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +000093
Chandler Carruth705b1852015-01-31 03:43:40 +000094 unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm);
Craig Topper73156022014-03-02 09:09:27 +000095
Chandler Carruth705b1852015-01-31 03:43:40 +000096 unsigned getIntImmCost(int64_t);
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +000097
Chandler Carruth705b1852015-01-31 03:43:40 +000098 unsigned getIntImmCost(const APInt &Imm, Type *Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000099
Juergen Ributzkaf0dff492014-03-21 06:04:45 +0000100 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Chandler Carruth705b1852015-01-31 03:43:40 +0000101 Type *Ty);
Juergen Ributzkaf0dff492014-03-21 06:04:45 +0000102 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Chandler Carruth705b1852015-01-31 03:43:40 +0000103 Type *Ty);
104 bool isLegalMaskedLoad(Type *DataType, int Consecutive);
105 bool isLegalMaskedStore(Type *DataType, int Consecutive);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000106
Chandler Carruth664e3542013-01-07 01:37:14 +0000107 /// @}
108};
109
110} // end anonymous namespace
111
Chandler Carruth664e3542013-01-07 01:37:14 +0000112ImmutablePass *
113llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
Chandler Carruth705b1852015-01-31 03:43:40 +0000114 return new TargetTransformInfoWrapperPass(X86TTIImpl(TM));
Chandler Carruth664e3542013-01-07 01:37:14 +0000115}
116
117
118//===----------------------------------------------------------------------===//
119//
120// X86 cost model.
121//
122//===----------------------------------------------------------------------===//
123
Chandler Carruth705b1852015-01-31 03:43:40 +0000124TargetTransformInfo::PopcntSupportKind
125X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000126 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
127 // TODO: Currently the __builtin_popcount() implementation using SSE3
128 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +0000129 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +0000130 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +0000131}
132
Chandler Carruth705b1852015-01-31 03:43:40 +0000133unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000134 if (Vector && !ST->hasSSE1())
135 return 0;
136
Adam Nemet2820a5b2014-07-09 18:22:33 +0000137 if (ST->is64Bit()) {
138 if (Vector && ST->hasAVX512())
139 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +0000140 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +0000141 }
Chandler Carruth664e3542013-01-07 01:37:14 +0000142 return 8;
143}
144
Chandler Carruth705b1852015-01-31 03:43:40 +0000145unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000146 if (Vector) {
Adam Nemet2820a5b2014-07-09 18:22:33 +0000147 if (ST->hasAVX512()) return 512;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000148 if (ST->hasAVX()) return 256;
149 if (ST->hasSSE1()) return 128;
150 return 0;
151 }
152
153 if (ST->is64Bit())
154 return 64;
155 return 32;
156
157}
158
Chandler Carruth705b1852015-01-31 03:43:40 +0000159unsigned X86TTIImpl::getMaxInterleaveFactor() {
Nadav Rotemb696c362013-01-09 01:15:42 +0000160 if (ST->isAtom())
161 return 1;
162
163 // Sandybridge and Haswell have multiple execution ports and pipelined
164 // vector units.
165 if (ST->hasAVX())
166 return 4;
167
168 return 2;
169}
170
Chandler Carruth705b1852015-01-31 03:43:40 +0000171unsigned X86TTIImpl::getArithmeticInstrCost(
172 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
173 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
174 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000175 // Legalize the type.
176 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
177
178 int ISD = TLI->InstructionOpcodeToISD(Opcode);
179 assert(ISD && "Invalid opcode");
180
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000181 if (ISD == ISD::SDIV &&
182 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
183 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
184 // On X86, vector signed division by constants power-of-two are
185 // normally expanded to the sequence SRA + SRL + ADD + SRA.
186 // The OperandValue properties many not be same as that of previous
187 // operation;conservatively assume OP_None.
188 unsigned Cost =
189 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
190 TargetTransformInfo::OP_None,
191 TargetTransformInfo::OP_None);
192 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
193 TargetTransformInfo::OP_None,
194 TargetTransformInfo::OP_None);
195 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
196 TargetTransformInfo::OP_None,
197 TargetTransformInfo::OP_None);
198
199 return Cost;
200 }
201
Benjamin Kramer7c372272014-04-26 14:53:05 +0000202 static const CostTblEntry<MVT::SimpleValueType>
203 AVX2UniformConstCostTable[] = {
204 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
205 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
206 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
207 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
208 };
209
210 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
211 ST->hasAVX2()) {
212 int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
213 if (Idx != -1)
214 return LT.first * AVX2UniformConstCostTable[Idx].Cost;
215 }
216
Elena Demikhovsky27012472014-09-16 07:57:37 +0000217 static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
218 { ISD::SHL, MVT::v16i32, 1 },
219 { ISD::SRL, MVT::v16i32, 1 },
220 { ISD::SRA, MVT::v16i32, 1 },
221 { ISD::SHL, MVT::v8i64, 1 },
222 { ISD::SRL, MVT::v8i64, 1 },
223 { ISD::SRA, MVT::v8i64, 1 },
224 };
225
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000226 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000227 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
228 // customize them to detect the cases where shift amount is a scalar one.
229 { ISD::SHL, MVT::v4i32, 1 },
230 { ISD::SRL, MVT::v4i32, 1 },
231 { ISD::SRA, MVT::v4i32, 1 },
232 { ISD::SHL, MVT::v8i32, 1 },
233 { ISD::SRL, MVT::v8i32, 1 },
234 { ISD::SRA, MVT::v8i32, 1 },
235 { ISD::SHL, MVT::v2i64, 1 },
236 { ISD::SRL, MVT::v2i64, 1 },
237 { ISD::SHL, MVT::v4i64, 1 },
238 { ISD::SRL, MVT::v4i64, 1 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000239
240 { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
241 { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
242
243 { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
244 { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
245
246 { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
247 { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
248 { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000249
250 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
251 { ISD::SDIV, MVT::v32i8, 32*20 },
252 { ISD::SDIV, MVT::v16i16, 16*20 },
253 { ISD::SDIV, MVT::v8i32, 8*20 },
254 { ISD::SDIV, MVT::v4i64, 4*20 },
255 { ISD::UDIV, MVT::v32i8, 32*20 },
256 { ISD::UDIV, MVT::v16i16, 16*20 },
257 { ISD::UDIV, MVT::v8i32, 8*20 },
258 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000259 };
260
Elena Demikhovsky27012472014-09-16 07:57:37 +0000261 if (ST->hasAVX512()) {
262 int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
263 if (Idx != -1)
264 return LT.first * AVX512CostTable[Idx].Cost;
265 }
Michael Liao70dd7f92013-03-20 22:01:10 +0000266 // Look for AVX2 lowering tricks.
267 if (ST->hasAVX2()) {
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000268 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
269 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
270 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
271 // On AVX2, a packed v16i16 shift left by a constant build_vector
272 // is lowered into a vector multiply (vpmullw).
273 return LT.first;
274
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000275 int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
Michael Liao70dd7f92013-03-20 22:01:10 +0000276 if (Idx != -1)
277 return LT.first * AVX2CostTable[Idx].Cost;
278 }
279
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000280 static const CostTblEntry<MVT::SimpleValueType>
281 SSE2UniformConstCostTable[] = {
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000282 // We don't correctly identify costs of casts because they are marked as
283 // custom.
284 // Constant splats are cheaper for the following instructions.
285 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
286 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
287 { ISD::SHL, MVT::v4i32, 1 }, // pslld
288 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
289
290 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
291 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
292 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
293 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
294
295 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
296 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
297 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
Benjamin Kramer7c372272014-04-26 14:53:05 +0000298
299 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
300 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
Benjamin Kramerce4b3fe2014-04-27 18:47:54 +0000301 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
Benjamin Kramer7c372272014-04-26 14:53:05 +0000302 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000303 };
304
305 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
306 ST->hasSSE2()) {
Benjamin Kramerce4b3fe2014-04-27 18:47:54 +0000307 // pmuldq sequence.
308 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
309 return LT.first * 15;
310
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000311 int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000312 if (Idx != -1)
313 return LT.first * SSE2UniformConstCostTable[Idx].Cost;
314 }
315
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000316 if (ISD == ISD::SHL &&
317 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
318 EVT VT = LT.second;
319 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
320 (VT == MVT::v4i32 && ST->hasSSE41()))
321 // Vector shift left by non uniform constant can be lowered
322 // into vector multiply (pmullw/pmulld).
323 return LT.first;
324 if (VT == MVT::v4i32 && ST->hasSSE2())
325 // A vector shift left by non uniform constant is converted
326 // into a vector multiply; the new multiply is eventually
327 // lowered into a sequence of shuffles and 2 x pmuludq.
328 ISD = ISD::MUL;
329 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000330
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000331 static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000332 // We don't correctly identify costs of casts because they are marked as
333 // custom.
334 // For some cases, where the shift amount is a scalar we would be able
335 // to generate better code. Unfortunately, when this is the case the value
336 // (the splat) will get hoisted out of the loop, thereby making it invisible
337 // to ISel. The cost model must return worst case assumptions because it is
338 // used for vectorization and we don't want to make vectorized code worse
339 // than scalar code.
340 { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
341 { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
342 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
343 { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
Michael Liao5bf95782014-12-04 05:20:33 +0000344 { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000345
346 { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
347 { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
348 { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
349 { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
350
351 { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
352 { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
353 { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
354 { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000355
356 // It is not a good idea to vectorize division. We have to scalarize it and
357 // in the process we will often end up having to spilling regular
358 // registers. The overhead of division is going to dominate most kernels
359 // anyways so try hard to prevent vectorization of division - it is
360 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
361 // to hide "20 cycles" for each lane.
362 { ISD::SDIV, MVT::v16i8, 16*20 },
363 { ISD::SDIV, MVT::v8i16, 8*20 },
364 { ISD::SDIV, MVT::v4i32, 4*20 },
365 { ISD::SDIV, MVT::v2i64, 2*20 },
366 { ISD::UDIV, MVT::v16i8, 16*20 },
367 { ISD::UDIV, MVT::v8i16, 8*20 },
368 { ISD::UDIV, MVT::v4i32, 4*20 },
369 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000370 };
371
372 if (ST->hasSSE2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000373 int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000374 if (Idx != -1)
375 return LT.first * SSE2CostTable[Idx].Cost;
376 }
377
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000378 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000379 // We don't have to scalarize unsupported ops. We can issue two half-sized
380 // operations and we only need to extract the upper YMM half.
381 // Two ops + 1 extract + 1 insert = 4.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000382 { ISD::MUL, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000383 { ISD::MUL, MVT::v8i32, 4 },
384 { ISD::SUB, MVT::v8i32, 4 },
385 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000386 { ISD::SUB, MVT::v4i64, 4 },
387 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000388 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
389 // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
390 // Because we believe v4i64 to be a legal type, we must also include the
391 // split factor of two in the cost table. Therefore, the cost here is 18
392 // instead of 9.
393 { ISD::MUL, MVT::v4i64, 18 },
394 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000395
396 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000397 if (ST->hasAVX() && !ST->hasAVX2()) {
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000398 EVT VT = LT.second;
399
400 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
401 // sequence of extract + two vector multiply + insert.
402 if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
403 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
404 ISD = ISD::MUL;
405
406 int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
Renato Goline1fb0592013-01-20 20:57:20 +0000407 if (Idx != -1)
408 return LT.first * AVX1CostTable[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000409 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000410
411 // Custom lowering of vectors.
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000412 static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000413 // A v2i64/v4i64 and multiply is custom lowered as a series of long
414 // multiplies(3), shifts(4) and adds(2).
415 { ISD::MUL, MVT::v2i64, 9 },
416 { ISD::MUL, MVT::v4i64, 9 },
417 };
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000418 int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000419 if (Idx != -1)
420 return LT.first * CustomLowered[Idx].Cost;
421
422 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
423 // 2x pmuludq, 2x shuffle.
424 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
425 !ST->hasSSE41())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000426 return LT.first * 6;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000427
Chandler Carruth664e3542013-01-07 01:37:14 +0000428 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000429 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000430}
431
Chandler Carruth705b1852015-01-31 03:43:40 +0000432unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
433 Type *SubTp) {
Karthik Bhate03a25d2014-06-20 04:32:48 +0000434 // We only estimate the cost of reverse and alternate shuffles.
Chandler Carruth705b1852015-01-31 03:43:40 +0000435 if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
436 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000437
Chandler Carruth705b1852015-01-31 03:43:40 +0000438 if (Kind == TTI::SK_Reverse) {
Karthik Bhate03a25d2014-06-20 04:32:48 +0000439 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
440 unsigned Cost = 1;
441 if (LT.second.getSizeInBits() > 128)
442 Cost = 3; // Extract + insert + copy.
Chandler Carruth664e3542013-01-07 01:37:14 +0000443
Karthik Bhate03a25d2014-06-20 04:32:48 +0000444 // Multiple by the number of parts.
445 return Cost * LT.first;
446 }
447
Chandler Carruth705b1852015-01-31 03:43:40 +0000448 if (Kind == TTI::SK_Alternate) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000449 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
450 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
Karthik Bhate03a25d2014-06-20 04:32:48 +0000451 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
452
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000453 // The backend knows how to generate a single VEX.256 version of
454 // instruction VPBLENDW if the target supports AVX2.
455 if (ST->hasAVX2() && LT.second == MVT::v16i16)
456 return LT.first;
457
458 static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
459 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd
460 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd
461
462 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps
463 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps
464
465 // This shuffle is custom lowered into a sequence of:
466 // 2x vextractf128 , 2x vpblendw , 1x vinsertf128
467 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
468
469 // This shuffle is custom lowered into a long sequence of:
470 // 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128
471 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
472 };
473
474 if (ST->hasAVX()) {
475 int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
476 if (Idx != -1)
477 return LT.first * AVXAltShuffleTbl[Idx].Cost;
478 }
479
480 static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
481 // These are lowered into movsd.
482 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
483 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
484
485 // packed float vectors with four elements are lowered into BLENDI dag
486 // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
487 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
488 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
489
490 // This shuffle generates a single pshufw.
491 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
492
493 // There is no instruction that matches a v16i8 alternate shuffle.
494 // The backend will expand it into the sequence 'pshufb + pshufb + or'.
495 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
496 };
497
498 if (ST->hasSSE41()) {
499 int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
500 if (Idx != -1)
501 return LT.first * SSE41AltShuffleTbl[Idx].Cost;
502 }
503
504 static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
505 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
506 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
507
508 // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
509 // the sequence 'shufps + pshufd'
510 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
511 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
512
513 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
514 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
515 };
Michael Liao5bf95782014-12-04 05:20:33 +0000516
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000517 if (ST->hasSSSE3()) {
518 int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
519 if (Idx != -1)
520 return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
521 }
522
523 static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
524 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
525 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
526
527 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
528 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
Michael Liao5bf95782014-12-04 05:20:33 +0000529
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000530 // This is expanded into a long sequence of four extract + four insert.
531 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
532
533 // 8 x (pinsrw + pextrw + and + movb + movzb + or)
534 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
535 };
536
Michael Liao5bf95782014-12-04 05:20:33 +0000537 // Fall-back (SSE3 and SSE2).
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000538 int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
539 if (Idx != -1)
540 return LT.first * SSEAltShuffleTbl[Idx].Cost;
Chandler Carruth705b1852015-01-31 03:43:40 +0000541 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000542 }
543
Chandler Carruth705b1852015-01-31 03:43:40 +0000544 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000545}
546
Chandler Carruth705b1852015-01-31 03:43:40 +0000547unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000548 int ISD = TLI->InstructionOpcodeToISD(Opcode);
549 assert(ISD && "Invalid opcode");
550
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000551 std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
552 std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
553
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000554 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
555 SSE2ConvTbl[] = {
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000556 // These are somewhat magic numbers justified by looking at the output of
557 // Intel's IACA, running some kernels and making sure when we take
558 // legalization into account the throughput will be overestimated.
559 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
560 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
561 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
562 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
563 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
564 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
565 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
566 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
567 // There are faster sequences for float conversions.
568 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000569 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000570 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
571 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
572 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
573 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
574 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
575 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
576 };
577
578 if (ST->hasSSE2() && !ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000579 int Idx =
580 ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000581 if (Idx != -1)
582 return LTSrc.first * SSE2ConvTbl[Idx].Cost;
583 }
584
Elena Demikhovsky27012472014-09-16 07:57:37 +0000585 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
586 AVX512ConversionTbl[] = {
587 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
588 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
589 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
590 { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 },
591
592 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
593 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
594 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
595 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
596 { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 },
597
598 // v16i1 -> v16i32 - load + broadcast
599 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
600 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
601
602 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
603 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
604 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
605 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
606 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
607 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
608
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000609 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
610 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
611 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
612 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
613 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
614 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
615 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000616 };
617
618 if (ST->hasAVX512()) {
619 int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
620 LTSrc.second);
621 if (Idx != -1)
622 return AVX512ConversionTbl[Idx].Cost;
623 }
Chandler Carruth664e3542013-01-07 01:37:14 +0000624 EVT SrcTy = TLI->getValueType(Src);
625 EVT DstTy = TLI->getValueType(Dst);
626
Arnold Schwaighoferc0c7ff42013-04-17 20:04:53 +0000627 // The function getSimpleVT only handles simple value types.
628 if (!SrcTy.isSimple() || !DstTy.isSimple())
Chandler Carruth705b1852015-01-31 03:43:40 +0000629 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Arnold Schwaighoferc0c7ff42013-04-17 20:04:53 +0000630
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000631 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
Tim Northoverf0e21612014-02-06 18:18:36 +0000632 AVX2ConversionTbl[] = {
633 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
634 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
635 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
636 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
637 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
638 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
639 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
640 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
641 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
642 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
643 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
644 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
645 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
646 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
647 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
648 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
649
650 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
651 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
652 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
653 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
654 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
655 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000656
657 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
658 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000659
660 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000661 };
662
663 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000664 AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000665 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
666 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
667 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
668 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
669 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
670 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
671 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
672 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
673 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
674 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
675 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
676 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
677 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
678 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
679 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
680 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
681
682 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
683 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
684 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
685 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
686 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
687 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
688 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000689
690 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
691 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
692 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
693 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
694 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
695 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
696 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
697 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
698 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
699 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
700 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
701 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
702
703 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
704 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
705 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
706 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
707 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
708 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
709 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
710 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
711 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
712 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
713 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
714 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Quentin Colombet85b904d2014-03-27 22:27:41 +0000715 // The generic code to compute the scalar overhead is currently broken.
716 // Workaround this limitation by estimating the scalarization overhead
717 // here. We have roughly 10 instructions per scalar element.
718 // Multiply that by the vector width.
719 // FIXME: remove that when PR19268 is fixed.
Quentin Colombet3914bf52014-03-27 00:52:16 +0000720 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
721 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000722
Jim Grosbach72fbde82014-03-27 00:04:11 +0000723 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Renato Goline1fb0592013-01-20 20:57:20 +0000724 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Adam Nemet6dafe972014-03-30 18:07:13 +0000725 // This node is expanded into scalarized operations but BasicTTI is overly
726 // optimistic estimating its cost. It computes 3 per element (one
727 // vector-extract, one scalar conversion and one vector-insert). The
728 // problem is that the inserts form a read-modify-write chain so latency
729 // should be factored in too. Inflating the cost per element by 1.
730 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +0000731 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000732 };
733
Tim Northoverf0e21612014-02-06 18:18:36 +0000734 if (ST->hasAVX2()) {
735 int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
736 DstTy.getSimpleVT(), SrcTy.getSimpleVT());
737 if (Idx != -1)
738 return AVX2ConversionTbl[Idx].Cost;
739 }
740
Chandler Carruth664e3542013-01-07 01:37:14 +0000741 if (ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000742 int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
743 SrcTy.getSimpleVT());
Renato Goline1fb0592013-01-20 20:57:20 +0000744 if (Idx != -1)
745 return AVXConversionTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000746 }
747
Chandler Carruth705b1852015-01-31 03:43:40 +0000748 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +0000749}
750
Chandler Carruth705b1852015-01-31 03:43:40 +0000751unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
752 Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000753 // Legalize the type.
754 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
755
756 MVT MTy = LT.second;
757
758 int ISD = TLI->InstructionOpcodeToISD(Opcode);
759 assert(ISD && "Invalid opcode");
760
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000761 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000762 { ISD::SETCC, MVT::v2f64, 1 },
763 { ISD::SETCC, MVT::v4f32, 1 },
764 { ISD::SETCC, MVT::v2i64, 1 },
765 { ISD::SETCC, MVT::v4i32, 1 },
766 { ISD::SETCC, MVT::v8i16, 1 },
767 { ISD::SETCC, MVT::v16i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000768 };
769
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000770 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000771 { ISD::SETCC, MVT::v4f64, 1 },
772 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000773 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +0000774 { ISD::SETCC, MVT::v4i64, 4 },
775 { ISD::SETCC, MVT::v8i32, 4 },
776 { ISD::SETCC, MVT::v16i16, 4 },
777 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000778 };
779
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000780 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000781 { ISD::SETCC, MVT::v4i64, 1 },
782 { ISD::SETCC, MVT::v8i32, 1 },
783 { ISD::SETCC, MVT::v16i16, 1 },
784 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000785 };
786
Elena Demikhovsky27012472014-09-16 07:57:37 +0000787 static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
788 { ISD::SETCC, MVT::v8i64, 1 },
789 { ISD::SETCC, MVT::v16i32, 1 },
790 { ISD::SETCC, MVT::v8f64, 1 },
791 { ISD::SETCC, MVT::v16f32, 1 },
792 };
793
794 if (ST->hasAVX512()) {
795 int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
796 if (Idx != -1)
797 return LT.first * AVX512CostTbl[Idx].Cost;
798 }
799
Chandler Carruth664e3542013-01-07 01:37:14 +0000800 if (ST->hasAVX2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000801 int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000802 if (Idx != -1)
803 return LT.first * AVX2CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000804 }
805
806 if (ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000807 int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000808 if (Idx != -1)
809 return LT.first * AVX1CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000810 }
811
812 if (ST->hasSSE42()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000813 int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000814 if (Idx != -1)
815 return LT.first * SSE42CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000816 }
817
Chandler Carruth705b1852015-01-31 03:43:40 +0000818 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +0000819}
820
Chandler Carruth705b1852015-01-31 03:43:40 +0000821unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
822 unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000823 assert(Val->isVectorTy() && "This must be a vector type");
824
825 if (Index != -1U) {
826 // Legalize the type.
827 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
828
829 // This type is legalized to a scalar type.
830 if (!LT.second.isVector())
831 return 0;
832
833 // The type may be split. Normalize the index to the new type.
834 unsigned Width = LT.second.getVectorNumElements();
835 Index = Index % Width;
836
837 // Floating point scalars are already located in index #0.
838 if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
839 return 0;
840 }
841
Chandler Carruth705b1852015-01-31 03:43:40 +0000842 return BaseT::getVectorInstrCost(Opcode, Val, Index);
Chandler Carruth664e3542013-01-07 01:37:14 +0000843}
844
Chandler Carruth705b1852015-01-31 03:43:40 +0000845unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
846 bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000847 assert (Ty->isVectorTy() && "Can only scalarize vectors");
848 unsigned Cost = 0;
849
850 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
851 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +0000852 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000853 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +0000854 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000855 }
856
857 return Cost;
858}
859
Chandler Carruth705b1852015-01-31 03:43:40 +0000860unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
861 unsigned Alignment,
862 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +0000863 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000864 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
865 unsigned NumElem = VTy->getVectorNumElements();
866
867 // Handle a few common cases:
868 // <3 x float>
869 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
870 // Cost = 64 bit store + extract + 32 bit store.
871 return 3;
872
873 // <3 x double>
874 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
875 // Cost = 128 bit store + unpack + 64 bit store.
876 return 3;
877
Alp Tokerf907b892013-12-05 05:44:44 +0000878 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000879 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth705b1852015-01-31 03:43:40 +0000880 unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(),
881 Alignment, AddressSpace);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000882 unsigned SplitCost = getScalarizationOverhead(Src,
883 Opcode == Instruction::Load,
884 Opcode==Instruction::Store);
885 return NumElem * Cost + SplitCost;
886 }
887 }
888
Chandler Carruth664e3542013-01-07 01:37:14 +0000889 // Legalize the type.
890 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
891 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
892 "Invalid Opcode");
893
894 // Each load/store unit costs 1.
895 unsigned Cost = LT.first * 1;
896
897 // On Sandybridge 256bit load/stores are double pumped
898 // (but not on Haswell).
899 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
900 Cost*=2;
901
902 return Cost;
903}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000904
Chandler Carruth705b1852015-01-31 03:43:40 +0000905unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
906 unsigned Alignment,
907 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +0000908 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
909 if (!SrcVTy)
910 // To calculate scalar take the regular cost, without mask
911 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
912
913 unsigned NumElem = SrcVTy->getVectorNumElements();
914 VectorType *MaskTy =
915 VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
916 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
917 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
918 !isPowerOf2_32(NumElem)) {
919 // Scalarization
920 unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
921 unsigned ScalarCompareCost =
922 getCmpSelInstrCost(Instruction::ICmp,
923 Type::getInt8Ty(getGlobalContext()), NULL);
924 unsigned BranchCost = getCFInstrCost(Instruction::Br);
925 unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
926
927 unsigned ValueSplitCost =
928 getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
929 Opcode == Instruction::Store);
Chandler Carruth705b1852015-01-31 03:43:40 +0000930 unsigned MemopCost =
931 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
932 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +0000933 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
934 }
935
936 // Legalize the type.
937 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(SrcVTy);
938 unsigned Cost = 0;
939 if (LT.second != TLI->getValueType(SrcVTy).getSimpleVT() &&
940 LT.second.getVectorNumElements() == NumElem)
941 // Promotion requires expand/truncate for data and a shuffle for mask.
Chandler Carruth705b1852015-01-31 03:43:40 +0000942 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) +
943 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0);
944
Elena Demikhovskya3232f72015-01-25 08:44:46 +0000945 else if (LT.second.getVectorNumElements() > NumElem) {
946 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
947 LT.second.getVectorNumElements());
948 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +0000949 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +0000950 }
951 if (!ST->hasAVX512())
952 return Cost + LT.first*4; // Each maskmov costs 4
953
954 // AVX-512 masked load/store is cheapper
955 return Cost+LT.first;
956}
957
Chandler Carruth705b1852015-01-31 03:43:40 +0000958unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000959 // Address computations in vectorized code with non-consecutive addresses will
960 // likely result in more instructions compared to scalar code where the
961 // computation can more often be merged into the index mode. The resulting
962 // extra micro-ops can significantly decrease throughput.
963 unsigned NumVectorInstToHideOverhead = 10;
964
965 if (Ty->isVectorTy() && IsComplex)
966 return NumVectorInstToHideOverhead;
967
Chandler Carruth705b1852015-01-31 03:43:40 +0000968 return BaseT::getAddressComputationCost(Ty, IsComplex);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000969}
Yi Jiang5c343de2013-09-19 17:48:48 +0000970
Chandler Carruth705b1852015-01-31 03:43:40 +0000971unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
972 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +0000973
Yi Jiang5c343de2013-09-19 17:48:48 +0000974 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +0000975
Yi Jiang5c343de2013-09-19 17:48:48 +0000976 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +0000977
Yi Jiang5c343de2013-09-19 17:48:48 +0000978 int ISD = TLI->InstructionOpcodeToISD(Opcode);
979 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +0000980
981 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
982 // and make it as the cost.
983
Yi Jiang5c343de2013-09-19 17:48:48 +0000984 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
985 { ISD::FADD, MVT::v2f64, 2 },
986 { ISD::FADD, MVT::v4f32, 4 },
987 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
988 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
989 { ISD::ADD, MVT::v8i16, 5 },
990 };
Michael Liao5bf95782014-12-04 05:20:33 +0000991
Yi Jiang5c343de2013-09-19 17:48:48 +0000992 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
993 { ISD::FADD, MVT::v4f32, 4 },
994 { ISD::FADD, MVT::v4f64, 5 },
995 { ISD::FADD, MVT::v8f32, 7 },
996 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
997 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
998 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
999 { ISD::ADD, MVT::v8i16, 5 },
1000 { ISD::ADD, MVT::v8i32, 5 },
1001 };
1002
1003 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
1004 { ISD::FADD, MVT::v2f64, 2 },
1005 { ISD::FADD, MVT::v4f32, 4 },
1006 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1007 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1008 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1009 };
Michael Liao5bf95782014-12-04 05:20:33 +00001010
Yi Jiang5c343de2013-09-19 17:48:48 +00001011 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
1012 { ISD::FADD, MVT::v4f32, 3 },
1013 { ISD::FADD, MVT::v4f64, 3 },
1014 { ISD::FADD, MVT::v8f32, 4 },
1015 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1016 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1017 { ISD::ADD, MVT::v4i64, 3 },
1018 { ISD::ADD, MVT::v8i16, 4 },
1019 { ISD::ADD, MVT::v8i32, 5 },
1020 };
Michael Liao5bf95782014-12-04 05:20:33 +00001021
Yi Jiang5c343de2013-09-19 17:48:48 +00001022 if (IsPairwise) {
1023 if (ST->hasAVX()) {
1024 int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
1025 if (Idx != -1)
1026 return LT.first * AVX1CostTblPairWise[Idx].Cost;
1027 }
Michael Liao5bf95782014-12-04 05:20:33 +00001028
Yi Jiang5c343de2013-09-19 17:48:48 +00001029 if (ST->hasSSE42()) {
1030 int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
1031 if (Idx != -1)
1032 return LT.first * SSE42CostTblPairWise[Idx].Cost;
1033 }
1034 } else {
1035 if (ST->hasAVX()) {
1036 int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
1037 if (Idx != -1)
1038 return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
1039 }
Michael Liao5bf95782014-12-04 05:20:33 +00001040
Yi Jiang5c343de2013-09-19 17:48:48 +00001041 if (ST->hasSSE42()) {
1042 int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
1043 if (Idx != -1)
1044 return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
1045 }
1046 }
1047
Chandler Carruth705b1852015-01-31 03:43:40 +00001048 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001049}
1050
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001051/// \brief Calculate the cost of materializing a 64-bit value. This helper
1052/// method might only calculate a fraction of a larger immediate. Therefore it
1053/// is valid to return a cost of ZERO.
Chandler Carruth705b1852015-01-31 03:43:40 +00001054unsigned X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001055 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001056 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001057
1058 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001059 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001060
Chandler Carruth705b1852015-01-31 03:43:40 +00001061 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001062}
1063
Chandler Carruth705b1852015-01-31 03:43:40 +00001064unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001065 assert(Ty->isIntegerTy());
1066
1067 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1068 if (BitSize == 0)
1069 return ~0U;
1070
Juergen Ributzka43176172014-05-19 21:00:53 +00001071 // Never hoist constants larger than 128bit, because this might lead to
1072 // incorrect code generation or assertions in codegen.
1073 // Fixme: Create a cost model for types larger than i128 once the codegen
1074 // issues have been fixed.
1075 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001076 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001077
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001078 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001079 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001080
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001081 // Sign-extend all constants to a multiple of 64-bit.
1082 APInt ImmVal = Imm;
1083 if (BitSize & 0x3f)
1084 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1085
1086 // Split the constant into 64-bit chunks and calculate the cost for each
1087 // chunk.
1088 unsigned Cost = 0;
1089 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1090 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1091 int64_t Val = Tmp.getSExtValue();
1092 Cost += getIntImmCost(Val);
1093 }
1094 // We need at least one instruction to materialze the constant.
1095 return std::max(1U, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001096}
1097
Chandler Carruth705b1852015-01-31 03:43:40 +00001098unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
1099 const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001100 assert(Ty->isIntegerTy());
1101
1102 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001103 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1104 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001105 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001106 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001107
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001108 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001109 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001110 default:
1111 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001112 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001113 // Always hoist the base address of a GetElementPtr. This prevents the
1114 // creation of new constants for every base constant that gets constant
1115 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001116 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001117 return 2 * TTI::TCC_Basic;
1118 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001119 case Instruction::Store:
1120 ImmIdx = 0;
1121 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001122 case Instruction::Add:
1123 case Instruction::Sub:
1124 case Instruction::Mul:
1125 case Instruction::UDiv:
1126 case Instruction::SDiv:
1127 case Instruction::URem:
1128 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001129 case Instruction::And:
1130 case Instruction::Or:
1131 case Instruction::Xor:
1132 case Instruction::ICmp:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001133 ImmIdx = 1;
1134 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001135 // Always return TCC_Free for the shift value of a shift instruction.
1136 case Instruction::Shl:
1137 case Instruction::LShr:
1138 case Instruction::AShr:
1139 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001140 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001141 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001142 case Instruction::Trunc:
1143 case Instruction::ZExt:
1144 case Instruction::SExt:
1145 case Instruction::IntToPtr:
1146 case Instruction::PtrToInt:
1147 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001148 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001149 case Instruction::Call:
1150 case Instruction::Select:
1151 case Instruction::Ret:
1152 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001153 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001154 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001155
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001156 if (Idx == ImmIdx) {
1157 unsigned NumConstants = (BitSize + 63) / 64;
Chandler Carruth705b1852015-01-31 03:43:40 +00001158 unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
1159 return (Cost <= NumConstants * TTI::TCC_Basic)
1160 ? static_cast<unsigned>(TTI::TCC_Free)
1161 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001162 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001163
Chandler Carruth705b1852015-01-31 03:43:40 +00001164 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001165}
1166
Chandler Carruth705b1852015-01-31 03:43:40 +00001167unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
1168 const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001169 assert(Ty->isIntegerTy());
1170
1171 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001172 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1173 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001174 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001175 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001176
1177 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001178 default:
1179 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001180 case Intrinsic::sadd_with_overflow:
1181 case Intrinsic::uadd_with_overflow:
1182 case Intrinsic::ssub_with_overflow:
1183 case Intrinsic::usub_with_overflow:
1184 case Intrinsic::smul_with_overflow:
1185 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001186 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001187 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001188 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001189 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001190 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001191 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001192 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001193 case Intrinsic::experimental_patchpoint_void:
1194 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001195 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001196 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001197 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001198 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001199 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001200}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001201
Chandler Carruth705b1852015-01-31 03:43:40 +00001202bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) {
Elena Demikhovskyfb81b932014-12-25 07:49:20 +00001203 int DataWidth = DataTy->getPrimitiveSizeInBits();
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001204
1205 // Todo: AVX512 allows gather/scatter, works with strided and random as well
Elena Demikhovskyfb81b932014-12-25 07:49:20 +00001206 if ((DataWidth < 32) || (Consecutive == 0))
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001207 return false;
1208 if (ST->hasAVX512() || ST->hasAVX2())
1209 return true;
1210 return false;
1211}
1212
Chandler Carruth705b1852015-01-31 03:43:40 +00001213bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) {
Elena Demikhovsky3fcafa22014-12-14 09:43:50 +00001214 return isLegalMaskedLoad(DataType, Consecutive);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001215}
1216