blob: 504a24c0fa9e9f726d524e42503ccd625169b11f [file] [log] [blame]
Caitlin Sadowski33208342011-09-09 16:11:56 +00001//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
Caitlin Sadowski5b34a2f2011-09-14 20:05:09 +000013// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
Caitlin Sadowski33208342011-09-09 16:11:56 +000015//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
Caitlin Sadowski82e2de52011-09-09 23:00:59 +000019#include "clang/Analysis/AnalysisContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/Analysis/CFGStmtMap.h"
Caitlin Sadowski33208342011-09-09 16:11:56 +000022#include "clang/AST/DeclCXX.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtVisitor.h"
Caitlin Sadowski82e2de52011-09-09 23:00:59 +000026#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/SourceLocation.h"
Caitlin Sadowski33208342011-09-09 16:11:56 +000028#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringRef.h"
34#include <algorithm>
35#include <vector>
36
37using namespace clang;
38using namespace thread_safety;
39
Caitlin Sadowski5b34a2f2011-09-14 20:05:09 +000040// Key method definition
41ThreadSafetyHandler::~ThreadSafetyHandler() {}
42
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +000043// Helper functions
44static Expr *getParent(Expr *Exp) {
45 if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
46 return ME->getBase();
47 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
48 return CE->getImplicitObjectArgument();
49 return 0;
50}
51
Caitlin Sadowski33208342011-09-09 16:11:56 +000052namespace {
53/// \brief Implements a set of CFGBlocks using a BitVector.
54///
55/// This class contains a minimal interface, primarily dictated by the SetType
56/// template parameter of the llvm::po_iterator template, as used with external
57/// storage. We also use this set to keep track of which CFGBlocks we visit
58/// during the analysis.
59class CFGBlockSet {
60 llvm::BitVector VisitedBlockIDs;
61
62public:
63 // po_iterator requires this iterator, but the only interface needed is the
64 // value_type typedef.
65 struct iterator {
66 typedef const CFGBlock *value_type;
67 };
68
69 CFGBlockSet() {}
70 CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
71
72 /// \brief Set the bit associated with a particular CFGBlock.
73 /// This is the important method for the SetType template parameter.
74 bool insert(const CFGBlock *Block) {
75 // Note that insert() is called by po_iterator, which doesn't check to make
76 // sure that Block is non-null. Moreover, the CFGBlock iterator will
77 // occasionally hand out null pointers for pruned edges, so we catch those
78 // here.
79 if (Block == 0)
80 return false; // if an edge is trivially false.
81 if (VisitedBlockIDs.test(Block->getBlockID()))
82 return false;
83 VisitedBlockIDs.set(Block->getBlockID());
84 return true;
85 }
86
87 /// \brief Check if the bit for a CFGBlock has been already set.
88 /// This method is for tracking visited blocks in the main threadsafety loop.
89 /// Block must not be null.
90 bool alreadySet(const CFGBlock *Block) {
91 return VisitedBlockIDs.test(Block->getBlockID());
92 }
93};
94
95/// \brief We create a helper class which we use to iterate through CFGBlocks in
96/// the topological order.
97class TopologicallySortedCFG {
98 typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
99
100 std::vector<const CFGBlock*> Blocks;
101
102public:
103 typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
104
105 TopologicallySortedCFG(const CFG *CFGraph) {
106 Blocks.reserve(CFGraph->getNumBlockIDs());
107 CFGBlockSet BSet(CFGraph);
108
109 for (po_iterator I = po_iterator::begin(CFGraph, BSet),
110 E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
111 Blocks.push_back(*I);
112 }
113 }
114
115 iterator begin() {
116 return Blocks.rbegin();
117 }
118
119 iterator end() {
120 return Blocks.rend();
121 }
122};
123
124/// \brief A MutexID object uniquely identifies a particular mutex, and
125/// is built from an Expr* (i.e. calling a lock function).
126///
127/// Thread-safety analysis works by comparing lock expressions. Within the
128/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
129/// a particular mutex object at run-time. Subsequent occurrences of the same
130/// expression (where "same" means syntactic equality) will refer to the same
131/// run-time object if three conditions hold:
132/// (1) Local variables in the expression, such as "x" have not changed.
133/// (2) Values on the heap that affect the expression have not changed.
134/// (3) The expression involves only pure function calls.
135/// The current implementation assumes, but does not verify, that multiple uses
136/// of the same lock expression satisfies these criteria.
137///
138/// Clang introduces an additional wrinkle, which is that it is difficult to
139/// derive canonical expressions, or compare expressions directly for equality.
140/// Thus, we identify a mutex not by an Expr, but by the set of named
141/// declarations that are referenced by the Expr. In other words,
142/// x->foo->bar.mu will be a four element vector with the Decls for
143/// mu, bar, and foo, and x. The vector will uniquely identify the expression
144/// for all practical purposes.
145///
146/// Note we will need to perform substitution on "this" and function parameter
147/// names when constructing a lock expression.
148///
149/// For example:
150/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
151/// void myFunc(C *X) { ... X->lock() ... }
152/// The original expression for the mutex acquired by myFunc is "this->Mu", but
153/// "X" is substituted for "this" so we get X->Mu();
154///
155/// For another example:
156/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
157/// MyList *MyL;
158/// foo(MyL); // requires lock MyL->Mu to be held
159class MutexID {
160 SmallVector<NamedDecl*, 2> DeclSeq;
161
162 /// Build a Decl sequence representing the lock from the given expression.
163 /// Recursive function that bottoms out when the final DeclRefExpr is reached.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000164 void buildMutexID(Expr *Exp, Expr *Parent) {
Caitlin Sadowski33208342011-09-09 16:11:56 +0000165 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
166 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
167 DeclSeq.push_back(ND);
168 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
169 NamedDecl *ND = ME->getMemberDecl();
170 DeclSeq.push_back(ND);
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000171 buildMutexID(ME->getBase(), Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000172 } else if (isa<CXXThisExpr>(Exp)) {
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000173 if (Parent)
174 buildMutexID(Parent, 0);
175 else
176 return; // mutexID is still valid in this case
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000177 } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
178 buildMutexID(CE->getSubExpr(), Parent);
179 else
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000180 DeclSeq.clear(); // invalid lock expression
Caitlin Sadowski33208342011-09-09 16:11:56 +0000181 }
182
183public:
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000184 MutexID(Expr *LExpr, Expr *ParentExpr) {
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000185 buildMutexID(LExpr, ParentExpr);
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000186 }
187
188 /// If we encounter part of a lock expression we cannot parse
189 bool isValid() const {
190 return !DeclSeq.empty();
Caitlin Sadowski33208342011-09-09 16:11:56 +0000191 }
192
193 bool operator==(const MutexID &other) const {
194 return DeclSeq == other.DeclSeq;
195 }
196
197 bool operator!=(const MutexID &other) const {
198 return !(*this == other);
199 }
200
201 // SmallVector overloads Operator< to do lexicographic ordering. Note that
202 // we use pointer equality (and <) to compare NamedDecls. This means the order
203 // of MutexIDs in a lockset is nondeterministic. In order to output
204 // diagnostics in a deterministic ordering, we must order all diagnostics to
205 // output by SourceLocation when iterating through this lockset.
206 bool operator<(const MutexID &other) const {
207 return DeclSeq < other.DeclSeq;
208 }
209
210 /// \brief Returns the name of the first Decl in the list for a given MutexID;
211 /// e.g. the lock expression foo.bar() has name "bar".
212 /// The caret will point unambiguously to the lock expression, so using this
213 /// name in diagnostics is a way to get simple, and consistent, mutex names.
214 /// We do not want to output the entire expression text for security reasons.
215 StringRef getName() const {
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000216 assert(isValid());
Caitlin Sadowski33208342011-09-09 16:11:56 +0000217 return DeclSeq.front()->getName();
218 }
219
220 void Profile(llvm::FoldingSetNodeID &ID) const {
221 for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
222 E = DeclSeq.end(); I != E; ++I) {
223 ID.AddPointer(*I);
224 }
225 }
226};
227
228/// \brief This is a helper class that stores info about the most recent
229/// accquire of a Lock.
230///
231/// The main body of the analysis maps MutexIDs to LockDatas.
232struct LockData {
233 SourceLocation AcquireLoc;
234
235 /// \brief LKind stores whether a lock is held shared or exclusively.
236 /// Note that this analysis does not currently support either re-entrant
237 /// locking or lock "upgrading" and "downgrading" between exclusive and
238 /// shared.
239 ///
240 /// FIXME: add support for re-entrant locking and lock up/downgrading
241 LockKind LKind;
242
243 LockData(SourceLocation AcquireLoc, LockKind LKind)
244 : AcquireLoc(AcquireLoc), LKind(LKind) {}
245
246 bool operator==(const LockData &other) const {
247 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
248 }
249
250 bool operator!=(const LockData &other) const {
251 return !(*this == other);
252 }
253
254 void Profile(llvm::FoldingSetNodeID &ID) const {
255 ID.AddInteger(AcquireLoc.getRawEncoding());
256 ID.AddInteger(LKind);
257 }
258};
259
260/// A Lockset maps each MutexID (defined above) to information about how it has
261/// been locked.
262typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
263
264/// \brief We use this class to visit different types of expressions in
265/// CFGBlocks, and build up the lockset.
266/// An expression may cause us to add or remove locks from the lockset, or else
267/// output error messages related to missing locks.
268/// FIXME: In future, we may be able to not inherit from a visitor.
269class BuildLockset : public StmtVisitor<BuildLockset> {
270 ThreadSafetyHandler &Handler;
271 Lockset LSet;
272 Lockset::Factory &LocksetFactory;
273
274 // Helper functions
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000275 void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
276 void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
277 LockKind LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000278 const ValueDecl *getValueDecl(Expr *Exp);
279 void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
280 Expr *MutexExp, ProtectedOperationKind POK);
281 void checkAccess(Expr *Exp, AccessKind AK);
282 void checkDereference(Expr *Exp, AccessKind AK);
283
284 template <class AttrType>
285 void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
286
287 /// \brief Returns true if the lockset contains a lock, regardless of whether
288 /// the lock is held exclusively or shared.
289 bool locksetContains(MutexID Lock) const {
290 return LSet.lookup(Lock);
291 }
292
293 /// \brief Returns true if the lockset contains a lock with the passed in
294 /// locktype.
295 bool locksetContains(MutexID Lock, LockKind KindRequested) const {
296 const LockData *LockHeld = LSet.lookup(Lock);
297 return (LockHeld && KindRequested == LockHeld->LKind);
298 }
299
300 /// \brief Returns true if the lockset contains a lock with at least the
301 /// passed in locktype. So for example, if we pass in LK_Shared, this function
302 /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
303 /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
304 bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
305 switch (KindRequested) {
306 case LK_Shared:
307 return locksetContains(Lock);
308 case LK_Exclusive:
309 return locksetContains(Lock, KindRequested);
310 }
Benjamin Kramer8a8051f2011-09-10 21:52:04 +0000311 llvm_unreachable("Unknown LockKind");
Caitlin Sadowski33208342011-09-09 16:11:56 +0000312 }
313
314public:
315 BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
316 : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
317 LocksetFactory(F) {}
318
319 Lockset getLockset() {
320 return LSet;
321 }
322
323 void VisitUnaryOperator(UnaryOperator *UO);
324 void VisitBinaryOperator(BinaryOperator *BO);
325 void VisitCastExpr(CastExpr *CE);
326 void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
327};
328
329/// \brief Add a new lock to the lockset, warning if the lock is already there.
330/// \param LockLoc The source location of the acquire
331/// \param LockExp The lock expression corresponding to the lock to be added
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000332void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
Caitlin Sadowski33208342011-09-09 16:11:56 +0000333 LockKind LK) {
334 // FIXME: deal with acquired before/after annotations
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000335 MutexID Mutex(LockExp, Parent);
336 if (!Mutex.isValid()) {
337 Handler.handleInvalidLockExp(LockExp->getExprLoc());
338 return;
339 }
340
Caitlin Sadowski33208342011-09-09 16:11:56 +0000341 LockData NewLock(LockLoc, LK);
342
343 // FIXME: Don't always warn when we have support for reentrant locks.
344 if (locksetContains(Mutex))
345 Handler.handleDoubleLock(Mutex.getName(), LockLoc);
346 LSet = LocksetFactory.add(LSet, Mutex, NewLock);
347}
348
349/// \brief Remove a lock from the lockset, warning if the lock is not there.
350/// \param LockExp The lock expression corresponding to the lock to be removed
351/// \param UnlockLoc The source location of the unlock (only used in error msg)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000352void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
353 Expr *Parent) {
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000354 MutexID Mutex(LockExp, Parent);
355 if (!Mutex.isValid()) {
356 Handler.handleInvalidLockExp(LockExp->getExprLoc());
357 return;
358 }
Caitlin Sadowski33208342011-09-09 16:11:56 +0000359
360 Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
361 if(NewLSet == LSet)
362 Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
363
364 LSet = NewLSet;
365}
366
367/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
368const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
369 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
370 return DR->getDecl();
371
372 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
373 return ME->getMemberDecl();
374
375 return 0;
376}
377
378/// \brief Warn if the LSet does not contain a lock sufficient to protect access
379/// of at least the passed in AccessType.
380void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
381 AccessKind AK, Expr *MutexExp,
382 ProtectedOperationKind POK) {
383 LockKind LK = getLockKindFromAccessKind(AK);
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000384 Expr *Parent = getParent(Exp);
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000385 MutexID Mutex(MutexExp, Parent);
386 if (!Mutex.isValid())
387 Handler.handleInvalidLockExp(MutexExp->getExprLoc());
388 else if (!locksetContainsAtLeast(Mutex, LK))
Caitlin Sadowski33208342011-09-09 16:11:56 +0000389 Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
390}
391
392
393/// \brief This method identifies variable dereferences and checks pt_guarded_by
394/// and pt_guarded_var annotations. Note that we only check these annotations
395/// at the time a pointer is dereferenced.
396/// FIXME: We need to check for other types of pointer dereferences
397/// (e.g. [], ->) and deal with them here.
398/// \param Exp An expression that has been read or written.
399void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
400 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
401 if (!UO || UO->getOpcode() != clang::UO_Deref)
402 return;
403 Exp = UO->getSubExpr()->IgnoreParenCasts();
404
405 const ValueDecl *D = getValueDecl(Exp);
406 if(!D || !D->hasAttrs())
407 return;
408
409 if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
410 Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
411
412 const AttrVec &ArgAttrs = D->getAttrs();
413 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
414 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
415 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
416}
417
418/// \brief Checks guarded_by and guarded_var attributes.
419/// Whenever we identify an access (read or write) of a DeclRefExpr or
420/// MemberExpr, we need to check whether there are any guarded_by or
421/// guarded_var attributes, and make sure we hold the appropriate mutexes.
422void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
423 const ValueDecl *D = getValueDecl(Exp);
424 if(!D || !D->hasAttrs())
425 return;
426
427 if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
428 Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
429
430 const AttrVec &ArgAttrs = D->getAttrs();
431 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
432 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
433 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
434}
435
436/// \brief For unary operations which read and write a variable, we need to
437/// check whether we hold any required mutexes. Reads are checked in
438/// VisitCastExpr.
439void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
440 switch (UO->getOpcode()) {
441 case clang::UO_PostDec:
442 case clang::UO_PostInc:
443 case clang::UO_PreDec:
444 case clang::UO_PreInc: {
445 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
446 checkAccess(SubExp, AK_Written);
447 checkDereference(SubExp, AK_Written);
448 break;
449 }
450 default:
451 break;
452 }
453}
454
455/// For binary operations which assign to a variable (writes), we need to check
456/// whether we hold any required mutexes.
457/// FIXME: Deal with non-primitive types.
458void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
459 if (!BO->isAssignmentOp())
460 return;
461 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
462 checkAccess(LHSExp, AK_Written);
463 checkDereference(LHSExp, AK_Written);
464}
465
466/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
467/// need to ensure we hold any required mutexes.
468/// FIXME: Deal with non-primitive types.
469void BuildLockset::VisitCastExpr(CastExpr *CE) {
470 if (CE->getCastKind() != CK_LValueToRValue)
471 return;
472 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
473 checkAccess(SubExp, AK_Read);
474 checkDereference(SubExp, AK_Read);
475}
476
477/// \brief This function, parameterized by an attribute type, is used to add a
478/// set of locks specified as attribute arguments to the lockset.
479template <typename AttrType>
480void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
481 CXXMemberCallExpr *Exp) {
482 typedef typename AttrType::args_iterator iterator_type;
483 SourceLocation ExpLocation = Exp->getExprLoc();
484 Expr *Parent = Exp->getImplicitObjectArgument();
485 AttrType *SpecificAttr = cast<AttrType>(Attr);
486
487 if (SpecificAttr->args_size() == 0) {
488 // The mutex held is the "this" object.
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000489 addLock(ExpLocation, Parent, 0, LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000490 return;
491 }
492
493 for (iterator_type I = SpecificAttr->args_begin(),
494 E = SpecificAttr->args_end(); I != E; ++I)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000495 addLock(ExpLocation, *I, Parent, LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000496}
497
498/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
499/// the method that is being called and add, remove or check locks in the
500/// lockset accordingly.
501///
502/// FIXME: For classes annotated with one of the guarded annotations, we need
503/// to treat const method calls as reads and non-const method calls as writes,
504/// and check that the appropriate locks are held. Non-const method calls with
505/// the same signature as const method calls can be also treated as reads.
506///
507/// FIXME: We need to also visit CallExprs to catch/check global functions.
508void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
509 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
510
511 SourceLocation ExpLocation = Exp->getExprLoc();
512 Expr *Parent = Exp->getImplicitObjectArgument();
513
514 if(!D || !D->hasAttrs())
515 return;
516
517 AttrVec &ArgAttrs = D->getAttrs();
518 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
519 Attr *Attr = ArgAttrs[i];
520 switch (Attr->getKind()) {
521 // When we encounter an exclusive lock function, we need to add the lock
522 // to our lockset with kind exclusive.
523 case attr::ExclusiveLockFunction:
524 addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
525 break;
526
527 // When we encounter a shared lock function, we need to add the lock
528 // to our lockset with kind shared.
529 case attr::SharedLockFunction:
530 addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
531 break;
532
533 // When we encounter an unlock function, we need to remove unlocked
534 // mutexes from the lockset, and flag a warning if they are not there.
535 case attr::UnlockFunction: {
536 UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
537
538 if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000539 removeLock(ExpLocation, Parent, 0);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000540 break;
541 }
542
543 for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
544 E = UFAttr->args_end(); I != E; ++I)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000545 removeLock(ExpLocation, *I, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000546 break;
547 }
548
549 case attr::ExclusiveLocksRequired: {
550 // FIXME: Also use this attribute to add required locks to the initial
551 // lockset when processing a CFG for a function annotated with this
552 // attribute.
553 ExclusiveLocksRequiredAttr *ELRAttr =
554 cast<ExclusiveLocksRequiredAttr>(Attr);
555
556 for (ExclusiveLocksRequiredAttr::args_iterator
557 I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
558 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
559 break;
560 }
561
562 case attr::SharedLocksRequired: {
563 // FIXME: Also use this attribute to add required locks to the initial
564 // lockset when processing a CFG for a function annotated with this
565 // attribute.
566 SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
567
568 for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
569 E = SLRAttr->args_end(); I != E; ++I)
570 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
571 break;
572 }
573
574 case attr::LocksExcluded: {
575 LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
576 for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
577 E = LEAttr->args_end(); I != E; ++I) {
Caitlin Sadowski787c2a12011-09-14 20:00:24 +0000578 MutexID Mutex(*I, Parent);
579 if (!Mutex.isValid())
580 Handler.handleInvalidLockExp((*I)->getExprLoc());
581 else if (locksetContains(Mutex))
Caitlin Sadowski33208342011-09-09 16:11:56 +0000582 Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
583 ExpLocation);
584 }
585 break;
586 }
587
588 case attr::LockReturned:
589 // FIXME: Deal with this attribute.
590 break;
591
592 // Ignore other (non thread-safety) attributes
593 default:
594 break;
595 }
596 }
597}
598
599} // end anonymous namespace
600
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000601/// \brief Compute the intersection of two locksets and issue warnings for any
602/// locks in the symmetric difference.
603///
604/// This function is used at a merge point in the CFG when comparing the lockset
605/// of each branch being merged. For example, given the following sequence:
606/// A; if () then B; else C; D; we need to check that the lockset after B and C
607/// are the same. In the event of a difference, we use the intersection of these
608/// two locksets at the start of D.
609static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
610 const Lockset LSet1, const Lockset LSet2,
611 Lockset::Factory &Fact, LockErrorKind LEK) {
612 Lockset Intersection = LSet1;
Caitlin Sadowski33208342011-09-09 16:11:56 +0000613 for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
614 const MutexID &LSet2Mutex = I.getKey();
615 const LockData &LSet2LockData = I.getData();
616 if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
617 if (LD->LKind != LSet2LockData.LKind) {
618 Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
619 LSet2LockData.AcquireLoc,
620 LD->AcquireLoc);
621 if (LD->LKind != LK_Exclusive)
622 Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
623 }
624 } else {
625 Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000626 LSet2LockData.AcquireLoc, LEK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000627 }
628 }
Caitlin Sadowski33208342011-09-09 16:11:56 +0000629
630 for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
631 if (!LSet2.contains(I.getKey())) {
632 const MutexID &Mutex = I.getKey();
633 const LockData &MissingLock = I.getData();
634 Handler.handleMutexHeldEndOfScope(Mutex.getName(),
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000635 MissingLock.AcquireLoc, LEK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000636 Intersection = Fact.remove(Intersection, Mutex);
637 }
638 }
639 return Intersection;
640}
641
642/// \brief Returns the location of the first Stmt in a Block.
643static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
644 SourceLocation Loc;
645 for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
646 BI != BE; ++BI) {
647 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
648 Loc = CfgStmt->getStmt()->getLocStart();
649 if (Loc.isValid()) return Loc;
650 }
651 }
652 if (Stmt *S = Block->getTerminator().getStmt()) {
653 Loc = S->getLocStart();
654 if (Loc.isValid()) return Loc;
655 }
656 return Loc;
657}
658
Caitlin Sadowskieecd2732011-09-12 22:28:41 +0000659namespace clang {
660namespace thread_safety {
Caitlin Sadowski33208342011-09-09 16:11:56 +0000661/// \brief Check a function's CFG for thread-safety violations.
662///
663/// We traverse the blocks in the CFG, compute the set of mutexes that are held
664/// at the end of each block, and issue warnings for thread safety violations.
665/// Each block in the CFG is traversed exactly once.
666void runThreadSafetyAnalysis(AnalysisContext &AC,
667 ThreadSafetyHandler &Handler) {
668 CFG *CFGraph = AC.getCFG();
669 if (!CFGraph) return;
670 const Decl *D = AC.getDecl();
671 if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
672
673 Lockset::Factory LocksetFactory;
674
675 // FIXME: Swith to SmallVector? Otherwise improve performance impact?
676 std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
677 LocksetFactory.getEmptyMap());
678 std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
679 LocksetFactory.getEmptyMap());
680
681 // We need to explore the CFG via a "topological" ordering.
682 // That way, we will be guaranteed to have information about required
683 // predecessor locksets when exploring a new block.
684 TopologicallySortedCFG SortedGraph(CFGraph);
685 CFGBlockSet VisitedBlocks(CFGraph);
686
687 for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
688 E = SortedGraph.end(); I!= E; ++I) {
689 const CFGBlock *CurrBlock = *I;
690 int CurrBlockID = CurrBlock->getBlockID();
691
692 VisitedBlocks.insert(CurrBlock);
693
694 // Use the default initial lockset in case there are no predecessors.
695 Lockset &Entryset = EntryLocksets[CurrBlockID];
696 Lockset &Exitset = ExitLocksets[CurrBlockID];
697
698 // Iterate through the predecessor blocks and warn if the lockset for all
699 // predecessors is not the same. We take the entry lockset of the current
700 // block to be the intersection of all previous locksets.
701 // FIXME: By keeping the intersection, we may output more errors in future
702 // for a lock which is not in the intersection, but was in the union. We
703 // may want to also keep the union in future. As an example, let's say
704 // the intersection contains Mutex L, and the union contains L and M.
705 // Later we unlock M. At this point, we would output an error because we
706 // never locked M; although the real error is probably that we forgot to
707 // lock M on all code paths. Conversely, let's say that later we lock M.
708 // In this case, we should compare against the intersection instead of the
709 // union because the real error is probably that we forgot to unlock M on
710 // all code paths.
711 bool LocksetInitialized = false;
712 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
713 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
714
715 // if *PI -> CurrBlock is a back edge
716 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
717 continue;
718
719 int PrevBlockID = (*PI)->getBlockID();
720 if (!LocksetInitialized) {
721 Entryset = ExitLocksets[PrevBlockID];
722 LocksetInitialized = true;
723 } else {
724 Entryset = intersectAndWarn(Handler, Entryset,
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000725 ExitLocksets[PrevBlockID], LocksetFactory,
726 LEK_LockedSomePredecessors);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000727 }
728 }
729
730 BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
731 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
732 BE = CurrBlock->end(); BI != BE; ++BI) {
733 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
734 LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
735 }
736 Exitset = LocksetBuilder.getLockset();
737
738 // For every back edge from CurrBlock (the end of the loop) to another block
739 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
740 // the one held at the beginning of FirstLoopBlock. We can look up the
741 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
742 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
743 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
744
745 // if CurrBlock -> *SI is *not* a back edge
746 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
747 continue;
748
749 CFGBlock *FirstLoopBlock = *SI;
Caitlin Sadowski33208342011-09-09 16:11:56 +0000750 Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
751 Lockset LoopEnd = ExitLocksets[CurrBlockID];
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000752 intersectAndWarn(Handler, LoopEnd, PreLoop, LocksetFactory,
753 LEK_LockedSomeLoopIterations);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000754 }
755 }
756
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000757 Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
Caitlin Sadowski33208342011-09-09 16:11:56 +0000758 Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
Caitlin Sadowskiaf9b7c52011-09-15 17:25:19 +0000759 intersectAndWarn(Handler, InitialLockset, FinalLockset, LocksetFactory,
760 LEK_LockedAtEndOfFunction);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000761}
762
763/// \brief Helper function that returns a LockKind required for the given level
764/// of access.
765LockKind getLockKindFromAccessKind(AccessKind AK) {
766 switch (AK) {
767 case AK_Read :
768 return LK_Shared;
769 case AK_Written :
770 return LK_Exclusive;
771 }
Benjamin Kramer8a8051f2011-09-10 21:52:04 +0000772 llvm_unreachable("Unknown AccessKind");
Caitlin Sadowski33208342011-09-09 16:11:56 +0000773}
774}} // end namespace clang::thread_safety