blob: f0b6d8f058952dbf332db9894aa7a269bc73bda2 [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000016#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000020#include "llvm/ADT/StringRef.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000021#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000022#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000023#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000024#include "llvm/Support/raw_ostream.h"
Vassil Vassilev2ec8b152016-09-14 08:55:18 +000025#include <climits>
Chris Lattner17f71652008-08-17 07:19:36 +000026#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000027#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000029using namespace llvm;
30
Chandler Carruth64648262014-04-22 03:07:47 +000031#define DEBUG_TYPE "apint"
32
Reid Spencera41e93b2007-02-25 19:32:03 +000033/// A utility function for allocating memory, checking for allocation failures,
34/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000035inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000036 uint64_t * result = new uint64_t[numWords];
37 assert(result && "APInt memory allocation fails!");
38 memset(result, 0, numWords * sizeof(uint64_t));
39 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000040}
41
Eric Christopher820256b2009-08-21 04:06:45 +000042/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000043/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000044inline static uint64_t* getMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000045 uint64_t * result = new uint64_t[numWords];
46 assert(result && "APInt memory allocation fails!");
47 return result;
48}
49
Erick Tryzelaardadb15712009-08-21 03:15:28 +000050/// A utility function that converts a character to a digit.
51inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000052 unsigned r;
53
Douglas Gregor663c0682011-09-14 15:54:46 +000054 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000055 r = cdigit - '0';
56 if (r <= 9)
57 return r;
58
59 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000060 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000061 return r + 10;
62
63 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000064 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000065 return r + 10;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +000066
Douglas Gregore4e20f42011-09-20 18:11:52 +000067 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000068 }
69
Erick Tryzelaar60964092009-08-21 06:48:37 +000070 r = cdigit - '0';
71 if (r < radix)
72 return r;
73
74 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000075}
76
77
Pawel Bylica68304012016-06-27 08:31:48 +000078void APInt::initSlowCase(uint64_t val, bool isSigned) {
Craig Topper0085ffb2017-03-20 01:29:52 +000079 VAL = 0;
Chris Lattner1ac3e252008-08-20 17:02:31 +000080 pVal = getClearedMemory(getNumWords());
81 pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000082 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000083 for (unsigned i = 1; i < getNumWords(); ++i)
84 pVal[i] = -1ULL;
Craig Topperf78a6f02017-03-01 21:06:18 +000085 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +000086}
87
Chris Lattnerd57b7602008-10-11 22:07:19 +000088void APInt::initSlowCase(const APInt& that) {
Craig Topper0085ffb2017-03-20 01:29:52 +000089 VAL = 0;
Chris Lattnerd57b7602008-10-11 22:07:19 +000090 pVal = getMemory(getNumWords());
91 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
92}
93
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000094void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000095 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000096 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000097 if (isSingleWord())
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000098 VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000099 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000100 // Get memory, cleared to 0
Craig Topper0085ffb2017-03-20 01:29:52 +0000101 VAL = 0;
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000102 pVal = getClearedMemory(getNumWords());
103 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000104 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000105 // Copy the words from bigVal to pVal
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000106 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000107 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000108 // Make sure unused high bits are cleared
109 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000110}
111
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000112APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
Craig Topper0085ffb2017-03-20 01:29:52 +0000113 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000114 initFromArray(bigVal);
115}
116
117APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Craig Topper0085ffb2017-03-20 01:29:52 +0000118 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000119 initFromArray(makeArrayRef(bigVal, numWords));
120}
121
Benjamin Kramer92d89982010-07-14 22:38:02 +0000122APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Reid Spencer1ba83352007-02-21 03:55:44 +0000123 : BitWidth(numbits), VAL(0) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000124 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000125 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000126}
127
Chris Lattner1ac3e252008-08-20 17:02:31 +0000128APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000129 // Don't do anything for X = X
130 if (this == &RHS)
131 return *this;
132
Reid Spencer7c16cd22007-02-26 23:38:21 +0000133 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner1ac3e252008-08-20 17:02:31 +0000134 // assume same bit-width single-word case is already handled
135 assert(!isSingleWord());
136 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer7c16cd22007-02-26 23:38:21 +0000137 return *this;
138 }
139
Chris Lattner1ac3e252008-08-20 17:02:31 +0000140 if (isSingleWord()) {
141 // assume case where both are single words is already handled
142 assert(!RHS.isSingleWord());
143 VAL = 0;
144 pVal = getMemory(RHS.getNumWords());
145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher820256b2009-08-21 04:06:45 +0000146 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer7c16cd22007-02-26 23:38:21 +0000147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
148 else if (RHS.isSingleWord()) {
149 delete [] pVal;
Reid Spencera856b6e2007-02-18 18:38:44 +0000150 VAL = RHS.VAL;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000151 } else {
152 delete [] pVal;
153 pVal = getMemory(RHS.getNumWords());
154 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
155 }
156 BitWidth = RHS.BitWidth;
157 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000158}
159
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000160/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000161void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000162 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000163
Ted Kremenek5c75d542008-01-19 04:23:33 +0000164 if (isSingleWord()) {
165 ID.AddInteger(VAL);
166 return;
167 }
168
Chris Lattner77527f52009-01-21 18:09:24 +0000169 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000170 for (unsigned i = 0; i < NumWords; ++i)
171 ID.AddInteger(pVal[i]);
172}
173
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000174/// This function adds a single "digit" integer, y, to the multiple
Reid Spencera856b6e2007-02-18 18:38:44 +0000175/// "digit" integer array, x[]. x[] is modified to reflect the addition and
176/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer100502d2007-02-17 03:16:00 +0000177/// @returns the carry of the addition.
Chris Lattner77527f52009-01-21 18:09:24 +0000178static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
179 for (unsigned i = 0; i < len; ++i) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000180 dest[i] = y + x[i];
181 if (dest[i] < y)
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000182 y = 1; // Carry one to next digit.
Reid Spenceree0a6852007-02-18 06:39:42 +0000183 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000184 y = 0; // No need to carry so exit early
Reid Spenceree0a6852007-02-18 06:39:42 +0000185 break;
186 }
Reid Spencer100502d2007-02-17 03:16:00 +0000187 }
Reid Spenceree0a6852007-02-18 06:39:42 +0000188 return y;
Reid Spencer100502d2007-02-17 03:16:00 +0000189}
190
Zhou Shengdac63782007-02-06 03:00:16 +0000191/// @brief Prefix increment operator. Increments the APInt by one.
192APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000193 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000194 ++VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000195 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000196 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000197 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000198}
199
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000200/// This function subtracts a single "digit" (64-bit word), y, from
Eric Christopher820256b2009-08-21 04:06:45 +0000201/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Joerg Sonnenbergerd7baada2017-01-05 17:59:22 +0000202/// no further borrowing is needed or it runs out of "digits" in x. The result
Reid Spencera856b6e2007-02-18 18:38:44 +0000203/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
204/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencera41e93b2007-02-25 19:32:03 +0000205/// @returns the borrow out of the subtraction
Chris Lattner77527f52009-01-21 18:09:24 +0000206static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
207 for (unsigned i = 0; i < len; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000208 uint64_t X = x[i];
Reid Spenceree0a6852007-02-18 06:39:42 +0000209 x[i] -= y;
Eric Christopher820256b2009-08-21 04:06:45 +0000210 if (y > X)
Reid Spencera856b6e2007-02-18 18:38:44 +0000211 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer100502d2007-02-17 03:16:00 +0000212 else {
Reid Spencera856b6e2007-02-18 18:38:44 +0000213 y = 0; // No need to borrow
214 break; // Remaining digits are unchanged so exit early
Reid Spencer100502d2007-02-17 03:16:00 +0000215 }
216 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000217 return bool(y);
Reid Spencer100502d2007-02-17 03:16:00 +0000218}
219
Zhou Shengdac63782007-02-06 03:00:16 +0000220/// @brief Prefix decrement operator. Decrements the APInt by one.
221APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000222 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000223 --VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000224 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000225 sub_1(pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000226 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000227}
228
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000229/// This function adds the integer array x to the integer array Y and
Eric Christopher820256b2009-08-21 04:06:45 +0000230/// places the result in dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000231/// @returns the carry out from the addition
232/// @brief General addition of 64-bit integer arrays
Eric Christopher820256b2009-08-21 04:06:45 +0000233static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000234 unsigned len) {
Reid Spencera5e0d202007-02-24 03:58:46 +0000235 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000236 for (unsigned i = 0; i< len; ++i) {
Reid Spencercb292e42007-02-23 01:57:13 +0000237 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000238 dest[i] = x[i] + y[i] + carry;
Reid Spencerdb2abec2007-02-21 05:44:56 +0000239 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer100502d2007-02-17 03:16:00 +0000240 }
241 return carry;
242}
243
Reid Spencera41e93b2007-02-25 19:32:03 +0000244/// Adds the RHS APint to this APInt.
245/// @returns this, after addition of RHS.
Eric Christopher820256b2009-08-21 04:06:45 +0000246/// @brief Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000247APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000248 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000249 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000250 VAL += RHS.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000251 else {
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000252 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000253 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000254 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000255}
256
Pete Cooperfea21392016-07-22 20:55:46 +0000257APInt& APInt::operator+=(uint64_t RHS) {
258 if (isSingleWord())
259 VAL += RHS;
260 else
261 add_1(pVal, pVal, getNumWords(), RHS);
262 return clearUnusedBits();
263}
264
Eric Christopher820256b2009-08-21 04:06:45 +0000265/// Subtracts the integer array y from the integer array x
Reid Spencera41e93b2007-02-25 19:32:03 +0000266/// @returns returns the borrow out.
267/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher820256b2009-08-21 04:06:45 +0000268static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000269 unsigned len) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000270 bool borrow = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000271 for (unsigned i = 0; i < len; ++i) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000272 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
273 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
274 dest[i] = x_tmp - y[i];
Reid Spencer100502d2007-02-17 03:16:00 +0000275 }
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000276 return borrow;
Reid Spencer100502d2007-02-17 03:16:00 +0000277}
278
Reid Spencera41e93b2007-02-25 19:32:03 +0000279/// Subtracts the RHS APInt from this APInt
280/// @returns this, after subtraction
Eric Christopher820256b2009-08-21 04:06:45 +0000281/// @brief Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000282APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000283 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000284 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000285 VAL -= RHS.VAL;
286 else
287 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000288 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000289}
290
Pete Cooperfea21392016-07-22 20:55:46 +0000291APInt& APInt::operator-=(uint64_t RHS) {
292 if (isSingleWord())
293 VAL -= RHS;
294 else
295 sub_1(pVal, getNumWords(), RHS);
296 return clearUnusedBits();
297}
298
Dan Gohman4a618822010-02-10 16:03:48 +0000299/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopher820256b2009-08-21 04:06:45 +0000300/// into dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000301/// @returns the carry out of the multiplication.
302/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner77527f52009-01-21 18:09:24 +0000303static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000304 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer100502d2007-02-17 03:16:00 +0000305 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencera41e93b2007-02-25 19:32:03 +0000306 uint64_t carry = 0;
307
308 // For each digit of x.
Chris Lattner77527f52009-01-21 18:09:24 +0000309 for (unsigned i = 0; i < len; ++i) {
Reid Spencera41e93b2007-02-25 19:32:03 +0000310 // Split x into high and low words
311 uint64_t lx = x[i] & 0xffffffffULL;
312 uint64_t hx = x[i] >> 32;
313 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer100502d2007-02-17 03:16:00 +0000314 // hasCarry == 0, no carry
315 // hasCarry == 1, has carry
316 // hasCarry == 2, no carry and the calculation result == 0.
317 uint8_t hasCarry = 0;
318 dest[i] = carry + lx * ly;
319 // Determine if the add above introduces carry.
320 hasCarry = (dest[i] < carry) ? 1 : 0;
321 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher820256b2009-08-21 04:06:45 +0000322 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer100502d2007-02-17 03:16:00 +0000323 // (2^32 - 1) + 2^32 = 2^64.
324 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
325
326 carry += (lx * hy) & 0xffffffffULL;
327 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher820256b2009-08-21 04:06:45 +0000328 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000329 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
330 }
Reid Spencer100502d2007-02-17 03:16:00 +0000331 return carry;
332}
333
Eric Christopher820256b2009-08-21 04:06:45 +0000334/// Multiplies integer array x by integer array y and stores the result into
Reid Spencera41e93b2007-02-25 19:32:03 +0000335/// the integer array dest. Note that dest's size must be >= xlen + ylen.
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000336/// @brief Generalized multiplication of integer arrays.
Chris Lattner77527f52009-01-21 18:09:24 +0000337static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
338 unsigned ylen) {
Reid Spencer100502d2007-02-17 03:16:00 +0000339 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner77527f52009-01-21 18:09:24 +0000340 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000341 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencer58a6a432007-02-21 08:21:52 +0000342 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner77527f52009-01-21 18:09:24 +0000343 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer100502d2007-02-17 03:16:00 +0000344 lx = x[j] & 0xffffffffULL;
345 hx = x[j] >> 32;
346 // hasCarry - A flag to indicate if has carry.
347 // hasCarry == 0, no carry
348 // hasCarry == 1, has carry
349 // hasCarry == 2, no carry and the calculation result == 0.
350 uint8_t hasCarry = 0;
351 uint64_t resul = carry + lx * ly;
352 hasCarry = (resul < carry) ? 1 : 0;
353 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
354 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
355
356 carry += (lx * hy) & 0xffffffffULL;
357 resul = (carry << 32) | (resul & 0xffffffffULL);
358 dest[i+j] += resul;
359 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher820256b2009-08-21 04:06:45 +0000360 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000361 ((lx * hy) >> 32) + hx * hy;
362 }
363 dest[i+xlen] = carry;
364 }
365}
366
Zhou Shengdac63782007-02-06 03:00:16 +0000367APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000368 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer58a6a432007-02-21 08:21:52 +0000369 if (isSingleWord()) {
Reid Spencer4bb430c2007-02-20 20:42:10 +0000370 VAL *= RHS.VAL;
Reid Spencer58a6a432007-02-21 08:21:52 +0000371 clearUnusedBits();
372 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000373 }
Reid Spencer58a6a432007-02-21 08:21:52 +0000374
375 // Get some bit facts about LHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000376 unsigned lhsBits = getActiveBits();
377 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher820256b2009-08-21 04:06:45 +0000378 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +0000379 // 0 * X ===> 0
380 return *this;
381
382 // Get some bit facts about RHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000383 unsigned rhsBits = RHS.getActiveBits();
384 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencer58a6a432007-02-21 08:21:52 +0000385 if (!rhsWords) {
386 // X * 0 ===> 0
Jay Foad25a5e4c2010-12-01 08:53:58 +0000387 clearAllBits();
Reid Spencer58a6a432007-02-21 08:21:52 +0000388 return *this;
389 }
390
391 // Allocate space for the result
Chris Lattner77527f52009-01-21 18:09:24 +0000392 unsigned destWords = rhsWords + lhsWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000393 uint64_t *dest = getMemory(destWords);
394
395 // Perform the long multiply
396 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
397
398 // Copy result back into *this
Jay Foad25a5e4c2010-12-01 08:53:58 +0000399 clearAllBits();
Chris Lattner77527f52009-01-21 18:09:24 +0000400 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000401 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
Eli Friedman19546412011-10-07 23:40:49 +0000402 clearUnusedBits();
Reid Spencer58a6a432007-02-21 08:21:52 +0000403
404 // delete dest array and return
405 delete[] dest;
Zhou Shengdac63782007-02-06 03:00:16 +0000406 return *this;
407}
408
Craig Topperf496f9a2017-03-28 04:00:47 +0000409APInt& APInt::AndAssignSlowCase(const APInt& RHS) {
Craig Topperb2aaa5d2017-04-01 21:50:03 +0000410 tcAnd(pVal, RHS.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000411 return *this;
412}
413
Craig Topperf496f9a2017-03-28 04:00:47 +0000414APInt& APInt::OrAssignSlowCase(const APInt& RHS) {
Craig Topperb2aaa5d2017-04-01 21:50:03 +0000415 tcOr(pVal, RHS.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000416 return *this;
417}
418
Craig Topperf496f9a2017-03-28 04:00:47 +0000419APInt& APInt::XorAssignSlowCase(const APInt& RHS) {
Craig Topperb2aaa5d2017-04-01 21:50:03 +0000420 tcXor(pVal, RHS.pVal, getNumWords());
Craig Topper9028f052017-01-24 02:10:15 +0000421 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000422}
423
Zhou Shengdac63782007-02-06 03:00:16 +0000424APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000425 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000426 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000427 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer4bb430c2007-02-20 20:42:10 +0000428 APInt Result(*this);
429 Result *= RHS;
Eli Friedman19546412011-10-07 23:40:49 +0000430 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000431}
432
Chris Lattner1ac3e252008-08-20 17:02:31 +0000433bool APInt::EqualSlowCase(const APInt& RHS) const {
Matthias Braun5117fcd2016-02-15 20:06:19 +0000434 return std::equal(pVal, pVal + getNumWords(), RHS.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000435}
436
Chris Lattner1ac3e252008-08-20 17:02:31 +0000437bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000438 unsigned n = getActiveBits();
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000439 if (n <= APINT_BITS_PER_WORD)
440 return pVal[0] == Val;
441 else
442 return false;
Zhou Shengdac63782007-02-06 03:00:16 +0000443}
444
Reid Spencer1d072122007-02-16 22:36:51 +0000445bool APInt::ult(const APInt& RHS) const {
446 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
447 if (isSingleWord())
448 return VAL < RHS.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000449
450 // Get active bit length of both operands
Chris Lattner77527f52009-01-21 18:09:24 +0000451 unsigned n1 = getActiveBits();
452 unsigned n2 = RHS.getActiveBits();
Reid Spencera41e93b2007-02-25 19:32:03 +0000453
454 // If magnitude of LHS is less than RHS, return true.
455 if (n1 < n2)
456 return true;
457
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000458 // If magnitude of RHS is greater than LHS, return false.
Reid Spencera41e93b2007-02-25 19:32:03 +0000459 if (n2 < n1)
460 return false;
461
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000462 // If they both fit in a word, just compare the low order word
Reid Spencera41e93b2007-02-25 19:32:03 +0000463 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
464 return pVal[0] < RHS.pVal[0];
465
466 // Otherwise, compare all words
Chris Lattner77527f52009-01-21 18:09:24 +0000467 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer54abdcf2007-02-27 18:23:40 +0000468 for (int i = topWord; i >= 0; --i) {
Eric Christopher820256b2009-08-21 04:06:45 +0000469 if (pVal[i] > RHS.pVal[i])
Reid Spencer1d072122007-02-16 22:36:51 +0000470 return false;
Eric Christopher820256b2009-08-21 04:06:45 +0000471 if (pVal[i] < RHS.pVal[i])
Reid Spencera41e93b2007-02-25 19:32:03 +0000472 return true;
Zhou Shengdac63782007-02-06 03:00:16 +0000473 }
474 return false;
475}
476
Reid Spencer1d072122007-02-16 22:36:51 +0000477bool APInt::slt(const APInt& RHS) const {
478 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000479 if (isSingleWord()) {
David Majnemer5f1c0172016-06-24 20:51:47 +0000480 int64_t lhsSext = SignExtend64(VAL, BitWidth);
481 int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000482 return lhsSext < rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000483 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000484
Reid Spencer54abdcf2007-02-27 18:23:40 +0000485 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000486 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000487
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000488 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
489 if (lhsNeg != rhsNeg)
490 return lhsNeg;
491
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000492 // Otherwise we can just use an unsigned comparison, because even negative
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000493 // numbers compare correctly this way if both have the same signed-ness.
494 return ult(RHS);
Zhou Shengdac63782007-02-06 03:00:16 +0000495}
496
Jay Foad25a5e4c2010-12-01 08:53:58 +0000497void APInt::setBit(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000498 if (isSingleWord())
Reid Spencera41e93b2007-02-25 19:32:03 +0000499 VAL |= maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000500 else
Reid Spencera41e93b2007-02-25 19:32:03 +0000501 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000502}
503
Craig Topperbafdd032017-03-07 01:56:01 +0000504void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
505 unsigned loWord = whichWord(loBit);
506 unsigned hiWord = whichWord(hiBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000507
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000508 // Create an initial mask for the low word with zeros below loBit.
Craig Topperbafdd032017-03-07 01:56:01 +0000509 uint64_t loMask = UINT64_MAX << whichBit(loBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000510
Craig Topperbafdd032017-03-07 01:56:01 +0000511 // If hiBit is not aligned, we need a high mask.
512 unsigned hiShiftAmt = whichBit(hiBit);
513 if (hiShiftAmt != 0) {
514 // Create a high mask with zeros above hiBit.
515 uint64_t hiMask = UINT64_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
516 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
517 // set the bits in hiWord.
518 if (hiWord == loWord)
519 loMask &= hiMask;
520 else
Simon Pilgrimaed35222017-02-24 10:15:29 +0000521 pVal[hiWord] |= hiMask;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000522 }
Craig Topperbafdd032017-03-07 01:56:01 +0000523 // Apply the mask to the low word.
524 pVal[loWord] |= loMask;
525
526 // Fill any words between loWord and hiWord with all ones.
527 for (unsigned word = loWord + 1; word < hiWord; ++word)
528 pVal[word] = UINT64_MAX;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000529}
530
Zhou Shengdac63782007-02-06 03:00:16 +0000531/// Set the given bit to 0 whose position is given as "bitPosition".
532/// @brief Set a given bit to 0.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000533void APInt::clearBit(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000534 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000535 VAL &= ~maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000536 else
Reid Spencera856b6e2007-02-18 18:38:44 +0000537 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000538}
539
Zhou Shengdac63782007-02-06 03:00:16 +0000540/// @brief Toggle every bit to its opposite value.
Craig Topperafc9e352017-03-27 17:10:21 +0000541void APInt::flipAllBitsSlowCase() {
Craig Toppera742cb52017-04-01 21:50:08 +0000542 tcComplement(pVal, getNumWords());
Craig Topperafc9e352017-03-27 17:10:21 +0000543 clearUnusedBits();
544}
Zhou Shengdac63782007-02-06 03:00:16 +0000545
Eric Christopher820256b2009-08-21 04:06:45 +0000546/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000547/// as "bitPosition".
548/// @brief Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000549void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000550 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000551 if ((*this)[bitPosition]) clearBit(bitPosition);
552 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000553}
554
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000555void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
556 unsigned subBitWidth = subBits.getBitWidth();
557 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
558 "Illegal bit insertion");
559
560 // Insertion is a direct copy.
561 if (subBitWidth == BitWidth) {
562 *this = subBits;
563 return;
564 }
565
566 // Single word result can be done as a direct bitmask.
567 if (isSingleWord()) {
568 uint64_t mask = UINT64_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
569 VAL &= ~(mask << bitPosition);
570 VAL |= (subBits.VAL << bitPosition);
571 return;
572 }
573
574 unsigned loBit = whichBit(bitPosition);
575 unsigned loWord = whichWord(bitPosition);
576 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
577
578 // Insertion within a single word can be done as a direct bitmask.
579 if (loWord == hi1Word) {
580 uint64_t mask = UINT64_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
581 pVal[loWord] &= ~(mask << loBit);
582 pVal[loWord] |= (subBits.VAL << loBit);
583 return;
584 }
585
586 // Insert on word boundaries.
587 if (loBit == 0) {
588 // Direct copy whole words.
589 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
590 memcpy(pVal + loWord, subBits.getRawData(),
591 numWholeSubWords * APINT_WORD_SIZE);
592
593 // Mask+insert remaining bits.
594 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
595 if (remainingBits != 0) {
596 uint64_t mask = UINT64_MAX >> (APINT_BITS_PER_WORD - remainingBits);
597 pVal[hi1Word] &= ~mask;
598 pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
599 }
600 return;
601 }
602
603 // General case - set/clear individual bits in dst based on src.
604 // TODO - there is scope for optimization here, but at the moment this code
605 // path is barely used so prefer readability over performance.
606 for (unsigned i = 0; i != subBitWidth; ++i) {
607 if (subBits[i])
608 setBit(bitPosition + i);
609 else
610 clearBit(bitPosition + i);
611 }
612}
613
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000614APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
615 assert(numBits > 0 && "Can't extract zero bits");
616 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
617 "Illegal bit extraction");
618
619 if (isSingleWord())
620 return APInt(numBits, VAL >> bitPosition);
621
622 unsigned loBit = whichBit(bitPosition);
623 unsigned loWord = whichWord(bitPosition);
624 unsigned hiWord = whichWord(bitPosition + numBits - 1);
625
626 // Single word result extracting bits from a single word source.
627 if (loWord == hiWord)
628 return APInt(numBits, pVal[loWord] >> loBit);
629
630 // Extracting bits that start on a source word boundary can be done
631 // as a fast memory copy.
632 if (loBit == 0)
633 return APInt(numBits, makeArrayRef(pVal + loWord, 1 + hiWord - loWord));
634
635 // General case - shift + copy source words directly into place.
636 APInt Result(numBits, 0);
637 unsigned NumSrcWords = getNumWords();
638 unsigned NumDstWords = Result.getNumWords();
639
640 for (unsigned word = 0; word < NumDstWords; ++word) {
641 uint64_t w0 = pVal[loWord + word];
642 uint64_t w1 =
643 (loWord + word + 1) < NumSrcWords ? pVal[loWord + word + 1] : 0;
644 Result.pVal[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
645 }
646
647 return Result.clearUnusedBits();
648}
649
Benjamin Kramer92d89982010-07-14 22:38:02 +0000650unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000651 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000652 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +0000653 radix == 36) &&
654 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000655
656 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000657
Eric Christopher43a1dec2009-08-21 04:10:31 +0000658 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000659 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000660 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000661 if (*p == '-' || *p == '+') {
662 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000663 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000664 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000665 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000666
Reid Spencer9329e7b2007-04-13 19:19:07 +0000667 // For radixes of power-of-two values, the bits required is accurately and
668 // easily computed
669 if (radix == 2)
670 return slen + isNegative;
671 if (radix == 8)
672 return slen * 3 + isNegative;
673 if (radix == 16)
674 return slen * 4 + isNegative;
675
Douglas Gregor663c0682011-09-14 15:54:46 +0000676 // FIXME: base 36
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000677
Reid Spencer9329e7b2007-04-13 19:19:07 +0000678 // This is grossly inefficient but accurate. We could probably do something
679 // with a computation of roughly slen*64/20 and then adjust by the value of
680 // the first few digits. But, I'm not sure how accurate that could be.
681
682 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000683 // be too large. This avoids the assertion in the constructor. This
684 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
685 // bits in that case.
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000686 unsigned sufficient
Douglas Gregor663c0682011-09-14 15:54:46 +0000687 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
688 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000689
690 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000691 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000692
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000693 // Compute how many bits are required. If the log is infinite, assume we need
694 // just bit.
695 unsigned log = tmp.logBase2();
696 if (log == (unsigned)-1) {
697 return isNegative + 1;
698 } else {
699 return isNegative + log + 1;
700 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000701}
702
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000703hash_code llvm::hash_value(const APInt &Arg) {
704 if (Arg.isSingleWord())
705 return hash_combine(Arg.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000706
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000707 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000708}
709
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000710bool APInt::isSplat(unsigned SplatSizeInBits) const {
711 assert(getBitWidth() % SplatSizeInBits == 0 &&
712 "SplatSizeInBits must divide width!");
713 // We can check that all parts of an integer are equal by making use of a
714 // little trick: rotate and check if it's still the same value.
715 return *this == rotl(SplatSizeInBits);
716}
717
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000718/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000719APInt APInt::getHiBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000720 return this->lshr(BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000721}
722
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000723/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000724APInt APInt::getLoBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000725 APInt Result(getLowBitsSet(BitWidth, numBits));
726 Result &= *this;
727 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000728}
729
Chris Lattner77527f52009-01-21 18:09:24 +0000730unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000731 unsigned Count = 0;
732 for (int i = getNumWords()-1; i >= 0; --i) {
733 integerPart V = pVal[i];
734 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000735 Count += APINT_BITS_PER_WORD;
736 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000737 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000738 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000739 }
Zhou Shengdac63782007-02-06 03:00:16 +0000740 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000741 // Adjust for unused bits in the most significant word (they are zero).
742 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
743 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000744 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000745}
746
Chris Lattner77527f52009-01-21 18:09:24 +0000747unsigned APInt::countLeadingOnes() const {
Reid Spencer31acef52007-02-27 21:59:26 +0000748 if (isSingleWord())
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000749 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth));
Reid Spencer31acef52007-02-27 21:59:26 +0000750
Chris Lattner77527f52009-01-21 18:09:24 +0000751 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000752 unsigned shift;
753 if (!highWordBits) {
754 highWordBits = APINT_BITS_PER_WORD;
755 shift = 0;
756 } else {
757 shift = APINT_BITS_PER_WORD - highWordBits;
758 }
Reid Spencer31acef52007-02-27 21:59:26 +0000759 int i = getNumWords() - 1;
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000760 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000761 if (Count == highWordBits) {
762 for (i--; i >= 0; --i) {
763 if (pVal[i] == -1ULL)
764 Count += APINT_BITS_PER_WORD;
765 else {
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000766 Count += llvm::countLeadingOnes(pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000767 break;
768 }
769 }
770 }
771 return Count;
772}
773
Chris Lattner77527f52009-01-21 18:09:24 +0000774unsigned APInt::countTrailingZeros() const {
Zhou Shengdac63782007-02-06 03:00:16 +0000775 if (isSingleWord())
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000776 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
Chris Lattner77527f52009-01-21 18:09:24 +0000777 unsigned Count = 0;
778 unsigned i = 0;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000779 for (; i < getNumWords() && pVal[i] == 0; ++i)
780 Count += APINT_BITS_PER_WORD;
781 if (i < getNumWords())
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000782 Count += llvm::countTrailingZeros(pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000783 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000784}
785
Chris Lattner77527f52009-01-21 18:09:24 +0000786unsigned APInt::countTrailingOnesSlowCase() const {
787 unsigned Count = 0;
788 unsigned i = 0;
Dan Gohmanc354ebd2008-02-14 22:38:45 +0000789 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000790 Count += APINT_BITS_PER_WORD;
791 if (i < getNumWords())
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000792 Count += llvm::countTrailingOnes(pVal[i]);
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000793 return std::min(Count, BitWidth);
794}
795
Chris Lattner77527f52009-01-21 18:09:24 +0000796unsigned APInt::countPopulationSlowCase() const {
797 unsigned Count = 0;
798 for (unsigned i = 0; i < getNumWords(); ++i)
Benjamin Kramer5f6a9072015-02-12 15:35:40 +0000799 Count += llvm::countPopulation(pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000800 return Count;
801}
802
Richard Smith4f9a8082011-11-23 21:33:37 +0000803/// Perform a logical right-shift from Src to Dst, which must be equal or
804/// non-overlapping, of Words words, by Shift, which must be less than 64.
805static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
806 unsigned Shift) {
807 uint64_t Carry = 0;
808 for (int I = Words - 1; I >= 0; --I) {
809 uint64_t Tmp = Src[I];
810 Dst[I] = (Tmp >> Shift) | Carry;
811 Carry = Tmp << (64 - Shift);
812 }
813}
814
Reid Spencer1d072122007-02-16 22:36:51 +0000815APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
Jeff Cohene06855e2007-03-20 20:42:36 +0000818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000819 if (BitWidth == 32)
Chris Lattner77527f52009-01-21 18:09:24 +0000820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000821 if (BitWidth == 48) {
Chris Lattner77527f52009-01-21 18:09:24 +0000822 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000823 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohene06855e2007-03-20 20:42:36 +0000824 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000825 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000827 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000828 if (BitWidth == 64)
829 return APInt(BitWidth, ByteSwap_64(VAL));
830
831 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
832 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
833 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
834 if (Result.BitWidth != BitWidth) {
835 lshrNear(Result.pVal, Result.pVal, getNumWords(),
836 Result.BitWidth - BitWidth);
837 Result.BitWidth = BitWidth;
838 }
839 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000840}
841
Matt Arsenault155dda92016-03-21 15:00:35 +0000842APInt APInt::reverseBits() const {
843 switch (BitWidth) {
844 case 64:
845 return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL));
846 case 32:
847 return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL));
848 case 16:
849 return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL));
850 case 8:
851 return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL));
852 default:
853 break;
854 }
855
856 APInt Val(*this);
857 APInt Reversed(*this);
858 int S = BitWidth - 1;
859
860 const APInt One(BitWidth, 1);
861
862 for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) {
863 Reversed <<= 1;
864 Reversed |= (Val & One);
865 --S;
866 }
867
868 Reversed <<= S;
869 return Reversed;
870}
871
Craig Topper278ebd22017-04-01 20:30:57 +0000872APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
Zhou Shengdac63782007-02-06 03:00:16 +0000873 while (!!B) {
Craig Topper278ebd22017-04-01 20:30:57 +0000874 APInt R = A.urem(B);
875 A = std::move(B);
876 B = std::move(R);
Zhou Shengdac63782007-02-06 03:00:16 +0000877 }
878 return A;
879}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000880
Chris Lattner77527f52009-01-21 18:09:24 +0000881APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000882 union {
883 double D;
884 uint64_t I;
885 } T;
886 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000887
888 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000889 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000890
891 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000892 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000893
894 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000895 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000896 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000897
898 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
899 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
900
901 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000902 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000903 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000904 APInt(width, mantissa >> (52 - exp));
905
906 // If the client didn't provide enough bits for us to shift the mantissa into
907 // then the result is undefined, just return 0
908 if (width <= exp - 52)
909 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000910
911 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000912 APInt Tmp(width, mantissa);
Chris Lattner77527f52009-01-21 18:09:24 +0000913 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd707d632007-02-12 20:02:55 +0000914 return isNeg ? -Tmp : Tmp;
915}
916
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000917/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000918/// The layout for double is as following (IEEE Standard 754):
919/// --------------------------------------
920/// | Sign Exponent Fraction Bias |
921/// |-------------------------------------- |
922/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000923/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000924double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000925
926 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000927 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000928 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
929 if (isSigned) {
David Majnemer03992262016-06-24 21:15:36 +0000930 int64_t sext = SignExtend64(getWord(0), BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000931 return double(sext);
932 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000933 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000934 }
935
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000936 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000937 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000938
939 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000940 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000941
942 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000943 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000944
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000945 // The exponent (without bias normalization) is just the number of bits
946 // we are using. Note that the sign bit is gone since we constructed the
947 // absolute value.
948 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000949
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000950 // Return infinity for exponent overflow
951 if (exp > 1023) {
952 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000953 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000954 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000955 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000956 }
957 exp += 1023; // Increment for 1023 bias
958
959 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
960 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000961 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000962 unsigned hiWord = whichWord(n-1);
963 if (hiWord == 0) {
964 mantissa = Tmp.pVal[0];
965 if (n > 52)
966 mantissa >>= n - 52; // shift down, we want the top 52 bits.
967 } else {
968 assert(hiWord > 0 && "huh?");
969 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
970 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
971 mantissa = hibits | lobits;
972 }
973
Zhou Shengd707d632007-02-12 20:02:55 +0000974 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000975 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000976 union {
977 double D;
978 uint64_t I;
979 } T;
980 T.I = sign | (exp << 52) | mantissa;
981 return T.D;
982}
983
Reid Spencer1d072122007-02-16 22:36:51 +0000984// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000985APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000986 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000987 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000988
989 if (width <= APINT_BITS_PER_WORD)
990 return APInt(width, getRawData()[0]);
991
992 APInt Result(getMemory(getNumWords(width)), width);
993
994 // Copy full words.
995 unsigned i;
996 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
997 Result.pVal[i] = pVal[i];
998
999 // Truncate and copy any partial word.
1000 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
1001 if (bits != 0)
1002 Result.pVal[i] = pVal[i] << bits >> bits;
1003
1004 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +00001005}
1006
1007// Sign extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +00001008APInt APInt::sext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +00001009 assert(width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +00001010
1011 if (width <= APINT_BITS_PER_WORD) {
1012 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
1013 val = (int64_t)val >> (width - BitWidth);
1014 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001015 }
1016
Jay Foad583abbc2010-12-07 08:25:19 +00001017 APInt Result(getMemory(getNumWords(width)), width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001018
Jay Foad583abbc2010-12-07 08:25:19 +00001019 // Copy full words.
1020 unsigned i;
1021 uint64_t word = 0;
1022 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
1023 word = getRawData()[i];
1024 Result.pVal[i] = word;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001025 }
1026
Jay Foad583abbc2010-12-07 08:25:19 +00001027 // Read and sign-extend any partial word.
1028 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
1029 if (bits != 0)
1030 word = (int64_t)getRawData()[i] << bits >> bits;
1031 else
1032 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
1033
1034 // Write remaining full words.
1035 for (; i != width / APINT_BITS_PER_WORD; i++) {
1036 Result.pVal[i] = word;
1037 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001038 }
Jay Foad583abbc2010-12-07 08:25:19 +00001039
1040 // Write any partial word.
1041 bits = (0 - width) % APINT_BITS_PER_WORD;
1042 if (bits != 0)
1043 Result.pVal[i] = word << bits >> bits;
1044
1045 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +00001046}
1047
1048// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +00001049APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +00001050 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +00001051
1052 if (width <= APINT_BITS_PER_WORD)
1053 return APInt(width, VAL);
1054
1055 APInt Result(getMemory(getNumWords(width)), width);
1056
1057 // Copy words.
1058 unsigned i;
1059 for (i = 0; i != getNumWords(); i++)
1060 Result.pVal[i] = getRawData()[i];
1061
1062 // Zero remaining words.
1063 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
1064
1065 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +00001066}
1067
Jay Foad583abbc2010-12-07 08:25:19 +00001068APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +00001069 if (BitWidth < width)
1070 return zext(width);
1071 if (BitWidth > width)
1072 return trunc(width);
1073 return *this;
1074}
1075
Jay Foad583abbc2010-12-07 08:25:19 +00001076APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +00001077 if (BitWidth < width)
1078 return sext(width);
1079 if (BitWidth > width)
1080 return trunc(width);
1081 return *this;
1082}
1083
Rafael Espindolabb893fe2012-01-27 23:33:07 +00001084APInt APInt::zextOrSelf(unsigned width) const {
1085 if (BitWidth < width)
1086 return zext(width);
1087 return *this;
1088}
1089
1090APInt APInt::sextOrSelf(unsigned width) const {
1091 if (BitWidth < width)
1092 return sext(width);
1093 return *this;
1094}
1095
Zhou Shenge93db8f2007-02-09 07:48:24 +00001096/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001097/// @brief Arithmetic right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001098APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001099 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001100}
1101
1102/// Arithmetic right-shift this APInt by shiftAmt.
1103/// @brief Arithmetic right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001104APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001105 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer1825dd02007-03-02 22:39:11 +00001106 // Handle a degenerate case
1107 if (shiftAmt == 0)
1108 return *this;
1109
1110 // Handle single word shifts with built-in ashr
Reid Spencer522ca7c2007-02-25 01:56:07 +00001111 if (isSingleWord()) {
1112 if (shiftAmt == BitWidth)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001113 return APInt(BitWidth, 0); // undefined
Jonathan Roelofs851b79d2016-08-10 19:50:14 +00001114 return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001115 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001116
Reid Spencer1825dd02007-03-02 22:39:11 +00001117 // If all the bits were shifted out, the result is, technically, undefined.
1118 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1119 // issues in the algorithm below.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001120 if (shiftAmt == BitWidth) {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001121 if (isNegative())
Zhou Sheng1247c072008-06-05 13:27:38 +00001122 return APInt(BitWidth, -1ULL, true);
Reid Spencera41e93b2007-02-25 19:32:03 +00001123 else
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001124 return APInt(BitWidth, 0);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001125 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001126
1127 // Create some space for the result.
1128 uint64_t * val = new uint64_t[getNumWords()];
1129
Reid Spencer1825dd02007-03-02 22:39:11 +00001130 // Compute some values needed by the following shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001131 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1132 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1133 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1134 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer1825dd02007-03-02 22:39:11 +00001135 if (bitsInWord == 0)
1136 bitsInWord = APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001137
1138 // If we are shifting whole words, just move whole words
1139 if (wordShift == 0) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001140 // Move the words containing significant bits
Chris Lattner77527f52009-01-21 18:09:24 +00001141 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001142 val[i] = pVal[i+offset]; // move whole word
1143
1144 // Adjust the top significant word for sign bit fill, if negative
1145 if (isNegative())
1146 if (bitsInWord < APINT_BITS_PER_WORD)
1147 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1148 } else {
Eric Christopher820256b2009-08-21 04:06:45 +00001149 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001150 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001151 // This combines the shifted corresponding word with the low bits from
1152 // the next word (shifted into this word's high bits).
Eric Christopher820256b2009-08-21 04:06:45 +00001153 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer1825dd02007-03-02 22:39:11 +00001154 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1155 }
1156
1157 // Shift the break word. In this case there are no bits from the next word
1158 // to include in this word.
1159 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1160
Alp Tokercb402912014-01-24 17:20:08 +00001161 // Deal with sign extension in the break word, and possibly the word before
Reid Spencer1825dd02007-03-02 22:39:11 +00001162 // it.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001163 if (isNegative()) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001164 if (wordShift > bitsInWord) {
1165 if (breakWord > 0)
Eric Christopher820256b2009-08-21 04:06:45 +00001166 val[breakWord-1] |=
Reid Spencer1825dd02007-03-02 22:39:11 +00001167 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1168 val[breakWord] |= ~0ULL;
Eric Christopher820256b2009-08-21 04:06:45 +00001169 } else
Reid Spencer1825dd02007-03-02 22:39:11 +00001170 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnerdad2d092007-05-03 18:15:36 +00001171 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001172 }
1173
Reid Spencer1825dd02007-03-02 22:39:11 +00001174 // Remaining words are 0 or -1, just assign them.
1175 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner77527f52009-01-21 18:09:24 +00001176 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001177 val[i] = fillValue;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001178 APInt Result(val, BitWidth);
1179 Result.clearUnusedBits();
1180 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001181}
1182
Zhou Shenge93db8f2007-02-09 07:48:24 +00001183/// Logical right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001184/// @brief Logical right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001185APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001186 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001187}
1188
1189/// Logical right-shift this APInt by shiftAmt.
1190/// @brief Logical right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001191APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnerdad2d092007-05-03 18:15:36 +00001192 if (isSingleWord()) {
Ahmed Charles0dca5d82012-02-24 19:06:15 +00001193 if (shiftAmt >= BitWidth)
Reid Spencer522ca7c2007-02-25 01:56:07 +00001194 return APInt(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001195 else
Reid Spencer522ca7c2007-02-25 01:56:07 +00001196 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001197 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001198
Reid Spencer44eef162007-02-26 01:19:48 +00001199 // If all the bits were shifted out, the result is 0. This avoids issues
1200 // with shifting by the size of the integer type, which produces undefined
1201 // results. We define these "undefined results" to always be 0.
Chad Rosier3d464d82012-06-08 18:04:52 +00001202 if (shiftAmt >= BitWidth)
Reid Spencer44eef162007-02-26 01:19:48 +00001203 return APInt(BitWidth, 0);
1204
Reid Spencerfffdf102007-05-17 06:26:29 +00001205 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher820256b2009-08-21 04:06:45 +00001206 // issues with shifting by the size of the integer type, which produces
Reid Spencerfffdf102007-05-17 06:26:29 +00001207 // undefined results in the code below. This is also an optimization.
1208 if (shiftAmt == 0)
1209 return *this;
1210
Reid Spencer44eef162007-02-26 01:19:48 +00001211 // Create some space for the result.
1212 uint64_t * val = new uint64_t[getNumWords()];
1213
1214 // If we are shifting less than a word, compute the shift with a simple carry
1215 if (shiftAmt < APINT_BITS_PER_WORD) {
Richard Smith4f9a8082011-11-23 21:33:37 +00001216 lshrNear(val, pVal, getNumWords(), shiftAmt);
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001217 APInt Result(val, BitWidth);
1218 Result.clearUnusedBits();
1219 return Result;
Reid Spencera41e93b2007-02-25 19:32:03 +00001220 }
1221
Reid Spencer44eef162007-02-26 01:19:48 +00001222 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001223 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1224 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer44eef162007-02-26 01:19:48 +00001225
1226 // If we are shifting whole words, just move whole words
1227 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001228 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001229 val[i] = pVal[i+offset];
Chris Lattner77527f52009-01-21 18:09:24 +00001230 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencer44eef162007-02-26 01:19:48 +00001231 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001232 APInt Result(val, BitWidth);
1233 Result.clearUnusedBits();
1234 return Result;
Reid Spencer44eef162007-02-26 01:19:48 +00001235 }
1236
Eric Christopher820256b2009-08-21 04:06:45 +00001237 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001238 unsigned breakWord = getNumWords() - offset -1;
1239 for (unsigned i = 0; i < breakWord; ++i)
Reid Spencerd99feaf2007-03-01 05:39:56 +00001240 val[i] = (pVal[i+offset] >> wordShift) |
1241 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencer44eef162007-02-26 01:19:48 +00001242 // Shift the break word.
1243 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1244
1245 // Remaining words are 0
Chris Lattner77527f52009-01-21 18:09:24 +00001246 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001247 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001248 APInt Result(val, BitWidth);
1249 Result.clearUnusedBits();
1250 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001251}
1252
Zhou Shenge93db8f2007-02-09 07:48:24 +00001253/// Left-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001254/// @brief Left-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001255APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky030c4502009-01-19 17:42:33 +00001256 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner77527f52009-01-21 18:09:24 +00001257 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001258}
1259
Chris Lattner77527f52009-01-21 18:09:24 +00001260APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencera5c84d92007-02-25 00:56:44 +00001261 // If all the bits were shifted out, the result is 0. This avoids issues
1262 // with shifting by the size of the integer type, which produces undefined
1263 // results. We define these "undefined results" to always be 0.
1264 if (shiftAmt == BitWidth)
1265 return APInt(BitWidth, 0);
1266
Reid Spencer81ee0202007-05-12 18:01:57 +00001267 // If none of the bits are shifted out, the result is *this. This avoids a
1268 // lshr by the words size in the loop below which can produce incorrect
1269 // results. It also avoids the expensive computation below for a common case.
1270 if (shiftAmt == 0)
1271 return *this;
1272
Reid Spencera5c84d92007-02-25 00:56:44 +00001273 // Create some space for the result.
1274 uint64_t * val = new uint64_t[getNumWords()];
1275
1276 // If we are shifting less than a word, do it the easy way
1277 if (shiftAmt < APINT_BITS_PER_WORD) {
1278 uint64_t carry = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001279 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencera5c84d92007-02-25 00:56:44 +00001280 val[i] = pVal[i] << shiftAmt | carry;
1281 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1282 }
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001283 APInt Result(val, BitWidth);
1284 Result.clearUnusedBits();
1285 return Result;
Reid Spencer632ebdf2007-02-24 20:19:37 +00001286 }
1287
Reid Spencera5c84d92007-02-25 00:56:44 +00001288 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001289 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1290 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencera5c84d92007-02-25 00:56:44 +00001291
1292 // If we are shifting whole words, just move whole words
1293 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001294 for (unsigned i = 0; i < offset; i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001295 val[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001296 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001297 val[i] = pVal[i-offset];
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001298 APInt Result(val, BitWidth);
1299 Result.clearUnusedBits();
1300 return Result;
Reid Spencer632ebdf2007-02-24 20:19:37 +00001301 }
Reid Spencera5c84d92007-02-25 00:56:44 +00001302
1303 // Copy whole words from this to Result.
Chris Lattner77527f52009-01-21 18:09:24 +00001304 unsigned i = getNumWords() - 1;
Reid Spencera5c84d92007-02-25 00:56:44 +00001305 for (; i > offset; --i)
1306 val[i] = pVal[i-offset] << wordShift |
1307 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencerab0e08a2007-02-25 01:08:58 +00001308 val[offset] = pVal[0] << wordShift;
Reid Spencera5c84d92007-02-25 00:56:44 +00001309 for (i = 0; i < offset; ++i)
1310 val[i] = 0;
Benjamin Kramerf9a29752014-10-10 10:18:12 +00001311 APInt Result(val, BitWidth);
1312 Result.clearUnusedBits();
1313 return Result;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001314}
1315
Joey Gouly51c0ae52017-02-07 11:58:22 +00001316// Calculate the rotate amount modulo the bit width.
1317static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1318 unsigned rotBitWidth = rotateAmt.getBitWidth();
1319 APInt rot = rotateAmt;
1320 if (rotBitWidth < BitWidth) {
1321 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1322 // e.g. APInt(1, 32) would give APInt(1, 0).
1323 rot = rotateAmt.zext(BitWidth);
1324 }
1325 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1326 return rot.getLimitedValue(BitWidth);
1327}
1328
Dan Gohman105c1d42008-02-29 01:40:47 +00001329APInt APInt::rotl(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001330 return rotl(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001331}
1332
Chris Lattner77527f52009-01-21 18:09:24 +00001333APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001334 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001335 if (rotateAmt == 0)
1336 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001337 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001338}
1339
Dan Gohman105c1d42008-02-29 01:40:47 +00001340APInt APInt::rotr(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001341 return rotr(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001342}
1343
Chris Lattner77527f52009-01-21 18:09:24 +00001344APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001345 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001346 if (rotateAmt == 0)
1347 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001348 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001349}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001350
1351// Square Root - this method computes and returns the square root of "this".
1352// Three mechanisms are used for computation. For small values (<= 5 bits),
1353// a table lookup is done. This gets some performance for common cases. For
1354// values using less than 52 bits, the value is converted to double and then
1355// the libc sqrt function is called. The result is rounded and then converted
1356// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001357// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001358APInt APInt::sqrt() const {
1359
1360 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001361 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001362
1363 // Use a fast table for some small values. This also gets rid of some
1364 // rounding errors in libc sqrt for small values.
1365 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001366 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001367 /* 0 */ 0,
1368 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001369 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001370 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1371 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1372 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1373 /* 31 */ 6
1374 };
1375 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001376 }
1377
1378 // If the magnitude of the value fits in less than 52 bits (the precision of
1379 // an IEEE double precision floating point value), then we can use the
1380 // libc sqrt function which will probably use a hardware sqrt computation.
1381 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001382 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001383 return APInt(BitWidth,
Reid Spencerd99feaf2007-03-01 05:39:56 +00001384 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001385 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001386
1387 // Okay, all the short cuts are exhausted. We must compute it. The following
1388 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001389 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001390 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001391 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001392 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001393 APInt testy(BitWidth, 16);
1394 APInt x_old(BitWidth, 1);
1395 APInt x_new(BitWidth, 0);
1396 APInt two(BitWidth, 2);
1397
1398 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001399 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001400 if (i >= nbits || this->ule(testy)) {
1401 x_old = x_old.shl(i / 2);
1402 break;
1403 }
1404
Eric Christopher820256b2009-08-21 04:06:45 +00001405 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001406 for (;;) {
1407 x_new = (this->udiv(x_old) + x_old).udiv(two);
1408 if (x_old.ule(x_new))
1409 break;
1410 x_old = x_new;
1411 }
1412
1413 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001414 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001415 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001416 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001417 // floating point representation after 192 bits. There are no discrepancies
1418 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001419 APInt square(x_old * x_old);
1420 APInt nextSquare((x_old + 1) * (x_old +1));
1421 if (this->ult(square))
1422 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001423 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1424 APInt midpoint((nextSquare - square).udiv(two));
1425 APInt offset(*this - square);
1426 if (offset.ult(midpoint))
1427 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001428 return x_old + 1;
1429}
1430
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001431/// Computes the multiplicative inverse of this APInt for a given modulo. The
1432/// iterative extended Euclidean algorithm is used to solve for this value,
1433/// however we simplify it to speed up calculating only the inverse, and take
1434/// advantage of div+rem calculations. We also use some tricks to avoid copying
1435/// (potentially large) APInts around.
1436APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1437 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1438
1439 // Using the properties listed at the following web page (accessed 06/21/08):
1440 // http://www.numbertheory.org/php/euclid.html
1441 // (especially the properties numbered 3, 4 and 9) it can be proved that
1442 // BitWidth bits suffice for all the computations in the algorithm implemented
1443 // below. More precisely, this number of bits suffice if the multiplicative
1444 // inverse exists, but may not suffice for the general extended Euclidean
1445 // algorithm.
1446
1447 APInt r[2] = { modulo, *this };
1448 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1449 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001450
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001451 unsigned i;
1452 for (i = 0; r[i^1] != 0; i ^= 1) {
1453 // An overview of the math without the confusing bit-flipping:
1454 // q = r[i-2] / r[i-1]
1455 // r[i] = r[i-2] % r[i-1]
1456 // t[i] = t[i-2] - t[i-1] * q
1457 udivrem(r[i], r[i^1], q, r[i]);
1458 t[i] -= t[i^1] * q;
1459 }
1460
1461 // If this APInt and the modulo are not coprime, there is no multiplicative
1462 // inverse, so return 0. We check this by looking at the next-to-last
1463 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1464 // algorithm.
1465 if (r[i] != 1)
1466 return APInt(BitWidth, 0);
1467
1468 // The next-to-last t is the multiplicative inverse. However, we are
1469 // interested in a positive inverse. Calcuate a positive one from a negative
1470 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001471 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001472 return t[i].isNegative() ? t[i] + modulo : t[i];
1473}
1474
Jay Foadfe0c6482009-04-30 10:15:35 +00001475/// Calculate the magic numbers required to implement a signed integer division
1476/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1477/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1478/// Warren, Jr., chapter 10.
1479APInt::ms APInt::magic() const {
1480 const APInt& d = *this;
1481 unsigned p;
1482 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001483 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001484 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001485
Jay Foadfe0c6482009-04-30 10:15:35 +00001486 ad = d.abs();
1487 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1488 anc = t - 1 - t.urem(ad); // absolute value of nc
1489 p = d.getBitWidth() - 1; // initialize p
1490 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1491 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1492 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1493 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1494 do {
1495 p = p + 1;
1496 q1 = q1<<1; // update q1 = 2p/abs(nc)
1497 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1498 if (r1.uge(anc)) { // must be unsigned comparison
1499 q1 = q1 + 1;
1500 r1 = r1 - anc;
1501 }
1502 q2 = q2<<1; // update q2 = 2p/abs(d)
1503 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1504 if (r2.uge(ad)) { // must be unsigned comparison
1505 q2 = q2 + 1;
1506 r2 = r2 - ad;
1507 }
1508 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001509 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001510
Jay Foadfe0c6482009-04-30 10:15:35 +00001511 mag.m = q2 + 1;
1512 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1513 mag.s = p - d.getBitWidth(); // resulting shift
1514 return mag;
1515}
1516
1517/// Calculate the magic numbers required to implement an unsigned integer
1518/// division by a constant as a sequence of multiplies, adds and shifts.
1519/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1520/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001521/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001522/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001523APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001524 const APInt& d = *this;
1525 unsigned p;
1526 APInt nc, delta, q1, r1, q2, r2;
1527 struct mu magu;
1528 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001529 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001530 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1531 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1532
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001533 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001534 p = d.getBitWidth() - 1; // initialize p
1535 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1536 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1537 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1538 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1539 do {
1540 p = p + 1;
1541 if (r1.uge(nc - r1)) {
1542 q1 = q1 + q1 + 1; // update q1
1543 r1 = r1 + r1 - nc; // update r1
1544 }
1545 else {
1546 q1 = q1+q1; // update q1
1547 r1 = r1+r1; // update r1
1548 }
1549 if ((r2 + 1).uge(d - r2)) {
1550 if (q2.uge(signedMax)) magu.a = 1;
1551 q2 = q2+q2 + 1; // update q2
1552 r2 = r2+r2 + 1 - d; // update r2
1553 }
1554 else {
1555 if (q2.uge(signedMin)) magu.a = 1;
1556 q2 = q2+q2; // update q2
1557 r2 = r2+r2 + 1; // update r2
1558 }
1559 delta = d - 1 - r2;
1560 } while (p < d.getBitWidth()*2 &&
1561 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1562 magu.m = q2 + 1; // resulting magic number
1563 magu.s = p - d.getBitWidth(); // resulting shift
1564 return magu;
1565}
1566
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001567/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1568/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1569/// variables here have the same names as in the algorithm. Comments explain
1570/// the algorithm and any deviation from it.
Chris Lattner77527f52009-01-21 18:09:24 +00001571static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1572 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001573 assert(u && "Must provide dividend");
1574 assert(v && "Must provide divisor");
1575 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001576 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001577 assert(n>1 && "n must be > 1");
1578
Yaron Keren39fc5a62015-03-26 19:45:19 +00001579 // b denotes the base of the number system. In our case b is 2^32.
George Burgess IV381fc0e2016-08-25 01:05:08 +00001580 const uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001581
David Greenef32fcb42010-01-05 01:28:52 +00001582 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1583 DEBUG(dbgs() << "KnuthDiv: original:");
1584 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1585 DEBUG(dbgs() << " by");
1586 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1587 DEBUG(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001588 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1589 // u and v by d. Note that we have taken Knuth's advice here to use a power
1590 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1591 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001592 // shift amount from the leading zeros. We are basically normalizing the u
1593 // and v so that its high bits are shifted to the top of v's range without
1594 // overflow. Note that this can require an extra word in u so that u must
1595 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001596 unsigned shift = countLeadingZeros(v[n-1]);
Chris Lattner77527f52009-01-21 18:09:24 +00001597 unsigned v_carry = 0;
1598 unsigned u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001599 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001600 for (unsigned i = 0; i < m+n; ++i) {
1601 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001602 u[i] = (u[i] << shift) | u_carry;
1603 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001604 }
Chris Lattner77527f52009-01-21 18:09:24 +00001605 for (unsigned i = 0; i < n; ++i) {
1606 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001607 v[i] = (v[i] << shift) | v_carry;
1608 v_carry = v_tmp;
1609 }
1610 }
1611 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001612
David Greenef32fcb42010-01-05 01:28:52 +00001613 DEBUG(dbgs() << "KnuthDiv: normal:");
1614 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1615 DEBUG(dbgs() << " by");
1616 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1617 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001618
1619 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1620 int j = m;
1621 do {
David Greenef32fcb42010-01-05 01:28:52 +00001622 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001623 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001624 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1625 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1626 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1627 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1628 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001629 // value qp is one too large, and it eliminates all cases where qp is two
1630 // too large.
Reid Spencercb292e42007-02-23 01:57:13 +00001631 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greenef32fcb42010-01-05 01:28:52 +00001632 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001633 uint64_t qp = dividend / v[n-1];
1634 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001635 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1636 qp--;
1637 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001638 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001639 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001640 }
David Greenef32fcb42010-01-05 01:28:52 +00001641 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001642
Reid Spencercb292e42007-02-23 01:57:13 +00001643 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1644 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1645 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001646 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001647 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1648 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1649 // true value plus b**(n+1), namely as the b's complement of
1650 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001651 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001652 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001653 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1654 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
1655 u[j+i] = (unsigned)subres;
1656 borrow = (p >> 32) - (subres >> 32);
1657 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
Daniel Dunbar763ace92009-07-13 05:27:30 +00001658 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001659 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001660 bool isNeg = u[j+n] < borrow;
1661 u[j+n] -= (unsigned)borrow;
1662
David Greenef32fcb42010-01-05 01:28:52 +00001663 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1664 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1665 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001666
Eric Christopher820256b2009-08-21 04:06:45 +00001667 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001668 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner77527f52009-01-21 18:09:24 +00001669 q[j] = (unsigned)qp;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001670 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001671 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001672 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001673 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001674 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001675 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1676 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001677 // since it cancels with the borrow that occurred in D4.
1678 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001679 for (unsigned i = 0; i < n; i++) {
1680 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001681 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001682 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001683 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001684 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001685 }
David Greenef32fcb42010-01-05 01:28:52 +00001686 DEBUG(dbgs() << "KnuthDiv: after correction:");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001687 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
David Greenef32fcb42010-01-05 01:28:52 +00001688 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001689
Reid Spencercb292e42007-02-23 01:57:13 +00001690 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1691 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001692
David Greenef32fcb42010-01-05 01:28:52 +00001693 DEBUG(dbgs() << "KnuthDiv: quotient:");
1694 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1695 DEBUG(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001696
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001697 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1698 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1699 // compute the remainder (urem uses this).
1700 if (r) {
1701 // The value d is expressed by the "shift" value above since we avoided
1702 // multiplication by d by using a shift left. So, all we have to do is
Simon Pilgrim0099beb2017-03-09 13:57:04 +00001703 // shift right here.
Reid Spencer468ad9112007-02-24 20:38:01 +00001704 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001705 unsigned carry = 0;
David Greenef32fcb42010-01-05 01:28:52 +00001706 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001707 for (int i = n-1; i >= 0; i--) {
1708 r[i] = (u[i] >> shift) | carry;
1709 carry = u[i] << (32 - shift);
David Greenef32fcb42010-01-05 01:28:52 +00001710 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001711 }
1712 } else {
1713 for (int i = n-1; i >= 0; i--) {
1714 r[i] = u[i];
David Greenef32fcb42010-01-05 01:28:52 +00001715 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001716 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001717 }
David Greenef32fcb42010-01-05 01:28:52 +00001718 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001719 }
David Greenef32fcb42010-01-05 01:28:52 +00001720 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001721}
1722
Benjamin Kramerc321e532016-06-08 19:09:22 +00001723void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS,
1724 unsigned rhsWords, APInt *Quotient, APInt *Remainder) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001725 assert(lhsWords >= rhsWords && "Fractional result");
1726
Eric Christopher820256b2009-08-21 04:06:45 +00001727 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001728 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001729 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001730 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1731 // can't use 64-bit operands here because we don't have native results of
1732 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001733 // work on large-endian machines.
Dan Gohmancff69532009-04-01 18:45:54 +00001734 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner77527f52009-01-21 18:09:24 +00001735 unsigned n = rhsWords * 2;
1736 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001737
1738 // Allocate space for the temporary values we need either on the stack, if
1739 // it will fit, or on the heap if it won't.
Chris Lattner77527f52009-01-21 18:09:24 +00001740 unsigned SPACE[128];
Craig Topperc10719f2014-04-07 04:17:22 +00001741 unsigned *U = nullptr;
1742 unsigned *V = nullptr;
1743 unsigned *Q = nullptr;
1744 unsigned *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001745 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1746 U = &SPACE[0];
1747 V = &SPACE[m+n+1];
1748 Q = &SPACE[(m+n+1) + n];
1749 if (Remainder)
1750 R = &SPACE[(m+n+1) + n + (m+n)];
1751 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001752 U = new unsigned[m + n + 1];
1753 V = new unsigned[n];
1754 Q = new unsigned[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001755 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001756 R = new unsigned[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001757 }
1758
1759 // Initialize the dividend
Chris Lattner77527f52009-01-21 18:09:24 +00001760 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001761 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001762 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001763 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001764 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001765 }
1766 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1767
Reid Spencer522ca7c2007-02-25 01:56:07 +00001768 // Initialize the divisor
Chris Lattner77527f52009-01-21 18:09:24 +00001769 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001770 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001771 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001772 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001773 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001774 }
1775
Reid Spencer522ca7c2007-02-25 01:56:07 +00001776 // initialize the quotient and remainder
Chris Lattner77527f52009-01-21 18:09:24 +00001777 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001778 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001779 memset(R, 0, n * sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001780
Eric Christopher820256b2009-08-21 04:06:45 +00001781 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001782 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001783 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001784 // contain any zero words or the Knuth algorithm fails.
1785 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1786 n--;
1787 m++;
1788 }
1789 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1790 m--;
1791
1792 // If we're left with only a single word for the divisor, Knuth doesn't work
1793 // so we implement the short division algorithm here. This is much simpler
1794 // and faster because we are certain that we can divide a 64-bit quantity
1795 // by a 32-bit quantity at hardware speed and short division is simply a
1796 // series of such operations. This is just like doing short division but we
1797 // are using base 2^32 instead of base 10.
1798 assert(n != 0 && "Divide by zero?");
1799 if (n == 1) {
Chris Lattner77527f52009-01-21 18:09:24 +00001800 unsigned divisor = V[0];
1801 unsigned remainder = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001802 for (int i = m+n-1; i >= 0; i--) {
1803 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1804 if (partial_dividend == 0) {
1805 Q[i] = 0;
1806 remainder = 0;
1807 } else if (partial_dividend < divisor) {
1808 Q[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001809 remainder = (unsigned)partial_dividend;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001810 } else if (partial_dividend == divisor) {
1811 Q[i] = 1;
1812 remainder = 0;
1813 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001814 Q[i] = (unsigned)(partial_dividend / divisor);
1815 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001816 }
1817 }
1818 if (R)
1819 R[0] = remainder;
1820 } else {
1821 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1822 // case n > 1.
1823 KnuthDiv(U, V, Q, R, m, n);
1824 }
1825
1826 // If the caller wants the quotient
1827 if (Quotient) {
1828 // Set up the Quotient value's memory.
1829 if (Quotient->BitWidth != LHS.BitWidth) {
1830 if (Quotient->isSingleWord())
1831 Quotient->VAL = 0;
1832 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001833 delete [] Quotient->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001834 Quotient->BitWidth = LHS.BitWidth;
1835 if (!Quotient->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001836 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001837 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001838 Quotient->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001839
Eric Christopher820256b2009-08-21 04:06:45 +00001840 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001841 // order words.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001842 // This case is currently dead as all users of divide() handle trivial cases
1843 // earlier.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001844 if (lhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001845 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001846 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1847 if (Quotient->isSingleWord())
1848 Quotient->VAL = tmp;
1849 else
1850 Quotient->pVal[0] = tmp;
1851 } else {
1852 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1853 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001854 Quotient->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001855 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1856 }
1857 }
1858
1859 // If the caller wants the remainder
1860 if (Remainder) {
1861 // Set up the Remainder value's memory.
1862 if (Remainder->BitWidth != RHS.BitWidth) {
1863 if (Remainder->isSingleWord())
1864 Remainder->VAL = 0;
1865 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001866 delete [] Remainder->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001867 Remainder->BitWidth = RHS.BitWidth;
1868 if (!Remainder->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001869 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001870 } else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001871 Remainder->clearAllBits();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001872
1873 // The remainder is in R. Reconstitute the remainder into Remainder's low
1874 // order words.
1875 if (rhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001876 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001877 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1878 if (Remainder->isSingleWord())
1879 Remainder->VAL = tmp;
1880 else
1881 Remainder->pVal[0] = tmp;
1882 } else {
1883 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1884 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001885 Remainder->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001886 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1887 }
1888 }
1889
1890 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001891 if (U != &SPACE[0]) {
1892 delete [] U;
1893 delete [] V;
1894 delete [] Q;
1895 delete [] R;
1896 }
Reid Spencer100502d2007-02-17 03:16:00 +00001897}
1898
Reid Spencer1d072122007-02-16 22:36:51 +00001899APInt APInt::udiv(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001900 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001901
1902 // First, deal with the easy case
1903 if (isSingleWord()) {
1904 assert(RHS.VAL != 0 && "Divide by zero?");
1905 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001906 }
Reid Spencer39867762007-02-17 02:07:07 +00001907
Reid Spencer39867762007-02-17 02:07:07 +00001908 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner77527f52009-01-21 18:09:24 +00001909 unsigned rhsBits = RHS.getActiveBits();
1910 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001911 assert(rhsWords && "Divided by zero???");
Chris Lattner77527f52009-01-21 18:09:24 +00001912 unsigned lhsBits = this->getActiveBits();
1913 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001914
1915 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001916 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001917 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001918 return APInt(BitWidth, 0);
Reid Spencer58a6a432007-02-21 08:21:52 +00001919 else if (lhsWords < rhsWords || this->ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001920 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001921 return APInt(BitWidth, 0);
1922 } else if (*this == RHS) {
1923 // X / X ===> 1
1924 return APInt(BitWidth, 1);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001925 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001926 // All high words are zero, just use native divide
Reid Spencer58a6a432007-02-21 08:21:52 +00001927 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001928 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001929
1930 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1931 APInt Quotient(1,0); // to hold result.
Craig Topperc10719f2014-04-07 04:17:22 +00001932 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001933 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001934}
1935
Jakub Staszak6605c602013-02-20 00:17:42 +00001936APInt APInt::sdiv(const APInt &RHS) const {
1937 if (isNegative()) {
1938 if (RHS.isNegative())
1939 return (-(*this)).udiv(-RHS);
1940 return -((-(*this)).udiv(RHS));
1941 }
1942 if (RHS.isNegative())
1943 return -(this->udiv(-RHS));
1944 return this->udiv(RHS);
1945}
1946
Reid Spencer1d072122007-02-16 22:36:51 +00001947APInt APInt::urem(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001948 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001949 if (isSingleWord()) {
1950 assert(RHS.VAL != 0 && "Remainder by zero?");
1951 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001952 }
Reid Spencer39867762007-02-17 02:07:07 +00001953
Reid Spencer58a6a432007-02-21 08:21:52 +00001954 // Get some facts about the LHS
Chris Lattner77527f52009-01-21 18:09:24 +00001955 unsigned lhsBits = getActiveBits();
1956 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001957
1958 // Get some facts about the RHS
Chris Lattner77527f52009-01-21 18:09:24 +00001959 unsigned rhsBits = RHS.getActiveBits();
1960 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001961 assert(rhsWords && "Performing remainder operation by zero ???");
1962
Reid Spencer39867762007-02-17 02:07:07 +00001963 // Check the degenerate cases
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001964 if (lhsWords == 0) {
Reid Spencer58a6a432007-02-21 08:21:52 +00001965 // 0 % Y ===> 0
1966 return APInt(BitWidth, 0);
1967 } else if (lhsWords < rhsWords || this->ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001968 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001969 return *this;
1970 } else if (*this == RHS) {
Reid Spencer39867762007-02-17 02:07:07 +00001971 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001972 return APInt(BitWidth, 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001973 } else if (lhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001974 // All high words are zero, just use native remainder
Reid Spencer58a6a432007-02-21 08:21:52 +00001975 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001976 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001977
Reid Spencer4c50b522007-05-13 23:44:59 +00001978 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001979 APInt Remainder(1,0);
Craig Topperc10719f2014-04-07 04:17:22 +00001980 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001981 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001982}
Reid Spencer100502d2007-02-17 03:16:00 +00001983
Jakub Staszak6605c602013-02-20 00:17:42 +00001984APInt APInt::srem(const APInt &RHS) const {
1985 if (isNegative()) {
1986 if (RHS.isNegative())
1987 return -((-(*this)).urem(-RHS));
1988 return -((-(*this)).urem(RHS));
1989 }
1990 if (RHS.isNegative())
1991 return this->urem(-RHS);
1992 return this->urem(RHS);
1993}
1994
Eric Christopher820256b2009-08-21 04:06:45 +00001995void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001996 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001997 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1998
1999 // First, deal with the easy case
2000 if (LHS.isSingleWord()) {
2001 assert(RHS.VAL != 0 && "Divide by zero?");
2002 uint64_t QuotVal = LHS.VAL / RHS.VAL;
2003 uint64_t RemVal = LHS.VAL % RHS.VAL;
2004 Quotient = APInt(LHS.BitWidth, QuotVal);
2005 Remainder = APInt(LHS.BitWidth, RemVal);
2006 return;
2007 }
2008
Reid Spencer4c50b522007-05-13 23:44:59 +00002009 // Get some size facts about the dividend and divisor
Chris Lattner77527f52009-01-21 18:09:24 +00002010 unsigned lhsBits = LHS.getActiveBits();
2011 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2012 unsigned rhsBits = RHS.getActiveBits();
2013 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer4c50b522007-05-13 23:44:59 +00002014
2015 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00002016 if (lhsWords == 0) {
Reid Spencer4c50b522007-05-13 23:44:59 +00002017 Quotient = 0; // 0 / Y ===> 0
2018 Remainder = 0; // 0 % Y ===> 0
2019 return;
Eric Christopher820256b2009-08-21 04:06:45 +00002020 }
2021
2022 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002023 Remainder = LHS; // X % Y ===> X, iff X < Y
2024 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00002025 return;
Eric Christopher820256b2009-08-21 04:06:45 +00002026 }
2027
Reid Spencer4c50b522007-05-13 23:44:59 +00002028 if (LHS == RHS) {
2029 Quotient = 1; // X / X ===> 1
2030 Remainder = 0; // X % X ===> 0;
2031 return;
Eric Christopher820256b2009-08-21 04:06:45 +00002032 }
2033
Reid Spencer4c50b522007-05-13 23:44:59 +00002034 if (lhsWords == 1 && rhsWords == 1) {
2035 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00002036 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2037 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2038 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2039 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer4c50b522007-05-13 23:44:59 +00002040 return;
2041 }
2042
2043 // Okay, lets do it the long way
2044 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2045}
2046
Jakub Staszak6605c602013-02-20 00:17:42 +00002047void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
2048 APInt &Quotient, APInt &Remainder) {
2049 if (LHS.isNegative()) {
2050 if (RHS.isNegative())
2051 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
2052 else {
2053 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
2054 Quotient = -Quotient;
2055 }
2056 Remainder = -Remainder;
2057 } else if (RHS.isNegative()) {
2058 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
2059 Quotient = -Quotient;
2060 } else {
2061 APInt::udivrem(LHS, RHS, Quotient, Remainder);
2062 }
2063}
2064
Chris Lattner2c819b02010-10-13 23:54:10 +00002065APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002066 APInt Res = *this+RHS;
2067 Overflow = isNonNegative() == RHS.isNonNegative() &&
2068 Res.isNonNegative() != isNonNegative();
2069 return Res;
2070}
2071
Chris Lattner698661c2010-10-14 00:05:07 +00002072APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2073 APInt Res = *this+RHS;
2074 Overflow = Res.ult(RHS);
2075 return Res;
2076}
2077
Chris Lattner2c819b02010-10-13 23:54:10 +00002078APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002079 APInt Res = *this - RHS;
2080 Overflow = isNonNegative() != RHS.isNonNegative() &&
2081 Res.isNonNegative() != isNonNegative();
2082 return Res;
2083}
2084
Chris Lattner698661c2010-10-14 00:05:07 +00002085APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00002086 APInt Res = *this-RHS;
2087 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00002088 return Res;
2089}
2090
Chris Lattner2c819b02010-10-13 23:54:10 +00002091APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002092 // MININT/-1 --> overflow.
2093 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2094 return sdiv(RHS);
2095}
2096
Chris Lattner2c819b02010-10-13 23:54:10 +00002097APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00002098 APInt Res = *this * RHS;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002099
Chris Lattner79bdd882010-10-13 23:46:33 +00002100 if (*this != 0 && RHS != 0)
2101 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2102 else
2103 Overflow = false;
2104 return Res;
2105}
2106
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00002107APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2108 APInt Res = *this * RHS;
2109
2110 if (*this != 0 && RHS != 0)
2111 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2112 else
2113 Overflow = false;
2114 return Res;
2115}
2116
David Majnemera2521382014-10-13 21:48:30 +00002117APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2118 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00002119 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00002120 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00002121
2122 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00002123 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00002124 else
David Majnemera2521382014-10-13 21:48:30 +00002125 Overflow = ShAmt.uge(countLeadingOnes());
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002126
Chris Lattner79bdd882010-10-13 23:46:33 +00002127 return *this << ShAmt;
2128}
2129
David Majnemera2521382014-10-13 21:48:30 +00002130APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2131 Overflow = ShAmt.uge(getBitWidth());
2132 if (Overflow)
2133 return APInt(BitWidth, 0);
2134
2135 Overflow = ShAmt.ugt(countLeadingZeros());
2136
2137 return *this << ShAmt;
2138}
2139
Chris Lattner79bdd882010-10-13 23:46:33 +00002140
2141
2142
Benjamin Kramer92d89982010-07-14 22:38:02 +00002143void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00002144 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002145 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002146 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00002147 radix == 36) &&
2148 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002149
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002150 StringRef::iterator p = str.begin();
2151 size_t slen = str.size();
2152 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002153 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002154 p++;
2155 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00002156 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002157 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00002158 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002159 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2160 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002161 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2162 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00002163
2164 // Allocate memory
2165 if (!isSingleWord())
2166 pVal = getClearedMemory(getNumWords());
2167
2168 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00002169 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00002170
Craig Topperb7d8faa2017-04-02 06:59:38 +00002171 // Set up an APInt for the radix multiplier outside the loop so we don't
Reid Spencer1ba83352007-02-21 03:55:44 +00002172 // constantly construct/destruct it.
Reid Spencer1ba83352007-02-21 03:55:44 +00002173 APInt apradix(getBitWidth(), radix);
2174
2175 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002176 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00002177 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00002178 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00002179
Reid Spencera93c9812007-05-16 19:18:22 +00002180 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002181 if (slen > 1) {
2182 if (shift)
2183 *this <<= shift;
2184 else
2185 *this *= apradix;
2186 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002187
2188 // Add in the digit we just interpreted
Craig Topperb7d8faa2017-04-02 06:59:38 +00002189 *this += digit;
Reid Spencer100502d2007-02-17 03:16:00 +00002190 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002191 // If its negative, put it in two's complement form
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00002192 if (isNeg) {
Jakub Staszak773be0c2013-03-20 23:56:19 +00002193 --(*this);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002194 this->flipAllBits();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002195 }
Reid Spencer100502d2007-02-17 03:16:00 +00002196}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002197
Chris Lattner17f71652008-08-17 07:19:36 +00002198void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002199 bool Signed, bool formatAsCLiteral) const {
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002200 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00002201 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002202 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00002203
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002204 const char *Prefix = "";
2205 if (formatAsCLiteral) {
2206 switch (Radix) {
2207 case 2:
2208 // Binary literals are a non-standard extension added in gcc 4.3:
2209 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2210 Prefix = "0b";
2211 break;
2212 case 8:
2213 Prefix = "0";
2214 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002215 case 10:
2216 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002217 case 16:
2218 Prefix = "0x";
2219 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002220 default:
2221 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002222 }
2223 }
2224
Chris Lattner17f71652008-08-17 07:19:36 +00002225 // First, check for a zero value and just short circuit the logic below.
2226 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002227 while (*Prefix) {
2228 Str.push_back(*Prefix);
2229 ++Prefix;
2230 };
Chris Lattner17f71652008-08-17 07:19:36 +00002231 Str.push_back('0');
2232 return;
2233 }
Eric Christopher820256b2009-08-21 04:06:45 +00002234
Douglas Gregor663c0682011-09-14 15:54:46 +00002235 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00002236
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002237 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002238 char Buffer[65];
2239 char *BufPtr = Buffer+65;
Eric Christopher820256b2009-08-21 04:06:45 +00002240
Chris Lattner17f71652008-08-17 07:19:36 +00002241 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00002242 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00002243 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00002244 } else {
2245 int64_t I = getSExtValue();
2246 if (I >= 0) {
2247 N = I;
2248 } else {
2249 Str.push_back('-');
2250 N = -(uint64_t)I;
2251 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002252 }
Eric Christopher820256b2009-08-21 04:06:45 +00002253
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002254 while (*Prefix) {
2255 Str.push_back(*Prefix);
2256 ++Prefix;
2257 };
2258
Chris Lattner17f71652008-08-17 07:19:36 +00002259 while (N) {
2260 *--BufPtr = Digits[N % Radix];
2261 N /= Radix;
2262 }
2263 Str.append(BufPtr, Buffer+65);
2264 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002265 }
2266
Chris Lattner17f71652008-08-17 07:19:36 +00002267 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002268
Chris Lattner17f71652008-08-17 07:19:36 +00002269 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002270 // They want to print the signed version and it is a negative value
2271 // Flip the bits and add one to turn it into the equivalent positive
2272 // value and put a '-' in the result.
Jay Foad25a5e4c2010-12-01 08:53:58 +00002273 Tmp.flipAllBits();
Jakub Staszak773be0c2013-03-20 23:56:19 +00002274 ++Tmp;
Chris Lattner17f71652008-08-17 07:19:36 +00002275 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002276 }
Eric Christopher820256b2009-08-21 04:06:45 +00002277
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002278 while (*Prefix) {
2279 Str.push_back(*Prefix);
2280 ++Prefix;
2281 };
2282
Chris Lattner17f71652008-08-17 07:19:36 +00002283 // We insert the digits backward, then reverse them to get the right order.
2284 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002285
2286 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2287 // because the number of bits per digit (1, 3 and 4 respectively) divides
Craig Topperd7ed50d2017-04-02 06:59:36 +00002288 // equally. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00002289 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00002290 // Just shift tmp right for each digit width until it becomes zero
2291 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2292 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002293
Chris Lattner17f71652008-08-17 07:19:36 +00002294 while (Tmp != 0) {
2295 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2296 Str.push_back(Digits[Digit]);
2297 Tmp = Tmp.lshr(ShiftAmt);
2298 }
2299 } else {
Douglas Gregor663c0682011-09-14 15:54:46 +00002300 APInt divisor(Radix == 10? 4 : 8, Radix);
Chris Lattner17f71652008-08-17 07:19:36 +00002301 while (Tmp != 0) {
2302 APInt APdigit(1, 0);
2303 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher820256b2009-08-21 04:06:45 +00002304 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner17f71652008-08-17 07:19:36 +00002305 &APdigit);
Chris Lattner77527f52009-01-21 18:09:24 +00002306 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner17f71652008-08-17 07:19:36 +00002307 assert(Digit < Radix && "divide failed");
2308 Str.push_back(Digits[Digit]);
2309 Tmp = tmp2;
2310 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002311 }
Eric Christopher820256b2009-08-21 04:06:45 +00002312
Chris Lattner17f71652008-08-17 07:19:36 +00002313 // Reverse the digits before returning.
2314 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002315}
2316
Pawel Bylica6eeeac72015-04-06 13:31:39 +00002317/// Returns the APInt as a std::string. Note that this is an inefficient method.
2318/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00002319std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2320 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002321 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002322 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002323}
Chris Lattner6b695682007-08-16 15:56:55 +00002324
Matthias Braun8c209aa2017-01-28 02:02:38 +00002325#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Yaron Kereneb2a2542016-01-29 20:50:44 +00002326LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00002327 SmallString<40> S, U;
2328 this->toStringUnsigned(U);
2329 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002330 dbgs() << "APInt(" << BitWidth << "b, "
Davide Italiano5a473d22017-01-31 21:26:18 +00002331 << U << "u " << S << "s)\n";
Chris Lattner17f71652008-08-17 07:19:36 +00002332}
Matthias Braun8c209aa2017-01-28 02:02:38 +00002333#endif
Chris Lattner17f71652008-08-17 07:19:36 +00002334
Chris Lattner0c19df42008-08-23 22:23:09 +00002335void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002336 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002337 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00002338 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00002339}
2340
Chris Lattner6b695682007-08-16 15:56:55 +00002341// This implements a variety of operations on a representation of
2342// arbitrary precision, two's-complement, bignum integer values.
2343
Chris Lattner96cffa62009-08-23 23:11:28 +00002344// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2345// and unrestricting assumption.
Benjamin Kramer7000ca32014-10-12 17:56:40 +00002346static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002347
2348/* Some handy functions local to this file. */
Chris Lattner6b695682007-08-16 15:56:55 +00002349
Craig Topper76f42462017-03-28 05:32:53 +00002350/* Returns the integer part with the least significant BITS set.
2351 BITS cannot be zero. */
Craig Topper6a8518082017-03-28 05:32:55 +00002352static inline integerPart lowBitMask(unsigned bits) {
Craig Topper76f42462017-03-28 05:32:53 +00002353 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002354
Craig Topper76f42462017-03-28 05:32:53 +00002355 return ~(integerPart) 0 >> (integerPartWidth - bits);
2356}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002357
Craig Topper76f42462017-03-28 05:32:53 +00002358/* Returns the value of the lower half of PART. */
Craig Topper6a8518082017-03-28 05:32:55 +00002359static inline integerPart lowHalf(integerPart part) {
Craig Topper76f42462017-03-28 05:32:53 +00002360 return part & lowBitMask(integerPartWidth / 2);
2361}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002362
Craig Topper76f42462017-03-28 05:32:53 +00002363/* Returns the value of the upper half of PART. */
Craig Topper6a8518082017-03-28 05:32:55 +00002364static inline integerPart highHalf(integerPart part) {
Craig Topper76f42462017-03-28 05:32:53 +00002365 return part >> (integerPartWidth / 2);
2366}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002367
Craig Topper76f42462017-03-28 05:32:53 +00002368/* Returns the bit number of the most significant set bit of a part.
2369 If the input number has no bits set -1U is returned. */
Craig Topper6a8518082017-03-28 05:32:55 +00002370static unsigned partMSB(integerPart value) {
Craig Topper76f42462017-03-28 05:32:53 +00002371 return findLastSet(value, ZB_Max);
2372}
Chris Lattner6b695682007-08-16 15:56:55 +00002373
Craig Topper76f42462017-03-28 05:32:53 +00002374/* Returns the bit number of the least significant set bit of a
2375 part. If the input number has no bits set -1U is returned. */
Craig Topper6a8518082017-03-28 05:32:55 +00002376static unsigned partLSB(integerPart value) {
Craig Topper76f42462017-03-28 05:32:53 +00002377 return findFirstSet(value, ZB_Max);
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002378}
Chris Lattner6b695682007-08-16 15:56:55 +00002379
2380/* Sets the least significant part of a bignum to the input value, and
2381 zeroes out higher parts. */
Craig Topper6a8518082017-03-28 05:32:55 +00002382void APInt::tcSet(integerPart *dst, integerPart part, unsigned parts) {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002383 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002384
Chris Lattner6b695682007-08-16 15:56:55 +00002385 dst[0] = part;
Craig Topperb0038162017-03-28 05:32:52 +00002386 for (unsigned i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002387 dst[i] = 0;
2388}
2389
2390/* Assign one bignum to another. */
Craig Topper6a8518082017-03-28 05:32:55 +00002391void APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002392 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002393 dst[i] = src[i];
2394}
2395
2396/* Returns true if a bignum is zero, false otherwise. */
Craig Topper6a8518082017-03-28 05:32:55 +00002397bool APInt::tcIsZero(const integerPart *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002398 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002399 if (src[i])
2400 return false;
2401
2402 return true;
2403}
2404
2405/* Extract the given bit of a bignum; returns 0 or 1. */
Craig Topper6a8518082017-03-28 05:32:55 +00002406int APInt::tcExtractBit(const integerPart *parts, unsigned bit) {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002407 return (parts[bit / integerPartWidth] &
2408 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002409}
2410
John McCalldcb9a7a2010-02-28 02:51:25 +00002411/* Set the given bit of a bignum. */
Craig Topper6a8518082017-03-28 05:32:55 +00002412void APInt::tcSetBit(integerPart *parts, unsigned bit) {
Chris Lattner6b695682007-08-16 15:56:55 +00002413 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2414}
2415
John McCalldcb9a7a2010-02-28 02:51:25 +00002416/* Clears the given bit of a bignum. */
Craig Topper6a8518082017-03-28 05:32:55 +00002417void APInt::tcClearBit(integerPart *parts, unsigned bit) {
John McCalldcb9a7a2010-02-28 02:51:25 +00002418 parts[bit / integerPartWidth] &=
2419 ~((integerPart) 1 << (bit % integerPartWidth));
2420}
2421
Neil Boothc8b650a2007-10-06 00:43:45 +00002422/* Returns the bit number of the least significant set bit of a
2423 number. If the input number has no bits set -1U is returned. */
Craig Topper6a8518082017-03-28 05:32:55 +00002424unsigned APInt::tcLSB(const integerPart *parts, unsigned n) {
Craig Topperb0038162017-03-28 05:32:52 +00002425 for (unsigned i = 0; i < n; i++) {
2426 if (parts[i] != 0) {
2427 unsigned lsb = partLSB(parts[i]);
Chris Lattner6b695682007-08-16 15:56:55 +00002428
Craig Topperb0038162017-03-28 05:32:52 +00002429 return lsb + i * integerPartWidth;
2430 }
Chris Lattner6b695682007-08-16 15:56:55 +00002431 }
2432
2433 return -1U;
2434}
2435
Neil Boothc8b650a2007-10-06 00:43:45 +00002436/* Returns the bit number of the most significant set bit of a number.
2437 If the input number has no bits set -1U is returned. */
Craig Topper6a8518082017-03-28 05:32:55 +00002438unsigned APInt::tcMSB(const integerPart *parts, unsigned n) {
Chris Lattner6b695682007-08-16 15:56:55 +00002439 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002440 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002441
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002442 if (parts[n] != 0) {
Craig Topperb0038162017-03-28 05:32:52 +00002443 unsigned msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002444
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002445 return msb + n * integerPartWidth;
2446 }
Chris Lattner6b695682007-08-16 15:56:55 +00002447 } while (n);
2448
2449 return -1U;
2450}
2451
Neil Boothb6182162007-10-08 13:47:12 +00002452/* Copy the bit vector of width srcBITS from SRC, starting at bit
2453 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2454 the least significant bit of DST. All high bits above srcBITS in
2455 DST are zero-filled. */
2456void
Craig Topper6a8518082017-03-28 05:32:55 +00002457APInt::tcExtract(integerPart *dst, unsigned dstCount, const integerPart *src,
2458 unsigned srcBits, unsigned srcLSB) {
Craig Topperb0038162017-03-28 05:32:52 +00002459 unsigned dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002460 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002461
Craig Topperb0038162017-03-28 05:32:52 +00002462 unsigned firstSrcPart = srcLSB / integerPartWidth;
Neil Boothb6182162007-10-08 13:47:12 +00002463 tcAssign (dst, src + firstSrcPart, dstParts);
2464
Craig Topperb0038162017-03-28 05:32:52 +00002465 unsigned shift = srcLSB % integerPartWidth;
Neil Boothb6182162007-10-08 13:47:12 +00002466 tcShiftRight (dst, dstParts, shift);
2467
2468 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2469 in DST. If this is less that srcBits, append the rest, else
2470 clear the high bits. */
Craig Topperb0038162017-03-28 05:32:52 +00002471 unsigned n = dstParts * integerPartWidth - shift;
Neil Boothb6182162007-10-08 13:47:12 +00002472 if (n < srcBits) {
2473 integerPart mask = lowBitMask (srcBits - n);
2474 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2475 << n % integerPartWidth);
2476 } else if (n > srcBits) {
Neil Booth7e74b172007-10-12 15:31:31 +00002477 if (srcBits % integerPartWidth)
2478 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Boothb6182162007-10-08 13:47:12 +00002479 }
2480
2481 /* Clear high parts. */
2482 while (dstParts < dstCount)
2483 dst[dstParts++] = 0;
2484}
2485
Chris Lattner6b695682007-08-16 15:56:55 +00002486/* DST += RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper6a8518082017-03-28 05:32:55 +00002487integerPart APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2488 integerPart c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002489 assert(c <= 1);
2490
Craig Topperb0038162017-03-28 05:32:52 +00002491 for (unsigned i = 0; i < parts; i++) {
Craig Topperb8f10682017-04-02 06:59:41 +00002492 integerPart l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002493 if (c) {
2494 dst[i] += rhs[i] + 1;
2495 c = (dst[i] <= l);
2496 } else {
2497 dst[i] += rhs[i];
2498 c = (dst[i] < l);
2499 }
2500 }
2501
2502 return c;
2503}
2504
2505/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper6a8518082017-03-28 05:32:55 +00002506integerPart APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2507 integerPart c, unsigned parts)
Chris Lattner6b695682007-08-16 15:56:55 +00002508{
Chris Lattner6b695682007-08-16 15:56:55 +00002509 assert(c <= 1);
2510
Craig Topperb0038162017-03-28 05:32:52 +00002511 for (unsigned i = 0; i < parts; i++) {
Craig Topperb8f10682017-04-02 06:59:41 +00002512 integerPart l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002513 if (c) {
2514 dst[i] -= rhs[i] + 1;
2515 c = (dst[i] >= l);
2516 } else {
2517 dst[i] -= rhs[i];
2518 c = (dst[i] > l);
2519 }
2520 }
2521
2522 return c;
2523}
2524
2525/* Negate a bignum in-place. */
Craig Topper6a8518082017-03-28 05:32:55 +00002526void APInt::tcNegate(integerPart *dst, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002527 tcComplement(dst, parts);
2528 tcIncrement(dst, parts);
2529}
2530
Neil Boothc8b650a2007-10-06 00:43:45 +00002531/* DST += SRC * MULTIPLIER + CARRY if add is true
2532 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002533
2534 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2535 they must start at the same point, i.e. DST == SRC.
2536
2537 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2538 returned. Otherwise DST is filled with the least significant
2539 DSTPARTS parts of the result, and if all of the omitted higher
2540 parts were zero return zero, otherwise overflow occurred and
2541 return one. */
Craig Topper6a8518082017-03-28 05:32:55 +00002542int APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2543 integerPart multiplier, integerPart carry,
2544 unsigned srcParts, unsigned dstParts,
2545 bool add) {
Chris Lattner6b695682007-08-16 15:56:55 +00002546 /* Otherwise our writes of DST kill our later reads of SRC. */
2547 assert(dst <= src || dst >= src + srcParts);
2548 assert(dstParts <= srcParts + 1);
2549
2550 /* N loops; minimum of dstParts and srcParts. */
Craig Topperb0038162017-03-28 05:32:52 +00002551 unsigned n = dstParts < srcParts ? dstParts: srcParts;
Chris Lattner6b695682007-08-16 15:56:55 +00002552
Craig Topperb0038162017-03-28 05:32:52 +00002553 unsigned i;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002554 for (i = 0; i < n; i++) {
Chris Lattner6b695682007-08-16 15:56:55 +00002555 integerPart low, mid, high, srcPart;
2556
2557 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2558
2559 This cannot overflow, because
2560
2561 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2562
2563 which is less than n^2. */
2564
2565 srcPart = src[i];
2566
Craig Topper6a8518082017-03-28 05:32:55 +00002567 if (multiplier == 0 || srcPart == 0) {
Chris Lattner6b695682007-08-16 15:56:55 +00002568 low = carry;
2569 high = 0;
2570 } else {
2571 low = lowHalf(srcPart) * lowHalf(multiplier);
2572 high = highHalf(srcPart) * highHalf(multiplier);
2573
2574 mid = lowHalf(srcPart) * highHalf(multiplier);
2575 high += highHalf(mid);
2576 mid <<= integerPartWidth / 2;
2577 if (low + mid < low)
2578 high++;
2579 low += mid;
2580
2581 mid = highHalf(srcPart) * lowHalf(multiplier);
2582 high += highHalf(mid);
2583 mid <<= integerPartWidth / 2;
2584 if (low + mid < low)
2585 high++;
2586 low += mid;
2587
2588 /* Now add carry. */
2589 if (low + carry < low)
2590 high++;
2591 low += carry;
2592 }
2593
2594 if (add) {
2595 /* And now DST[i], and store the new low part there. */
2596 if (low + dst[i] < low)
2597 high++;
2598 dst[i] += low;
2599 } else
2600 dst[i] = low;
2601
2602 carry = high;
2603 }
2604
2605 if (i < dstParts) {
2606 /* Full multiplication, there is no overflow. */
2607 assert(i + 1 == dstParts);
2608 dst[i] = carry;
2609 return 0;
2610 } else {
2611 /* We overflowed if there is carry. */
2612 if (carry)
2613 return 1;
2614
2615 /* We would overflow if any significant unwritten parts would be
2616 non-zero. This is true if any remaining src parts are non-zero
2617 and the multiplier is non-zero. */
2618 if (multiplier)
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002619 for (; i < srcParts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002620 if (src[i])
2621 return 1;
2622
2623 /* We fitted in the narrow destination. */
2624 return 0;
2625 }
2626}
2627
2628/* DST = LHS * RHS, where DST has the same width as the operands and
2629 is filled with the least significant parts of the result. Returns
2630 one if overflow occurred, otherwise zero. DST must be disjoint
2631 from both operands. */
Craig Topper6a8518082017-03-28 05:32:55 +00002632int APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2633 const integerPart *rhs, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002634 assert(dst != lhs && dst != rhs);
2635
Craig Topperb0038162017-03-28 05:32:52 +00002636 int overflow = 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002637 tcSet(dst, 0, parts);
2638
Craig Topperb0038162017-03-28 05:32:52 +00002639 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002640 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2641 parts - i, true);
2642
2643 return overflow;
2644}
2645
Neil Booth0ea72a92007-10-06 00:24:48 +00002646/* DST = LHS * RHS, where DST has width the sum of the widths of the
2647 operands. No overflow occurs. DST must be disjoint from both
2648 operands. Returns the number of parts required to hold the
2649 result. */
Craig Topper6a8518082017-03-28 05:32:55 +00002650unsigned APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2651 const integerPart *rhs, unsigned lhsParts,
2652 unsigned rhsParts) {
Neil Booth0ea72a92007-10-06 00:24:48 +00002653 /* Put the narrower number on the LHS for less loops below. */
2654 if (lhsParts > rhsParts) {
2655 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2656 } else {
Neil Booth0ea72a92007-10-06 00:24:48 +00002657 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002658
Neil Booth0ea72a92007-10-06 00:24:48 +00002659 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002660
Craig Topperb0038162017-03-28 05:32:52 +00002661 for (unsigned i = 0; i < lhsParts; i++)
2662 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002663
Craig Topperb0038162017-03-28 05:32:52 +00002664 unsigned n = lhsParts + rhsParts;
Neil Booth0ea72a92007-10-06 00:24:48 +00002665
2666 return n - (dst[n - 1] == 0);
2667 }
Chris Lattner6b695682007-08-16 15:56:55 +00002668}
2669
2670/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2671 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2672 set REMAINDER to the remainder, return zero. i.e.
2673
2674 OLD_LHS = RHS * LHS + REMAINDER
2675
2676 SCRATCH is a bignum of the same size as the operands and result for
2677 use by the routine; its contents need not be initialized and are
2678 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2679*/
Craig Topper6a8518082017-03-28 05:32:55 +00002680int APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2681 integerPart *remainder, integerPart *srhs,
2682 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002683 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2684
Craig Topperb0038162017-03-28 05:32:52 +00002685 unsigned shiftCount = tcMSB(rhs, parts) + 1;
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002686 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002687 return true;
2688
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002689 shiftCount = parts * integerPartWidth - shiftCount;
Craig Topperb0038162017-03-28 05:32:52 +00002690 unsigned n = shiftCount / integerPartWidth;
2691 integerPart mask = (integerPart) 1 << (shiftCount % integerPartWidth);
Chris Lattner6b695682007-08-16 15:56:55 +00002692
2693 tcAssign(srhs, rhs, parts);
2694 tcShiftLeft(srhs, parts, shiftCount);
2695 tcAssign(remainder, lhs, parts);
2696 tcSet(lhs, 0, parts);
2697
2698 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2699 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002700 for (;;) {
Chris Lattner6b695682007-08-16 15:56:55 +00002701 int compare;
2702
2703 compare = tcCompare(remainder, srhs, parts);
2704 if (compare >= 0) {
2705 tcSubtract(remainder, srhs, 0, parts);
2706 lhs[n] |= mask;
2707 }
2708
2709 if (shiftCount == 0)
2710 break;
2711 shiftCount--;
2712 tcShiftRight(srhs, parts, 1);
Richard Trieu7a083812016-02-18 22:09:30 +00002713 if ((mask >>= 1) == 0) {
2714 mask = (integerPart) 1 << (integerPartWidth - 1);
2715 n--;
2716 }
Chris Lattner6b695682007-08-16 15:56:55 +00002717 }
2718
2719 return false;
2720}
2721
2722/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2723 There are no restrictions on COUNT. */
Craig Topper6a8518082017-03-28 05:32:55 +00002724void APInt::tcShiftLeft(integerPart *dst, unsigned parts, unsigned count) {
Neil Boothb6182162007-10-08 13:47:12 +00002725 if (count) {
Neil Boothb6182162007-10-08 13:47:12 +00002726 /* Jump is the inter-part jump; shift is is intra-part shift. */
Craig Topperb0038162017-03-28 05:32:52 +00002727 unsigned jump = count / integerPartWidth;
2728 unsigned shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002729
Neil Boothb6182162007-10-08 13:47:12 +00002730 while (parts > jump) {
2731 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002732
Neil Boothb6182162007-10-08 13:47:12 +00002733 parts--;
Chris Lattner6b695682007-08-16 15:56:55 +00002734
Neil Boothb6182162007-10-08 13:47:12 +00002735 /* dst[i] comes from the two parts src[i - jump] and, if we have
2736 an intra-part shift, src[i - jump - 1]. */
2737 part = dst[parts - jump];
2738 if (shift) {
2739 part <<= shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002740 if (parts >= jump + 1)
2741 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2742 }
2743
Neil Boothb6182162007-10-08 13:47:12 +00002744 dst[parts] = part;
2745 }
Chris Lattner6b695682007-08-16 15:56:55 +00002746
Neil Boothb6182162007-10-08 13:47:12 +00002747 while (parts > 0)
2748 dst[--parts] = 0;
2749 }
Chris Lattner6b695682007-08-16 15:56:55 +00002750}
2751
2752/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2753 zero. There are no restrictions on COUNT. */
Craig Topper6a8518082017-03-28 05:32:55 +00002754void APInt::tcShiftRight(integerPart *dst, unsigned parts, unsigned count) {
Neil Boothb6182162007-10-08 13:47:12 +00002755 if (count) {
Neil Boothb6182162007-10-08 13:47:12 +00002756 /* Jump is the inter-part jump; shift is is intra-part shift. */
Craig Topperb0038162017-03-28 05:32:52 +00002757 unsigned jump = count / integerPartWidth;
2758 unsigned shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002759
Neil Boothb6182162007-10-08 13:47:12 +00002760 /* Perform the shift. This leaves the most significant COUNT bits
2761 of the result at zero. */
Craig Topperb0038162017-03-28 05:32:52 +00002762 for (unsigned i = 0; i < parts; i++) {
Neil Boothb6182162007-10-08 13:47:12 +00002763 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002764
Neil Boothb6182162007-10-08 13:47:12 +00002765 if (i + jump >= parts) {
2766 part = 0;
2767 } else {
2768 part = dst[i + jump];
2769 if (shift) {
2770 part >>= shift;
2771 if (i + jump + 1 < parts)
2772 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2773 }
Chris Lattner6b695682007-08-16 15:56:55 +00002774 }
Chris Lattner6b695682007-08-16 15:56:55 +00002775
Neil Boothb6182162007-10-08 13:47:12 +00002776 dst[i] = part;
2777 }
Chris Lattner6b695682007-08-16 15:56:55 +00002778 }
2779}
2780
2781/* Bitwise and of two bignums. */
Craig Topper6a8518082017-03-28 05:32:55 +00002782void APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002783 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002784 dst[i] &= rhs[i];
2785}
2786
2787/* Bitwise inclusive or of two bignums. */
Craig Topper6a8518082017-03-28 05:32:55 +00002788void APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002789 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002790 dst[i] |= rhs[i];
2791}
2792
2793/* Bitwise exclusive or of two bignums. */
Craig Topper6a8518082017-03-28 05:32:55 +00002794void APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002795 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002796 dst[i] ^= rhs[i];
2797}
2798
2799/* Complement a bignum in-place. */
Craig Topper6a8518082017-03-28 05:32:55 +00002800void APInt::tcComplement(integerPart *dst, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002801 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002802 dst[i] = ~dst[i];
2803}
2804
2805/* Comparison (unsigned) of two bignums. */
Craig Topper6a8518082017-03-28 05:32:55 +00002806int APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2807 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002808 while (parts) {
Craig Topper99cfe4f2017-04-01 21:50:06 +00002809 parts--;
2810 if (lhs[parts] == rhs[parts])
2811 continue;
Chris Lattner6b695682007-08-16 15:56:55 +00002812
Craig Topper68a3ed22017-04-01 21:50:10 +00002813 return (lhs[parts] > rhs[parts]) ? 1 : -1;
Craig Topper99cfe4f2017-04-01 21:50:06 +00002814 }
Chris Lattner6b695682007-08-16 15:56:55 +00002815
2816 return 0;
2817}
2818
2819/* Increment a bignum in-place, return the carry flag. */
Craig Topper6a8518082017-03-28 05:32:55 +00002820integerPart APInt::tcIncrement(integerPart *dst, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002821 unsigned i;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002822 for (i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002823 if (++dst[i] != 0)
2824 break;
2825
2826 return i == parts;
2827}
2828
Michael Gottesman9d406f42013-05-28 19:50:20 +00002829/* Decrement a bignum in-place, return the borrow flag. */
Craig Topper6a8518082017-03-28 05:32:55 +00002830integerPart APInt::tcDecrement(integerPart *dst, unsigned parts) {
Craig Topper592b1342017-03-28 05:32:48 +00002831 for (unsigned i = 0; i < parts; i++) {
Michael Gottesman9d406f42013-05-28 19:50:20 +00002832 // If the current word is non-zero, then the decrement has no effect on the
2833 // higher-order words of the integer and no borrow can occur. Exit early.
2834 if (dst[i]--)
2835 return 0;
2836 }
2837 // If every word was zero, then there is a borrow.
2838 return 1;
2839}
2840
2841
Chris Lattner6b695682007-08-16 15:56:55 +00002842/* Set the least significant BITS bits of a bignum, clear the
2843 rest. */
Craig Topper6a8518082017-03-28 05:32:55 +00002844void APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned parts,
2845 unsigned bits) {
Craig Topperb0038162017-03-28 05:32:52 +00002846 unsigned i = 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002847 while (bits > integerPartWidth) {
2848 dst[i++] = ~(integerPart) 0;
2849 bits -= integerPartWidth;
2850 }
2851
2852 if (bits)
2853 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2854
2855 while (i < parts)
2856 dst[i++] = 0;
2857}